We propose a level set method for systems of PDEs which is consistent with the previous research pursued by Evans (1996) for the heat equation and by Giga and Sato (2001) for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each nonzero sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method to a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations.

The level set method for systems of PDEs

NOVAGA, MATTEO
2007

Abstract

We propose a level set method for systems of PDEs which is consistent with the previous research pursued by Evans (1996) for the heat equation and by Giga and Sato (2001) for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each nonzero sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method to a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/116477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact