Using a molecular field theory with atomistic modelling, we provide a complete description of the elastic and flexoelectric properties of the nematic phase formed by liquid crystal dimers which, depending on the parity of the number of atoms in the spacer, have either a bent (odd) or a straight (even) average shape. We can then estimate the flexoelastic ratio and make a direct comparison with the outcome of flexoelectro-optic measurements. Our results demonstrate the extreme sensitivity of the bend elasticity and flexoelectricity to the molecular structure, with dramatic differences between even and odd dimers. An unusually low bend elastic constant is predicted for the latter; we discuss the implications of this result for the high flexoelastic response and the existence of Blue Phases stable over a wide temperature range, which were both recently claimed for odd liquid crystal dimers.

Crucial role of molecular curvature for the bend elastic and flexoelectric properties of liquid crystals: mesogenic dimers as a case study

FREZZA, ELISA;FERRARINI, ALBERTA;
2011

Abstract

Using a molecular field theory with atomistic modelling, we provide a complete description of the elastic and flexoelectric properties of the nematic phase formed by liquid crystal dimers which, depending on the parity of the number of atoms in the spacer, have either a bent (odd) or a straight (even) average shape. We can then estimate the flexoelastic ratio and make a direct comparison with the outcome of flexoelectro-optic measurements. Our results demonstrate the extreme sensitivity of the bend elasticity and flexoelectricity to the molecular structure, with dramatic differences between even and odd dimers. An unusually low bend elastic constant is predicted for the latter; we discuss the implications of this result for the high flexoelastic response and the existence of Blue Phases stable over a wide temperature range, which were both recently claimed for odd liquid crystal dimers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/126115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 117
  • OpenAlex ND
social impact