We show that the Maximum Entropy principle (E.T. Jaynes, [8]) has a natural description in terms of Morse Families of a Lagrangian submanifold. This geometric approach becomes useful when dealing with the M.E.P. with nonlinear constraints. Examples are presented using the Ising and Potts models of a ferromagnetic material.
Lagrangian submanifolds generated by the Maximum Entropy Principle
FAVRETTI, MARCO
2005
Abstract
We show that the Maximum Entropy principle (E.T. Jaynes, [8]) has a natural description in terms of Morse Families of a Lagrangian submanifold. This geometric approach becomes useful when dealing with the M.E.P. with nonlinear constraints. Examples are presented using the Ising and Potts models of a ferromagnetic material.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Entropy2005.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
263.5 kB
Formato
Adobe PDF
|
263.5 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.