Nonlinear acoustic systems are often described by means of nonlinear maps acting as instantaneous constraints on the solutions of a system of linear differential equations. This description leads to discrete-time models exhibiting noncomputable loops. We present a solution to this computability problem by means of geometrical transformation of the nonlinearities and algebraic transformation of the time-dependent equations. The proposed solution leads to stable and accurate simulations even at relatively low sampling rates
Elimination of delay-free loops in discrete-time models of non linear acoustic systems
De Poli, Giovanni;
2000
Abstract
Nonlinear acoustic systems are often described by means of nonlinear maps acting as instantaneous constraints on the solutions of a system of linear differential equations. This description leads to discrete-time models exhibiting noncomputable loops. We present a solution to this computability problem by means of geometrical transformation of the nonlinearities and algebraic transformation of the time-dependent equations. The proposed solution leads to stable and accurate simulations even at relatively low sampling ratesFile in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.