The catalytic system Pd/C-HCl is highly active in the reduction of mandelic acid derivatives to phenylacetic acid derivatives with carbon monoxide when the aromatic ring is para-substituted with a hydroxy group. Typical reaction conditions are: 70–110 °C, 20-100 atm of carbon monoxide, benzene-ethanol as reaction medium, substrate/Pd=102 -104/1, HCl/substrate=0.3-0.8/1. [Pd] = 10−2 -10−4 M. When the catalytic system is used in combination with PPh3 a slightly higher activity is observed. Comparable results are observed when using a Pd(II) catalyst precursor such as PdX2, in combination with PPh3, or PdX2(PPh3)2 (X = Cl, AcO). When operating at 110 °C, decomposition to metallic palladium occurs. Pd(II) complexes with diphosphine ligands, such as diphenylphosphinemethane, -ethane, -propane or -butane, do not show any catalytic activity and are recovered unchanged. These observations suggest that Pd(0) complexes play a key role in the catalytic cycle. The proposed catalytic cycle proceeds as follows: the chloride ArCHClCOOR, formed in situ upon reaction of ArCHOHCOOR with hydrochloric acid, oxidatively adds to a Pd(0) species with formation of a catalytic intermediate having a Pd-[CH(Ar)COOR] moiety, which inserts a CO molecule, yielding an acyl intermediate of the type Pd-[COCH(Ar)COOR]. The nucleophilic attack of H2O on the carbon atom of the carbonyl ligand gives back the Pd(0) complex to the catalytic cycle and yields a phenylmalonic acid derivative, which produces the final product, ArCH2COOR, upon CO2 evolution. Alternatively, protonolysis of the intermediate having a Pd-[CH(Ar)COOR] moiety yields directly the final product and a Pd(II) species, which is then reduced by CO to Pd(0). Moreover, no catalytic activity is observed when the Pd/C-HCl system is used in combination with any one of the above diphosphine ligands, probably because these ligands block the sites on the catalyst able to promote the catalytic cycle or because they prevent the reduction of Pd(II) to Pd(0). The influence of the following reaction parameters has been studied: concentration of HCl, PPh3, palladium and substrate, pressure of carbon monoxide, the temperature, reaction time and solvent. The results are compared with those obtained in the carbonylation of aromatic aldehydes to phenylacetic acid derivatives catalyzed by the same system, for which it has been proposed that the catalysis occurs via carbonylation of the aldehyde to a mandelic acid derivative as an intermediate, which is further reduced with CO to yield the final product.
Influence of the reaction parameters on the Pd-HCl catalyzed synthesis of phenylacetic acid derivatives via reduction of mandelic acid derivatives with carbon monoxide
CAVINATO, GIANNI;
1993
Abstract
The catalytic system Pd/C-HCl is highly active in the reduction of mandelic acid derivatives to phenylacetic acid derivatives with carbon monoxide when the aromatic ring is para-substituted with a hydroxy group. Typical reaction conditions are: 70–110 °C, 20-100 atm of carbon monoxide, benzene-ethanol as reaction medium, substrate/Pd=102 -104/1, HCl/substrate=0.3-0.8/1. [Pd] = 10−2 -10−4 M. When the catalytic system is used in combination with PPh3 a slightly higher activity is observed. Comparable results are observed when using a Pd(II) catalyst precursor such as PdX2, in combination with PPh3, or PdX2(PPh3)2 (X = Cl, AcO). When operating at 110 °C, decomposition to metallic palladium occurs. Pd(II) complexes with diphosphine ligands, such as diphenylphosphinemethane, -ethane, -propane or -butane, do not show any catalytic activity and are recovered unchanged. These observations suggest that Pd(0) complexes play a key role in the catalytic cycle. The proposed catalytic cycle proceeds as follows: the chloride ArCHClCOOR, formed in situ upon reaction of ArCHOHCOOR with hydrochloric acid, oxidatively adds to a Pd(0) species with formation of a catalytic intermediate having a Pd-[CH(Ar)COOR] moiety, which inserts a CO molecule, yielding an acyl intermediate of the type Pd-[COCH(Ar)COOR]. The nucleophilic attack of H2O on the carbon atom of the carbonyl ligand gives back the Pd(0) complex to the catalytic cycle and yields a phenylmalonic acid derivative, which produces the final product, ArCH2COOR, upon CO2 evolution. Alternatively, protonolysis of the intermediate having a Pd-[CH(Ar)COOR] moiety yields directly the final product and a Pd(II) species, which is then reduced by CO to Pd(0). Moreover, no catalytic activity is observed when the Pd/C-HCl system is used in combination with any one of the above diphosphine ligands, probably because these ligands block the sites on the catalyst able to promote the catalytic cycle or because they prevent the reduction of Pd(II) to Pd(0). The influence of the following reaction parameters has been studied: concentration of HCl, PPh3, palladium and substrate, pressure of carbon monoxide, the temperature, reaction time and solvent. The results are compared with those obtained in the carbonylation of aromatic aldehydes to phenylacetic acid derivatives catalyzed by the same system, for which it has been proposed that the catalysis occurs via carbonylation of the aldehyde to a mandelic acid derivative as an intermediate, which is further reduced with CO to yield the final product.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.