In this paper, we study the controllability properties and the Lie algebra structure of networks of particles with spin immersed in an electro-magnetic field. We relate the Lie algebra structure to the properties of a graph whose nodes represent the particles and an edge connects two nodes if and only if the interaction between the two corresponding particles is active. For networks with different gyromagnetic ratios, we provide a necessary and sufficient condition of controllability in terms of the properties of the above-mentioned graph and describe the Lie algebra structure in every case. For these systems all the controllability notions, including the possibility of driving the evolution operator and/or the state, are equivalent. For general networks (with possibly equal gyromagnetic ratios), we give a sufficient condition of controllability. A general form of interaction among the particles is assumed which includes both Ising and Heisenberg models as special cases. Assuming Heisenberg interaction we provide an analysis of low-dimensional cases (number of particles less than or equal to three) which includes necessary and sufficient controllability conditions as well as a study of their Lie algebra structure. This also provides an example of quantum mechanical systems where controllability of the state is verified while controllability of the evolution operator is not. (C) 2002 Elsevier Science Inc. All rights reserved.

The Lie Algebra Structure and Controllability of Spin Systems

ALBERTINI, FRANCESCA;
2002

Abstract

In this paper, we study the controllability properties and the Lie algebra structure of networks of particles with spin immersed in an electro-magnetic field. We relate the Lie algebra structure to the properties of a graph whose nodes represent the particles and an edge connects two nodes if and only if the interaction between the two corresponding particles is active. For networks with different gyromagnetic ratios, we provide a necessary and sufficient condition of controllability in terms of the properties of the above-mentioned graph and describe the Lie algebra structure in every case. For these systems all the controllability notions, including the possibility of driving the evolution operator and/or the state, are equivalent. For general networks (with possibly equal gyromagnetic ratios), we give a sufficient condition of controllability. A general form of interaction among the particles is assumed which includes both Ising and Heisenberg models as special cases. Assuming Heisenberg interaction we provide an analysis of low-dimensional cases (number of particles less than or equal to three) which includes necessary and sufficient controllability conditions as well as a study of their Lie algebra structure. This also provides an example of quantum mechanical systems where controllability of the state is verified while controllability of the evolution operator is not. (C) 2002 Elsevier Science Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
24.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 227.48 kB
Formato Adobe PDF
227.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1350067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 48
  • OpenAlex ND
social impact