We consider the Riemann map $g_{\zeta,w}$ of the complex unit disk to the plane domain $\mathbb I[\zeta]$ enclosed by the Jordan curve $\zeta$ and normalized by the conditions $ g_{\zeta,w}(0) = w$, $ g'_{\zeta,w}(0) > 0$, where $w$ is a point of $\mathbb I[\zeta]$, and we present a nonlinear singular integral equation approach to prove that the nonlinear operator which takes the pair $(\zeta,w)$ to the map $g^{(-1)}_{\zeta,w}\circ\zeta$ is real analytic in Schauder spaces.

Analyticity of a nonlinear operator associated to the conformal representation in Schauder spaces. An integral equation approach

LANZA DE CRISTOFORIS, MASSIMO;
2000

Abstract

We consider the Riemann map $g_{\zeta,w}$ of the complex unit disk to the plane domain $\mathbb I[\zeta]$ enclosed by the Jordan curve $\zeta$ and normalized by the conditions $ g_{\zeta,w}(0) = w$, $ g'_{\zeta,w}(0) > 0$, where $w$ is a point of $\mathbb I[\zeta]$, and we present a nonlinear singular integral equation approach to prove that the nonlinear operator which takes the pair $(\zeta,w)$ to the map $g^{(-1)}_{\zeta,w}\circ\zeta$ is real analytic in Schauder spaces.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1351091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact