We studied the possibility to approximate a Lennard-Jones interaction by a pairwise contact potential. First we used a Lennard-Jones potential to design off-lattice, protein-like heteropolymer sequences, whose lowest energy (native) conformations were then identified by molecular dynamics. Then we turned to investigate whether one can find a pairwise contact potential, whose ground states are the contact maps associated with these native conformations. We show that such a requirement cannot be satisfied exactly, i.e., no such contact parameters exist. Nevertheless, we found that one can find contact energy parameters for which an energy minimization procedure, acting in the space of contact maps, yields maps whose corresponding structures are close to the native ones. Finally, we show that when these structures are used as the initial point of a molecular dynamics energy minimization process, the correct native folds are recovered with high probability.

Folding Lennard-Jones proteins by a contact potential

MARITAN, AMOS;
1999

Abstract

We studied the possibility to approximate a Lennard-Jones interaction by a pairwise contact potential. First we used a Lennard-Jones potential to design off-lattice, protein-like heteropolymer sequences, whose lowest energy (native) conformations were then identified by molecular dynamics. Then we turned to investigate whether one can find a pairwise contact potential, whose ground states are the contact maps associated with these native conformations. We show that such a requirement cannot be satisfied exactly, i.e., no such contact parameters exist. Nevertheless, we found that one can find contact energy parameters for which an energy minimization procedure, acting in the space of contact maps, yields maps whose corresponding structures are close to the native ones. Finally, we show that when these structures are used as the initial point of a molecular dynamics energy minimization process, the correct native folds are recovered with high probability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/131626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact