In a resolution scalable image coding algorithm, a multiresolution representation of the data is often obtained using a linear filter bank. Reversible cellular automata have been recently proposed as simpler, nonlinear filter banks that produce a similar representation. The original image is decomposed into four subbands, such that one of them retains most of the features of the original image at a reduced scale. In this paper, we discuss the utilization of reversible cellular automata and arithmetic coding for scalable compression of binary and grayscale images. In the binary case, the proposed algorithm that uses simple local rules compares well with the JBIG compression standard, in particular for images where the foreground is made of a simple connected region. For complex images, more efficient local rules based upon the lifting principle have been designed. They provide compression performances very close to or even better than JBIG, depending upon the image characteristics. In the grayscale case, and in particular for smooth images such as depth maps, the proposed algorithm outperforms both the JBIG and the JPEG2000 standards under most coding conditions.

Resolution Scalable Image Coding with Reversible Cellular Automata

CAPPELLARI, LORENZO;MILANI, SIMONE;CALVAGNO, GIANCARLO
2011

Abstract

In a resolution scalable image coding algorithm, a multiresolution representation of the data is often obtained using a linear filter bank. Reversible cellular automata have been recently proposed as simpler, nonlinear filter banks that produce a similar representation. The original image is decomposed into four subbands, such that one of them retains most of the features of the original image at a reduced scale. In this paper, we discuss the utilization of reversible cellular automata and arithmetic coding for scalable compression of binary and grayscale images. In the binary case, the proposed algorithm that uses simple local rules compares well with the JBIG compression standard, in particular for images where the foreground is made of a simple connected region. For complex images, more efficient local rules based upon the lifting principle have been designed. They provide compression performances very close to or even better than JBIG, depending upon the image characteristics. In the grayscale case, and in particular for smooth images such as depth maps, the proposed algorithm outperforms both the JBIG and the JPEG2000 standards under most coding conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/126609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact