In this paper we emphasize the close connection between the chemical and spectrophotometric evolution of stellar systems: chemical yields from stars correspond to a precise fraction of their emitted light. We translate this concept quantitatively. Starting from simple stellar populations, we derive useful analytical relations to calculate the stellar fuel consumption (emitted light) as a function of basic quantities predicted by stellar models, i.e. the mass of the core and the chemical composition of the envelope. The final formulas explicate the relation between integrated light contribution (total or limited to particular evolutionary phases), chemical yields and stellar remnants. We test their accuracy in the case of low- and intermediate-mass stars, and indicate the way to extend the analysis to massive stars. This formalism provides an easy tool to check the internal consistency between the different stellar inputs adopted in galaxy models: the fuel computed by means of the analytical formulas (corresponding to a given set of chemical yields) should be compared to the exact values given by the luminosity integration along the stellar evolutionary tracks or isochrones (corresponding to a given set of spectrophotometric models). Only if both estimates of the fuel are similar, the stellar inputs can be considered self-consistent in terms of their energetics. This sets an important requirement to galaxy models, also in consideration of the fact that different sources of input stellar data are frequently used to model their spectro-photometric and chemical evolution.
Coupling emitted light and chemical yields from stars: a basic constraint to population synthesis models of galaxies
MARIGO, PAOLA;
2001
Abstract
In this paper we emphasize the close connection between the chemical and spectrophotometric evolution of stellar systems: chemical yields from stars correspond to a precise fraction of their emitted light. We translate this concept quantitatively. Starting from simple stellar populations, we derive useful analytical relations to calculate the stellar fuel consumption (emitted light) as a function of basic quantities predicted by stellar models, i.e. the mass of the core and the chemical composition of the envelope. The final formulas explicate the relation between integrated light contribution (total or limited to particular evolutionary phases), chemical yields and stellar remnants. We test their accuracy in the case of low- and intermediate-mass stars, and indicate the way to extend the analysis to massive stars. This formalism provides an easy tool to check the internal consistency between the different stellar inputs adopted in galaxy models: the fuel computed by means of the analytical formulas (corresponding to a given set of chemical yields) should be compared to the exact values given by the luminosity integration along the stellar evolutionary tracks or isochrones (corresponding to a given set of spectrophotometric models). Only if both estimates of the fuel are similar, the stellar inputs can be considered self-consistent in terms of their energetics. This sets an important requirement to galaxy models, also in consideration of the fact that different sources of input stellar data are frequently used to model their spectro-photometric and chemical evolution.File | Dimensione | Formato | |
---|---|---|---|
MarigoGirardi_2001_aah2634.pdf
accesso aperto
Descrizione: Main paper
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
349.33 kB
Formato
Adobe PDF
|
349.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.