Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that contribute to tension reduction. The presence of such modifications was investigated in chemically skinned fibers, a procedure that replaces the fatigued cytoplasm from the muscle fiber with a normal medium. Myofibrillar Ca(2+) sensitivity was reduced in slow-twitch muscle (for example, the pCa value corresponding to 50% of maximum tension was 6.23 +/- 0.03 vs. 5.99 + 0.05, P < 0.01, in rested and fatigued fibers) and not modified in fast-twitch muscle. Phosphorylation of the regulatory myosin light chain isoform increased in fast-twitch muscle. The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers. No persistent modifications of SR Ca(2+) release properties were found. These results indicate that persistent modifications of myofibrillar and SR properties contribute to fatigue-induced muscle force decline only in slow fibers. These alterations may be either enhanced or counteracted, in vivo, by the metabolic changes that normally occur during fatigue development.

Effects of fatigue on sarcoplasmic reticulum and myofibrillar properties of rat slow-and fast-twitch muscle fibers

DANIELI, DANIELA;GERMINARIO, ELENA;
2000

Abstract

Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that contribute to tension reduction. The presence of such modifications was investigated in chemically skinned fibers, a procedure that replaces the fatigued cytoplasm from the muscle fiber with a normal medium. Myofibrillar Ca(2+) sensitivity was reduced in slow-twitch muscle (for example, the pCa value corresponding to 50% of maximum tension was 6.23 +/- 0.03 vs. 5.99 + 0.05, P < 0.01, in rested and fatigued fibers) and not modified in fast-twitch muscle. Phosphorylation of the regulatory myosin light chain isoform increased in fast-twitch muscle. The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers. No persistent modifications of SR Ca(2+) release properties were found. These results indicate that persistent modifications of myofibrillar and SR properties contribute to fatigue-induced muscle force decline only in slow fibers. These alterations may be either enhanced or counteracted, in vivo, by the metabolic changes that normally occur during fatigue development.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1343735
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact