A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mM). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.
ADAPTATION OF A SACCHAROMYCES-CEREVISIAE STRAIN TO HIGH COPPER CONCENTRATIONS
BELTRAMINI, MARIANO;
1994
Abstract
A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mM). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.