Real-time physical modeling may have important applications in audio coding and for music industry. Nevertheless, no efficient solutions have been proposed for modeling the radiation of string instrument body, when commuted synthesis cannot be applied. In this novel multi-rate approach, the string signal is split into two frequency bands. The lower is filtered by a long FIR filter running at a considerably lower sampling rate, precisely synthesizing the body impulse response up to 2kHz. In the high frequency band only the overall magnitude response of the body is modeled, using a low-order filter. The filters are calculated from measurements of real instruments. This enables the physical modeling of string instrument tones in real-time with high sound quality
A Multi-Rate Approach to Instrument Body Modeling for Real-Time Sound Synthesis Applications
De Poli Giovanni.;
2002
Abstract
Real-time physical modeling may have important applications in audio coding and for music industry. Nevertheless, no efficient solutions have been proposed for modeling the radiation of string instrument body, when commuted synthesis cannot be applied. In this novel multi-rate approach, the string signal is split into two frequency bands. The lower is filtered by a long FIR filter running at a considerably lower sampling rate, precisely synthesizing the body impulse response up to 2kHz. In the high frequency band only the overall magnitude response of the body is modeled, using a low-order filter. The filters are calculated from measurements of real instruments. This enables the physical modeling of string instrument tones in real-time with high sound qualityPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.