We consider the functional \int_\Omega \left[h(\gamma_K(\nabla u(x)))+u(x)\right]dx \qquad u(x)\in W_0^{1,1}(\Omega) where $\gamma_K$ is the gauge function of a convex set $K$ and $h : [0,\infty[ \rightarrow [0,\infty]$ is a possibly non convex function. In the case $K\subset\mathbb{R}^2$ is a closed polytope and $\Omega\subset\mathbb{R}^2$ is a bounded convex set we provide a sufficient condition for the existence of the minimum. Besides, as a corollary, we give conditions on $\Omega\subset\mathbb{R}^2$ and $f:\mathbb{R}^2 \rightarrow [0,\infty]$ that are sufficient to the existence of a minimizer of \int_\Omega \left[f(\nabla u(x))+u(x)\right]dx \qquad u(x)\in W_0^{1,1}(\Omega).

An existence result for a class of non-convex problems of the calculus of variations.

TREU, GIULIA
1998

Abstract

We consider the functional \int_\Omega \left[h(\gamma_K(\nabla u(x)))+u(x)\right]dx \qquad u(x)\in W_0^{1,1}(\Omega) where $\gamma_K$ is the gauge function of a convex set $K$ and $h : [0,\infty[ \rightarrow [0,\infty]$ is a possibly non convex function. In the case $K\subset\mathbb{R}^2$ is a closed polytope and $\Omega\subset\mathbb{R}^2$ is a bounded convex set we provide a sufficient condition for the existence of the minimum. Besides, as a corollary, we give conditions on $\Omega\subset\mathbb{R}^2$ and $f:\mathbb{R}^2 \rightarrow [0,\infty]$ that are sufficient to the existence of a minimizer of \int_\Omega \left[f(\nabla u(x))+u(x)\right]dx \qquad u(x)\in W_0^{1,1}(\Omega).
1998
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/128742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact