A rapid fluorescence imaging system was developed and utilised to investigate the time-course of intracellular calcium concentration ([Ca2+](i)) gradients generated by action potentials in CA1-CA3 pyramidal cells within brain slices of the rat hippocampus. The system, which is based on a fast commercial CCD camera, can acquire hundreds of 128 x 128 pixel images in sequence, with minimal inter-frame interval of 2.5 ms (400 frames/s) and 12 bit/pixel accuracy. By synchronising patch clamp recordings with image capture, the timing of transmembrane potential variation, ionic Ca2+ current and Ca2+ diffusion were resolved at the limit of the relaxation time for the dye-Ca2+ binding reaction (approximately 5 ms at room temperature). Numerical simulations were used to relate measured fluorescence transients to the spatio-temporal distribution of intracellular Ca2+ gradients. The results obtained indicate that dye reaction-diffusion contributes critically to shaping intracellular ion gradients.

Imaging neuronal calcium fluorescence at high spatio-temporal resolution

MAMMANO, FABIO
1999

Abstract

A rapid fluorescence imaging system was developed and utilised to investigate the time-course of intracellular calcium concentration ([Ca2+](i)) gradients generated by action potentials in CA1-CA3 pyramidal cells within brain slices of the rat hippocampus. The system, which is based on a fast commercial CCD camera, can acquire hundreds of 128 x 128 pixel images in sequence, with minimal inter-frame interval of 2.5 ms (400 frames/s) and 12 bit/pixel accuracy. By synchronising patch clamp recordings with image capture, the timing of transmembrane potential variation, ionic Ca2+ current and Ca2+ diffusion were resolved at the limit of the relaxation time for the dye-Ca2+ binding reaction (approximately 5 ms at room temperature). Numerical simulations were used to relate measured fluorescence transients to the spatio-temporal distribution of intracellular Ca2+ gradients. The results obtained indicate that dye reaction-diffusion contributes critically to shaping intracellular ion gradients.
File in questo prodotto:
File Dimensione Formato  
JNmethods_CCD.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/119626
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
  • OpenAlex ND
social impact