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Abstract. Given a group-word w and a group G, the verbal subgroup w(G)

is the one generated by all w-values in G. The word w is said to be boundedly

concise if for each positive integer m there exists a number depending only on
m and w bounding the order of w(G) whenever the set of w-values in a group G

has size at most m. In the present article we show that various generalizations
of the Engel word are boundedly concise in residually finite groups.

1. Introduction

Given a group-word w = w(x1, . . . , xk), the verbal subgroup w(G) of a group
G determined by w is the subgroup generated by the set Gw consisting of all values
w(g1, . . . , gk), where g1, . . . , gk are elements of G. A word w is said to be concise
if whenever Gw is finite for a group G, it always follows that w(G) is finite. More
generally, a word w is said to be concise in a class of groups X if whenever Gw is
finite for a group G ∈ X , it always follows that w(G) is finite. In the sixties Hall
raised the problem whether all words are concise. In 1989 S. Ivanov [17] (see also
[24, p. 439]) solved the problem in the negative. On the other hand, the problem
for residually finite groups remains open (cf. Segal [27, p. 15] or Jaikin-Zapirain
[18]). In recent years some limited progress with respect to this problem was made.
In particular, it was shown in [2] that if w is a multilinear commutator word and
n is a prime-power, then the word wn is concise in the class of residually finite
groups. Further examples of words that are concise in residually finite groups were
discovered in [13]. The work [5] deals with conciseness of words of Engel type.

Set [x, 0y] = x, [x, 1y] = [x, y] = x−1y−1xy and [x, i+1y] = [[x, iy], y] for i ≥ 1.
The word [x, ny] is called the nth Engel word. Due to [8] and, independently, [1]
we know that the nth Engel word is concise whenever n ≤ 4. It is still unknown
whether the nth Engel word is concise in the case where n ≥ 5. In [5] it was shown,
among other things, that the Engel words are concise in residually finite groups.
More generally, it was shown that words implying virtual nilpotency are boundedly
concise in residually finite groups. A word w is said to imply virtual nilpotency if
every finitely generated metabelian group where w is a law has a nilpotent subgroup
of finite index. Such words admit several important characterizations (see [3, 4,
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10]). It follows from a theorem of Gruenberg [11] that the Engel words imply
virtual nilpotency.

Recall that a word w is boundedly concise in a class of groups X if for every
integer m there exists a number ν = ν(X , w,m) such that whenever |Gw| ≤ m for
a group G ∈ X it always follows that |w(G)| ≤ ν. In [7] it is shown that every word
which is concise in the class of all groups is actually boundedly concise. There is a
conjecture that every word which is concise in residually finite groups is boundedly
concise (cf. [9]) but this probably will remain open for some time.

In the present article we will prove the following result.

Theorem 1.1. The word [[xq1, x
q
2], n [x3, x4]] is boundedly concise in residually

finite groups for any nonnegative integers n, q.

Note that the word [[xq, yq], n z] implies virtual nilpotency so in a sense the
word [[xq1, x

q
2], n [x3, x4]] is a minimal word for which conciseness was unknown.

The word [xq, yq]n remains a mystery even when q = n is a prime.
We also deal with weakly rational words. Recall that a word w is weakly rational

if for every finite group G and for every integer e relatively prime to |G|, the set of
w-values in G is closed under taking eth powers of its elements. Examples of such
words include the words [. . . [xn1

1 , x2]n2 , . . . , xk]nk for any integers n1, n2, . . . , nk

(see [13]). In particular, the lower central words γk = [x1, x2, . . . , xk] are weakly
rational. Quite possibly, all multilinear commutator words are weakly rational but
this remains an open question.

It is not difficult to see that weakly rational words are boundedly concise
in residually finite groups. In this article we will establish that whenever v =
v(x1, . . . , xk) is a weakly rational word and n is a nonnegative integer the word
[v, n y] is boundedly concise in residually finite groups. In fact, we will establish
more general results. Let us say that a word w is commutator-closed if the set of
w-values in any group is closed under taking commutators of its elements. Note
that in particular the lower central words γk are commutator-closed.

Theorem 1.2. Let k, n, q be nonnegative integers and u be the word yq, or the
word [y1, y2]q, or any commutator-closed word. Suppose that v = v(x1, . . . , xk) is
a weakly rational word all of whose values in any group are also u−1-values. Then
the word [v, n u] is boundedly concise in residually finite groups.

The above theorem guarantees conciseness in residually finite groups of many
words, in particular of the word [v, n y], where v = v(x1, . . . , xk) is a weakly rational
word. Further, if v is a commutator or a qth power, Theorem 1.2 implies bounded
conciseness in residually finite groups of the words [v, n [y1, y2]] and [v, n y

q], re-
spectively. Other obvious examples of words whose conciseness in residually fi-
nite groups follows from Theorem 1.2 are the words of the form [v, n u], where
v = [xq1, x2, ..., xk] and u = γl for l ≤ k.

2. Sufficient conditions for nilpotency of a group

Recall that an element x of a group G is called a (left) Engel element if for any
g ∈ G there exists a positive integer n = n(x, g) such that [g, nx] = 1. If n can be
chosen independently of g, then x is a (left) n-Engel element. Here and throughout
the article we use the expression “(a, b, . . . )-bounded” to mean that a quantity is
bounded by a certain number depending only on the parameters a, b, . . . .

In this section we will establish the following two propositions.
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Proposition 2.1. Let k, n, q, s, t be positive integers and w a word. Let G be
a residually finite group satisfying the identity w ≡ 1 and generated by elements
a1, . . . , ak such that

[ai, [x1, x2]q, . . . , [x1, x2]q︸ ︷︷ ︸
n

, [x1, x2]s] = 1

for each x1, x2 ∈ G and each i = 1, . . . , k. Assume further that the elements
a−11 , . . . , a−1k are t-Engel. Then G is nilpotent with (k, n, q, s, t, w)-bounded class.

We say that a word u is commutator-closed if in any group G the set Gu is
closed under taking commutators of its elements. Moreover, given two words v and
w we write

v � w
if and only if Gv ⊆ Gw for every group G.

Proposition 2.2. Let k, n, q, s, t be positive integers, and let u, v be words
such that u is commutator-closed and v−1 � u. Let G be a residually finite group
satisfying the identity [v, uq, . . . , uq︸ ︷︷ ︸

n

, us] ≡ 1 and assume that all v−1-values are t-

Engel in G. Suppose that H is a subgroup of G generated by k v-values. Then H
is nilpotent with (k, n, q, s, t, u, v)-bounded class.

The proof uses Lie methods in the spirit of Zelmanov’s solution of the Restricted
Burnside Problem, which states that, given two positive integers m and n, the order
of an m-generated finite group of exponent n is bounded by a number depending
only on m and n. For the reader’s convenience we collect some definitions and facts
on Lie algebras associated with groups (see [28] or [30] for further information).

Let L be a Lie algebra over a field. We use the left normed notation; thus if
l1, . . . , ln are elements of L then

[l1, . . . , ln] = [. . . [[l1, l2], l3], . . . , ln].

An element y ∈ L is called ad-nilpotent if ad y is nilpotent, i.e. there exists a
positive integer n such that [x, ny] = 0 for all x ∈ L. If n is the least integer with
the above property then we say that y is ad-nilpotent of index n. Let X be any
subset of L. By a commutator in elements of X we mean any element of L that
could be obtained from elements of X by repeated operation of commutation with
an arbitrary system of brackets, including the elements of X. Here the elements of
X are viewed as commutators of weight 1. Denote by F the free Lie algebra over the
same field as L on countably many free generators x1, x2, . . . . Let f = f(x1, . . . , xn)
be a non-zero element of F . The algebra L is said to satisfy the identity f ≡ 0 if
f(a1, . . . , an) = 0 for any a1, . . . , an ∈ L. In this case we say that L is PI. We
are now in position to quote a theorem of Zelmanov [30, 31] which has numerous
important applications to group theory. A detailed proof of this result recently
appeared in [32].

Theorem 2.3. Let L be a Lie algebra generated by finitely many elements
a1, a2, . . . , am such that all commutators in a1, a2, . . . , am are ad-nilpotent. If L is
PI, then it is nilpotent.

The following lemma provides a sufficient condition for an element of a Lie
algebra to be ad-nilpotent.
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Lemma 2.4. [21, Lemma 5] Let p be a prime and k a positive integer. Assume
that L is a Lie algebra over a field of characteristic p generated by a1, . . . , am. If
y ∈ L is an element such that [ai, pky] = 0 for i = 1, . . . ,m, then y is ad-nilpotent

of index at most pk.

Let G be a group. Given a prime p, a Lie algebra can be associated with the
group G as follows. We denote by Di = Di(G) the ith dimension subgroup of
G in characteristic p (see for example [15, Chap. 8]). These subgroups form a
central series of G known as the Zassenhaus-Jennings-Lazard series. Set L(G) =
⊕Di/Di+1. Then L(G) can naturally be viewed as a Lie algebra over the field
Fp with p elements. For an element x ∈ Di \ Di+1 we denote by x̃ the element
xDi+1 ∈ L(G).

Lemma 2.5 (Lazard, [20]). For any x ∈ G we have (ad x̃)p = ad (x̃p).

The next lemma provides a criterion for a Lie algebra to be PI.

Lemma 2.6 (Wilson, Zelmanov, [29]). Let G be any group satisfying a group
law. Then L(G) is PI.

Let Lp(G) be the subalgebra of L(G) generated by D1/D2. Often, important
information about the group G can be deduced from nilpotency of the Lie algebra
Lp(G). In particular, we have the following theorem. Recall that a group G is said
to be residually-p if for each nontrivial x ∈ G there exists a normal subgroup N of
finite p-power index such that x 6∈ N . By a linear group we understand a subgroup
of GL(r,K) for some field K and a positive integer r.

Theorem 2.7. If G is a finitely generated residually-p group such that Lp(G)
is nilpotent, then G is a linear group.

A proof of the above theorem can be obtained as follows. Suppose that G
can be generated with m elements and Lp(G) is nilpotent of class c. Let Q be a
finite homomorphic image of p-power order of G. Obviously, Q can be generated
with m elements and Lp(Q) is nilpotent of class at most c. By [19, Proposition
1], the group Q has a powerful characteristic subgroup of (p, c,m)-bounded index.
It follows that the rank of Q is (p, c,m)-bounded (see [6]). Since this happens for
each finite homomorphic image of p-power order of G, we conclude that G has a
p-congruence system of finite rank. By a well-known theorem of Lubotzky (see [6,
Theorem B6]) the group G is linear.

The following result is Lemma 3.5 in [28].

Lemma 2.8. Let G be a finitely generated residually finite-nilpotent group. For
each prime p let Jp be the intersection of all normal subgroups of G of finite p-power
index. If G/Jp is nilpotent for each p then G is nilpotent.

Lemma 2.9. Suppose that G is a residually finite group such that Lp(G) is
nilpotent for each prime p. Assume additionally that G is generated by finitely
many Engel elements. Then G is nilpotent.

Proof. By Lemma 2.8 it is sufficient to prove that G/Jp is nilpotent for any
prime p. The algebra Lp(G) is isomorphic to Lp(G/Jp). Theorem 2.7 shows that
G/Jp is linear while a result of Gruenberg [12] states that a linear group generated
by Engel elements is locally nilpotent. Therefore, G/Jp is nilpotent. �

Lemma 2.10. Let G be a group generated by Engel elements.
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(1) If G is finite, then it is nilpotent.
(2) If G is soluble, then it is locally nilpotent.

Proof. The first statement is well-known Baer’s theorem ([14, Satz III.6.15]).
The second statement is due to Gruenberg [11]. �

Now we are ready to prove Proposition 2.1 and Proposition 2.2.

Proof of Proposition 2.1. Since the group G is generated by the Engel
elements a−11 , . . . , a−1k , it is a residually finite-nilpotent group (see Lemma 2.10).
We prove first that G is nilpotent and then show that the nilpotency class of G
is (k, n, q, s, t, w)-bounded. To establish that G is nilpotent, by Lemma 2.9, it is
enough to prove that Lp(G) is nilpotent for each prime p.

Let us choose a prime p and set L = Lp(G). By Lemma 2.6, L is PI. Write
ã1, . . . , ãk for the generators of L corresponding to the generators a1, . . . , ak of G,
and let q1 and s1 be the maximum p-powers dividing q and s, respectively. Since we
have [ai, n y

q, ys] = 1 for each commutator y = [g1, g2] ∈ G and each i = 1, . . . , k,
the Lazard lemma (Lemma 2.5) shows that in the Lie algebra we have

[ãi, (q1n+s1) b] = 0,

whenever b is a commutator of weight at least two in the generators ãi. Let pl be
the least p-power such that q1n+ s1 ≤ pl. We deduce from Lemma 2.4 that every
commutator of weight at least two in the generators ãi is ad-nilpotent with index
at most pl. Further, the generators ãi are ad-nilpotent with index at most t in
L, because the elements a−11 , . . . , a−1k are t-Engel in G. Therefore, by Zelmanov’s
theorem (Theorem 2.3), L is nilpotent. Taking into account Lemma 2.9 we conclude
that G is nilpotent, as we wanted to prove.

It remains to show that the nilpotency class of G is (k, n, q, s, t, w)-bounded.
Suppose that this is false. Then there exists an infinite sequence (Gi)i≥1 of nilpotent
groups satisfying the hypotheses of the proposition such that the nilpotency class of
Gi tends to infinity as i does. In each group Gi we choose k generators ai1, . . . , aik
satisfying the hypotheses of the proposition. Here the elements ai1, . . . , aik are not
necessarily pairwise distinct. Let C be the Cartesian product of the groups Gi and
let y1, . . . , yk be the elements of C such that the i-th component of yj is equal to

aij for every i ≥ 1 and 1 ≤ j ≤ k. Obviously, each of the elements y−1j is t-Engel in

C. Moreover, [yj , n [x1, x2]q, [x1, x2]s] = 1 for each x1, x2 ∈ C and each i = 1, . . . , k.
Let H be the subgroup of C generated by y1, . . . , yk. Since every group Gi is

a homomorphic image of H, the subgroup H is not nilpotent. On the other hand,
being a finitely generated residually nilpotent group, H is residually finite. Thus,
by what we proved above, H is nilpotent. This is a contradiction. �

In what follows we write 〈X〉 to denote the subgroup generated by a set X.

Proof of Proposition 2.2. We argue as in the proof of Proposition 2.1. Let
H be a subgroup of G generated by k v-values a1, . . . , ak. Since a−11 , . . . , a−1k are
Engel elements, H is a residually finite-nilpotent group (see Lemma 2.10). We
prove first that H is nilpotent and then show that the nilpotency class of H is
(k, n, s, q, t, u, v)-bounded.

To establish that H is nilpotent, by Lemma 2.9 it is sufficient to show that
Lp(H) is nilpotent for each prime p. Thus, we choose a prime p and set L = Lp(H).
Note that, by Lemma 2.6, L is PI.
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Write ã1, . . . , ãk for the generators of L corresponding to the generators a1, . . . ,
ak of H, and let q1 and s1 be the maximum p-powers dividing q and s, respectively.
Since we have [ai, n y

q, ys] = 1 for each u-value y ∈ Gu and each i = 1, . . . , k, the
Lazard lemma (Lemma 2.5) shows that in the Lie algebra we have

[ãi, (q1n+s1) ỹ] = 0.

In particular, since the word u is commutator-closed and the elements a−1i are
u-values, we also have that

[ãi, (q1n+s1) b] = 0

whenever b is a commutator in the generators ãi. Let pl be the least p-power
such that q1n + s1 ≤ pl. We deduce from Lemma 2.4 that every commutator in
the generators ãi is ad-nilpotent with index at most pl. Therefore, by Zelmanov’s
theorem (Theorem 2.3), L is nilpotent. So, by Lemma 2.9, we conclude that H is
nilpotent, as we wanted to prove.

It remains to show that the nilpotency class of H is (k, n, q, s, t, u, v)-bounded.
Suppose that this is false. Then there exists an infinite sequence (Gi)i≥1 of groups
satisfying the hypotheses of the proposition and in each group Gi there exist k v-
values ai1, . . . , aik such that the nilpotency class of the subgroupsHi = 〈ai1, . . . , aik〉
tends to infinity as i does. Here the elements ai1, . . . , aik are not necessarily pairwise
distinct. Let C be the Cartesian product of the groups Gi and let y1, . . . , yk be the
elements of C such that the i-th component of yj is equal to aij for every i ≥ 1 and
1 ≤ j ≤ k. Note that all v−1-values are t-Engel in C. Moreover, [yj , n z

q, zs] = 1
for each u-value z ∈ Cu and each i = 1, . . . , k.

Let D be the subgroup of C generated by y1, . . . , yk. Since every group Hi is
a homomorphic image of D, the subgroup D is not nilpotent. On the other hand,
being a finitely generated residually nilpotent group, D is residually finite.

Thus, by what we proved above, D is nilpotent. This yields the desired con-
tradiction. �

3. Useful lemmas

In this section we gather preliminary results which will be needed for the proofs
of the main theorems.

Lemma 3.1. Let G be a finite group and w a word such that |Gw| ≤ m.

(1) There exists an m-bounded integer s such that Gs ≤ CG(w(G)).
(2) The order of the commutator subgroup w(G)′ is m-bounded.

Proof. The first statement follows from the fact that the group G/CG(w(G))
acts on the finite set Gw by conjugation and hence it embeds in Sm. In particular,
the order of w(G)/Z(w(G)) is at most m! and thus the second statement follows
from Shur’s Theorem (see [25, p. 102]). �

Next lemma is Exercise 3.11 in [16]. It establishes that the commutator [x1, x2]
is a weakly rational word.

Lemma 3.2. Let G be a finite group and t a commutator in G. Then each
generator of the cyclic subgroup 〈t〉 is a commutator.

In the following lemmas we collect some observations and results from [5].
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Lemma 3.3. Let G be a group. Assume that A is a normal abelian subgroup of
G and let t ∈ G. Then [ab, nt] = [a, nt][b, nt] for every a, b ∈ A and for every n ≥ 1.

Lemma 3.4. [5, Lemma 9] Let G = U〈t〉 be a group that is a product of a
normal subgroup U and a cyclic subgroup 〈t〉. Assume that U is nilpotent of class
c and there exists a generating set A of U such that [a, nt] = 1 for every a ∈ A.
Then G is nilpotent of (c, n)-bounded class.

Lemma 3.5. Let w = w(x1, . . . , xk) be a word and n a positive integer. There
is a word η in k(n+ 1) variables such that

[w, ny] = η(x1, x2, . . . , xk, x
y
1, x

y
2, . . . , x

y
k, . . . , x

yn

1 , xy
n

2 , . . . , xy
n

k ).

By definition, a group-word is a nontrivial element of the free group F =
F (x1, x2, . . . ) of countable rank. Let Fi denote the ith term of the lower central
series of F . We say that a word w has degree j if w ∈ Fj and w 6∈ Fj+1.

The next lemma is of central importance in our arguments.

Lemma 3.6. [5, Lemma 10] Let w = w(x1, x2, . . . , xk) be a word. Let G be a
nilpotent group of class c generated by k elements a1, a2, . . . , ak and let p be a prime.
Denote by X the set of all conjugates in G of elements of the form w(ai1, a

i
2, . . . , a

i
k),

where i ranges over the set of all integers not divisible by p and assume that |X| ≤ m
for some integer m. Then |〈X〉| is (c,m)-bounded.

Recall that, given two words v and w, we write v � w if and only if Gv ⊆ Gw

for every group G.

Lemma 3.7. Let w = [v,n u] where v and u are words such that v−1 � u. Let
G be a finite group such that |Gw| ≤ m. Then G has a normal subgroup T of
m-bounded order such that in G/T the v−1-values are (2n+ 2)-Engel.

Proof. Using Lemma 3.1 we may assume that w(G) is abelian.
Let y be a v-value and let x be any element of G. By the usual commutator

formulae we have [x, y−1, y−1] = [yxy
−1

, y−1]. Therefore, since y is a v-value and
y−1 is a u-value,

[x, (n+1)y
−1] = [yxy

−1

, ny
−1]

is a w-value.
Since w(G) is abelian, whenever z ∈ w(G) and i is an integer, we have

[zi, (n+1)y
−1] = [z, (n+1)y

−1]i.

Moreover, by the above argument, [zi, (n+1)y
−1] is a w-value. Thus [z, (n+1)y

−1]i is
a w-value for each integer i. As |Gw| ≤ m, it follows that the elements of the form
[z, (n+1)y

−1], with z ∈ w(G) and y ∈ Gv, have order at most m.
Using that w(G) an abelian group of rank at most m we observe that the

elements of w(G) of order dividing m! generate a normal subgroup of G of m-
bounded order. Passing to the quotient over this subgroup we may assume that
[z, (n+1)y

−1] = 1 for all z ∈ w(G). On the other hand, [x, (n+1)y
−1] ∈ w(G) for all

x ∈ G. Hence, [x, (n+1)y
−1,(n+1) y

−1] = 1 and y−1 is (2n+ 2)-Engel in G. �

The following two results are corollaries of Propositions 2.1 and 2.2 respectively,
and they are among the key steps in the proofs of the main theorems.
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Corollary 3.8. Let u be either the word yq or the word [y1, y2]q, where q
is a positive integer, and let v be a word such that v−1 � u. Consider the word
w = [v, nu], where n is a positive integer. Let G be a finite group with at most m
values of the word w. Then G has a normal subgroup N of (w,m)-bounded order,
such that, for every integer k, in G/N any k v-values generate a nilpotent subgroup
of (w,m, k)-bounded class.

Proof. By Lemma 3.7, since v−1 � u, there exists a normal subgroup T of
m-bounded order such that all v−1-values in G/T are (2n + 2)-Engel. Passing to
the quotient over T we assume, without loss of generality, that all v−1-values are
(2n+ 2)-Engel in G.

Let K be the subgroup generated by k v-values a1, . . . , ak. For each x1, x2 ∈ K
the element [ai,n [x1, x2]q] is a w-value. We know from Lemma 3.1 that Gs ≤
CG(w(G)) for some m-bounded integer s. Therefore

[ai,n [x1, x2]q, [x1, x2]s] = 1,

for every i and x1, x2 ∈ K. Since the elements a−11 , . . . , a−1k are (2n+ 2)-Engel, we
deduce from Proposition 2.1 that K is nilpotent of (w,m, k)-bounded class. �

Corollary 3.9. Let u be a commutator-closed word and let v be a word such
that v−1 � u. Consider the word w = [v, nu], where n is a positive integer. Let
G be a finite group with at most m values of the word w. Then G has a normal
subgroup N of (w,m)-bounded order, such that, for every integer k, in G/N any k
v-values generate a nilpotent subgroup of (w,m, k)-bounded class.

Proof. By Lemma 3.7, since v−1 � u, there exists a normal subgroup T of
bounded order such that in G/T all v−1-values are (2n + 2)-Engel. Passing to
the quotient over T we assume, without loss of generality, that all v−1-values are
(2n+ 2)-Engel in G.

We know that Gs ≤ CG(w(G)) for some m-bounded integer s. For each v-value
a and u-value z, the element [a,n z] is a w-value. Hence

[a,n z, z
s] = 1,

and G satisfies the identity
[v,n u, u

s] ≡ 1.

By Proposition 2.2 we conclude that any k v-values generate a nilpotent subgroup
of (w,m, k)-bounded class. �

4. Proofs of the theorems

Now we are ready to prove our main results.

Proof of Theorem 1.2. Let w = [v, n u], where v is a weakly rational word
and u is the word yq, or the word [y1, y2]q, or any commutator-closed word such
that v−1 � u.

We need to show that if G is a residually finite group with at most m values of
the word w, then the order of W = w(G) is (w,m)-bounded. Evidently, it suffices
to establish this result for finite quotients of G. Therefore without loss of generality
we assume that G is finite.

Because of Lemma 3.1 we may pass to the quotient G/W ′ and assume that W
is abelian. If u is the word yq or the word [y1, y2]q, we apply Corollary 3.8. If u is
a commutator-closed word, we apply Corollary 3.9. In any case, G has a normal
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subgroup N of (w,m)-bounded order such that, for every integer k, in G/N any
k v-values generate a nilpotent subgroup of (w,m, k)-bounded class. Passing to
the quotient over N we assume, without loss of generality, that any k v-values in
G generate a nilpotent subgroup of (w,m, k)-bounded class. In particular, v(G) is
nilpotent.

Now fix a w-value [g, nt] with g ∈ Gv and t ∈ Gu. We use Lemma 3.5 and
write [g, nt] = η(g, gt, . . . , gt

n

) for an appropriate word η = η(x1, x2, . . . , xn+1).
Set H = 〈g, gt, . . . , gtn〉. Being generated by n + 1 v-values, H is nilpotent of
(w,m)-bounded nilpotency class.

Assume first that v(G) is a p-group for a prime p. Then H is a p-group as well.
Since the word v is weakly rational, gi ∈ Gv for every integer i coprime to p.

Since

η(gi, git, . . . , git
n

) = [gi, nt],

it follows that η(gi, git, . . . , git
n

) ∈ Gw for every integer i coprime to p. In particular
the set

X = {η(gi, git, . . . , git
n

)x | x ∈ H, (i, p) = 1}
is a subset of Gw and hence |X| ≤ m.

Since the nilpotency class of H is (w,m)-bounded, we deduce from Lemma 3.6
that the order of the element η(g, gt, . . . , gt

n

) is (w,m)-bounded. Thus, the order
of an arbitrary w-value [g, nt] is bounded by a number which depends only on w
and m. Since W is an abelian subgroup generated by m such elements, we conclude
that the order of W is (w,m)-bounded. Thus, in the particular case where v(G)
is a p-group, the proposition is proved. It is important to note that we proved the
existence of a bound, say B, for |W |, which does not depend on p.

We will now deal with the case where v(G) is not necessarily a p-group. Let
p1, . . . , ps be the set of prime divisors of the order of v(G). Recall that v(G) is
nilpotent and so any Hall subgroup of v(G) is normal in G. For each i = 1, . . . , s
let Ni denote the Hall pi

′-subgroup of v(G). The result obtained in the case where
v(G) is a p-group implies that for any i the image of W in G/Ni has order at most
B. It follows that W embeds into a direct product of abelian groups of order at
most B. Therefore the exponent of W divides B!. Thus W is an abelian group
with m generators and exponent dividing B!. We conclude that the order of W is
(w,m)-bounded, as required. �

Proof of Theorem 1.1. Set w = [[xq1, x
q
2], n [x3, x4]] and v = [xq1, x

q
2]. It is

sufficient to prove that whenever G is a finite group in which the set of w-values is
finite of order m then the order of W = w(G) is bounded in terms of w and m.

Since w depends on 4 variables and |Gw| ≤ m, the group G contains a subgroup
T with at most 4m generators such that w(T ) = w(G). Therefore without loss of
generality we can assume that G is a finite group generated by at most 4m elements.
Moreover, by Lemma 3.1, we can also assume that W is abelian of rank at most m.

We will repeatedly use the fact that, for any positive integer s, the order of the
subgroup of W generated by all elements of order at most s is (s,m)-bounded since
W is an abelian m-generated group. The proof will be split in several steps.

STEP 1. Note that v is a commutator. Thus we can apply Corollary 3.8, and
conclude that G has a normal subgroup N of (w,m)-bounded order, such that, for
every integer k, in G/N any k v-values generate a nilpotent subgroup of (w,m, k)-
bounded class. Passing to the quotient over N we assume, without loss of generality,
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that any k v-values in G generate a nilpotent subgroup of (w,m, k)-bounded class.

STEP 2. Let H = Gq be the subgroup generated by all qth powers in G. By
the solution of the Restricted Burnside Problem, the index of H in G is (m, q)-
bounded and hence H is generated by an (m, q)-bounded number of elements. The
main result in [23] states that each element of H is a product of (m, q)-boundedly
many qth powers. By Proposition 1.2 in [22], each element of H ′ is a product of
m-boundedly many commutators of the form [h1, h2]. Writing both h1 and h2 as
a product of (m, q)-boundedly many qth powers and using the usual commutator
identities we see that each commutator [h1, h2], where h1, h2 ∈ H, is a product of
(m, q)-boundedly many v-values (recall that v = [xq, yq]). So, for any a1, a2 ∈ H ′
there exist (m, q)-boundedly many v-values that generate a subgroup containing
both a1, a2.

In view of what we proved in STEP 1, the subgroup 〈a1, a2〉 is nilpotent
of (w,m)-bounded class r, in particular [a1,r a2] = 1. It follows that H ′ is r-
Engel. Since the rth Engel word implies virtual nilpotency, a theorem of Burns
and Medvedev [4, Theorem A] implies that H ′ has a characteristic subgroup E
of (w,m)-bounded exponent such that H ′/E has (w,m)-bounded nilpotency class.
As E ∩W has (w,m)-bounded order, we can pass to the quotient G/E and assume
that H ′ has (w,m)-bounded nilpotency class.

STEP 3. We argue by induction on the nilpotency class c of H ′. The case H ′ = 1
is trivial so we assume that c ≥ 2. Let M be the last term of the lower central
series of H ′. By induction, the image of W in G/M is of bounded order.

We will show that G contains a normal subgroup of (w,m)-bounded order such
that, for any arbitrary commutator a ∈ G the image of H ′〈a〉 in the factor group
is nilpotent with (w,m)-bounded class.

Let a be a commutator and b a qth power. Since M is abelian, by Lemma 3.3
the element

[[x, b], na]q
i

= [[xq
i

, b], na]

is a w-value for every x ∈M and for every integer i. As |Gw| ≤ m, we deduce that
the exponent of the subgroup [[M, b], na] is bounded by an integer s depending only
on m and q. Note also that s does not depend on a. Passing to the quotient over
the subgroup generated by all elements of W of order at most s!, we can assume
that

[[M, b], na] = 1

for all qth powers b. It follows from Lemma 3.3 that [[M,H], na] = 1.
Let us consider the quotient group Ḡ = G/[M,H]. Clearly, M̄ ≤ Z(H̄) (here

the bar notation has the natural meaning). Remark that M is generated by com-
mutators in elements of H. If [h̄1, h̄2] ∈ M̄ , with h1, h2 ∈ H, then by the standard
commutator identities and the fact that M̄ ≤ Z(H̄) we have [h̄1, h̄2]i = [h̄i1, h̄2] =
[h̄1, h̄

i
2] for every integer i. Thus

[[h̄1, h̄2], nā]q
2i

= [[h̄1, h̄2]q
2i

, nā] = [[h̄q
i

1 , h̄
qi

2 ]nā]

is a w-value for every integer i. As |Gw| ≤ m, it follows that [[h̄1, h̄2], nā] has (w,m)-
bounded order. We therefore deduce that [M̄, nā] has (w,m)-bounded exponent.

Back in the group G, we will show that W has an a-invariant series

W = W0 ≥W1 ≥W2 ≥W3 ≥ 1
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such that the factors W0/W1 and W2/W3 are of (w,m)-bounded order and a acts
as an n-Engel automorphism on W1/W2 and W3.

Indeed, we set

W = W0, W1 = W ∩M, W2 = [W1, na], W3 = W ∩ [M,H].

Since WM/M has (w,m)-bounded order, it follows that W0/W1 has (w,m)-bound-
ed order as well. As W is abelian of rank at most m and the subgroup W̄2 =
[W̄1, nā] ≤ [M̄, nā] has (w,m)-bounded exponent in the quotient group G/[M,H],
we deduce that W2/W3 has (w,m)-bounded order. It is self-evident that a acts as
an n-Engel automorphism on W1/W2. Finally, since [[M,H], na] = 1, we observe
that [W3, na] = 1.

We know from Lemma 3.1 that there exists an m-bounded positive integer j
such that aj centralizes W . Let V1 = W2〈a〉. Note that W3〈aj〉 ≤ Zn(V1), since
[W3, na] = 1. Here Zi(K) denotes the ith term of the upper central series of a group
K. Thus the index of Zn(V1) in V1 is (w,m)-bounded. Therefore, by a version of
Baer’s theorem (see the proof of 14.5.1 in [26]), γn+1(V1) has (w,m)-bounded order
r. We may pass to the quotient over the subgroup generated by all elements of W
of order at most r and assume that γn+1(V1) = 1. Thus, a acts as an n-Engel
automorphism on W2. Hence, it acts as a (2n)-Engel automorphism on W1.

Let V = W 〈a〉. We see that W1〈aj〉 ≤ Z2n(V ). Again, by Baer’s theorem,
γ2n+1(V ) has (w,m)-bounded order. Arguing as above, we may assume that V is
nilpotent of class at most 2n. We therefore remark that a acts as a (3n)-Engel
automorphism on the set of v-values. Recall that v(G) = H ′ is nilpotent of (w,m)-
bounded class. Applying Lemma 3.4 we obtain that H ′〈a〉 is nilpotent of (w,m)-
bounded class, where a is any arbitrary commutator of G.

STEP 4. Assume that H ′ is a p-group for some prime p. Let a be a commutator
and d be a v-value such that the w-value [d, na] is nontrivial.

Since H ′〈a〉 is nilpotent, a induces a p-automorphism of H ′. In other words,
the image of a in G/CG(H ′) has p-power order. By Lemma 3.2, the image of ai

in G/CG(H ′) is a commutator whenever i is not divisible by p. Therefore for each
such i there exists a commutator ai in G such that ai ∈ aiCG(H ′). Thus, whenever
i is not divisible by p, we have the equality [d, na

i] = [d, nai] and hence [d, na
i] is a

w-value.
Denote by u = u(x, y) = [x, y, . . . , y] the (n − 1)-Engel word. Remark that

[d, na] = [a−d, n−1a]a. Therefore u(a−d, a) is a w-value. More generally, u(a−id, ai)
is a w-value for each i not divisible by p. Let K = 〈ad, a〉. Then the set

{u(a−id, ai)x | x ∈ K, (i, p) = 1}

has at most m elements. As K ≤ H ′〈a〉 is nilpotent of (w,m)-bounded class (see
STEP 3), we deduce from Lemma 3.6 that the order of the element [d, na] is (w,m)-
bounded.

We proved that the order of an arbitrary w-value [d, na] is bounded by a number
which depends only on w and m. Taking into account that W is an abelian subgroup
generated by m such elements, we conclude that the order of W is (w,m)-bounded.
Thus, there exists a number B = B(w,m) depending only on w and m such that if
H ′ is a p-group, W has order at most B. It is important that B does not depend
on p.
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STEP 5. We will now deal with the case where H ′ is not necessarily a p-group.
Recall that H ′ is nilpotent. Let p1, p2 . . . be the set of prime divisors of the order of
H ′, and let Ni denote the Hall pi

′-subgroup of H ′. We now know that the image of
W in G/Ni has order at most B. It follows that W embeds into a direct product of
abelian groups of order at most B. Therefore the exponent of W divides B!. Thus
W is an abelian group with m generators and exponent dividing B!. We conclude
that the order of W is (w,m)-bounded. This completes the proof. �
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