We prove that a second-microlocal version of the Sato- Kashiwara determinant computes the Newton polygon of determined systems of linear partial differential operators with constant multiplicities. Applications are given to the Cauchy problem for hyperbolic systems with regular singularities.

Sato-Kashiwara determinant and Levi conditions for systems

Andrea D'Agnolo;
2000

Abstract

We prove that a second-microlocal version of the Sato- Kashiwara determinant computes the Newton polygon of determined systems of linear partial differential operators with constant multiplicities. Applications are given to the Cauchy problem for hyperbolic systems with regular singularities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1342680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact