In this paper, it is shown that an integrable approximation of the spring pendulum, when tuned to be in 1:1:2 resonance, has monodromy. The stepwise precession angle of the swing plane of the resonant spring pendulum is shown to be a rotation number of the integrable approximation. Due to the monodromy, this rotation number is not a globally defined function of the integrals. In fact at lowest order it is given by arg(χ + iλ), where χ and λ are functions of the integrals. The resonant swing spring is therefore a system where monodromy has easily observed physical consequences.

Monodromy in the resonant swing spring

GIACOBBE, ANDREA
2004

Abstract

In this paper, it is shown that an integrable approximation of the spring pendulum, when tuned to be in 1:1:2 resonance, has monodromy. The stepwise precession angle of the swing plane of the resonant spring pendulum is shown to be a rotation number of the integrable approximation. Due to the monodromy, this rotation number is not a globally defined function of the integrals. In fact at lowest order it is given by arg(χ + iλ), where χ and λ are functions of the integrals. The resonant swing spring is therefore a system where monodromy has easily observed physical consequences.
File in questo prodotto:
File Dimensione Formato  
2004 Monodromy in the resonant swing spring.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 358.85 kB
Formato Adobe PDF
358.85 kB Adobe PDF Visualizza/Apri   Richiedi una copia
ss.pdf

accesso aperto

Descrizione: Caricato da Padua@research
Tipologia: Postprint (accepted version)
Licenza: Creative commons
Dimensione 346.86 kB
Formato Adobe PDF
346.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1347490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 32
  • OpenAlex ND
social impact