We have used the method of disequilibrium pattern analysis to examine associations between the threonine-glycine (Thr-Gly) encoding repeat region of the clock gene period (per) of Drosophila melanogaster, and polymorphic sites both upstream and downstream of the repeat, in a number of European fly populations. The results are consistent with the view that selection may be operating on various haplotypes which share the Thr-Gly length alleles encoding 17, 20 and 23 dipeptide pairs, and that the repeat itself may be the focus for selection. These conclusions lend support to a number of other population and behavioural investigations which have provided evidence that selection is acting on the Thr-Gly region. The linkage analysis was also used to infer an approximate mutation rate (mu) for the repeat, of 10(-5) < mu < 4 x 10(-5) per gamete per generation. Direct measurements of the mutation rate using the polymerase chain reaction in a pedigree analysis of tens of thousands of individuals do not contradict this value. Consequently, the Thr-Gly repeat does not have a mutation rate that is as high as some of the non-coding minisatellites, but it is several orders of magnitude higher than the nucleotide substitution rate. The implications of this elevated mutation rate for linkage disequilibria and selection are discussed.

Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period, in Drosophila melanogaster

COSTA, RODOLFO;
1997

Abstract

We have used the method of disequilibrium pattern analysis to examine associations between the threonine-glycine (Thr-Gly) encoding repeat region of the clock gene period (per) of Drosophila melanogaster, and polymorphic sites both upstream and downstream of the repeat, in a number of European fly populations. The results are consistent with the view that selection may be operating on various haplotypes which share the Thr-Gly length alleles encoding 17, 20 and 23 dipeptide pairs, and that the repeat itself may be the focus for selection. These conclusions lend support to a number of other population and behavioural investigations which have provided evidence that selection is acting on the Thr-Gly region. The linkage analysis was also used to infer an approximate mutation rate (mu) for the repeat, of 10(-5) < mu < 4 x 10(-5) per gamete per generation. Direct measurements of the mutation rate using the polymerase chain reaction in a pedigree analysis of tens of thousands of individuals do not contradict this value. Consequently, the Thr-Gly repeat does not have a mutation rate that is as high as some of the non-coding minisatellites, but it is several orders of magnitude higher than the nucleotide substitution rate. The implications of this elevated mutation rate for linkage disequilibria and selection are discussed.
1997
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/117538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
  • OpenAlex ND
social impact