Realized volatility is studied using nonlinear and highly persistent dynamics. In particular, a model is proposed that simultaneously captures long memory and nonlinearities in which level and persistence shift through a Markov switching dynamics. Inference is based on an efficient Markov chain Monte Carlo (MCMC) algorithm that is used to estimate parameters, latent process and predictive densities. The in-sample results show that both long memory and nonlinearities are significant and improve the description of the data. The out-sample results at several forecast horizons show that introducing these nonlinearities produces superior forecasts over those obtained using nested models.
Long memory and nonlinearities in realized volatility: A Markov switching approach
BORDIGNON, SILVANO
2012
Abstract
Realized volatility is studied using nonlinear and highly persistent dynamics. In particular, a model is proposed that simultaneously captures long memory and nonlinearities in which level and persistence shift through a Markov switching dynamics. Inference is based on an efficient Markov chain Monte Carlo (MCMC) algorithm that is used to estimate parameters, latent process and predictive densities. The in-sample results show that both long memory and nonlinearities are significant and improve the description of the data. The out-sample results at several forecast horizons show that introducing these nonlinearities produces superior forecasts over those obtained using nested models.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.