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Ph.D. thesis synopsis 

 

The present Ph.D. thesis will describe different projects concerning two main topics: 

the visualization of biological networks and the identification of spatially variable 

genes (SVGs), which are genes that have a spatial pattern of expression (they can be 

identified from Spatially Resolved Transcriptomics (SRT) data, as it preserves spatial 

information of the tissue's cells). Although those projects are involved in two different 

topics, they share a common theme, the visualization of biological data.  

The visual analysis of data representation is a direct way to comprehend highly 

complex data. Indeed, an accurate network drawing is essential to convey and access 

graph information, which in turn may highlight key elements such as genes, 

interactions, or even communities. Similarly, visualization is necessary to investigate 

clear spatial patterns of expression of the SVGs identified, which can be related to the 

spatial changes of the tissue under study. 

The first two projects regard the visualization of biological networks. Specifically, the 

main part of my Ph.D. was devoted to the itGraph project (the first to be described) 

and concerns a novel web tool to explore pathways of interest with three different 
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network perspectives. To enhance the visualization of the provided biological 

networks, it integrates features that are still lacking in other similar software, which 

also improves the tool's utility and the user experience. The full period of my Ph.D. 

was required to develop and optimize all the scripts, the server (backend), the 

database, and the client (front end), including the graphical interface. 

The second project concerning network visualization is called MyoData, which was 

completed and published in the “Computational and Structural Biotechnology 

Journal”. It is a comprehensive and integrated resource for single myofiber and 

nucleus miRNA:lncRNA:mRNA coregulatory networks, also evaluating their impact 

in relation to known pathways such as those present in the KEGG collection. It 

integrates a minimal version of the network visualization tool, which was important 

to understand the technical aspects of visualization library and layouts, and 

consequently optimize the development of itGraph structure. 

The other two described projects, concern the identification of SVGs. At first, I 

developed SpatialDE, an R package wrapping of the SpatialDE Python method, whose 

purpose is to identify spatially variable genes. This wrapper can create a python 

environment inside the R domain and thus performs the original SpatialDE functions. 

It was created to respond to a challenge proposed at the EuroBioc2020 Conference and 

was published on Bioconductor in October 2021 with high-quality, well-documented, 

and interoperable software.   
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The last project is called VoyageR (the repository's name) and is still in progress. The 

aim is to conduct a benchmark for R and Python methods able to identify SVGs. Since 

this is one of the most popular analyses eventually performed on SRT data (that can 

preserve spatial information of the cells' tissue), SVGs can represent potential markers 

of biological processes and thus can be used for downstream analyses. Similar 

methods for the same purpose continue to be published; for this reason, a 

comprehensive benchmark, which is still lacking, could be helpful for users to choose 

the best suitable procedures for their use. Moreover, my project was designed to be 

extensible to simplify the addition of further methods. 

To conclude, the present Ph.D. thesis describes different improvements of the 

respective topics. Producing an effective and scalable visualization is becoming a 

challenging task. For example, the growing size of available data is increasing the 

complexity of the described networks. This is especially true for large graphs, which 

present technical aspects that make it difficult to layout them nicely by algorithms, 

thus often results in incomprehensible ‘hairball’ from which it is difficult to extract 

information. Despite these issues, my projects were designed with specific 

optimization to provide new tools both for biologists and bioinformatic users: 

alternative visualization perspectives of pathway networks with the integration of 

extra features and providing one of the most common analysis methods for STR data 

in the R environment. 
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itGraph 

 

Summary  

Understanding complicated biological networks are essential to solve contemporary 

problems in Systems Biology. An accurate visualization is a common way to access 

network information, as it allows highlighting of key elements and simplifies the 

extraction of information. However, providing a suitable drawing is not a trivial task. 

As human perception is different among individuals, and network drawing may differ 

depending on what kind of information needs to be displayed, there may not exist a 

single best drawing. Nevertheless, I believe that optimizing specific aspects with a 

more precise focus on the target of the tool has greater impact and success, providing 

a more useful visualization. Indeed, the project aimed to create a web tool for pathway 

visualization, combining visual appeal, interactivity, and other features which are still 

lacking in other software. 
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One of the main integrations regards the nodes' positions of each network that are pre-

computed to let the user wait only for the rendering time of the network objects. 

To increase the biological accuracy, the tool integrates the subcellular location with 

three visualization perspectives: "simple network", "network with compartments", and 

"power graph". The first one is a traditional drawing of a graph. Nodes are simply 

encoded as points in the space but colored according to the respective location. The 

results obtained are usually aesthetically pleasing and useful mostly for small-medium 

graphs. 

The second type regards the explicit representation of subcellular organelles as 

compound nodes. Biological networks describe biological entities which most act their 

functions in a specific location inside the cell. This type of representation provides an 

insightful way to understand interactions that define molecular processes that span 

different compartments. The used approach is a novel solution that allows for the 

creation of a non-minimal and non-simplified representation of hierarchical cell 

compartments. 

The third type of visualization regards the Power Graph analysis proposed by Royer 

et al., 2008, a method to describe networks in a compact and less redundant 

representation, reducing the visual complexity of the network. This drawing approach 

allows for handling huge networks, otherwise not representable. Indeed, in classical 

representation, they result in hairballs, from which few insights can be gathered. A 

power graph can be useful to give a new insightful drawing of the original graph, as 
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it encodes high-density structure motifs that are widely represented in biological 

networks. 

There are other integrated features to improve the user experience, like the conversion 

of the identifiers, which allows for mapping network nodes to different biological 

identifiers. 

The tool provides more than 170 thousand pathways distributed among 14 species, for 

a total of more than 500 thousand of network visualizations. It is designed to be 

intuitive and user-friendly, with no bioinformatic expertise required. 
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1. Introduction 

 

In this section, I will describe the main topics of my project, concerning a novel web 

tool for visualizing pathway networks. Biological networks are widely represented as 

graph models. Edges may represent distinct biological interactions, while nodes may 

describe various biological entities, like proteins or genes. This chapter starts with a 

description of different biological networks. I will discuss graph structures, properties, 

layouts, and complex designs able to depict graphical annotations, such as compound 

nodes used to illustrate subcellular compartments. The introduction will also describe 

additional technical and biological features that may enhance the utility of the 

visualization, and lastly, it will provide an overview of the state-of-the-art of similar 

tools with the explicit representation of subcellular locations.  

 

Protein-Protein interaction network 

Protein-protein interaction network (PPI) contains information about different 

proteins and their interactions in a specific biological process [1]. All the PPIs together 

that can take place within a cell build the “interactome” [2]. Proteins have a key role 

inside the cell, as their interactions are fundamental to perform their functions to 
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control molecular and cellular mechanisms. Thus, understanding the underlying 

biological information stored in PPI networks is essential for the knowledge of 

complex biological systems. The analysis of this type of network is important as it 

provides a perspective regarding the importance of the system components and makes 

quantitative predictions for system-level understanding [3]. 

 

Metabolic network 

Cell growth and maintenance are performed with biochemical reactions catalyzed by 

enzymes that transform chemical substances (reactants) into other substances 

(products). Often there exists a path of reactions in which one product can be the 

reactant of the next reaction. It is also possible that metabolites are involved in different 

metabolic pathways, where they act as a co-substrate for a specific reaction and may 

have main roles for another reaction [4]. Metabolic networks contain information 

about substrates, product metabolites, and biochemical reactions involved [5]. 

The analysis of cellular metabolite levels, referred to as metabolomics, is a very 

complex task due to the typical high connectivity and complexity of such a network. 

However, it is important to gather underlying biological knowledge of cellular 

metabolism at large scale [6]. Moreover, an understanding of the generic properties of 

complex networks is useful to gather information about the structure of this network 

[7]. 
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Signaling Network 

Signaling Networks describe the process through which cells respond to a specific 

internal or external stimulus to coordinate the regulation of its activity and respond to 

changes in their immediate environment. These signals are bound by specific proteins, 

called receptors, that initiate the response process. Successively, this signal is 

converted by involving sequences and chemical reactions by other proteins [4] and 

carried through different cell compartments to get the desired phenotype [5]. There 

are three main classes of signaling molecules: hormones, signaling molecules of the 

endocrine system; neurotransmitters, signaling molecules of the nervous system; 

cytokines: signaling molecules of the immune system. Also, there are different classes 

of signaling: intracrine describes signals that are produced and remain inside the cell; 

autocrine describes a signal that is produced inside the cell, then secreted to the external 

environment and this signal can affect the same cell; juxtacrine describes a signal by 

the cell which in turn can affect adjacent cells through cell contact; paracrine describe a 

signal produced by a cell which in turn can affect nearby cells without requiring cell 

contacts; endocrine describe signal produced by a cell which in turn can reach other 

cells in different parts of the body through the circulatory system [4]. 
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Gene Regulatory Networks 

Gene regulatory network collects different interactions of different molecular species 

that control gene-product abundance [8]. This type of network is also denoted as GRN, 

it is inferred by gene expression data and provides information about regulatory 

interaction with potential targets. Over the years, different methods for inferring GRN 

have been proposed to gain new information from these networks, as they are not 

considered as final results. Indeed GRN can be referred to as a “blueprint” or “map” 

of molecular interactions, and such a network can be used to gather novel biological 

interactions to be further validated in wet-lab experiments [9]. 

 

Pathways and biological networks as a graph model 

During the last decades, technological and scientific progress allows an increasing 

massive production of biological high throughput data in different fields, for example 

genomic, transcriptomic, and proteomic. This data is characterizing the field of biology 

in the current era and is leading to increasing both the size of data repositories and the 

complexity of the biological topics under study. However, all these technological 

improvements were essential to enriching knowledge of the biological aspects of 

interest.  

One of the computational challenges of this scenario regards the management and the 

analysis of all these data. For many areas of computational biology, typically there is 
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one or more analysis that is sequentially performed starting from a huge dataset, 

filtering and simplifying them, and finally extracting the significant underlying 

biological information. 

Systems Biology is one of these computational fields and it focuses on the 

comprehensive analysis of the relations among different biological factors, which leads 

to complex and different biological networks, e.g. protein-protein interaction (PPI), 

gene regulatory, or signaling network [5].  

Biomolecular networks, often called pathways [10], are a standard model to describe 

and represent the reactions and actions of a series of molecules in a cell. A state change 

in a cell could be indeed produced by activating a specific pathway, which can lead to 

transcribed genes, new molecules, or new signals that are recognized to activate new 

downstream reactions. Thus, the study of pathways has a key role both in 

understanding cell processes and to interprets -omics data, as they provide the 

biological context for a given observation [11].  

Pathways and biological networks are represented as a graph structure. Graphs are 

abstract mathematical objects that allow describing any type of relationship between 

entities or objects.  

There are different types of graphs, but in a typical formal definition, a graph 𝐺 =

(𝑉, 𝐸) is composed of a series of vertices 𝑉 (or nodes) and a series of edges 𝐸 (or links). 

A subgraph 𝐺′	 = 	 (𝑉′, 𝐸′) is a graph where 𝑉′ is a subset of 𝑉 and 𝐸′ is a subset of 𝐸.  
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If all the edges of the graph have no direction the graph is called undirected. In this 

case, each edge can be crossed in both directions.  

If the edge has an associated direction, the graph is called directed and they are useful 

to represent signal transduction pathways or gene regulation networks. Moreover, if 

the graph does not contain any cycle, it is called directed acyclic graph (DAG). 

 

Fig. 1.1: A) undirected graph; B) directed graph; C) DAG: Directed Acyclic Graph. 

 

A single graph that contains both directed edges and undirected edges, is called a 

mixed graph and it can be denoted with the following triple: 𝐺	 = 	 (𝑉, 𝐸, 𝐸*⃗ ). Mixed 

graphs are useful to represent cell signaling pathways [12] in which some directed 

edges represent activation or inhibition action whereas other undirected edges 

describe physical binding protein interaction [13]. 

A path is a non-empty graph (an empty graph occur when 𝑉 = ∅ and 𝐸 = ∅) 𝑃	 =

	(𝑉, 𝐸) with a series of distinct vertices 𝑉	 = 	 {𝑥 , 𝑥 , . . ., 𝑥 } and edges with the 

following pattern 𝐸	 = 	 {(𝑥 , 𝑥 ), (𝑥 , 𝑥 ), . . ., (𝑥 , 𝑥 )}. The length of a path 𝑃 is 

the number of edges [14]. 
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A weighted graph is a graph with a number (weight) associated to every edge, referred 

to as edge-weighted, or associated to every vertex, referred to as vertex-weighted [15]. 

Weighted graphs are useful to describe the kinetics of biochemical reactions [16], and 

typically, the weight on the edges describes the relevance of the connection [17]. 

Another interesting type of graph is the hypergraph which is different from the 

ordinary structure previously described. It allows edges to connect more than two 

nodes and they can be useful to model metabolic networks, for example in reactions 

that involve four species (𝑋 + 𝑌 ⟶ 𝑍 + 𝑇) or to represent protein complexes 

composed of more than two nodes [14]. 

 

Fig. 1.2: Example of Hypergraph. 

 

An undirected graph in which any two vertices are connected by exactly one path is 

called a tree. A rooted tree 𝑇 = (𝑉, 𝐸, 𝑟) is a graph in which for every node 𝑢 ∈ 𝑉, 

except for the node root 𝑟, there is a unique path from 𝑟 to 𝑢. For every node 𝑢 ∈ 𝑉, 

except for the node root 𝑟, exist a unique node 𝑣, called parent of 𝑢, if exists the 

following edge (𝑣, 𝑢) ∈ 𝐸; in this case, 𝑢 is called children of 𝑣. A node 𝑢 is it called leaf 
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if it does not have a child, otherwise is it called internal node. All the nodes that are on 

the path from the node root 𝑟 to 𝑢 are the ancestors of 𝑢, except for 𝑢 itself [18]. 

 

Fig. 1.3: A) Tree; B) Rooted Tree. 

 

A compound graph 𝐶𝐺 = (𝑉, 𝐸, 𝐹) is defined as a set of vertices 𝑉, a set of adjacency 

edges 𝐸 and a set of inclusion edges 𝐹. It is necessary that the inclusion graph 𝑇 = (𝑉, 𝐹), 

is a rooted tree that shares the same vertices, and no adjacency edge (with each edge 

𝑒 ∈ 𝐸) connect a node to one of its descendants or ancestors [19]. The following figure 

show an example compound graph, built as follow: 

𝑉	 = 	 {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} 

𝐸	 = 	 {(𝑎, 𝑏), (𝑎, 𝑓), (𝑏, 𝑑), (𝑑, 𝑒), (𝑐, 𝑔)} 

𝐹	 = 	 {𝑓𝑔, 𝑓𝑏, 𝑓𝑐, 𝑔𝑑, 𝑔𝑒} 

A) B) 
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Fig. 1.4: Example of compound graph. 

 

Nodes may also have multiple edges that connect each other, describing different 

relationships. In this case, it is useful to represent these interconnections with a 

multigraph, in which different edges exist between a couple of nodes describing 

different functions or interactions [14]. Multigraphs can be very useful to represent 

pathway interaction as they often have different links between the same nodes 

describing different functional relationships. 

 

Fig. 1.5: Example of multigraph. 
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This mathematical object has a lot of properties and topological features that are 

widely used for various analyses, which are useful to respond to questions like: “which 

is the most important node”, “which node is the bridge between two different 

communities”, etc. It is also important for graph analysis and interpretation, a suitable 

graphical representation able to describe in clear way network structures, symmetries, 

and other features that are central for successively analyses or inferring new 

knowledge [17]. 

 

Network visualization and layout algorithms 

Network drawing and visualization are important research tasks, essential for the 

interpretation and understanding of biomedical data. As previously described, the 

growing size of available data is also increasing the complexity of the described 

networks. Thus, producing an effective and scalable visualization is becoming a 

challenging task, especially for large networks [5]. Moreover, as human perception is 

different among individuals, and network drawing may differ depending on what 

kind of information needs to be displayed, there may not exist a single best drawing. 

The utility of a specific drawing may also depend on the type of user that will use it; 

for example, biologists would expect that two interacting proteins would be drawn 

next to each other [14]. 
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For these reasons, network visualization is an important bottleneck that requires 

efficient algorithms and tools [17]. Despite these difficulties, over the years, several 

layout algorithms and software have been published to produce and provide suitable 

network drawings. Furthermore, some conventions, e.g. representing proteins as 

circles, and technical aesthetic criteria have been introduced to provide appealing 

results and improve the overall readability of the networks. However, the algorithms 

cannot optimize all the criteria as some of these properties contradict each other. Here, 

are briefly described some of the most common aesthetic criteria [14,20,21]: 

• minimization of edge crossing: a high number of overlapping edges can affect the 

interpretation of nodes interactions; 

• minimization of edge bends: minimizing the number of bends along the edge is 

important as it allows the human eye to easily follow an edge; 

• minimization of required area: saving space is important also with a homogenous 

density of placed nodes and edges; 

• minimization of overlapping elements: high number of overlapping nodes may 

influence the understanding of node information; 

• maximizing symmetry: is important to reflect the symmetry of the graph when it 

contains symmetrical information; 

• clustering: placing together similar nodes can help to understand some graph’s 

structure; 

• uniforming edge length: important to produce a regular graph. 
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Producing a proper graph drawing, even optimizing the described criteria, is still 

challenging as a “suitable visualization” may depend on the application of the network 

and individual user preferences [21]. In [22–24] co-authors performed different studies 

analyzing the impact of aesthetic properties on the readability of graph drawing. Their 

results describe that some of the most important criteria to improve readability are the 

minimization of edge crossing, minimization of edge bends, and maximization of 

symmetry. Moreover, when asked participants to draw graphs and lay them out 

“nicely” it was found that users also emphasized the clustering properties.  

The readability of networks is a crucial requirement to correctly analyze graph 

information. Moreover, it becomes more difficult as the graph size increases, both for 

computational and biological aspects. For these reasons, there is a clear demand for 

appropriate layout algorithms able to produce suitable drawings that convey 

biological information in a comprehensible diagram. 

At the core of any network visualization, there is a layout algorithm that decides how 

to position nodes and edges in order to produce suitable drawings that allow users to 

simplify the analysis and the understanding of graph information. Their goal is to find 

an organization and coordinates of nodes that highlight underlying structures. Here 

are briefly described (without too technical details) the most known layout algorithms 

[5,14,25]: 
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• Random Layout Algorithm: it places nodes in random coordinates on the screen. 

The results typically present a high number of edge crossings, so it may be 

useful only for small graphs. 

• Circular Layout Algorithm: nodes are placed in succession in a circular 

arrangement. All the nodes have the same distance from the center and it 

minimizes the number of overlapping elements. It highlights nodes with the 

highest degree or nodes hub. 

• Hierarchical Layout Algorithm (HLA): developed by Sugiyama [26], it places 

nodes in different hierarchical groups, reducing the number of edge crossings. 

Even if it is scalable, efficient, and provides pleasant results, it is not suitable for 

large graphs (with thousands of nodes and edges respectively) as the 

minimization of edge crossing is an NP-complete problem. 

• Fruchterman & Reingold and Eades & Perter Algorithms: Fruchterman & Reingold 

[27]  and Eades & Perter [28], also known as Spring Embedded Algorithm, 

belong to the class of Force-Directed Algorithm (FDA). This class of algorithms 

is widely used in network layout, and it is one of the most implemented among 

different visualization libraries. It considers each node as an electrically charged 

element and each edge as a spring. Specifically, it computes attractive force 

between every pair of adjacent vertices and repulsive forces between non-

adjacent vertices. Thus, in this model connected nodes attract each other, like a 

spring based on Hooke’s law, and repulse non-connected nodes like electrically 
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charged particles based on Coulomb’s law. This algorithm performs iteratively 

until an equilibrium state is reached and its computational complexity is 𝑂(𝑛 ) 

per iteration, where n is the number of node [29], thus their computation is very 

slow when applied to large graphs. 

• Kamada-Kawai Algorithm: developed by T. Kamada and S. Kawai, is based on the 

concept of theoretic distance between nodes [30]. In this algorithm, the forces 

between nodes are computed based on the lengths of shortest paths between 

each couple of nodes. 

• Tree Layout Algorithm: it places nodes in a tree arrangement without cycles and 

with a hierarchical organization of the nodes. It is efficient and scalable also for 

large graphs, but the main drawback is the placements of a huge number of 

nodes in the limited area of the screen. 

• Simulated Annealing Algorithm (SA): is an algorithm that represents the space of 

the visualization problem as a set of states, each one with associated energy. 

The goal is to find the state with the minimum energy (e.g., below a threshold). 

SA computation is composed of three steps: 1) definition of a starting point, 

typically chosen randomly; 2) SA selects points nearby the current solution and 

determines whether the new point has a better or worse associated energy than 

the current one. If better it becomes the next point, otherwise, the algorithm can 

still make it the next point to escape from a local minimum; 3) an evaluation 

based on predetermined criteria (e.g. the number of iterations exceeds the 
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maximum number of iterations) is performed to terminate the procedure. The 

algorithm is time-consuming for large graphs, as the search space increase 

depending on the number of nodes. 

• Clustering Layout Algorithm: it reduces the visual complexity of the graph and 

allows to group together similar nodes based on the definition of specific 

metrics. These metrics can be content-based if they rely on node content, while 

if they rely on the structure of the graph, it is called structured-based. This 

layout improves the readability of the network and allows for the identification 

of important graph features like nodes hub, nodes degree, or connectivity. 

• Grid Layout Algorithm: it places nodes on a 2-dimensional squared grid. This 

layout algorithm models the node graph as particles interacting together, 

specifically nodes closely related attract each other, while remotely related 

nodes repulse each other. Results avoid node overlapping but one limitation 

lies in the high number of edge crossing, which can affect the identification of 

complex blocks and nodes hub. 

• 3D Layout Algorithm: this layout positions nodes in a 3-dimensional space. Using 

three dimensions adds more available space making it easier to optimize 

aesthetic criteria and visualize large networks. This kind of layout has to 

include new features that are required for the dynamic change of the view, like 

transparency or depth. 
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Graphic rendering libraries and implementations 

These algorithms can be used to find node coordinates that produce a pleasant 

arrangement of the network. Each layout has a specific optimization focus of aesthetic 

criteria, but not all the algorithms can be used for large networks. This is one of the 

major bottlenecks in the visualization of biological networks. As I will discuss more in 

detail in the next paragraphs, huge networks affect visualization in a wide range of 

aspects. 

High throughput technologies allow the massive production of biological data, 

increasing the size and complexity of biological pathways and networks. 

Consequently, it is challenging to provide a readable network visualization that allows 

the analysis of the graph. 

Regarding technical aspects, a suitable visualization is obtained through a multi-step 

process that tries to handle and optimize aspects such as the choice of the layout 

algorithm, the visualization library, or the data structure storing network information. 

Moreover, these features may also depend on the goal of the visualization, for 

example, its final application (whether as a web tool or a local application) and the 

types of graphs covered.  

Furthermore, a suitable visualization must satisfy different requirements [5,25]: 

• fast and clear rendering, particularly for huge networks; 

• easy network queries through zoom and focus; 
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• integration of standard network annotation e.g. molecular function or node 

localization; 

• provide different layouts and interactive functionalities; 

• compatibility with import and export standard data format for biological 

networks. 

Among the described parameters, one of the most important aspects is to provide the 

final rendering of the layout network in a fast and clear way. In particular, different 

technical characteristics affect this requirement and a lack of optimization of the 

following parameters can weigh the responsivity of the result: 

• an efficient data structure that stores the network information; 

• suitable rendering visualization library; 

• choice of the layout algorithm. 

The optimization of the data structure is a critical aspect of network visualization, 

especially for a web tool. For example, in the biological field, various annotations can 

be added to increase the biological accuracy of the entities in the network, and often 

these annotations are descriptive text, affecting the size of the object that has to be 

transferred in the HTML request. Indeed, in typical client-server-database 

communication, in addition to necessary default processing processes, there are 

response times that strongly depend on the size of the transferred data. Lack of 

optimization in this data structure could affect the waiting time of the user for the 

results, which in turn may affect the perception of the reliability of the tool. Moreover, 
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this kind of optimization is even more important for large networks (with thousands 

of nodes and thousands of edges, or more), and it is one of the main aspects for a web 

tool to take into consideration. 

Regarding the choice of layout algorithm, from a technical point of view, it is strictly 

linked to the choice of the rendering libraries, and one could affect the other. Often 

network visualization libraries have internal implementation of layout algorithms, but 

not all the layout types are implemented in graphic libraries. Thus, both choices are 

strictly linked as one may filter out some options of the other. These choices are even 

more critical whether it is necessary to compute the network layout in a real-time and 

interactive way, as the user may also have to wait for the computation time before 

being able to use the result. As described in the previous paragraph, the utility of the 

algorithms may also depend on the size of the network, as not all the algorithms are 

suitable for an interactive tool, due to a high computation time.  

The possible choices of the layout algorithm are even more restricted whether the 

graph has complex structures like compound nodes. These types of graphs have been 

used to represent complex relationship structures [18,31,32], sometimes even with a 

high level of nesting of compound nodes. Due to their atypical structure, they require 

layout algorithms specifically developed. Over the years, some works have been 

published that have tried to focus on the layout of hierarchical graphs [33–35] with 

poor performance for undirected graph instances. Dogrusoz et al. [19], proposed the 

CoSE algorithm, which computes the layout for undirected graphs based on the 
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Fruchterman & Reingold method. Their implementation inserts compound nodes as 

part of the physical system described by the force-directed. Furthermore, their 

implementation is able to keep graph components together with the integration of a 

measure called “gravitational force”, manage multiple nesting levels of compound 

nodes and compute the layout without node fixed size. Balci et al. [36], proposed a new 

layout algorithm for compound graphs, called fCoSE (a Fast Compound Spring 

Embedder), a faster version of the CoSE algorithm which also supports a set of 

constraints. This algorithm integrates the speed of spectral drawing [37] and the 

quality of the force-directed layout.  

Cola is an alternative algorithm to fCoSE, able to compute both the layout of compound 

graphs and manage constraints, and it is the result of a series of works [38–40]. Their 

approach extends the force-directed layout algorithm allowing the insertion of 

separation constraints such as the positioning of nodes on different horizontal layers, 

placing nodes on fixed positions, positioning of nodes within defined boundaries (e.g. 

compound node), or automatic node separation to avoid node overlaps. Cola can 

manage different types of constraints but has a high computational cost, while fCoSE, 

with a complexity 𝑂(𝑛 +𝑚) with 𝑛 = |𝑉| and 𝑚 = |𝐸|, has a faster computation time 

so that it can be used in real-time on small or medium graph size.  

Both CoLa and fCoSE are implemented in Javascript as extensions of the Cytoscape.js 

library [41], which is one of the most used libraries in the field of network visualization 

tools. In addition, CoLa can also be used with the D3.js Javascript library. To my 
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knowledge, these implementations are the only ones available and usable that can 

compute layouts for compound graphs. 

 

Biological annotation to improve network visualization 

The visual analysis of data representation is a direct way to comprehend highly 

complex data. As previously described, networks and graphs are represented as node-

link diagrams, where nodes are objects or entities, and edges are relations between 

nodes. This kind of diagram is intuitive and works very well for small-medium 

instances. However, with the increase in the size of a network, the complexity of the 

visualization similarly increases.  

Representing networks with thousands of nodes and thousands of edges often results 

in incomprehensible ‘hairball’ from which it is difficult to extract information [42]. 

Although huge networks present technical aspects that cannot be fully optimized, such 

as the minimization of edge-crossing, there are some methods, such as clustering, able 

to simplify the graph representation, helping the user to perform a visual analysis of 

the network. Moreover, despite the great potential of layout algorithms to highlight 

hidden patterns of graphs, often they do not focus on systematic analysis, which makes 

it difficult to extract information relative to biological questions [5]. Thus, it is 

important to improve the network representation with different strategies, like graphic 

design conventions, to highlight key aspects of the graph. Indeed, a display is said to 
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be effective if it represents the correct and real information in an easily comprehensible 

way [14].  

Typically, entities of the biological network represent proteins, genes, or metabolites, 

while edges can describe different interactions. Genes or proteins can be drawn as 

circles, while metabolites as triangles. Different arrow types for edges can represent 

different interaction types like activation, inhibition, or binding as described by the 

Systems Biology Graphical Notation (SBGN) [43–46] and shown in Fig. 1.6. 

 

Fig. 1.6: Quick reference of SBGN edges symbols. The “Process Description” section describes all the processes 

taking place in a biological system. The “Activity flow” describes the flow of activity in a biological system. The 

“Entity Relationship” describes all the relations involving the entities of a biological system. Image adapted from 

Rougny et al. 2019; Mi et al. 2015; Sorokin et al. 2015. 

 

Another visual aspect concerns the colors, which can be fundamental for network 

annotation. This attribute can represent categorical information such as protein 

localization, biochemical reaction role (product or substrate), or gene expression. 
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Proteins perform their function in one or more cellular compartments, and in specific 

cases, some proteins can interact with each other only when they are co-localized. 

Consequently, cellular localization can be integrated as node information with a 

graphical attribute like color. The same color should correspond to the same location, 

and vice versa. Furthermore, for the graphic libraries able to display compound 

graphs, the cellular localization may be represented as a compound node that contains 

all the nodes belonging to that compartment. This type of visualization is used by 

CellWhere [47], and CellNetVis [48], which integrate multiple nested compartments 

that reflect a simple cellular hierarchy, or Pathway Commons [49]. Furthermore, if the 

network view includes compound nodes, it would be useful for the user to have the 

possibility to expand and collapse the compound node manually. This feature would 

allow highlighting or hiding specific parts of the graphs, and consequently helps the 

navigation and analysis of other parts of the network. 

Nodes can also be colored according to the gene expression experimentally measured 

by the user imported into the network visualization. 

Like nodes, edges can also be colored to describe the different ways in which a given 

interaction has been obtained. Different colors can help the user to intuitively 

understand whether a specific interaction has been obtained experimentally, through 

prediction, or text mining. One of the most popular tools that use this type of 

annotation is STRING [50].  
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The node and edge transparency can be modified to describe the significance of a node 

or an interaction. Similarly, also the node size can be modified to represent its 

importance, based on a continuous measure, such as the log fold-change or the p-value 

of a gene. 

Similar to the graphic attributes, the biological description of a pathway network can 

be very useful for the user to contextualize the function of a node or interaction. For 

example, having the three categories annotations of Gene Ontology may help to study 

and analyze the network. In particular, having the possibility of knowing the 

annotation of a node (gene or protein) from external sources, contextual to the specific 

pathway, can be very useful to know the function of a protein or the activation 

mechanism described by an edge. 

Since these annotations are very descriptive, it is not worth saving them within the 

data structure of the network as it would increase the size of the object, leading to 

slower client-server communication. With modern technologies, it is possible to 

overcome this problem by requesting them in real-time with the APIs from external 

databases. 

In summary, good visualization needs to integrate graphical and textual biological 

annotation. An effective annotation, provided in an easy and comprehensible way, can 

simplify the study of the network. However, it is important to note that integrating a 

high number of annotations can result in the opposite effect providing an unintuitive 

network. 
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State of the art of web tool with subcellular location 

One of the most important integrations of the presented project is the visualization of 

biological networks with the explicit representation of cellular compartments. As 

already mentioned, some proteins may not interact until they are located in the same 

location, thus the visualization of the network within the cellular organization may be 

essential to understand, for example, molecular processes that span compartments [5]. 

In previous years, this type of visualization was considered by few tools as it presents 

difficulties both for technical and biological aspects. The cell has a complex 

organization, both among cells belonging to the same organism and among organisms 

of different species. For example, there are a lot of differences between eukaryotic and 

prokaryotic cells. This complexity has made it difficult to provide a suitable graph 

visualization with the cellular organization. 

The tool presented here provides a novel and automatic solution for this problem, for 

this reason, this paragraph will describe the state of the art of web tools that integrate 

network visualization with the explicit representation of cellular compartments. 

Different tools provide alternative approaches, each one with a different focus. 

CellWhere [47] includes a series of principal cellular compartments. Starting from an 

input gene list, protein-protein interaction networks are created looking for 

interactions in Mentha [51].  Successively, locations are obtained from UniProt and/or 
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Cellular Component (GO) and then mapped up to fifty cellular compartments of 

CellWhere. However, the user may add a new location or enter a score to prioritize 

some in case of multiple mapping. The network representation is interactive and 

represented with Cytoscape.js. All the cellular compartments mapped in CellWhere 

are drawn as compound nodes. The only exception is the cell membrane which is 

represented in the background as a non-interactive couple of nodes connected by 

edges, representing the phospholipid bilayer. Clicking on nodes, the user is redirected 

to the UniProt page of the relative gene, while clicking on the edge, the Mentha 

interaction evidence is shown. Each drawn network can be downloaded in HTML or 

XGMML format. 

CellNetVis [48] allows for a dynamic exploration of biological networks within a 

diagram that represents the cellular organization. Networks can be viewed by 

importing an XGMML file format and nodes must have the “Selected CC” or 

“Localization” attribute to be mapped to one of twenty-one available cellular 

compartments. The tool also integrates the possibility to search cellular compartments 

for human, mouse, and bovine genes with Ensembl, Entrez, InnateDB, or UniProt 

identifiers. Networks are drawn with the D3 JavaScript library and nodes positions are 

computed in real-time with a force-directed layout algorithm implemented in that 

library and modified to constraint nodes to be placed in the respective location. 

Furthermore, the algorithm can identify and resolve nodes' overlap, however, with 

huge networks this problem is still present.  
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After a network is loaded, the algorithm computation tries to find the nodes' positions 

according to the relative compartment in which they are placed. As Cytoscape.js also 

D3.js provides an interactive visualization: nodes and compartments (even if they are 

not considered nodes) can be moved by the user. It is also possible to search for nodes 

through their labels and when a node is clicked, the attribute panel is filled with useful 

information relative to the node and with the dropdown menu through which is 

possible to change its location. If the user changes the location, the algorithm restarts 

its computation, updating the nodes' positions. Although this feature keeps the 

positions updated according to the results of the layout, it may result in the opposite 

effect as it will change eventually the user modified position, leading to a loss of the 

mental map of the graph. Regarding the graphic draw of the network, the tool allows 

modifying the color and the label of the nodes. It is also possible to download the 

image of the graph both in SVG and PNG formats. 

CellMap [52] is a tool in which the network is composed over an image of the cell 

structure. As described in [53], it presents basic interactive functionalities, such as 

zoom-in or zoom-out, and the user may visualize the location of a query node over 

that image. Users can search nodes of interest by gene name or UniProt identifier. 

Additionally, other identifiers can be found and added to the draw as nodes, creating 

an interaction network among all the inserted elements. Clicking on a node, its 

interaction edges are highlighted with an interaction score, which represents the 

confidence of experimentally measured interaction (0 as low confidence and 1 as high 
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confidence). This use case is useful if the user has few genes or identifiers and is 

interested in visualizing their locations and interactions.  

Furthermore, the tool allows the visualization of all known interaction partners of a 

protein query. Through the search of the UniProt identifier or gene name of the protein 

of interest, all the interactor genes, and their respective location can be seen as well as 

the confidence score associated to the edges. Nodes are colored according to the color 

compartments.  

Some disadvantages of the visualization provided by CellMap lie in the fact that the 

network is not interactive as the previously described tools. Nodes cannot be moved, 

and labels are only visible with a “mouseover” event. Thus, if the user is interested to 

view multiple nodes simultaneously, it may be difficult to do with these features. 

Furthermore, a network with a high number of nodes produces overlaps between 

nodes and edges, making it difficult to study the interaction through this visualization. 

SPV [54] is a straightforward web tool that provides visualization of signaling 

pathways and protein interactions networks. The library provides two types of 

layouts, one for the protein-protein interaction network and one where the nodes are 

placed in a structure composed of four layers: extracellular, cellular membrane 

(receptors), nucleus (transcription factors), and a bottom layer describing phenotypes. 

The visualization is interactive, and the user can move nodes. Clicking on network 

elements (nodes and edges) a popup will be shown with all the information about the 

selected element. Nodes are represented as circles and colored differently based on the 
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type of the represented entity. Similarly, edges have different arrows based on the type 

of described process: activation, inhibition, binding, etc. Users may also filter edges 

based on a score, which can be chosen among different options and this is useful to 

highlight important connections. Lastly, SPV provides the basic functionalities such as 

the "reset layout", "save image" or "export" of the network. 

Pathway Commons [49] integrates various web applications allowing different 

analyses of pathways and molecular interaction information. This section will describe 

only the network visualization app. By searching for gene name or pathway title, a list 

of pathways is displayed with each entry showing the origin database, title, and the 

number of involved entities. Clicking an entry will open the relative network 

visualization created through Cytoscape.js, which shows the network in SBGN format. 

Although networks have compound nodes representing cellular compartments, they 

are typically inserted side by side and not in a suitable hierarchical context, like the 

structure of the cell. The network visualization is interactive, and the layout is obtained 

with the algorithm of CoSE and fCoSE. Clicking on a node will open a tooltip showing 

detailed information about the selected element. The visualization also has a menu bar 

with different features: a link to the original database, a biological description of the 

pathway, and a download button to get the network in different formats, such as PNG, 

SIF, SBGN, and JSON. Moreover, it is also possible to expand/collapse compound 

nodes and apply the centering of the network or reset the layout. The user can also 

search for a node of interest through its label.  
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The Pathway Commons resource also includes other types of visualization. Indeed, it 

is also possible to search one or more genes and obtain the visualization of their 

interaction network or the results of an enrichment analysis that draws enriched 

pathway titles as nodes. Even in these cases, the visualization is created with the 

Cytoscape.js library. At the time of this writing, Pathway Commons is at version 12 

and includes 5772 pathways and 22 databases for the human species. 

The described tools provide different solutions to the challenge of viewing biological 

networks with the explicit representation of subcellular locations, each one with a 

specific focus but also with some limitations. One of the most intuitive obstacles for 

this type of visualization regards how many cellular compartments are necessary and 

how to draw them in a hierarchical context. Some of those tools chose a fixed number 

of cellular compartments. By default, CellWhere, CellNetVis, and SPV include 50, 21, 

and 4 locations respectively. This choice sets a basic limit to the possibility to map 

many nodes and to the final representation of the cellular structure. CellNetVis also 

has the same limitation. Its cellular organization is fixed by its diagram that aims to 

represent the cell structure, but the twenty-one fixed locations are not able to cover a 

wide range of different mapping. In addition, in this tool, the layout computation starts 

after the loading of the network, and in this phase, is difficult for the user to interact 

with the network as the layout is still computing the nodes positions. 

SPV was created to be simple and straightforward with a focus on causal relations. It 

provides a visualization with three compartments: extracellular, cellular membrane, 
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nucleus, and a bottom layer used to place phenotypes of the signaling networks. This 

representation is minimal and very specific, and it may be not suitable for covering 

network visualization with cellular compartments. It was developed starting from 

Mentha [51], which stores protein interaction networks and continued with SIGNOR 

[55], which collects causal signaling information. 

CellMap represents the cellular structure with a cartoon image of the cell and 

successively, the networks are drawn over that image. It is also possible to modify the 

images by adding new shapes and assigning them to new cellular compartments. 

However, networks are created only starting from genes of interest and, depending on 

the use case, edges can represent "all the interactions with a specific protein (one-

against-all)" or "all the interactions among all the involved proteins (all-against-all)". 

These use cases are very specific and may not be suitable to create a pathway 

interaction network by inserting manually all the involved nodes. 

In Pathway Commons, compound nodes, which represent the cellular compartment, 

are obtained by the SBGN format of the pathways. However, they are not drawn to 

respect the hierarchical cellular organization. This resource also presents the problem 

of overlapping nodes in large networks, which is one of the major bottlenecks of 

network visualization. For example, in the "Regulation of PTEN mRNA translation" 

Reactome pathway, it is possible to see many overlapping nodes. Although the tool 

provides the possibility to reset the layout, the fCoSE algorithm is not able to solve this 

problem entirely. Similarly, CellWhere, CellNetVis and SPV didn't solve this problem 
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entirely. The larger the network, the more it will include overlapping elements. In 

particular, with the provided example networks of these tools, the resulting layout 

provides an unclear visualization, with nodes and node' labels overlapping with each 

other. 

itGraph integrates novel solutions to these problems, both for overlapping nodes and 

representation of cellular compartments, and also integrates new important features 

for biological networks that are still lacking in other software. The next chapter 

describes the aim of the project with the chosen focus. 
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2. Aim of the project 

 

This project aims to create and provide an easily accessible tool to explore and 

visualize a dynamic and interactive pathway of interest. 

Providing a suitable visualization of biological networks is not a trivial task. There are 

some evaluations that must be considered based on the target users, visualization, and 

usefulness of the tool. The best draw for any network may not exist, and it is also 

difficult to understand what a good visualization is. Although the optimization of 

aesthetic criteria has been introduced to provide appealing results, providing a 

suitable visualization is still a challenging task. The perception of a specific network 

design may change among different users, both for aesthetic tastes and for its utility 

[14]. Consequently, I believe that optimizing certain aspects with a more precise focus 

on the target of the tool has greater impact and success, providing a useful 

visualization. In this regard, the aim of the project was to create a web resource for 

pathway visualization, with a precise focus on technical aspects and increasing the 

usefulness of the final result. For the latter purpose, different features and annotations 

have been integrated that are still missing in other tools.  

The main objectives of the project are listed as follows: 
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• increasing biological accuracy by integrating explicit representation of cellular 

compartments; 

• reduction of the visual complexity of the network through the Power Graph 

Analysis; 

• integration of biological annotation and features to enhance the visualization; 

• optimization of the user experience by creating a user-friendly tool. 

In particular, these aspects have been optimized based on specific choices and 

integration of features that should help the user with network analysis. Most of the 

covered issues are technical which can help the user experience.  

Some other features have not been considered, for example, the possibility to 

download the network in different formats, such as BioPAX, SBGN, or GML. 

However, the tool provides the download of the network in JSON, which is a very 

versatile format and easy to parse. Moreover, even if a lot of pathways have been 

integrated, in the actual release it is not possible to import a custom network.  

The following chapter "Materials and Methods" will describe in detail how the 

networks were obtained and how the layouts were pre-computed. It will also describe 

all the technical aspects regarding the building of the tool.  

Next, with the "Results and Discussion", results and their usefulness for visualization 

and analysis will be discussed. Finally, the "Conclusion" and "Future perspectives" will 

explain the major outcomes obtained with the tool and some ideas for future releases 

and improvements.  
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3. Materials and Methods 

 

Retrieve pathways from graphite 

The first step to build networks was to collect pathways from the R package graphite 

[56], which allow the conversion of pathway topology to gene/protein networks in 

simple interaction format, SIF (Fig. 3.1). 

 

Fig. 3.1: Example of the SIF (Simple Interaction Format) file. Each row describes an edge of the network, with the 

columns “direction” and “type” providing information about the direction and the biological process involved, 

respectively. 

The source node of an edge is identified by the columns “src_type” and "src", describing the type of the identifier 

and the ID value, respectively. Similarly, the target node is represented by the columns “dest_type” and “dest”. 

The values of “species”, “database”, “nativeId”, “title” reports information about the pathway, thus they are the same 

for each row. 

 

Pathways are usually characterized by the presence of metabolites and compounds. 

This is important as, in some interactions, compounds act as mediators or bridges 

between two elements. However, measuring gene expression and metabolite 
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concentrations require different experimental techniques. For this reason, the two 

signals are infrequently captured together on the same samples. Graphite adopts a 

signal propagation strategy able to reconstruct the pathway network with only a 

subset of the original entities. This strategy allows the users to get pathway variants 

including only proteins, metabolites, or preserving both types of elements (“mixed” 

pathways). 

Our strategy was to avoid huge networks for the previously mentioned problems, so 

I collected all protein pathways (and all the relative information) from graphite 

respecting the following threshold: the sum of the number of nodes and the number 

of edges of each pathway must be equal to or lower than 2000: 

|𝑉| 	+	 |𝐸|		2000 

I chose to ignore huge networks as they still are a bottleneck of network visualization 

and even with this constraint, I retrieved more than 98% of the total pathways 

provided by graphite. 

A total of 173817 pathways were obtained, distributed among different databases, such 

as Kegg, Reactome, Pathbank, Pharmgkb, Smpdb, and covering the following 14 

species: Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans, Canis lupus 

familiaris, Drosophila melanogaster, Danio rerio, Escherichia coli, Gallus gallus, 

Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Sus 

scrofa and Xenopus laevis.  



 46 

Among all the collected pathways, occurring nodes presented different types of 

identifiers, such as TAIR (The Arabidopsis Information Resource) [57], UniProt [58], 

EntrezID [59], FlybaseCG [60], Alias, Ensembl [61], ORF [62], each one with a different 

number of occurrences and percentage (Fig 3.2). 

 

Fig. 3.2: Occurrences and percentage of nodes identifiers among all obtained pathways. Total nodes: 116323. 

 

Conversion of identifiers 

One of the new features integrated into itGraph, which is still lacking in other software, 

is the possibility for the user to require the conversion of node identifiers. Both biology 

and bioinformatics are highly characterized by crossing references between databases. 

This is mainly evident among their identifiers, where each provides specific annotation 

for a specific type of biological molecules, such as genes, transcripts, and proteins [63]. 

Mapping these databases' IDs is essential to facilitate the exchange of each specific 

annotation. For example, ids of gene entities can be described by the Ensembl Gene 
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(Ensembl) and EntrezID (NCBI), while protein entities can be identified with Ensembl 

Protein (Ensembl) and UniProt (UniProt) ids. It is possible also to map a gene identifier 

to a protein type, obtaining multiple results, as reflection of a single gene that can lead 

to the production of different proteins. Thus, it is essential for a biological tool to 

provide a mapping between all of them.  

itGraph is strictly linked to “graphite”, providing the same type of conversions. All the 

possible conversions are pre-computed and obtained through the following 

Bioconductor R packages: 

• Arabidopsis thaliana: “org.At.tair.db” 

• Bos taurus: “org.Bt.eg.db” 

• Caenorhabditis elegans: “org.Ce.eg.db” 

• Canis lupus familiaris: “org.Cf.eg.db” 

• Drosophila melanogaster: “org.Dm.eg.db” 

• Danio rerio: “org.Dr.eg.db” 

• Escherichia coli: “org.EcK12.eg.db” 

• Gallus gallus: “org.Gg.eg.db” 

• Homo sapiens: “org.Hs.eg.db” 

• Mus musculus: “org.Mm.eg.db” 

• Rattus norvegicus: “org.Rn.eg.db” 

• Saccharomyces cerevisiae: “org.Sc.sgd.db” 

• Sus scrofa: “org.Ss.eg.db” 
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• Xenopus laevis: “org.Xl.eg.db” 

Not all of these databases provided the mapping of the same types, however, in 

general, the tool provides the conversion of all the collected pathway nodes to the 

following identifiers (where applicable): Alias, Gene Name, Ensembl Gene, Ensembl 

Prot, Ensembl Trans, EntrezID, Enzyme, Flybase, FlybaseCG, Orf, Pfam, Refseq, Sgd, 

Tair, UniProt, Wormbase, and Zfin. 

 

Retrieving subcellular location for pathway nodes 

As Fig. 3.1 shows, more than 94% of total nodes belong to UniProt or NCBI (EntrezID) 

databases. One of the aims of the tool is to increase the biological accuracy of the 

network by integrating the subcellular location for each node. For this purpose, from 

UniProt and NCBI, I collected all the Gene Ontology Cellular Component (hereafter 

CC) associated with their ids. The CC is one of three categories of the controlled 

vocabulary of Gene Ontology and provides the locations relative to cellular structures 

in which a gene product performs its function. Specifically, I parsed the “dat” file 

format of SwissProt and Trembl, and for each of their nodes, I saved the entries of its 

CC of the Gene Ontology and the provenance of the file, whether SwissProt or Trembl. 

Similarly, the same information was obtained from the NCBI for their EntrezID ids. 

Each collected CC entry is associated with an evidence code that indicates how the 

annotation to a particular term is supported. Evidence codes belong to up to six 
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general categories: experimental evidence, phylogenetic evidence, computational 

evidence, author statements, curatorial statements, and automatically generated 

annotations. Fig. 3.3 shows an example table of the format of the gathered information. 

 

 

Fig. 3.3: Example tables with example UniProt and NCBI ids with the information of the Cellular Component. 

 

Successively, to retrieve the location for all pathway nodes obtained from graphite, 

including those that weren’t obtained with UniProt or EntrezID identifier type, all of 

them were converted to the UniProt or EntrezID types (NCBI). The idea is to map all 

the conversion results to their relative information of CC gathered. In particular, the 

following steps were performed: 

1) all the native pathway identifiers were first converted to UniProt. It was 

expected that in some cases, different original nodes were mapped to multiple 

CC retrieved from SwissProt and Trembl CC retrieved from NCBI 
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UniProt IDs each. For example, an EntrezID, which describes gene-specific 

information, can be mapped to multiple UniProt as they represent ids for 

protein type. Some identifiers were not converted successfully (Fig 3.4) and in 

this case, as described in step 5) they will be converted to the EntrezID and then 

mapped to the CC entries retrieved from the NCBI database. 

 

Fig. 3.4: Descriptive example of native pathway nodes converted to UniProt identifiers. Green highlights 

report the native node "Entrez E1" that is mapped to multiple UniProt. It is also visible that some nodes 

were not mapped to any conversion, for example, the “Tair T1” and the “Ensembl ENS1”. 

 

2) all the UniProt IDs gathered with the parsing of the SwissProt and Trembl files, 

also associated with the CC information and provenance, were mapped to the 

resulting conversion (Fig. 3.5); 
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Fig. 3.5: Cellular Component retrieved from UniProt were mapped to the resulting conversion. 

 

3) To maintain only the reliable mapping, CC entries were filtered based on the 

evidence code category. As Buza et al. performed in their work [64], I also 

created a rank on the categories of evidence codes (Fig. 3.6). Thus, if an UniProt 

ID was mapped to multiple CC entries with different evidence codes of a 

different category, I selected only the entries with the evidence code belonging 

to the better available category. It is important to note that, even after the filter, 

some conversions may be still mapped to multiple CC entries. 
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Fig 3.6: Table reporting the score associated to the different categories of evidence codes. 

 

4) To prioritize the most reliable results, after the filter phase and only for those 

entries mapped with SwissProt provenance, all the associated CC locations 

were attached to the native pathway nodes. This choice was made to first obtain 

the best results, as SwissProt is the curated part of the UniProt database. In the 

case of multiple mapped locations, the native pathway node will inherit them 

all and the final decision will be performed during the building of the network: 

the most frequent compartment within the network is chosen (drawing criteria). 

The Trembl CC entries will only be used for those original nodes which have 

not been successfully mapped to CC locations by SwissProt or NCBI. 
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5) with the previous steps, for some of the native pathway nodes, at least a 

subcellular location from SwissProt was retrieved. All nodes that were not 

mapped to the UniProt conversion or not mapped to the CC entries did result 

with no location associated (Fig. 3.7). For those nodes without an associated 

location, I performed the same procedure (steps 1 - 4), converting them to the 

EntrezID and then mapping the CC entries retrieved from the NCBI database. 

 

Fig. 3.7: Conversion of native pathway nodes to UniProt. All the nodes that were not mapped to the UniProt 

conversion or not mapped to the CC entries are highlighted in red. 

 

6) For all the nodes that didn’t get at least a location with the SwissProt or NCBI 

CC, they have been mapped to the CCs obtained from Trembl (as described in 

step 4). As it provides automated annotations with less reliability than 
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SwissProt and NCBI, they have been used as the last chance to obtain at least a 

subcellular location. 

After all these steps, all the CC locations mapped to the pathways nodes were 

converted to the respective labels of the UniProt SubCellular Location section of the 

database (https://www.uniprot.org/help/subcellular_location). As will be discussed 

later, this last conversion allows a coherent mapping between the retrieved locations 

of the pathway nodes and the labels obtained from the cell designs of the SwissBioPics. 

This procedure allows getting at least one location for the majority of pathway nodes. 

Specifically, I got locations for 78355 (67,3%) pathway nodes, while entities without 

this information were 37968 (32,7%) (Fig. 3.8). 

 

Fig. 3.8: Example table of pathway nodes with the associated single or multiple location. The provenance is shown 

in the “prov” column. 
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Defining the hierarchical cell structure 

To reproduce a network visualization with cell compartments, one of the most 

challenging tasks was to reconstruct the hierarchical cell structure and organization 

with all its organelles. This task was even more complicated considering that the tool 

provides this type of network visualization for pathways of different species. To solve 

this problem, I built a hierarchical cell structure parsing and transforming the cell 

description available from SwissBioPics [65]. SwissBioPics is a freely available 

resource that provides images describing cell types from all kingdoms of life. Each cell 

design presents a list of the subcellular locations or organelles that compose its spatial 

organization. As itGraph covers pathways for bacteria (Escherichia coli), yeast 

(Saccharomyces cerevisiae), plant (Arabidopsis thaliana), and different animal cells, 

from that resource I collected the description design of different cell types and 

organisms: animal, animal epithelial, animal muscle, animal neuronal, animal 

photoreceptor, animal egg, animal spermatozoa, budding yeast, plant, rod-shaped 

bacteria two membranes gram neg, and virus-infected animal. 

For each cell design provided by SwissBioPics and starting from the list of subcellular 

locations attached, I processed the list to provide a hierarchical order of that 

compartments. The resulting ordering was obtained by visual inspection of the 

diagram and cross-referencing the information provided by UniProt 

(https://www.uniprot.org/locations). Each entry in each resulting list has a specific 
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indentation to define its visual parent node. Fig. 3.9 shows the spatial organization of 

a morphology typical of Escherichia coli cells. The right side of the image shows the 

visual hierarchical description of the involved compartments. For example, the 

“Cytoplasm” has a greater indentation than the “Cell inner membrane” as it is placed 

visually inside of it. 

 

Fig. 3.9: SwissBioPics design of morphology typical of Escherichia coli with relative compartments. On the right 

side, there is the reconstruction of the visual. 

 

From the resulting hierarchical list, I build a tree data structure able to explain the same 

visual nesting relations between parent-child nodes (Fig 3.10). 
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Fig. 3.10: Tree structure of the reconstructing hierarchical organization of the “rod-shaped bacteria two membranes 

gram neg.” cell design. 

 

The tree data structure is useful as it allows the use of graph algorithms to evaluate 

which compartment is the parent of a certain node. Indeed, for the explicit 

representation of subcellular location within the network, this object will be also useful 

as it allows the creation of compound node for each node location of the network and 

places it inside the right parent. As Fig. 3.10 shows, the root of the tree is the “universe” 

node, which was added manually and represents the graphic display where the 

network is drawn. The root is also considered a compound node in which all the nodes 
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with no location will be mapped or with a location that is not mapped to the chosen 

cell design. 

 

Minimal tree reduction (MTR) 

The collection of the cell design from SwissBioPics allows the creation of a tree 

structure able to describe the parent relationship of the node locations involved in a 

network. However, most of the locations involved in node networks do not cover all 

the subcellular locations of the tree structures, thus drawing a network with 

compound nodes of locations that don’t have any occurrences, leads to increasing the 

complexity of the visualization. I solve this problem by creating an algorithm called 

Minimal Tree Reduction (hereafter MTR) able to reduce a tree structure to a set of 

minimal vertices. It is important to say that the following algorithm was created 

without any optimization as its execution is not performed in real-time during the 

visualization. Furthermore, it is applied only to the obtained tree structure of the cells 

(all the tree structures have a number of nodes lower than 100), which can be 

considered as small instances. Indeed, all the procedures described in this chapter, 

with some exceptions, are performed “offline”. 

This algorithm aims to reduce a tree to its minimal vertices, based on a set of vertices 

(locations) given in the input. Let's take as an example the tree structure of the Plant 

Cell, and let’s say that the occurrence locations between all nodes in a network are the 
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following: Cell membrane, Cytoplasm, Rough endoplasmic reticulum, Smooth endoplasmic 

reticulum, Nucleus, Nucleus lamina, and Nucleoplasm. Thus, this set of locations will be 

the set of vertices to give in input. 

 

 

Fig. 3.11: On the left side is represented the tree structure of the Plant cell design. Labels are useful to highlight the 

example of the occurred locations in a network. On the right side, there is the new tree resulting from the MTR 

algorithm, based on the location provided by the user (shown with the labels). "Endoplasmic reticulum" is highlighted 

in red as it wasn't provided by the user but added by the algorithm because it is the first ancestor node among the 

"Rough endoplasmic reticulum" and the "Smooth endoplasmic reticulum". 

 

The general idea of the algorithm is to remove unused vertices of the tree. However, 

the simple removal of nodes will break all the connections of the tree leading to a loss 

of the parent-node relationship of the nodes. As Fig. 3.11 shows, the resulting tree from 

the MTR algorithm inherits a reduced visual relation of the nesting organization of the 

organelles involved. Furthermore, highlighted in red there is the node labeled 

“Endoplasmic reticulum”, which was not given in the input but was added by the 

algorithm as it is the first common ancestor between two nodes given in the input. This 

Tree structure of the Plant cell MTR result of the Plant cell 
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algorithm design was made on purpose because it is important to provide a common 

ancestor between two input nodes to preserve as much as possible the visual relations 

among all nodes and their parent. For example, with the following nodes “Endoplasmic 

Reticulum” and “Nucleus” as the only occurrence locations of the network, this design 

allows to provide a network with the common ancestor “Cytoplasm” instead of having 

two parallel compound nodes linked to “universe”. 

The algorithm runs recursively with 4 phases, and in each iteration, the most 

convenient path is removed: 

1) in the first step, a set of nodes that cannot be removed are collected, called “saved 

nodes”. This set is composed of the root, all the hub nodes (nodes with several 

successors are considered as a hub), and the nodes' locations given in input; 

2) in the second step, the shortest path among all pair nodes is computed. At the 

end of the iteration one of these paths will be contracted and the two nodes, 

source and target, will be linked to each other; 

3) the collection of all shortest paths is sorted longest first, and each of these 

shortest paths is provided to a function that evaluates if it can be removed. 

Providing the longest first is useful because, for example, a removable shortest 

path composed of 6 edges prevents doing 6 further iterations; 

4) each shortest path is evaluated for its contraction: if it has nodes (except for 

source and target) in common with the saved nodes collected in step 1, the path 

cannot be reduced. If there is no intersection with the saved nodes, the path is 
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contracted, and the source and the target are linked to each other. This step 

evaluation is repeated until a path is contracted, after which the first step is 

restarted. 

 

It is important to note that in the first step, all the hub nodes are saved even if they are 

not included in the occurrence location of the network. Despite that, in different 

iterations, this recursive strategy can remove the hubs from the “saved” nodes. The 

solution to this problem is shown in Fig. 3.12. In that example, both the “Endoplasmic 

reticulum” and its successors are not the occurring locations of the network, 

nevertheless, for the first iteration, the “Endoplasmic reticulum” node is added to the 

saved nodes as it is a hub. During the iterations, all the paths that link the 

“Endoplasmic reticulum” to its successors are removable edges. Thus, contracting one 

of the two edges leads to not considering that node as a hub for the next iterations. 

This recursive strategy allows for the removal also of unnecessary hubs from the final 

result of the MTR algorithm. 
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Fig. 3.12: An example illustration of three iterations of the MTR algorithm that remove hubs from the resulting tree. 

In this example nodes that are not occurrence location of the network are highlighted in red. In the first iteration (left 

image), even if “Endoplasmic reticulum” is not an occurrence location of the network, it belongs to the saved nodes 

as hubs. The two edges that connect endoplasmic reticulum to its successors are labeled as removable edges. 

Thus, one of the two edge is contracted. In the second iteration (central image), after the contraction of the edge, 

the “Endoplasmic reticulum” is no more considered as an hub, thus the edges that link the “Cytoplasm” to “Smooth 

endoplasmic reticulum” can be contracted producing the final result (right image). 

 

All the steps described are performed until no more paths can be contracted. This 

strategy reduces a tree to a set of minimal vertices and consequently allows for the 

creation of an optimized visualization with a minimal number of cellular 

compartments. 

 

Available types of networks 

itGraph is a web tool developed to optimize technical aspects, even those considered 

secondary, which affect the responsiveness and use of the visualization. Furthermore, 



 63 

two of the goals of itGraph were to increase the biological accuracy of the networks 

and to provide a visualization with three different perspectives: 

• simple network: this is similar to the traditional network drawing, as nodes are 

simply encoded as points in the space but colored according to the 

compartment location. This type of visualization produces an appealing result 

and it is useful mostly for small-medium graphs; 

• network with compartments: the main goal of this drawing is to provide a 

visualization with the explicit representation of the hierarchical organization of 

cell compartments. This perspective can be useful as it shows the nodes of the 

pathway within the respective location (drawn as compound nodes) and can 

help analyze molecular processes that span different subcellular locations; 

• power graph: this perspective aims to reduce the visual complexity of the 

network. Specifically, this visualization is the result of the power graph analysis 

[66], which is a lossless conversion of biological networks into a compact and 

less redundant representation. This method can reduce network complexity by 

explicitly representing re-occurring graph motifs, such as Star, Clique, and 

Biclique, that are widely represented in a biological network. 

 

Before computing the layouts, network objects were built as follows: 

1) for each network in the SIF format obtained from graphite, a compression 

function was applied to reduce the drawing redundancy of the edges, as shown 
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in Fig. 3.13. Specifically, for each pair of nodes, all the edges between them were 

compacted to a single edge with a general direction derived from all the specific 

ones of the original edges, and all the information inherited from them was 

compacted as well. Here is described an example of this compacted process, 

where two nodes 𝑢 and 𝑣 are linked with the following edges (with the 

respective direction and annotation): 

Source Target Direction Biological Process 

𝑢 𝑣 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑃1 

𝑣 𝑢 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑃2 

𝑣 𝑢 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑃1 

 

the derived single edge is created as (𝑢, 𝑣) with the ‘undirected’ direction 

considered as the most general one, and all the original information about the 

biological process was saved as well, together with the specific direction in 

which each took place. 

The resulting single edge is defined as follows: 

Source Target Direction Biological Process 

𝑢 𝑣 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 • 𝑃𝑟𝑜𝑐𝑒𝑠𝑠:	𝐵𝑃1; 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: [𝑓𝑜𝑟𝑤𝑎𝑟𝑑,

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑] 

• 𝑃𝑟𝑜𝑐𝑒𝑠𝑠:	𝐵𝑃2; 	𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:	[𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑]	 
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As described by the example, all the information regarding the direction of each 

biological process was saved and adapted to be coherent with the new 

arrangement of the source and target order. 

This strategy allows to store networks into compact structures and removes the 

drawing redundancy while saving all the original information in one single 

edge (Fig. 3.13). 

 

Fig 3.13: A graphical example of the removal drawing redundancy of the edges. From the original 

interactions described in the SIF file, a single edge is derived with the most general direction, saving all 

the original information about the biological processes and the specific direction in which each takes place. 

 

2) as explained in the paragraph "Retrieving subcellular location for pathway 

nodes", most of the pathway nodes were annotated with a subcellular location. 

In this step, for each pathway, a single-entry location was chosen for each node. 

In the case of nodes mapped to multiple locations, a single compartment was 
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chosen using a graphic criterion. Specifically, among the possible locations for 

that node, the most frequent compartment among the other nodes was chosen; 

3) in this step, the first type of network, “simple network”, was built for each 

pathway. Each node object in Cytoscape.js was filled with different information: 

id, label (the value of the identifier of the node), node type (the type of the 

identifier, e.g. UniProt, Gene Name, EntrezID, …), location, provenance (source 

of location, e.g. SwissProt, NCBI, Trembl) and other technical information as 

width or height of the node. By default, all the nodes have the same size, thus 

the same width and height, except for compound nodes; 

4) based on the occurring node's location of the current pathway, it is necessary to 

choose the right tree cell structure. All cell designs obtained by SwissBioPics 

cover all 14 pathway species. However, three of these 14 species have only a 

single tree hierarchical structure that can cover node locations. Specifically, 

Arabidopsis thaliana, Escherichia coli, and Saccharomyces cerevisiae have only one 

possible cell hierarchy: Plant, Rod-shaped two membrane gram-negative, and 

Budding yeast, respectively. All other species have multiple hierarchical cell 

designs to which node locations can be linked. To create a comprehensive 

design for these species, all animal cell designs were merged providing a single 

hierarchical tree structure. So, in this step, based on the species all the pathway 

nodes locations were mapped to a single specific hierarchical cell design; 
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5) in this step the MTR algorithm was applied finding essential compartments to 

describe a minimal hierarchical cell organization of all the organelles involved 

in the pathway; 

6) merging the information of the simple network previously created, and the 

minimal tree of the cell compartments, a new object for the visualization of 

“Network with compartments” was built. In particular, for each compartment 

in the reduced tree, a compound node was added to the simple network. 

Furthermore, each original node of the simple network has been associated with 

the ‘parent’ information, which indicates the ID of the compound node to which 

it belongs. If the location of a node is present in the reduced tree, then the id of 

its compartment will be added to its parent parameter. Similarly, by evaluating 

the predecessor of each node in the reduced tree, each added compartment was 

associated with the parent parameter as well, meaning the id of the predecessor 

compartment. In this way, each compartment was added to the Cytoscape.js 

network object keeping the minimal hierarchical organization of the cell 

obtained with the MTR algorithm; 

7) starting from the simple network, the graph object of the applied power graph 

was obtained. The utility of this type of visualization lies in its potential to 

reduce the visual complexity of the graph drawing. As already mentioned, huge 

networks (with thousands of nodes and edges) are one of the bottlenecks of 

visualization, as they often result in “hairballs” from which it is difficult to 
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extract information. A large number of nodes and edges with a lot of edges 

crossing increases the complexity of the gathering of information process. There 

are also a lot of technical problems associated with huge networks, but a 

possible solution to display such networks is to reduce their complexity. The 

Power Graph is a lossless representation of networks, which reduces their 

complexity by explicit representing recurring network motifs Star (a single 

node connected to many other nodes), Clique (a complete graph, where all the 

nodes are connected to each other), and Biclique (also called a complete 

bipartite graph, where all nodes in one group interact with all nodes in another 

group) [66]. These motifs are widely represented in biological networks: for 

example, the Star can represent a hub protein or the Clique can describe a 

protein complex Fig. 3.14. 
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Fig. 3.14: Representation of the network motifs Star, Clique, and Biclique, with their respective conversions 

in the compressed structure of the power graph. On the right side, there are examples of some possible 

biological meanings of the three motifs. Image adapted from Royer et al., 2008. 

 

The resulting encoding is composed of two basic elements: a power node which 

is a set of the original nodes of the compressed network and power edges which 

are connections between power nodes.  

The power graph algorithm acts in two phases: first, there is the identification 

of potential power nodes with a hierarchical clustering based on neighborhood 

similarity. In the second phase, power edges are searched between nodes and 

the collected potential power nodes. As Fig. 3.15 shows, original edges are 

added if no power edge abstracts them. The result is a new encoding of the 
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original network with reduced complexity and obtained without any loss of 

information. 

 

Fig. 3.15: An illustration of the two phases of the power graph algorithm. Image adapted from Royer et al., 

2008. 

 

For each pathway network, I applied the power graph algorithm. The output of 

the method provides a text file describing all the original nodes given in the 

input, a set of power nodes, a text description of the nested organization of the 

identified power nodes to each other, and the identified power edges. By 

parsing the output, the Cytoscape.js object of the power graph was created. In 

particular, after adding all the nodes of the pathway, each power node was 

successively added to the object as a compound node. Through the textual 

description of their nested organization, the parent relation of each original 

node and each power node were inferred and added to them. 
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Computing networks layouts 

After creating the three Cytoscape.js objects, the node positions of each network were 

obtained by computing its layouts. One of the key aspects of itGraph optimization lies 

in the fact that all the networks provided by the tool have an already computed layout 

for each visualization type. Indeed, the tool is developed to minimize the user waiting 

time before being able to interact with the network. By pre-computing nodes' positions 

of each network visualization, the user has to wait only for the graphical rendering 

time of each node and edge.  

Although there are many layout algorithms, in graphics libraries there are not many 

implementations of those algorithms able to compute layouts for traditional graphs 

and networks with compounds. Two implementations able to adapt to this type of 

request are the fCoSE and Cola algorithms, both implemented in the Cytoscape.js 

graphics library. 

To pre-calculate the nodes' positions of the networks, I used the SyBLaRS repository 

(SYstems Biology LAyout & Rendering Service) (https://github.com/iVis-at-

Bilkent/syblars/), which is a web service to lay out graphs in different formats, like 

SBGNML, SBML, GraphML, and JSON, and/or produce corresponding images. This 

service can also run locally, and it was developed to support many Cytoscape.js layout 
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algorithms implementations, including fCoSE and Cola. It can provide the image of 

the resulting layout and/or the computed position for each node in a JSON file format.  

By giving in input all the created network objects to a local instance of SyBLaRS, I was 

able to compute nodes’ positions using sequentially fCoSE and Cola algorithms. In 

particular, fCoSE has a faster computation and also provides results with fewer edge 

crossing and node-edge overlap than Cola. However, the latter has better results in 

avoiding overlapping nodes. In the first computation, I used fCoSE to position nodes, 

obtaining what could be considered as a good baseline solution both for its 

computation time and the optimization of layout metrics. Successively, Cola has been 

used starting from the position found by fCoSE. With this strategy, Cola is able to solve 

and avoid overlapping nodes without drastically changing the layout, as those initial 

positions of the nodes were already close to the convergence threshold of the Cola 

algorithm and thus a good approximated solution. 

All the computed network layouts, including the relative biological information 

attached, were saved in the database of itGraph. 

 

Inheriting positions of the converted identifiers 

itGraph also integrates the conversion of identifiers for all the pathway nodes. The 

user can map the entire network or a single node into a new type of identifier. In this 

latter aspect, the user can also use one of the conversion result ids as the display label 
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of the node. The results of each conversion are pre-computed as already explained in 

the section "Conversion of identifiers". 

In a visualization of biological networks, this feature is strictly linked to a strategy to 

solve the position of the conversion results. As mentioned above, the mapping of a 

node can provide multiple results, but it is necessary to apply a strategy for the 

inheritance of the position and to avoid overlapping nodes. Specifically, for each 

conversion, there are two types of relationships: one-to-one or one-to-many. Typically, 

the first kind of relationship happens in conversion between identifiers that describe 

the same type of entity, for example, gene to gene. In this possibility, the inheriting of 

the node position has the easiest case as the new node inherits the exact coordinates of 

the original node. Fig. 3.16 shows the example of a conversion one-to-one from 

EntrezID to a Gene Name. The converted node inherits the same coordinates. 
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Fig. 3.16: Example procedure of the position inherited by the converted nodes. In the case of “one-to-one” 

conversion (top part of the image), the converted node inherited the same coordinate as the original one. For the 

“one-to-many” conversion type, all the resulting nodes are placed in the area of the coordinates. Specifically, the 

first node is placed at the same coordinates, while the remaining ones are placed on the left, bottom, right, and top 

of the original node, with an initial shift value. After the four directions, the shift value is increased, and the placement 

restarts from the left position. Specifically: A) multiple nodes result from the conversion. B) Each one is placed as 

described, and eventually, the compound node is resized automatically by the Cytoscape.js environment. C) A 

made-up function to remove overlapping elements is executed, and eventually, the compound node is resized 

automatically by the Cytoscape.js environment. 

 

In the case of a one-to-many relationship, a strategy is needed to avoid multiple 

overlapping nodes, because if all the converted nodes would have inherited the same 

coordinates, the visual display on the network will result in multiple circles and labels 

overlapping each other in the same spot. This situation is even worse considering that 

it may happen for different node conversions in the same network, leading to an 

unsuitable visualization where the user has to solve several overlapping elements 

manually. For this reason, I adopted a strategy that can place multiple nodes in the 

A) B) C) 
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same area of the original coordinates, without any overlap. Specifically, starting from 

the inherited coordinates, the algorithm places the first entity in the same positions, 

and the remaining nodes are placed shifted in four directions: top, bottom, left, and 

right. If there are other nodes to be placed, the algorithm increases the shift value and 

restarts the positioning in the four directions. In the end, it runs a function to remove 

completely overlapping nodes.  

The conversion may lead to producing many more nodes than those of the original 

network and it may happen with a conversion that leads to a different biological entity, 

such as EntrezID (gene) to RefSeq (Transcripts, Protein). In this case, the approach may 

not be enough to solve all the overlaps. To solve this problem, the user can reuse the 

button to instantly apply the same function to remove the remaining overlapping 

elements, instead of manually moving the nodes. 

Fig. 3.16 illustrates the described strategy with an example conversion resulting in six 

nodes. As shown, all the nodes are placed sequentially starting from the original 

coordinate, and then positioned with a shift to the left, bottom, right, and top of the 

original node. The shift is increased every four iterations. This example also shows the 

borders of the compound "Nucleus" still containing the converted nodes, as this 

approach works within the Cytoscape.js environment which can automatically resize 

compound nodes to a suitable size to contain all its nodes. Indeed, Fig. 3.16 shows the 

different steps: A) the original node which is placed in the top-left corner of the 

compound node; B) after positioning all the converted nodes, they are partially 
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overlapping each other and the compound node is automatically resized; C) using a 

made-up function is possible to remove overlaps, and again automatically resize the 

compound node. Specifically of this latter function, to remove the overlaps it was used 

the library of WebCola (https://github.com/tgdwyer/WebCola) [67], which provides a 

function to compute new coordinates, giving in input all the boundaries of the shape 

of each node. Moreover, the WebCola function can resolve any overlaps produced in 

cascade by the new coordinates obtained for a node. Indeed, for each node, this 

function provides new coordinates describing the non-overlapping display of the 

entire network without drastically changing the obtained layout. Thus, using the 

Cytoscape.js libraries, all the nodes are moved to their computed positions, and by 

moving them all the compound nodes are automatically resized, leading to a clearer 

visualization. 

To my knowledge, this is the first time that the removal of overlapping elements is 

integrated into a web tool. I believe that this feature can lead to a clearer visualization 

and helps the user study the network. 

 

Technical development of scripts and tool 

All the steps were mainly performed using made-up scripts in Python 3.9, except for 

the retrieved pathways from R package graphite which were obtained with an R script.  
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Some of the described steps also required some external tools. For example, the drawn 

networks were obtained using the JavaScript library Cytoscape.js [41]. Layouts were 

pre-computed using the SyBLaRS repository (SYstems Biology LAyout & Rendering 

Service, https://github.com/iVis-at-Bilkent/syblars/), and the following layout 

algorithms (implemented in Cytoscape.js), fCoSE and Cola, were used to compute 

networks layouts. In particular, to compute all the layouts of each network of each 

pathway, I created a Docker image with all the necessary environment and library to 

run the SyBLaRS server, NodeJS for the client request, and Python for some scripts to 

perform the call of the request and parse the output. Since there are three types of 

network objects for each pathway and considering that more than one hundred and 

seventy thousand pathways were collected from graphite, I made up a strategy to 

parallelize the layout computation of more than five hundred thousand networks. 

Starting from the docker image, a Singularity Image [68] has been created. Singularity 

is a container platform that allows to create and run containers that package up 

software in a way that is portable and reproducible, for example in large HPC clusters. 

Indeed, from the created singularity image, I run several containers on our HPC 

cluster, each one able to run a computation of 100 pathways (300 networks). This 

parallelization allows for minimizing the overall computation time of the layout, as 

the execution of each network was independent of the others.  

All Power Graph networks were obtained using the application published in the paper 

[66].  
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The server and the website of the tool were developed using Python 3.9 and React.js 

respectively. React.js is an efficient JavaScript library for building user interfaces. An 

SQLite database was created to contain all the information about the pathways, 

networks, subcellular location, nodes' positions, and converted identifiers. 

Information regarding the session of the user, for example, the type of network and 

the pathway details (species and databases), were stored in the PostgreSQL database 

as anonymous information. 

The graphic user interface is designed to be intuitive and user-friendly, with no 

bioinformatic expertise required. 
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4. Results and discussion 

 

itGraph, an optimized tool for pathway visualization 

Here I presented itGraph (at the time of writing is available at: 

https://sales.bio.unipd.it/itgraph/), a web tool to visualize more than 170 thousands 

biological pathways, distributed among 14 species, with three different network 

perspectives.  

The entire tool has been designed to be optimized for various utilities and targets, both 

for the visualization and technical aspects. Also, the structure of the database is 

designed to support fast requests and the tool is configured to be fast and user-friendly 

in all its aspects, with no bioinformatic expertise required. All the optimizations are 

essential to provide visualization and biological features that are still lacking in other 

software. 

The layout of each network is pre-computed to let the user wait only for the 

communication between the client-server and for the rendering time of the network 

objects. Networks are clearly displayed thanks to the combination of two network 

layout algorithms, fCoSE, and Cola, that can work with graphs with and without 

compound nodes. Using both sequentially, I obtained node positions that minimize 



 80 

different aesthetic metric criteria, preventing overlapping elements, and providing a 

clear visualization. Furthermore, given that this layout approach allows for fast 

computing of the nodes' positions, it is also used for real-time applications such as the 

button of "Reset Layout", suitable for new fast computing positions. 

 

Three biological visualization perspectives 

One of the biological aspects that I have integrated to enhance the utility of the 

visualization is the subcellular location, both as single information of a node (through 

the color) and as the explicit representation of the cellular compartment as a 

compound node. Besides that, the tool provides three network types for different 

perspectives and to highlight specific features of the biological visualization: "simple 

network", "network with compartments", and "power graph". Each network is built 

starting from a SIF file obtained from the R graphite package and then parsed to 

compress and remove the redundant edges object. Specifically, if there were different 

edges between two specific nodes, each describing a different biological process, those 

links were compressed into a single edge with the most general abstracting direction 

and saving all the relative biological information from the compressed edges. This step 

was necessary to initially reduce the complexity of the network and compress its 

information into a more useful graph description. Starting from this object, all the 

network types described above were created. The first one is a traditional drawing of 
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a graph, where nodes are simply encoded as points in the space, but each one is colored 

according to the respective location. The results obtained are usually aesthetically 

pleasing. Fig. 4.1 shows an example result of the "Hypertrophic cardiomyopathy" Kegg 

pathway for the mouse (Mus musculus). 

 

Fig. 4.1: An example result of the “simple network” type, displaying the Kegg pathway of Mus musculus 

“Hypertrophic cardiomyopathy”. 

 

The second type regards the explicit representation of subcellular organelles as 

compound nodes. Biological networks describe biological entities which most act their 

functions in a specific location inside the cell. This type of representation provides an 

insightful way to understand interactions that define molecular processes that span 
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different compartments. It provides an advantage over the output of other tools that 

do not simplify the representation of hierarchical cell compartments, thus leading to a 

high level of redundancy. This approach allows us to obtain more than 200 cellular 

compartments, including even the less common ones, distributed among the 14 species 

integrated by the tool. Each compartment is inserted so that it is a descendant of a 

given node both in terms of inclusion and display. Thanks to the MTR algorithm, the 

drawn graph is minimal, as it does not insert compound nodes of cellular 

compartments not referenced in the pathway, maintaining a minimal hierarchy of 

cellular organization obtained from the removed parent nodes. Fig. 4.2 shows the 

result of the same pathway network, with subcellular compartments drawn as 

compound nodes. 
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Fig. 4.2: “Hypertrophic cardiomyopathy” Kegg pathway of Mus musculus shown as "Network with compartments" 

type. 

 

Our strategy is a novel solution both for the biological visualization of the entire 

hierarchy of the cell and for the technical storage of that organization, and it can be 

applied to represent cells of other kingdoms of life. This perspective covers the 

organization of cellular organelles for all the species of itGraph, each one designed to 

be as close as possible to the real organization of that cell. Lastly, it is important to say 

that the other approaches of the previous tool and this solution highlight the need for 

an informatic tool or object that can describe the hierarchical organization of the cell, 

also which can be useful for purposes other than viewing networks. For example, the 
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tree structures that I made, together with the MTR algorithm, are a starting point for 

this bioinformatic aspect that can be even further optimized and enhanced with other 

detailed biological compartments or information. 

The third type of visualization is built through the power graph analysis. This method 

describes networks in a compact and less redundant representation, without any loss 

of information. Fig. 4.3 shows the resulting Power Graph of the "Hypertrophic 

cardiomyopathy" Kegg pathway of Mus musculus.  

 

Fig. 4.3: Resulting Power Graph of the "Hypertrophic cardiomyopathy" Kegg pathway of Mus musculus. 
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This compression reduces the visual complexity of the network by explicitly 

representing motifs that are widely represented in biological networks. Such motifs 

are Star, Clique, and Biclique and they can represent hub proteins, protein complexes, 

and domain interactions respectively. This new representation is obtained with the 

addition of two basic structures: power nodes and power edges. By adding new 

elements, the power graphs analysis provides a new encoding of the graph that can 

describe the same information abstracting many edges with the power edge. 

Moreover, power nodes and power edges can help users to quickly understand the 

interactors of a given node of interest. This drawing approach allows handling huge 

networks with a lot of edges and edge crossing, otherwise not representable as they 

result in hairballs, from which few insights can be gathered. A power graph can be 

useful to give an insightful drawing of the original graph, as it encodes high-density 

structure motifs that are widely represented in biological networks. Furthermore, it is 

important to say that the method is based only on the topological information of the 

networks, consequently, curated network topology provides more reliable results 

from a biological point of view. Even if the results are not valid for biological analysis, 

the reduction of the visual complexity remains useful for fast viewing of the 

interactions of specific nodes of interest. 
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Additional features 

Another major contribution offered by the tool is related to the conversion of the 

identifiers, which allows for mapping network nodes to different identifiers. To my 

knowledge, this feature has never been implemented in other network visualization 

tools and it can be used both to convert nodes of the entire network or manually single 

nodes. In this latter case, each result has a specific link to the page on the source 

database and the user has also the possibility to use one of the results as the label of 

the node. By doing this, the label will be colored red highlighting the fact that it was 

modified from its native type. 

As already explained, strictly linked to the conversion of identifiers there is a 

management of the inherited node's position when mapping results are obtained. In 

particular, this handling comes up when the user requires a conversion of the entire 

network. Depending on the type of conversion, one-to-one or one-to-many, a specific 

approach is used. In the simplest case, one-to-one type, the new node inherits the same 

coordinates as the original nodes. In the one-to-many conversion, it happens that one 

node, describing the relative gene entity, is converted to its different protein 

identifiers'. So it was necessary to create an approach able to spread all the resulting 

nodes starting from the single coordinates of the original node. In these cases, all the 

resulting nodes inherit the original coordinate with the addition of a shift value that 

places them in the same area but partially overlapping. In the final step, those overlaps 
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are solved with a specific function that can be even activated by the user with the 

"Remove Overlapping Nodes" button. In particular, this function is useful as it 

removes the node's overlap without recomputing further iterations of the layout and 

thus preventing the loss of the mental map by the user. 

The conversion of the identifiers of the entire network was designed as one of the first 

operations for the interested user, allowing him to start the analysis and the 

visualization of the network with another type of id, as each converted node inherits 

and elaborates the initial positions stored in the database and not the current ones on 

the network. 

The user can search for a pathway of interest both on the homepage and during a 

network visualization in the specific panel "List". By changing the species through the 

dropdown menu, the search is performed for the chosen species. The results are 

divided by source databases that provide pathways matching the inserted searched 

text. By clicking on the title of a pathway, the visualization of the "simple network" of 

that pathway is loaded, showing the nodes with their ‘native’ labels. 

Another integration of the tool is the possibility for the user to color nodes based on 

the imported data. For example, the user may be interested in viewing the nodes 

colored according to the log fold-change or p-values. This feature is present in the 

panel "Data”, and it is possible to choose a color palette from a list and match node 

labels with or without the case-sensitive param. The import is designed to be simple 

and straightforward, as it requires a tabular file (TSV) with just two columns and with 
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no header. The first column must contain the label of the nodes while the second one 

the numeric values on which compute the color shade of the palette. Each matched 

node will be colored according to its numeric value. This feature may help the user to 

analyze the biological pathway networks contextualized with the gene expression 

measurements. 

Furthermore, the tool provides the possibility to share the current session with 

colleagues. In particular, it allows the export of a snapshot of the positions and the 

colors of the nodes. Through this operation, the user can save the snapshot of the 

network and share the file with colleagues, which are to work locally on the same 

pathway visualization. Anyone who has the exported session file can import it at any 

time and work on the same snapshot on the network. 

Regarding the user experience, each network node contains specific information 

regarding the identifier type, location, color, and size. Similarly, edges contain 

information concerning all the interactions, such as the biological processes involved 

and their direction between the involved nodes. The visualization is obtained with the 

Cytoscape.js library, thus it is interactive. Nodes can be clicked and moved, and 

placing the mouse over nodes all its interactors are highlighted. For the network types 

"simple network" and "power graph" there is also a legend for the colors of occurring 

cellular compartments and placing the mouse over that label, will highlight all the 

nodes carrying that specific location. 
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All the tools are developed to be intuitive and fast as much as possible. The user 

graphic interface is designed to be user-friendly, with no bioinformatic expertise 

required. 

In the next paragraph, all the web interface is explained and described. 

 

Web interface 

I designed this tool to be simple, and intuitive with a user-friendly interface.  

Fig. 4.4 shows the homepage, divided into three sections: the first one contains the 

name of the tool; the second part is where the user can start to operate: there is a search 

bar, that allows searching for a pathway title, a dropdown menu list to choose the 

species, and finally, a section with the results. In that section, there are the database 

boxes with the respective pathway list. Note that, without performing any search 

operation, thus with an empty search text, a preview of twenty pathway list is shown 

for each box. Each box is scrollable and placing the mouse over a pathway will show 

the number of nodes and edges of that pathway. 

The third part regards the footer of the page, containing links to the Department of 

Biology and the University of Padova. At the center of this section, there is a brief 

citation text, linking to the publication and the laboratory of my group. 
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Fig. 4.4: Homepage of itGraph. 

 
Fig. 4.5 shows the 14 species currently integrated into the tool, and through the 

dropdown menu, the user can choose the species of interest among the following: 

Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans, Canis lupus familiaris, 

Drosophila melanogaster, Danio rerio, Escherichia coli, Gallus gallus, Homo sapiens, 

Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Sus scrofa, and Xenopus 

laevis. 
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Fig. 4.5: Homepage of itGraph with the available species. 

 

By clicking on the pathway title, the user is redirected to the relative page of the 

network visualization, which is divided into four parts: the title of the pathway, which 

also contains a button to go back to the home page, the network drawing, the toolbar, 

and the panel (Fig. 4.6). 
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Fig. 4.6: Viewer page of the network, divided into four parts: the title of the pathway, which also contains a button 

to go back to the home page, the network drawing, the toolbar, and the panel. 

 

The major part of the screen is dedicated to the interactive background of Cytoscape.js 

with the drawn network. Scrolling up and down with the mouse, activate the zoom-in 

and zoom-out respectively. These operations can also be performed with the pan-

zoom located in the top-left part of this section, which contains additional features to 

center and move the draw in the four directions (top, bottom, left, and right). All the 

network elements can be clicked to display the relative information in the panel "Info", 

and nodes can be also moved. Moreover, by placing the mouse over a node, all its first 

neighbors are highlighted as shown in Fig. 4.7. 
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Fig. 4.7: Viewer page of the network. The mouse over the ‘Actb’ node highlights all its neighbors. 

 

At the left-bottom of the section, there is an input text bar, which allows searching a 

node by its label. When the node's labels are matched, they are colored blue navy, 

otherwise, the input text will turn red marking that no results are obtained. At the right 

bottom of this section, there is a small icon that can be minimized/maximized to show 

the color legends of the subcellular locations. By placing the mouse over a listed 

location, all the nodes belonging to that location are highlighted (Fig. 4.8). 
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Fig. 4.8: The mouse over the label ‘Basement membrane’ highlights all the corresponding nodes. 

 

The toolbar shows 5 options panel: Info, List, Config, Data, and Fullscreen.  

The Info panel contains two boxes: the first one is "Element Info", which will render 

the information of a clicked element (node or edge), and the second one shows the 

pathway information ("Pathway Info"). When the user clicks on a node (Fig. 4.8), the 

upper box shows various information such as the label, the type of the identifier, the 

location, and the conversion feature. In particular, by clicking on the location text, a 

brief description of that subcellular location will appear with two external links to the 

UniProt and Ebi QuickGO sites of that location. The conversion feature allows the user 

to display all the mapping of the clicked node, to a specific new type of identifier. 

Moreover, the user can use one of the conversion results as a node label, and by doing 

that the new label will be colored red as a marker of a change. Using the original 

identifiers type of the network as the label will reset its color to black. 
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Similarly, when the user clicks on the edge (Fig. 4.9), that box renders various 

information, such as the labels and the locations of the source and the target, the 

direction of the edge, and the occurring biological process between these two nodes. 

The "Pathway Info" box shows the following details: the title, the source database, the 

native ID with an external link to its visualization on the source database site, the 

species of the pathway, the type of the native identifiers, and the type of the current 

network. 

 

Fig. 4.9: Panel “Info” showing information about the edge between “Lama2” and “Dag1” and the pathway. 

 

The list panel is similar to the central section of the home page (Fig. 4.10). It contains 

an input text bar to perform the same searching operation, a dropdown menu to 

choose the desired species, and the resulting database boxes with the respective 

pathway list. In this panel, users can open and close each box. They can even change 

the order of the boxes by simply dragging and dropping each box. Inserting a text in 
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the search bar will perform the search operation on the itGraph database and the 

matching resulting pathways (of that species) are displayed in the respective boxes. By 

changing the species through the dropdown menu, the search with the same text is 

performed. 

 

Fig. 4.10: Viewer page of the network displaying “Network with compartments” type. The “List” panel is shown. 

 

The config panel (Fig. 4.11) contains different features that allow the user to execute 

different operations on the network. The first one regards the conversion of identifiers 

for all the nodes of the network. Through the dropdown menù, the user can choose 

the new type of identifier and by clicking on the "Convert" button, it performs the 

requested mapping. It is important to note that this feature is designed eventually as 

one of the first procedures to set a suitable working network, as the algorithm to 

handle the inheriting nodes' position work on their initial pre-computed coordinates. 
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The central section of this panel allows the user to change the type of the displayed 

network, along with four buttons to handle the visualization of the network: 

• "Enhances Layout", allows performing further iterations of the layout 

algorithms optimizing the positions of the nodes; 

• "Reset Layout", will recompute, starting over, a new layout of the network. As 

described, this function is obtained by combining sequentially the fCoSE and 

the Cola algorithms; 

• "Remove Overlap": allows removing node overlaps. For the network with the 

explicit representation of subcellular compartments and power graph, this 

function can solve overlaps even between nodes and compound nodes that do 

not represent the right parent of those nodes.  

• Reset Zoom: this feature allows to reset the zoom and center the graph to the 

available network screen. 

In the last section, there is a link to the Power Graph publication, with an image that 

summarizes the encoding performed by the method. This illustration can help the user 

to recognize which motifs are encoded in the power nodes. 
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Fig. 4.11: Viewer page of the network displaying “Power Graph” type. The “Config” panel is shown. 

 

The data panel is divided into two major sections (Fig. 4.12): the first section regards 

the customization of nodes' color based on the uploaded file. For example, the user 

may be interested in viewing the nodes colored according to the computed log fold-

changes or p-values, by choosing a color palette and matching nodes label with or 

without the case-sensitive param. This feature requires a tabular file (TSV) with just 

two columns and with no header. The first column must contain the label of the nodes 

while the second one the numeric values on which computing the color shade of the 

palette. Each matched node will be colored according to its numeric value. These 

features may help the user to analyze the biological pathway networks contextualized 

with his gene expression measurements. The second section of this panel gives the 

possibility to export a session file, which can be useful to save a precise snapshot of 
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the colors and positions of the network. This file is also sharable, and at any time by 

importing it any user can load that saved snapshot of the network. 

Furthermore, at the bottom of this panel, there are buttons to save the image of the 

network or to download it as a text JSON file. 

 

Fig. 4.12: Viewer page of the network displaying “Network with compartments” type. The “Data” panel is shown. 

 

The last option in the toolbar allows the user to visualize the network in fullscreen, 

hiding the title and the panel (Fig. 4.13). 
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Fig. 4.13: Network drawing section in fullscreen. 

 

The interface of the tool was developed with React.js, which is an efficient JavaScript 

library for building user interfaces. The graphic user interface is designed to be 

intuitive and user-friendly, with no bioinformatic expertise required. In general, the 

entire tool, including the databases, was designed and developed to provide fast 

responses to user requests. 
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5. Conclusions 

 

Here I presented itGraph, a novel web tool for pathway visualization. The aim was to 

provide a user-friendly tool to explore pathways of interest. 
It was developed focusing on the following aspects and integrations, as I believed that 

specific focus and optimization allow for providing a more useful tool with resolute 

goals and characteristics for the users: 

• increasing biological accuracy by integrating explicit representation of cellular 

compartments; 

• reduction of the visual complexity of the network; 

• integration of biological annotation and features to enhance the visualization; 

• optimize the user experience by creating a user-friendly tool. 

 

itGraph limits the maximum size of visualized pathways. In particular, the sum of the 

number of nodes and edges must be equal to or lower than 2000, as huge graphs are 

still a bottleneck of the networks' visualization both for their layout and for the speed 

and responsiveness of their render. Even applying this constraint, the number of 
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collected and provided pathways is more than 170 thousand, distributed among 14 

species, resulting in more than 510 thousand networks with a pre-computed layout. 

The range of itGraph pathway list is far greater than those provided by Pathways 

Common, which (at the time of writing, at version 12) covers only the human species, 

providing 5,772 pathways. 

itGraph can be considered a comprehensive resource to visualize pathways networks 

with three different biological perspectives, each one with a precise focus. The first 

type is the simplest, which represents traditional draws of the network integrating 

subcellular location as node color. The aesthetic appeal of the resulting layout, in 

addition to the interactive features of the tool, makes this type of visualization useful 

mostly for small-medium graphs. However, bigger graphs with a curated topology are 

clearly represented in this type of visualization. In the second representation, the tool 

provides a non-trivial network representation including subcellular organelles as 

compound nodes. The third type regards the power graph analysis to describe the 

network into a compact and less redundant representation, reducing the visual 

complexity. The power graph, beyond giving an insightful encoding of biological 

motifs, can be helpful as it reduces the visual complexity of the network, and even if it 

does not provide a biological reliable compression, it still can help the user to quickly 

analyze specific interactions of nodes of interest. 

The conversion of identifiers is a useful feature for biological analysis, as it allows 

mapping nodes to different identifiers, and the results can be applied instantly to the 



 103 

network. Each conversion result comes with an external link to its page on the source 

database. This is useful as it provides intuitive cross-references between the 

annotations provided by different databases. To handle multiple conversions applied 

to the network, I solved the problem of how to place multiple nodes in the same area 

of the original node, without any overlaps. Derived from this strategy, I have 

integrated into itGraph a function to remove overlapping nodes, which can work even 

for compound graphs, such as the "network with compartments" and "power graph". 

In these cases, this function can solve overlaps even between nodes and compound 

nodes that do not represent the right parent of those nodes. 

The users can also manage to import their own data to color network nodes according 

to their values, contextualizing the pathway visualization to their experimental 

measures. At any time, the users can save the state of its visualization and by exporting 

the session, the nodes' colors and positions are saved into a shareable text file. By 

importing it, the file will resume the network at that state. 

To conclude, the present project describes a tool that aims to provide a suitable 

visualization of biological pathways with the subcellular location, in addition to 

biological features that can help users to analyze a pathway of interest. 
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6. Future perspectives 

 

itGraph is built to work only on stored pathways obtained from graphite. Although 

can be considered a closed system, it can be enhanced with other visualization features 

and analysis operations, without de-structuring the entire organization of the tool. 

Concerning the first aspect, it could be useful to expand and collapse compound 

nodes, therefore improving the visualization of compound graphs and at the same 

time reducing the necessary space to draw the network. 

Moreover, to improve the rendering speed of the elements in the web tool, network 

object rendering could be performed using GPU (Graphics Processing Unit). This 

characteristic is likely to increase the responsiveness of the network as well as reduce 

the waiting time for the user before the network becomes available. 

Another interesting characteristic that can be integrated is the annotation of the known 

protein complexes recognized and encoded by the power graph. Having such a 

description will surely increase the biological accuracy of this network representation 

and would help the user to decode those motifs in their biological context and 

functions. 
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Similarly, the tool structure could accommodate other types of computations. 

Cytoscape.js is one of the most important libraries for web network visualization and 

is constantly updated and provides many functions to perform advanced analysis. For 

example, it allows us to compute various network traversals. It also provides functions 

for shortest paths, or network centralities operations like betweenness, that measure 

which nodes are essential for the communication between different parts of the 

networks. Furthermore, in Cytoscape.js, several plugins are often created by the 

community, and they are quite interesting and useful for visualization, thus the 

adopted visualization can be anytime enhanced with other plugins and expansions. 

Another potential study to include is the enrichment analysis. In particular, it would 

be valid for the user to identify enriched entries over the entire list of pathways of a 

certain species. Successively, the tool could link to the network visualization of that 

pathway, integrating the user nodes. 

Currently, the tool does not provide the possibility to import user networks, as the tool 

is designed to run on pre-computed data. Nevertheless, the three different types of 

networks are useful for various analyses, and also the power graph application could 

be applied to a run-time as it typically computes the encoding in less than a second. 

Finally, future releases could provide pathways also with the integration of 

metabolites, useful to understand which molecules act as a bridge between two 

elements. 
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MyoData 

 

Summary 

Skeletal muscle is the most abundant tissue in mammals and is responsible not only 

for their movement but also for metabolic functions. The smallest complete contractile 

system of skeletal muscle influencing its contraction velocity and metabolism are 

myofibers: large, multinucleated cells that are enwrapped by connective tissue to form 

fasciculi. Myofiber types are plastic and respond to specific stimuli by changing their 

traits and thus altering the physiology of the entire muscle to which they belong. In 

recent years, high throughput studies on single myofibers revealed that myofiber 

functional differences may also be mediated by the interplay between microRNAs 

(miRNAs), long non-coding RNA (lncRNAs), and mRNAs defining co-regulatory 

mechanisms. Although databases focusing on gene regulation by transcription factors 

and miRNAs have already been published, the integration of miRNAs and lncRNA 

activities in the regulation of gene expression at single-cell resolution has been 
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underappreciated. Furthermore, non-coding and coding RNAs interact with each 

other to regulate the actual gene expression patterns: miRNAs regulate coding RNAs 

through post-transcriptional mechanisms, and lncRNAs, in turn, regulate the 

expression of coding RNAs but also miRNA function by sponging them. For this 

reason, to better understand the molecular mechanisms involved in the functional 

specification of the different myofiber types, we integrated gene expression data of 

coding and non-coding RNAs to produce comprehensive lncRNAs-miRNAs-mRNAs 

interaction networks. 

The present project describes MyoData, a database that collects gene expression data 

of coding and non-coding genes in single myofibers and uses them to produce 

interaction networks based on expression correlations. Indeed, it integrates 

miRNA:lncRNA:mRNA coregulatory networks for single myofiber and nucleus, also 

evaluating their impact on known pathways such as those present in the KEGG 

collection.  

The interactive Network Viewer (NV) provided by this tool was created as a branch of 

itGraph, developing a minimal version of the entire structure that allows the network 

visualization through the Cytoscape.js library, as a stand-alone component. NV is a 

JavaScript (JS) package that can be installed in any JS graphic interface. It provides five 

basic functions, which are also integrated into itGraph: Enhance Layout, Reset Layout, 

Reset Zoom, Save PNG, and download JSON. Furthermore, the user can choose the 

maximum time of the layout computation. 
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Beyond the integrated Network Viewer, the database provides interactive charts for 

gene expression data. These interactive plots allow users to visualize precise values on 

the expression bar or show/hide/highlight expression levels of genes in two-way 

comparisons. 

Despite the minimal structure, the development of the Network Viewer component 

was very important to understand and optimize technical aspects of itGraph. MyoData 

was designed as a user-friendly resource, requiring no bioinformatics expertise from 

the end user. 

The result of this work was described in the paper “MyoData: An expression 

knowledgebase at single cell/nucleus level for the discovery of coding-noncoding 

RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J. 2021 Jul 

26;19:4142-4155. doi: 10.1016/j.csbj.2021.07.020. PMID: 34527188; PMCID: 

PMC8342900.”. 
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MyoData: An expression knowledgebase at single cell/nucleus level for the 

discovery of coding-noncoding RNA functional interactions in skeletal muscle 

Davide Corso, Francesco Chemello, Enrico Alessio, Ilenia Urso,  Giulia Ferrarese, Martina 

Bazzega, Chiara Romualdi, Gerolamo Lanfranchi , Gabriele Sales, Stefano Cagnin. 

 

Highlights 

• Regulation of gene expression through non-coding RNAs at single myofiber 

and nucleus resolution. 

• Reinterpretation of KEGG pathways with microRNA and long non-coding 

RNA activities. 

• miR-149, -214, and let-7e alter mitochondrial shape. 

• The long non-coding RNA Pvt1 is a sponge for miR-27a. 

• miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3. 
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Abstract 

Non-coding RNAs represent the largest part of transcribed mammalian genomes and 

prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and 

microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the 

most abundant tissue in mammals. It is composed of different cell types with 

myofibers that represent the smallest complete contractile system. Considering that 

lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand 

their function it is imperative to evaluate their expression and action within single 

myofibers. In this database, we collected gene expression data for coding and non-

coding genes in single myofibers and used them to produce interaction networks 

based on expression correlations. Since biological pathways are more informative than 

networks based on gene expression correlation, to understand how altered genes 

participate in the studied phenotype, we integrated KEGG pathways with miRNAs 

and lncRNAs. The database also integrates single nucleus gene expression data on 

skeletal muscle in different patho-physiological conditions. We demonstrated that 

these networks can serve as a framework from which to dissect new miRNA and 

lncRNA functions to experimentally validate. Some interactions included in the 

database have been previously experimentally validated using high throughput 

methods. These can be the basis for further functional studies. Using database 
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information, we demonstrate the involvement of miR-149, -214 and let-7e in 

mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a 

via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The 

MyoData is available at https://myodata.bio.unipd.it. 

 

Graphical abstract 
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1. Introduction 

 

Skeletal muscle is one of the most abundant organs in mammals as it accounts for 40–

45% of the total body mass of healthy individuals. It is involved in body movement, 

metabolism, and protection of internal organs. Skeletal muscle is composed of 

different types of cells (neurons, blood cells, endothelial cells, etc.) [1] mixed with 

contractile myofibers, which are the tissue’s parenchymal cells and exert the 

previously mentioned functions. Myofibers are large, multinucleated cells that are 

enwrapped by connective tissue to form fasciculi [2]. Skeletal muscles from different 

parts of the body have distinct physiological characteristics, such as in their 

metabolism, contractility, elasticity, and resistance to fatigue. Distinct physiological 

tracts of muscles reflect specific biochemical traits of myofibers that compose each 

muscle. Myofiber types are plastic and respond to specific stimuli by changing their 

traits and thus altering the physiology of the entire muscle to which they belong. 

Myofibers are canonically distinguished according to the expression of the different 

isoforms of the myosin heavy chain (MyHC). In humans, the identified myofibers 

include type 1 myofibers, which are mitochondria-rich and rely on oxidative 

metabolism; type 2a fibers, with oxidative fast-twitch characteristics; and the glycolytic 
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type 2x fibers [3]. In addition to the aforementioned fibers, mice have type 2b 

myofibers that are glycolytic fast-twitch myofibers [4]. Due to the plasticity of skeletal 

muscle, myofibers with mixed MyHC isoforms are also present (type 2a2x or 2x2b 

myofibers). 

Aside from classifying myofibers by MyHC isoform content, a novel myofiber 

classification based on single-myofiber transcriptomic profiles was recently proposed 

that identifies specific transcriptional biomarkers for each myofiber type [5]. This 

method classifies myofibers as transcriptional slow (tS) and transcriptional 

intermediate (tI) with oxidative metabolism, and transcriptional fast (tF) with 

glycolytic metabolism. Transcriptional classification of myofibers appears to be more 

suitable to identify fibers in dynamic transition between different phenotypes. 

Several non-coding RNAs, such as microRNAs (miRNAs), are involved in the 

specification of numerous muscle functions comprising development [6], pathology 

[7], and myofiber metabolism [5]. Not only do miRNAs participate in the regulation of 

muscle functions, but also long non-coding RNAs (lncRNAs) [8–11]. For example, we 

demonstrated that lncRNAs differentially expressed in slow and fast contracting 

myofibers regulate myofiber metabolism [12]. 

Complex cellular composition, fiber diversity, and dynamic changes of fiber 

phenotype imply that expression patterns at the single-cell level should be used to 

really understand the molecular bases of skeletal muscle regulation. This level of 

investigation is particularly important when dealing with non-coding RNAs because 
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this class of regulative molecules shows a stronger cell type-specific expression than 

coding RNAs [13–17]. Furthermore, it should be noted that in any differentiated cell, 

non-coding and coding RNAs form an intricate cross-talking network of interactions 

to regulate the actual gene expression patterns. As a result of these interactions, 

miRNAs regulate coding RNAs through post-transcriptional mechanisms [18], and 

lncRNAs, in turn, regulate the expression of coding RNAs [19] but also miRNA 

function by sponging them [20]. 

In this work, to better understand the molecular mechanisms involved in the 

functional specification of the different myofiber types, we integrated gene expression 

data of coding and non-coding RNAs to produce comprehensive lncRNAs-miRNAs-

mRNAs interaction networks. Recently, different techniques have been developed to 

analyze gene expression at single-cell or single-nucleus level [21] permitting us to 

distinguish, at an unprecedented scale of analysis, not only how many differentially 

committed cells populate complex tissues but also how individual cells are affected 

and respond to different physio-pathological conditions [22,23]. One limitation of this 

type of analysis is that they allow the detection of only polyadenylated RNAs, 

excluding from the analysis non-polyadenylated mature miRNAs. To overcome this 

problem, we integrated available single nucleus RNA-seq (snRNA-seq) analyses on 

skeletal muscle tissue with our previously determined networks describing single 

myofibers gene interactions. Gene networks based on expression correlations are 

known to produce inferred interactions that result as false positives after experimental 
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validation. This approach is also less manageable and intuitive than the building of 

networks based on manually curated pathways. On the other hand, manually curated 

pathways do not consider the regulative action of miRNAs and lncRNAs. We 

introduced gene expression regulation based on non-coding RNAs in KEGG pathways 

to allow for a better description of specific changes in different myofiber types or in 

different studies based on snRNA-seq. We experimentally confirmed some 

interactions identified in our database showing the involvement of specific miRNAs 

in the regulation of the mitochondrial network. Moreover, we confirmed the activity 

of some lncRNAs as miRNA sponges and the role of some miRNAs in the regulation 

of genes that are known markers of myofiber specificity. 
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2. Material and Methods 

 

2.1. Gene expression data and processing 

Single myofiber gene expression data were collected from Gene Expression Omnibus 

(GEO) and Sequence Read Archive (SRA) databases using the following IDs: 

GSE98328, SRX2768351, SRX2768352, SRX2768353 [5], and GSE112716 [12]. For 

snRNA-seq, we used processed data retrieved from [24–26] as an example of muscle 

pathology, fiber typing, and ageing respectively. Microarray gene expression data 

were processed as follow. Agilent microarray mouse platform was re-annotated 

(Gencode annotation release vM22, evidence-based annotation of the mouse genome 

GRCm38, version M22 Ensembl 97) both for coding and non-coding RNAs. Microarray 

data were normalized using quantile normalization separately for protein-coding and 

long non-coding genes. The dataset includes 10 biological replicates for each myofiber 

type considered (1, 2A, 2A/2X, 2X, 2X/2B, and 2B). Myofibers were sub-grouped in 

transcriptional slow (type 1), transcriptional intermediate (type 2A, 2A/2X, and 2X), 

and transcriptional fast (type 2X/2B and 2B). RNA sequencing data for miRNA 

identification were mapped to the known mouse miRNA precursors from the miRBase 
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database (Ver. 19) using the mapper module of miRDeep with default settings. 

Quantize module was used to normalize read counts of mature miRNAs. 

 

2.2. Gene expression correlation 

We computed the level of expression correlation among different RNA categories 

using the Spearman index as follows: mRNA – lncRNA; mRNA – miRNA; lncRNA – 

miRNA. 

Correlations were obtained using the ‘cor’ function provided by the ‘stats’ library of 

the R language. All correlations were filtered based on specific thresholds: for the 

mRNA – lncRNA comparisons we required a correlation greater or equal to 0.45; for 

the miRNA – mRNA and miRNA – lncRNA comparisons, we selected correlations 

below −0.35. Furthermore, a permutational test was implemented to assess statistical 

significance: we computed an empirical p-value using 1,000 random permutations of 

the experimental measures. 

 

2.3. Interactions between miRNAs and mRNAs and miRNAs 

and lncRNAs 

We collected validated and predicted interactions from multiple sources. Specifically: 
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• miRNA – mRNA validated interactions were downloaded from TarBase v7.0 

[27,28] and the Encyclopedia of RNA Interactomes [29], [30] (ENCORI: HITS-

CLIP validation, data downloaded November 27, 2020) 

• miRNA – mRNA predicted interactions were extracted from miRDB (v6.0) 

[31,32], miRmap (version of 10-Jan-2013) [33,34], RNA22 [35] (full sets of 

prediction of Mus musculus based on Ensembl 96, miRBase 22 and RNA22v2), 

PITA [36] (both files with zero flank and with a flank of 3 and 15 bases upstream 

and downstream) 

• miRNA – lncRNA validated interactions were downloaded from DIANA-tool 

(LncBased v.2) [37] and ENCORI [29,30] (HITS-CLIP validation, data 

downloaded November 27, 2020). 

All interactions were further filtered based on correlation results, using the same 

thresholds described in the previous section. 

 

2.4. Functional circuits 

We used the collected interactions to identify minimal functional circuits, defined as 

groups of three interacting nodes: one mRNA, one lncRNA, and one miRNA. We 

found a total of 9,625,735 circuits, divided as follows: 9,502 including validated 

interactions and 9,616,233 containing predicted interactions. 
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2.5. Node-Centric network 

Each web page describing an mRNA, miRNA, or lncRNA displays a small network 

representing a selection of the functional circuits involving searched entry. As the 

complete network would be too large to be practically displayed, we designed a 

heuristic approach to identify the most relevant interactions to be included. 

We collect all edges belonging to functional circuits and for each, we compute two 

weights as follows: 

• A weight ‘𝑤’ defined as the p-value of the correlation between the two 

endpoints of that edge. 

• A weight ‘𝑤𝑝𝑔’ (named after the fact that it will be later used to compute the 

PageRank importance of each node) defined as follows: 

For edges obtained from circuits including predictions: 

𝑤𝑝𝑔	 = 	1 − 	𝑤 

For edges obtained from circuits including validated interactions: 

𝑤𝑝𝑔	 = 	1	 −	
𝑤

𝑠𝑓
	 

where 𝑠𝑓 is the ratio between the number of edges coming from circuits obtained from 

predicted and from validated interactions. 

The scale factor sf was devised to balance the relative importance of circuits including 

predicted and validated interactions. Indeed, the former are much more numerous 
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than the latter; if unchecked, this imbalance would risk obscuring almost completely 

the contribution of validated results in the final network. 

Overall, this master network derived from function circuits includes 17,886 nodes and 

1,243,206 edges. 

The most relevant network centered at each node is then computed using the following 

procedure: 

1) Starting from a node of interest 𝑛, we find the subgraph induced by its 

neighbors within a distance of two steps in the master network. 

2) We compute the PageRank of each node using the ‘𝑤𝑝𝑔’ weights, and we select 

the top 30 nodes according to this metric. We balance types of nodes in such a 

list: in other terms, we try to collect 10 mRNAs, 10 miRNAs, and 10 lncRNAs to 

provide an even representation of the different RNA species. 

3) We collect circuits involving the nodes identified in the previous step giving 

priority to validated interactions. This step is repeated until there are no more 

isolated nodes 

4) Step #3 does not guarantee, by itself, that the resulting network will consist of a 

single connected component. Since that is our final objective, we apply the 

following transformation until multiple components remain: 

a) We pick the smallest and the largest components. 

b) We identify the two nodes with the highest PageRank inside those. 
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c) We link the nodes together by adding the edges along the shortest path 

connecting them to the network obtained in step #1 

d) We add one extra node for each edge along the shortest path, in order to 

capture, if existing, the functional circuits having such edges as one of 

their sides. This step is guided by a global optimization procedure aimed 

at reducing the total number of nodes that have to be introduced. 

 

2.6. Custom network from user selection 

The Custom Network section gives the user the option to provide a list of up to 30 

nodes (mRNAs, miRNAs, or lncRNAs). Our system will then generate a network 

representing the most relevant circuits including the nodes in the user selection. The 

procedure we use to build this network is similar to the one developed for the single 

nodes, but we employed some specific optimizations to obtain a solution in real time: 

1) First of all, we keep in memory the master network, the PageRank score of all 

the nodes and the corresponding minimum spanning tree (MST). 

2) Instead of starting from the collection of circuits, we directly compute the 

induced subgraph defined by the user selection. 

3) If multiple connected components remain, we link them by extending the 

network to include the shortest path identified on the MST among the highest-

scoring PageRanked nodes. 
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Because of graphical constraints, we limit the total number of nodes in the resulting 

networks to 150. 

 

2.7. Single-nucleus network 

We integrated snRNA-seq data into our network, starting from nucleus-type specific 

clusters obtained from [24–26]. We collected all the genes belonging to each cluster 

identified in single myofibers: myonuclei (type 1, 2A, 2X, 2B, Nr4a3+, Enah+, Ampd3 

+ ), nuclei from satellite cells, neuromuscular junction, myotendinous junction, and 

myocytes. We built type-specific networks filtering functional circuits given their 

overlap with each group of genes and using the same procedure described in 

paragraph 2.5 (Node-Centric Network) to reorganize the network. 

Clusters from [24] contain two nucleus categories: wild type (WT) or delta exon 51 

(DEx51) of the gene encoding for dystrophin. In this case, we extended the filtering 

procedure to keep the circuits identified in the two subgroups separated. 

 

2.8. Pathway construction 

The topologies of all KEGG pathways were retrieved from the graphite package [38]. 

Each network was then extended to include predicted and validated interactions 

involving miRNAs or lncRNAs. 
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Starting from a set of nodes provided by the user (the query), we perform a series of 

hypergeometric tests to find the list of pathways significantly overlapping such query. 

To this end, we use the ‘hypergeom.sf’ implementation provided by the ‘scipy’ library 

[39] and we corrected results using the ‘fdrcorrection’ (Benjamini-Hochberg method) 

provided by the ‘statsmodel’ library [40]. 

Results of pathway enrichment analyses are displayed in a table. Each entry is linked 

to a detailed view of the corresponding pathway showing the following information: 

the nodes in common with the user query and the most relevant circuits involving 

protein-coding genes, lncRNAs, and miRNAs, that overlap the pathway. 

 

2.9. Software implementation 

All the information about expressions, correlations, and networks (nodes and 

topologies) is stored in a RocksDB database and accessed through the python-rocksdb 

library [41]. 

Network algorithms to compute shortest paths, minimum spanning trees, and 

PageRanks are implemented by the network library [42]. The web interface was built 

in JavaScript on top of React [43] and fontawesome icons [44]. We relied on React-

Apexcharts [45] for the display of expression plots and on React-Table [46] for the 

generation of dynamic tables. 
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Finally, we extended Cytoscape-JS [47] and the layout engine cytoscape-cola [48] to 

render networks. 

 

2.10. Primer design 

Primers to amplify the genomic region containing miRNA genes and primers for qRT-

PCR analyses were designed using the Primer3Plus algorithm 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi, Accessed on 18th 

of July 2021) and analyzed for dimers and secondary structure formation with 

OligoAnalyzer tool (Integrated DNA Technologies). Moreover, primers were tested 

using the in-silico PCR tool implemented in the UCSC Genome Browser. Primer 

sequences were reported in the Supplementary Table S1. 

 

2.11. miRNA cloning 

DNA regions coding for selected miRNAs were cloned in the pCMV-MiR vector 

(OriGene) including 200–300 bases upstream and downstream the pre-miRNA 

sequence. 

 

2.11.1. PCR for inserts preparation 

Genomic DNA extracted from C2C12 cells was used as template for the amplification 

of selected miRNA genes. PCR reaction mix was prepared as following: 𝐻 𝑂, 34.25 µl; 
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PCR Buffer 10X, 5 µl; 𝑀𝑔𝐶𝑙 [50 mM], 4 µl; dNTPs [10 mM], 3 µl; Primer Forward [10 

µM], 1 µl; Primer Reverse [10 µM], 1 µl; Taq DNA Polymerase [2 U/µl], 0.75 µl; DNA 

[50 ng/µl], 1 µl. PCR amplification was done in an Eppendorf thermocycler using the 

following program: 5 min 95° C; (30 sec 95° C; 30 sec 58-61° C; 70 sec 72° C for 45 

cycles); 10 min 72° C. Amplification was verified in 1.5% agarose gel and PCR products 

were purified with the GenEluteTM PCR Clean-Up Kit (Sigma-Aldrich) following the 

manufacturer protocol. 

 

2.11.2. Plasmid and insert digestion, ligation and bacteria 

transformation 

pCMV-MiR vector (Origene) and PCR products were digested with the same 

restriction enzymes in order to perform directional cloning (AscI and XhoI; New 

England BioLabs). Depending on the position of restriction enzymes in forward or 

reverse amplification primers, we were able to clone the amplicon to allow the 

expression of miRNA or miRNA antisense sequences (Supplementary Table S1). 

Restriction reactions were performed at 37° C for 90 min in the following reaction mix: 

𝐻 𝑂 to 50 µl; Cut Smart Buffer 10x, 1 µl; AscI [10 U/µl], 1 µl; XhoI [10 U/µl], 1 µl; 

Plasmid/PCR Insert, 1 µg. Digestion products were purified using the GenEluteTM 

PCR Clean-Up Kit (Sigma-Aldrich) following the manufacturer protocol. 
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50 ng of plasmid were used to ligate 1:4 M quantities of PCR product as follow: 𝐻 𝑂 to 

20 µl; T4 Ligation Buffer 10X, 2 µl; PCR amplicon 4 M with respect to the 50 ng of the 

vector; digested pCMV-MiR vector 50 ng; T4 DNA ligase [10 U/µl], 1 µl. The solution 

was incubated at 16° C overnight and then precipitated using sodium acetate and 

ethanol. Pellet was resuspended in 5 µl of 𝐻 𝑂 RNAse free. 

1 µl of ligation product and 40 µl of electro-competent bacteria (Escherichia coli 

bacteria DH10B) were mixed and the solution was subjected to an electrical field of 1.8 

kV in a Gene Pulser II electroporator (BioRad). Then, 360 µl of SOC medium were 

added and after that, the bacterial solution was incubated at 37 °C for 1 h. Bacteria 

were plated on solid LB medium (LB + Agar) with kanamycin [50 µg/ml] and grown 

at 37° C overnight. Colony PCRs were performed in order to test the presence of the 

insert in the plasmid using 3 µl of a liquid bacterial culture as template. The PCR 

products were visualized in 2% agarose gel. For each plasmid, 5 µl of one of the 

positive colonies were regrown in 5 ml of LB + kanamycin medium at 37° C overnight 

to prepare the purified plasmid. The plasmid was extracted and purified using a 

PureLink HiPure Plasmid Miniprep kit (Invitrogen). To test the accuracy of the pre-

miRNA sequences, all plasmids have been sequenced (Sanger Sequencing, Eurofins) 

and compared with the mouse reference genomic sequences derived by the UCSC 

Genome Browser. 
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2.12. C2C12 culture and cell transfection 

C2C12 myoblasts were cultured on Tissue Culture dishes (Thermo Fisher Scientific) in 

proliferation medium (Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal 

bovine serum, 1 U/ml Penicillin, 100 µg/ml Streptomycin) until reaching 80% of 

confluence. After cell detaching with Trypsin-ethylenediaminetetraacetic acid 

(Thermo Fisher Scientific) 40,000 or 60,000 cells were plated on each well of Multiwell 

Culture plates (Thermo Fisher Scientific) using medium without antibiotic. A sterile 

13 mm round coverslip was positioned on the bottom of the wells before cell seeding. 

Cells were co-transfected with mitoRFP and pCMV-MiR (with cloned a specific 

miRNA or miRNA antisense) using the Lipofectamine 2000 (Thermo Fisher Scientific) 

as the transfecting agent. Transfection solution was prepared by combining and 

incubating two solutions at room temperature for 30 min, which contained: (solution 

1) 3 µl of Lipofectamine 2000, 122 µl of Opti-MEM (Thermo Fisher Scientific); (solution 

2) 2 µl of mito-RFP plasmid [100 ng/ul], 2 µl of pCMV-MiR with cloned miRNA or 

antisense [100 ng/ul], 121 µl of Opti-MEM (Thermo Fisher Scientific). Cells with the 

transfection solution were grown for 24 h at 37 °C in 5% 𝐶𝑂  in a humidified incubator. 

After 24 h the medium was changed with a new medium containing G418 antibiotic 

[0.5 mg/ml] for 4 days. G418 antibiotic was used to positively select cells transfected 

with pCMV-MiR. 
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Pvt1 silencing was performed using antisense LNA GapmeRs (Exiqon) (Pvt1 1 

ACCGTAGTAGAGTTAA; Pvt1 3 AGTCAACGCTTCACAT). Cells transfected with 

Lipofectamine 2000 and Antisense LNA GapmeR Negative Controls (Exiqon) were 

used as negative controls. 

 

2.13. Mitochondrial network analysis 

Survived cells to G418 selection were used to evaluate mitochondrial network. In fact, 

mitoRFP plasmid encodes for a fluorescent tag localized in the mitochondria, which is 

characterized by an excitation wavelength of 555 nm and an emission wavelength of 

584 nm. After G418 selection, the culture medium was removed, and a first wash was 

carried out with 500 µl of phosphate-buffered saline (PBS). Cells were then fixed by 

adding 500 µl of 4% paraformaldehyde in PBS and incubated at room temperature for 

15 min. Then, three washes with PBS were performed, slides on the bottom of the wells 

were recovered, rinsed in distilled 𝐻 𝑂, and mounted on glass slide. Slides have been 

observed through a confocal microscope, oil immersion objectives (63x of 

magnification), and exciting samples with a wavelength of 555 nm. Z-stack images of 

samples have been acquired and used for subsequent analyses to determine the degree 

of mitochondrial fragmentation. 

The images were analyzed with the ImageJ software, using the MitoLoc plug-in [49]. 

To describe mitochondrial morphology, we used the fragmentation index (F.I.) 
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calculated as follows: 𝑉 = (𝑉 	/	𝑉 ) ∙ 100 and 𝐹. 𝐼. = (∑ 𝑉𝑠	 ≤ 20%)	/

	(∑ 𝑉𝑠) . 

 

2.14. Electron microscopy 

Transfected C2C12 cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate buffer pH 7.4 for 1 h at 4° C, post-fixed with 1% osmium tetroxide and 1% 

in 0.1 M sodium cacodylate buffer for 2 h at 4° C. Samples were washed three times 

with water and then dehydrated in a graded ethanol series and embedded in an epoxy 

resin (Sigma-Aldrich). Ultrathin sections (60–70 nm) were obtained with an Ultro-tome 

V (LKB) ultramicrotome, counterstained with uranyl acetate and lead citrate, and 

viewed with a Tecnai G2 (FEI) transmission electron microscope operating at 100 kV. 

Images were captured with a Veleta (Olympus Soft Imaging System) digital camera. 

 

2.15. Overexpression of miR-27a in mouse skeletal muscle 

miR-27a was overexpressed in mouse muscles as described in [5].  

 

2.16. RNA extraction and qRT-PCR analysis 

Trizol (Thermo Fisher Scientific) was used to extract total RNA from C2C12 cells or 

skeletal muscles according to the manufacturer protocol. Briefly, 500 µl of Trizol 

(Thermo Fisher Scientific) per well of Multiwell Culture plates or 1 ml per 30 mg of 
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muscle were used. 1 vol of chloroform to 5 volumes of Trizol were added and 

vigorously mixed; then the solution was kept on ice for 15 min and then centrifuged 

at 4 °C at 12,000 rpm for 20 min. The upper aqueous phase was transferred in a new 

Eppendorf tube and RNA was precipitated using 1:1 vol of isopropanol. RNA was 

resuspended in 𝐻 𝑂 RNAse free and tested for protein and phenol contaminations at 

the spectrophotometer. RNA integrity was tested with the 2100 Agilent Bioanalyzer. 

RNA with RIN > 7 was used for the retrotranscription according to the following 

protocol. 1–3 µg of total RNA were mixed with 1 µl of oligod(T) [50 µM], 0.5 ul of 

random primers [20 µM], 1 µl of dNTPs and 𝐻 𝑂 to bring the volume to 13 µl. The 

solution was heated to 65° C for 5 min and then killed on ice for 2 min. 4 µl of first-

strand buffer 10X, 2 µl of DTT [0.1 M] and 1 µl of Superscript II (Thermo Fisher 

Scientific) were added to the previous solution and all incubated at 42° C for 2 h. 

Superscript II was inactivated incubating the mix at 70° C for 15 min. 

EvaGreen molecule (Solis BioDyne) was used to perform qRT-PCR in the CFX 

thermocycler (BioRad) using the following PCR cycle: 15 min 95° C, (15 sec 95° C, 20 

sec 60° C, 45 sec 72° C with the fluorescence reading, and 40 cycles), 3 min 72° C. 

Reaction mix was 6.6 µl of 𝐻 𝑂, 2 µl of Master Mix 5X, 0.2 µl of primer forward [10 

µM], 0.2 µl of primer reverse [10 µM], 1 µl of cDNA [10 ng/µl]. 

miRNA analysis was performed using the TaqMan miRNA assays (Thermo Fisher 

Scientific). 10 ng of total RNA were used to retrotranscribe specific miRNAs and the 

U6 reference gene using the miRNA reverse transcription kit (Thermo Fisher 
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Scientific). Real-time PCR was performed on CFX thermocycler (BioRad) using the 

TaqMan Universal PCR Master Mix II, no UNG (Thermo Fisher Scientific) according 

to the manufacturer’s protocol. 

 

2.17. Luciferase assay 

Myoblasts were transfected with pCMV-MiR vector containing the sequence for miR-

27a or −214 and 100 pg/ml of pmirGLO Dual-Luciferase miRNA Target Expression 

Vector (Promega) containing the target sequence or a control sequence (primers for 

cloning are listed in Supplementary Table S1. Cloning was performed using SacI and 

XbaI restriction enzymes). Assays were performed using the Dual-Luciferase Reporter 

Assay (Promega), measuring firefly and renilla luciferase activities with Turner 

Designs TD-20/20 Luminometer (DLReady). miRNA transfections were 

independently replicated at least three times. 
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3. Theory and calculation 

 

MyoData includes experimental data on gene expression on single myofibers and 

nucleus to calculate networks centered on each mRNA, miRNA, or lncRNA whose 

expression was measured. These networks are computed considering the fact that i) 

miRNAs induce the degradation of their targets and ii) lncRNAs may function as 

miRNA sponges. Therefore, interactions recorded in different databases among 

miRNAs and lncRNAs, and miRNAs and mRNAs were further filtered using the 

correlation among their expression profiles. Specifically, we require that miRNAs and 

lncRNAs, and miRNAs and mRNAs show negatively correlated expression patterns. 

On the contrary, the expression correlation between mRNAs and lncRNAs should be 

positive. 

We have developed a heuristic approach that strikes a balance between the overall 

number of nodes included in each network, and their relevance, defined on the basis 

of the strength of their interactions and the topological distance to the user query. 

Moreover, the procedure results in a balanced selection over the three categories of 

nodes (mRNAs, miRNAs, and lncRNAs). 
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4. Results and discussion 

 

4.1. MyoData resource 

MyoData collects expression profiles of mRNAs, miRNAs, and lncRNAs in different 

myofibers and gives the user information to hypothesize their function in relationship 

with physio- and patho-logical differences. 

The database has three main search functions: 

1) The user can focus on a specific mRNA, miRNA, or lncRNA. 

2) Given a list of genes, the software can extract the network containing their 

interactions. As described in “Materials and Methods”, we limited to 30 the 

number of acceptable genes in order to compute the network in real-time and 

to display it graphically with an acceptable level of resolution. 

3) As an alternative, a gene list can be used to perform a pathway enrichment 

analysis. Here, we employ KEGG pathways which we extended to include 

miRNAs and lncRNAs. These genes are usually absent in pathways but may 

nonetheless influence gene expression. 

In all cases, MyoData accepts as an input gene symbols or ENSEMBL Gene identifiers 

(for mRNAs or lncRNAs) and miRNAs name (Fig. 1). 
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Fig. 1. Search functions in MyoData. (A) Users can search for a single mRNA, miRNA or lncRNA. Alternatively, (B) 

a list of up to 30 genes can be queried to generate a network or (C) a pathway enriched with miRNA and lncRNA 

functions. 

 

4.1.1. Search for an entry: Retrieve expression on single myofibers, 

regulatory network centered on it 

This page shows details about a single node: mRNA, miRNA, or lncRNA. It is 

subdivided into three sections: 

1) A bar plot representing the expression values over all the available single 

myofibers which were experimentally assayed. 

2) A network view, collecting the most relevant interactions. 

3) Correlation tables. 

In the first section, an interactive bar plot is shown, where each expression measure is 

colored according to the type of myofiber it belongs to. The website also offers the 

possibility to download all expression tables in three different formats: svg (vector 

graphics), png (raster graphics), and csv (textual) (Fig. 2A). 
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Fig. 2. Search for a single entry. (A) Bar plot showing expression values for each biological replicate using Myh4 

as an example of entry. Different gradations of blue indicate different myofiber types (I). By moving the mouse over 

each bar, the precise expression value appears (II). Expression tables can be downloaded (III). (B) Network 

visualization using Myh4 as an example of entry. Query is colored in black. Red rectangle indicates buttons to 

manage the network. The network can be filtered according to single nucleus RNA-seq data (IV) and can be 

downloaded as a table (V). (C) Correlation description using Myh4 as an example of entry. The red rectangle 

indicates boxes used for filtering. By clicking on the arrow next each source name, a histogram appears describing 

the expression of correlated genes for each sample (VI). The image can be downloaded (VII). It is possible to move 

to different pages by clicking the indicated button (VIII). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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The second section of the page displays a network collecting the interactions relevant 

to single myofiber types or single-nucleus cluster, which can be selected through a 

drop-down menu (Fig. 2B). 

The layout is calculated in real-time, and the user has the option to limit the total 

number of seconds dedicated to this task. Moreover, different buttons give the user 

the possibility to further improve the layout, to reset the viewport (by centering and 

rescaling the network to fit the available space), to save a PNG image, or to export a 

tsv, or JSON file describing the network that can be later loaded into the stand-alone 

Cytoscape software for further analyses [50]. 

Network visualizations are completely interactive. By clicking on any node, its details 

are shown in a separate panel. Information presented includes node descriptions, Gene 

Ontology annotations, and external references. Similarly, edges are annotated with 

their correlation index, the name of the database from which they were derived the 

type of interactions they represent. 

The third section of the page consists of a series of tables collecting the correlations 

computed between the selected entry and the other nodes in the database belonging 

to different RNA species. The user has the option to further filter the tables by 

searching for specific need IDs (miRBase IDs coming from miRBase v22 GRCm38). 

Partial matches are automatically handled: for instance, the substring “let-7a” would 

automatically match the full form “mmu-let-7a”. Each table row can be dynamically 
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expanded, by clicking on a button, to display graphically the expression profiles of the 

two correlated nodes (Fig. 2C). 

 

4.1.2. Regulatory network from multiple entries searching 

This page gives the user the ability to use a list of gene identifiers as a query. As 

described in the “Materials and Methods” section, we filter out those entries that are 

not present in our master network. The user has the option to display the list of such 

rejected IDs (Fig. 3A). 

 

Fig. 3. Interaction network from a list of genes. (A) Page structure for a multiple query. A list of up to 30 genes can 

be pasted in the box (I). After clicking on the “Compute Network” button the network will be calculated. Rejected 

genes can be visualized by clicking on the “Toggle rejected nodes” button (II). (B) Resulted network. The red 

rectangle indicates buttons to manage the network. It is possible to move to different pages by clicking the indicated 

button (III). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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After filtering, a network is computed and displayed. The graphical format is similar 

to that described in the previous section, with the only difference that the layout 

computation can be performed for longer periods of time (up to 30 s; Fig. 3B). 

 

4.1.3. Pathway enrichment analysis 

MyoData is implemented to perform a pathway enrichment analysis. This will result 

in the display of a table including the titles of significantly enriched pathways, their 

dimension, the size of the intersections with user-provided nodes, and finally the 

adjusted p-values for the statistical tests. 

By clicking on each pathway title, MyoData will switch to the visualization of the 

pathway topology, extended with the most important functional circuits (miRNA-

lncRNA-mRNA interactions; Fig. 4A and B). 
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Fig. 4. Pathways enrichment analysis. (A) Query page. In the box (I) the user can paste gene symbols and by 

clicking on the “Compute Network” button pathways the enrichment will be calculated. Rejected genes can be 

visualized by clicking on the “Toggle Rejected Nodes” button (II). (B) Results appear in a table that can be filtered 

according to the name of the pathway (Pathway title), number of genes identified in the pathway (genes in common), 

the dimension of the pathway (dim. Pathway), and statistics (pvalue and adjusted pvalue) (red rectangle). It is 

possible to move to different pages by clicking the indicated button (III). (C) Fatty acids metabolism pathway 

extended with non-coding RNAs involved in the regulation of the considered genes. Red circle indicates miRNAs 

discussed in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

As an example, in Fig. 4 we used single nucleus RNA-seq results from a previous study 

[25]. We used genes significantly upregulated in the cluster of nuclei specific for the 

slow contracting myofibers (type 1 or myosin heavy chain 7; Myh7). Most enriched 

pathways correctly describe heart functions and the Ppar pathway (Fig. 4B). It is 

known that slow myofibers have isoforms of contractile proteins similar to heart, and 

peroxisome proliferator-activated receptor δ (PPARδ) induces a switch to form 
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increased numbers of type 1 myofibers [51]. Prevalently, the metabolism of type 1 

myofibers is based on lipid oxidation [5] and the “Fatty acids metabolism” is one of 

the most enriched pathways (Supplementary Table S2). Interestingly in the pathway 

corresponding to “Fatty acid metabolism” among other miRNAs we identified miR-

27b that is considered a hub in the lipid metabolism [52], miR-674, which is associated 

with circulating lipids [53], and miR-143, which is already known to regulate lipid 

metabolism [54] (Fig. 4C). 

 

4.2. Data validations 

To demonstrate the potentiality and the validity of data extracted from the MyoData 

resource, we performed four case studies focused on important aspects of the skeletal 

muscle physiology: i) the modulation of mitochondrial shape by miRNAs that may 

impact muscle metabolism; ii) the action of lncRNAs as miRNA sponges; iii) the co-

participation of different non-coding RNAs in the regulation of myofiber functions; iv) 

the improvement of snRNA-seq information. 

 

4.2.1. Case study 1: Identification of miRNAs impacting on the 

mitochondrial shape 

MyoData outputs the expression of miRNAs in different myofiber types permitting 

users to hypothesize their function based on physiological differences of myofibers. 
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For example, by searching for miR-214, −142, −208b, −382, and let-7e in the MyoData, 

users will see that these miRNAs are not expressed in intermediate myofibers, the most 

oxidative ones [5]. The modulation of these miRNAs likely impacts the expression of 

proteins controlling metabolism in this type of muscle cells. As proof of principle, we 

tested this hypothesis by evaluating mitochondrial shape, which is a readily 

measurable phenotype and is important for skeletal muscle metabolism and functions 

[55–58]. In addition to the aforementioned miRNAs, we also included miR-301a, −29a, 

−143, −27a, −149, −378a, and let-7a because they target several genes coding for 

mitochondrial proteins (Supplementary Table S3). We tested the inhibition of miR-

378a using antisense sequences since miR-378a knock-down was previously shown to 

induce the accumulation of abnormal mitochondria and apoptosis [59]. We confirmed 

that its inhibition indeed induced mitochondrial fragmentation, which is known to be 

a marker of apoptosis [60] (Fig. 5A). We obtained comparable results after the 

inhibition of miR-29a and let-7a confirming previous observations obtained in the 

heart [61] and HT29 cells [62]. However, the upregulation of miR-143, −382, −301a, and 

−208b did not change the conformation of the mitochondrial network (Fig. 5A). miR-

208b is a miRNA highly expressed in slow myofibers and is involved in the 

specification of those types of myofibers via its blocking of Sox6 [63]. Slow oxidative 

myofibers are very rich in mitochondria, which correlates well with our experiments 

that show that the upregulation of miR-208b did not affect the mitochondrial network. 

miR-143 is particularly expressed in skeletal muscle and is associated with the 
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maintenance of the satellite cell population and with aging [64,65], similar to miR-382 

[66]. Both miR-301a and −143 are upregulated in mice fed with high-fat diet [67] which 

impacts mitochondrial function but, according to our validation experiments, their 

upregulation did not affect mitochondrial conformation. The upregulation of the other 

tested miRNAs caused mitochondrial fission (miR-27a, −142, and let-7e) or fusion 

(miR-149, −214) (Fig. 5A). In summary, we confirmed that 8 out of 12 tested miRNAs 

altered mitochondrial shape, thereby potentially impacting the regulation of muscle 

metabolism. These results can be important starting points for researchers interested 

in studying the metabolic impact of tested miRNAs. 

 

Fig. 5. miRNAs regulate mitochondrial shape. (A) Quantification of the fragmentation index, f index, of mitochondrial 

networks after miRNA transfections; n = at least 20 mitochondria for each condition (three independent transfections 

per each miRNA). Dark grey bars represent f index associated with miRNAs not affecting mitochondrial shape; 

white bars represent f index associated with miRNAs that induce mitochondrial fragmentation; light grey bars 

represent f index associated with miRNAs that induce mitochondria fusion. Among miRNAs inducing mitochondrial 

fragmentation those that were inhibited are indicated. Significance was calculated using t-test between control and 

each treated sample considering unequal variance between samples. * P ≤ 0.05, ** P ≤ 0.005, *** P ≤ 0.0005. 

Indicated statistical significance is referred to the control (Ctrl). Error bars represent SEM. (B) Electron microscopy 

of C2C12 cells transfected with pCMV-MiR vectors to upregulate specific miRNAs. Black arrows indicate elongated 

mitochondria in cells overexpressing miR-149 and −214; white arrows indicate fragmented mitochondria in cells 

overexpressing let-7e. 
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To confirm our previously described results, we also checked mitochondrial 

ultrastructure by electron microscopy. We previously showed the change in 

mitochondrial ultrastructure after the upregulation of miR-27a and −142 [5], therefore 

we tested let-7e, which according to the analysis of the f-index causes mitochondrial 

fission, and miR-149 and −214, which cause mitochondrial fusion, confirming in all 

cases previously described results (Fig. 5B). 

 

4.2.2. Case study 2: lncRNA Pvt1 as a miRNA sponge 

In the MyoData database, we integrated information on miRNA–mRNA and miRNA–

lncRNA interactions. This allows for the identification of miRNA–mRNA–lncRNA 

network triangles that describe the miRNA sponge activity of lncRNAs. We used this 

information to experimentally validate the activity of the lncRNA plasmacytoma 

variant 1 (Pvt1) as a sponge for miR-27a. We previously demonstrated that Pvt1 is 

involved in muscle atrophy by regulating cMYC [12]. This is possible thanks to the 

cytoplasmic localization of Pvt1 [12] where it acts as a sponge for miR-200 family, miR-

199a, −152, and −30a in different cancers [68–71]. 

The network associated with Pvt1 outputted from MyoData identifies Pvt1 as a central 

node regulating miR-101a, -22, -24, -26a, -27a, -322, and -532 (Fig. 6A). Network 

triangles Pvt1–miR-322–Rtcb, Pvt1–miR-532–Atl2, and Pvt1–miR-101–Ajm1 have been 

previously experimentally validated using the HITS-CLIP technique in C2C12 cells 
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(see edges in MyoData). To demonstrate if Pvt1 is able to act as a sponge for miR-22, 

−27a, -322, and -532, we evaluated the expression of the miRNA targets after Pvt1 

silencing in C2C12 myotubes. We expected that the reduction of Pvt1 allows the 

release of miRNAs from the lncRNA, thereby permitting them to downregulate their 

targets. We showed that all considered targets were downregulated with the exception 

of RAR Related Orphan Receptor B (Rorb) that was upregulated (Fig. 6B). These data 

support the sponge activity of Pvt1 and its interaction with miR-532 and –322, whose 

relationship was derived from RNA-CLIP experiments (Fig. 6A), but do not 

demonstrate the direct interaction between Pvt1 and miR-27 or –22. We excluded miR-

22 from experiments to validate Pvt1 interactions with miRNAs, since the miRNA 

target transcript Rorb was not downregulated in Pvt1-silenced cells. In the validation 

experiments carried out with luciferase assays, we were able to demonstrate the direct 

interaction of Pvt1 with miR-27a (Fig. 6C). To strengthen this result, we overexpressed 

miR-27a in C2C12 cells showing the downregulation of both Nnmt and Cdh8 genes. 

Nnmt and Cdh8 downregulation was instead attenuated in cells overexpressing the 

region of Pvt1 containing binding sites for miR-27a (Fig. 6D). 
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Fig. 6. Pvt1 network. (A) Network associated to Pvt1 (black triangle) and single myofiber expression. Green arrows 

indicate mRNAs tested for their expression after the downregulation of Pvt1. (B) Histograms represent expression 

values relative to the average expression of the gene among samples. Tbp was used as control gene. At least four 

independent experiments were performed. Error bars indicate SEM. (C) Luciferase assays were performed to 

demonstrate the direct interaction between Pvt1 and miR-27a. Part of Pvt1 sequence containing the miRNA putative 

interaction site (or not containing; Pvt1 Ctrl) was cloned into pmirGLO vector. Firefly luciferase (reporter gene) and 

Renilla luciferase (control reporter for normalization) activities were measured after the transfection in C2C12 cells 

together with pCMV-MiR coding for miR-27a or empty pCMV-MiR (Ctrl). Data are expressed as the mean of at least 

five independent transfections. Error bars indicate SEM. (D) Histograms represent expression values relative to the 

average expression of the gene among samples. Tbp was used as control gene. Co-transfecting cells with pCMV-

MiR vector coding for miR-27a and pmirGLO coding for the sequence part of Pvt1 with binding sites for miR-27a, 

Cdh8 and Nnmt expression were not affected. At least four biological replicates were performed. Error bars indicate 

SEM. For this entire figure, significance was calculated using t-test between control and each treated sample 

considering unequal variance between samples. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.0005. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2.3. Case study 3: The identification of miRNAs involved in myofiber 

type specification 

MyoData allows for parallel searching for multiple entries. This may be useful, for 

example, to search if specific miRNAs influence the activity of genes coding for 

proteins that participate in the same cellular process or if they modulate the activity of 

co-regulated genes. We decided to use the database to evaluate if miR-206, −208b, and 

miR-214 can regulate genes involved in myofiber type specification. It was previously 

shown that loss of miR-214 expression in Zebrafish leads to a reduction of slow 

myofibers through the regulation of Su(fu) gene that participates in Hedgehog 

signaling. Su(fu) inhibition induces an increase in the number of slow myofibers [72]. 

miR-206 is predicted to regulate the expression of transcriptional repressors of the 

slow myosin heavy chain, such as Sox6, Purβ, and Sp3 [73]. 

By querying MyoData for miR-206, −208b, −214, Sox6, and Slc16a3 we retrieved the 

network described in Fig. 7A. The three miRNAs were selected because they are 

exclusively expressed in slow contracting myofibers [5] and probably impact specific 

functions in these myofibers. Sox6 was previously reported as an important 

transcription factor involved in the regulation of slow myosin heavy chain gene [74], 

while Slc16a3 (MCT3-M/MCT4), which codifies for a lactate transporter, may be 

involved in the metabolism of specific myofibers. In fact, it is much more abundantly 

expressed in fast-twitch oxidative and fast-twitch glycolytic muscles than in slow-
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twitch oxidative muscles [75]. To validate this network and the suggested interactions 

between miRNAs and targets, we upregulated the expression of miR-208b or −214 in 

the C2C12 muscle cell line. In cells overexpressing miR-208b we found a clear 

downregulation of Sox6 (Fig. 7B and C), confirming previous evidence of this specific 

interaction [76]. Moreover, in C2C12 cells overexpressing miR-214, both Sox6 and 

Slc16a3 genes were downregulated (Fig. 7D and E). We confirmed the interaction 

between miR-214 and Sox6 and miR-214 and Slc16a3 via the luciferase assay (Fig. 7F) 

supporting the ability of miR-214 to regulate both Sox6 and Slc16a3 and its 

involvement in the modulation of slow myofiber functions. 

 

Fig. 7. Regulation of genes that present a myofiber type dependent expression. (A) Network resulted from multiple 

searching of mmu-miR-206-3p, −208b-3p, −214-3p, Sox6, and Slc16a3. Black nodes indicate user nodes. (B) 

Histograms represent expression values relative to the average expression of the gene among samples. U6 was 

used as control gene. Four biological replicates were performed. Error bars indicate SEM. (C) Histograms represent 



 158 

expression values relative to the average expression of the gene among samples. Txn1 was used as control gene. 

Four biological replicates were performed. Error bars indicate SEM. (D) Histograms represent expression values 

relative to the average expression of the gene among samples. U6 was used as control gene. Four biological 

replicates were performed. Error bars indicate SEM. (E) Histograms represent expression values relative to the 

average expression of the gene among samples. Txn1 was used as control gene. Four biological replicates were 

performed. Error bars indicate SEM. (F) Luciferase assays were performed to demonstrate the direct interaction 

between miR-214 and Sox6 and miR-214 and Slc16a3. Part of Sox6 and Slc16a3 sequences containing the miRNA 

putative interaction sites (or not containing; Sox6 Ctrl and Slc16a3 Ctrl) were cloned in pmirGLO vector. Firefly 

luciferase (reporter gene) and Renilla luciferase (control reporter for normalization) activities were measured after 

the transfection in C2C12 cells together with pCMV-MiR coding for miR-214 or empty pCMV-MiR (Ctrl). Data are 

expressed as the mean of at least four independent transfections. Error bars indicate SEM. For this entire figure, 

significance was calculated using t-test between control and treated samples considering unequal variance between 

samples. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.0005. 

 

4.2.4. Case study 4: Integration of single nucleus and single myofiber 

data: New perspectives to understand Spinal and bulbar muscular 

atrophy 

Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motor neurons 

and sensory neurons, accompanied by atrophy of muscle fibers. This causes a 

glycolytic-to-oxidative fiber-type switch in fast-contracting skeletal muscles without a 

reduction of muscle mass in slow-contracting muscles (oxidative myofibers). Fast 

contracting muscles are also associated with a reduction of tetanic force while slow 

contracting muscles are not affected [77]. These observations suggest that oxidative 

myofibers are protected from the atrophy induced in SBMA patients. To better 

understand if non-coding RNAs participate in this protective mechanism we 

interrogated the MyoData database using the list of gene markers for slow nuclei 

described in [25]. The computed network is represented in Fig. 8A. Interestingly, a 

putative interaction of miR-27a with E2-ubiquitin ligase Ube2q1 is described. The miR-
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27a and Ube2q1 couple is an interesting target because we previously showed that the 

upregulation of miR-27a induces the increase of oxidative myofibers [5] that may have 

a protective role in SBMA. miR-27a is expressed only in oxidative myofibers and silent 

in glycolytic myofibers [5], which are the most affected in muscles of SBMA patients. 

First, we asked if miR-27a can modulate marker genes for fast myofibers identified by 

snRNA-seq [25]. To respond to this question, we evaluated the network generated by 

gene markers of fast myofibers. Interestingly, miR-27a was predicted to regulate 55% 

(11 out of 20) of fast myonuclei markers (Fig. 8 B and Supplemental Table S4). In 

muscles overexpressing miR-27a we confirmed by qRT-PCR that ~ 82% (9 of 11 tested 

genes) of genes targeted by miR-27a were downregulated (Fig. 8C). This confirms the 

ability of miR-27a to inhibit the fast myofiber phenotype. We then experimentally 

validated the suggested interaction of miR-27a with Ube2q1 using the luciferase assay 

(Fig. 8D). Furthermore, we showed that following the upregulation of miR-27a in 

muscle cells, the expression of Ube2q1 significantly decreased (Fig. 8E). In summary, 

our experimental data support the ability of miR-27a to modulate genes specifically 

expressed in fast myofibers and to buffer the expression of Ube2q1 in oxidative 

myofibers but not in glycolytic myofibers. This evidence may be particularly 

important to modulate atrophic processes in SBMA muscle. Alternatively, the 

upregulation of Ube2q1 in SBMA muscles [78] may be associated with the inability of 

myoblasts to produce new myotubes in degenerating SBMA muscles. In fact, the 

upregulation of Ube2q1 is associated with enhanced cell proliferation in hepatocellular 
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carcinoma [79]. To produce myotubes, myoblasts have to withdraw from the cell cycle 

to fuse with each other. If withdrawal is prevented, myotubes cannot form. Finally, it 

is interesting to notice that Rocchi et al [77] described that a high-fat diet (HFD) 

ameliorates the phenotype of SBMA model mice. We showed that HFD induces the 

expression of miR-27a more in glycolytic than in oxidative muscles [5]. These two lines 

of evidence support the importance of miR-27a in SBMA and show how the database 

can be used to evaluate the impact of non-coding RNAs in the regulation of marker 

genes for specific myofibers identified by snRNA-seq experiments. 

 

Fig. 8. Integration of single nucleus and single myofiber data. (A) Network resulted from the interrogation of MyoData 

with markers from a previous study [25] for slow myofibers. Green arrow indicates Ube2q1 gene. (B) Network 

resulted from the interrogation of MyoData with markers from a previous study [25] for fast myofibers. Pink arrows 

indicate predicted targets for miR-27a. The legend is for both part A and B of the figure. Black nodes in the networks 

indicate searched entries from the user. (C) Gene expression of predicted targets of miR-27a shown in part B of 

this figure. Histograms represent expression values relative to the average expression of the gene among samples. 

Txn1 was used as control gene. Four biological replicates were performed. Error bars indicate SEM. (D) Luciferase 

assays were performed to demonstrate the direct interaction between miR-27a and Ube2q1. Part of Ube2q1 
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sequence containing the miRNA putative interaction sites (or not containing; Ube2q1 Ctrl) were cloned in pmirGLO 

vector. Firefly luciferase (reporter gene) and Renilla luciferase (control reporter for normalization) activities were 

measured after the transfection in C2C12 cells together with pCMV-MiR coding for miR-27a or empty pCMV-MiR 

(Ctrl). Data are expressed as the mean of four independent transfections. Error bars indicate SEM. (E) Relative 

expression of Ube2q1. Histograms represent expression values relative to the average expression of the gene 

among samples. Txn1 was used as control gene. Four biological replicates were performed. Error bars indicate 

SEM. For this entire figure, significance was calculated using t-test between control and treated samples 

considering unequal variance between samples. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.0005. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

 

Gene regulation is a complex process where regulatory elements and their targets 

participate to form highly complex interactions thus affecting biological processes. 

Transcription factors (TFs) are the most well-known molecules involved in this process 

and several tools and databases have been published to evaluate TFs involved in the 

regulation of commonly altered genes [80–85]. Some databases have been already 

developed to explore the gene expression of skeletal muscle [86–89] and skeletal 

muscle after exercise [90,91] without considering the importance of non-coding RNAs 

in the post-transcriptional regulation of gene expression. Different databases integrate 

TFs and miRNAs to describe feed-forward regulatory circuits [92–94]. Improvements 

in RNA sequencing technologies have allowed for the identification of single cell and 

single nucleus gene expression and the consequent development of several web 

interfaces to query mRNA and lncRNA gene expression [95–100]. However, the 

integration of miRNA–lncRNA–mRNA networks at the single cell level has not been 

demonstrated. Such integration represents an important improvement in the 

comprehension of gene regulation by allowing for the identification of cell type-
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specific expression (higher than coding genes) and the ability of lncRNAs to sponge 

miRNAs. 

We took advantage of our genome-wide experiments on single myofibers to 

implement a database to describe hypothetical and experimentally-validated 

interactions among miRNAs, lncRNAs, and coding RNAs to dissect gene regulation 

in different myofiber types. The database can be used to evaluate the impact of a single 

gene or group of genes (both coding and non-coding genes) on the regulation of 

related genes (co-expressed or coding for proteins involved in a specific pathway). 

MyoData integrates miRNAs and lncRNAs in KEGG pathways thereby incorporating 

the information of the regulation of biological processes. Mature myofibers are derived 

from the fusion of multiple satellite cells and are therefore a syncytium containing 

hundreds of nuclei that can participate differently to the cumulative gene expression 

[25]. We therefore included the possibility of visualizing how the networks calculated 

in the database change considering clusters of nuclei based on their expression 

retrieved from snRNA-seq experiments. We integrated these clusters with our 

information on miRNA expression in single myofibers because it is not feasible with 

current techniques to recover mature miRNA expression from snRNA-seq. We 

showed that this approach may be useful to identify miRNAs that regulate coding 

genes involved in muscle atrophy. By evaluating specific miRNAs and lncRNAs, we 

experimentally demonstrated that the database can guide the discovery of novel 

functions of non-coding RNAs in skeletal muscle. Moreover, we showed that MyoData 
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is a valuable resource to integrate single myofiber and single nucleus gene expression 

information to investigate at a deeper level the molecular bases and regulations of 

physiology and pathology of such an abundant and complex organ as skeletal muscle. 
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SpatialDE 

 

1. Introduction and rationale 

In biology, the knowledge of the spatial context allows models to describe a biological 

network in which every element is influenced by its surrounding environment. 

Indeed, the gene expression of each cell within a tissue microenvironment influences 

and is influenced by the cells around them [1]. In the microenvironment, positional 

information and gene expression are essential to understanding tissue functionality [2] 

and elucidating the context-dependent transcriptional regulation during development 

[3]. 

Recently, the development of high-throughput single-cell sequencing enabled the 

measurements of gene expression in complex biological systems [4] and provided 

unprecedented insights into the cellular diversity of tissues across diverse organisms 

[5]. It has allowed the building of comprehensive atlases useful to describe different 

cell expression profiles, including marker genes [6,7] characterizing rare cell types that 
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play a role in genetic diseases [8,9], and providing information for previously 

uncharacterized cell types. 

Although this sequencing technology has revolutionized our understanding of gene 

expression at the single-cell level and became a standard approach to characterizing 

cell identity and state [10], it has the limitation of losing the positional information of 

the cells due to the including of a step of cell dissociation [11]. Recent advancements 

such as Spatial Resolved Transcriptomics (SRT) overcome this limitation by preserving 

spatial information. SRT can measure gene expression (from hundreds to thousands 

of genes) at different resolutions per spot, from several cells to less than one cell, along 

with spatial coordinates of the measurements [12]. It has the potential to significantly 

advance the biomedical research field [13] and to increase the knowledge of complex 

multicellular biological systems. 

In this field, different technologies have been built with the common aim to combine 

gene expression data with spatial information [1]. 

SRT is divided into two categories: 

• image-base methods, including in situ hybridization (ISH) and in situ 

sequencing (ISS), which require prior knowledge of genes of interest; 

• capture-based methods, including laser capture microdissection (LCM) that are 

spatially barcoded on slides, or beads, able to capture the whole transcriptome 

from tissue sections. 
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Among image-capture technologies, the ISH visualizes RNA molecules directly in 

their original environment by hybridizing a fluorescently labeled complementary to 

the RNA target of interest. This strategy allows the detection of gene expression in 

fixed tissues [1]. Further development of this approach, named single-molecule RNA 

fluorescence in situ hybridization (smFISH), gives a higher and more robust signal 

enabling quantitative measurements of transcripts. smFISH provides high sensitivity 

but it has the limitation of targeting a few genes at the time. 

The ISS technology performs RNA sequencing directly on the RNA content of the cell 

within the tissue. mRNA molecules are reverse transcribed and amplified by rolling 

circle amplification (RCA). The micrometer- or nanometer-sized RCA products are 

later sequenced and the barcodes, that are joined to the biological sequence, are 

decoded [1,13]. 

Regarding the capture-based methods, they are divided into three sub-categories [13]: 

directly cutting out a region of interest from the tissue by laser capture microdissection 

(LCM); using custom slides, or bead arrays to capture mRNAs by oligonucleotide-

based spatial barcodes followed by NGS. Regarding the first category, in 2017 Geo-Seq 

[14] proposed an extended version in which LCM is combined with single-cell 

sequencing to profile the transcriptome of that region. 

The Spatial Transcriptomics (ST) [2] technology analyzes the transcriptome of a 

particular tissue section by placing it over glass slides which are pre-arranged with a 

set of barcoded RT primers, specifying specific coordinates of the array. The tissue is 
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permeabilized and mRNAs hybridize to the barcoded RT primers. Reverse 

transcription is performed in situ, and the cDNA-mRNA complexes are extracted for 

library preparation and sequencing. Other technologies perform a procedure similar 

to the ST method but using beads in solution and then dispense them on a glass surface 

[1]. For example, Slide-seq [15] is a technology that uses 10µm-sized beads, and beads' 

positions are decoded by sequencing-by-ligation (SBL). 

In general, in the previous years, different technological platforms have been 

developed, for example, Spatial Transcriptomics [2], 10x Genomics Visium (10x 

Genomics), Slide-seqV2 [16], seqFISH [17,18], each one with different features 

regarding the number of transcripts detected, cellular resolution, and size of the region 

captured [13,19]. 

One of the most common analyses that can be performed using this type of data is the 

identification of the spatially variable genes (SVGs), which are genes that have a spatial 

pattern of expression variation. SVGs can represent potential markers of biological 

processes and they can be used for downstream analyses [12]. This type of analysis is 

an example of how spatial information can be useful in addition to gene expression 

measures. Indeed, one of the frequent analyses performed on scRNA-seq data is the 

computation of highly variable genes (HVG), which is however performed ignoring 

the spatial information. 

In recent years different approaches have been developed to compute spatially 

variable genes, and one of the first methods is SpatialDE [20], which is also able to 
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provide another type of analysis called 'automatic expression histology' able to group 

SVGs with similar spatial expression patterns. SpatialDE is a Python method able to 

detect SVGs using a class of models initially developed in the context of geostatistics. 

My project aimed to create an R package to wrap the Python functions and methods 

of SpatialDE, allowing the use of such a statistical analysis in the R environment. This 

wrapper was created in response to one of the BiocSpatialChallenges 

(https://helenalc.github.io/BiocSpatialChallenges), proposed during the conference 

EuroBioc 2020. The resulting package has been published on the Bioconductor 

platform. 
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2. Materials and Methods 

 

This R wrapper was developed following the Bioconductor package development 

guidelines (https://contributions.bioconductor.org/) which promote high-quality, 

well-documented, and interoperable software.  

The aim of the project was to create a wrapper of the original Python SpatialDE 

methods, thus I didn’t re-write all the Python code in the corresponding R 

environment. Instead, I have created a Python environment that can be called from R, 

able to perform the Python functions of SpatialDE. To build such a wrapper, I used 

two important packages: 

• Basilisk: 

(https://www.bioconductor.org/packages/release/bioc/html/basilisk.html); 

• Reticulate (https://github.com/rstudio/reticulate/). 

 

Basilisk is a Bioconductor package, which is able to handle Python dependencies by 

automatically creating and managing a Conda environment from R, ensuring the 

availability of the required Python and system libraries. Furthermore, it is able to 

freeze those dependencies at a specific version. This package is well integrated with 
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Reticulate which provides a comprehensive set of tools for interoperability between 

Python and R. It allows to run of Python code from R in a variety of ways and translates 

Python objects to R (for example, between R and Python Pandas data frames, or 

between R matrices and Python NumPy arrays), as shown in Tab. 1. The combination 

of these two packages allows interoperating between the two languages. 

 

Tab. 1: Type conversions between R and Python (adapted from 

https://rstudio.github.io/reticulate/#type-conversions). 

R Python Examples 

Single-element vector Scalar 1, 1L, TRUE, “foo”  

Multi-element vector List c(1.0, 2.0, 3.0), c(1L, 

2L, 3L) 

List of mutiple types Tuple list(1L, TRUE, “foo”) 

Named list Dict list(a = 1L, b = 2.0), 

dict(x = x_data) 

Matrix/Array NumPy ndarray matrix(c(1,2,3,4), 

nrow = 2, ncol = 2) 

Data Frame Pandas DataFrame data.frame(x = 

c(1,2,3), y = c(“a”, 

“b”, “c”)) 

Function Python function function(x) x+1 

 

NULL, TRUE, FALSE None, True, False NULL, TRUE, FALSE 
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Example code of object conversion (adapted from 

https://rstudio.github.io/reticulate/articles/calling_python.html#object-conversion): 

 

This integration between Basilisk and Reticulate, in addition to the interconnection 

between the object of the two languages, was necessary also for the input and the 

output of the wrapper. Being an R package, this wrapper takes an input R objects, thus 

through Reticulate, I was able to convert objects from R to Python. By default, the 

Python method of SpatialDE provides a basic workflow in which the two main inputs 

data concern two pandas data frames: 

• the first one referred to as "count matrix", is a classic count matrix embedded in 

a data frame, thus containing the expression measurement of the genes for all 

the sequenced spots; 

• the second referred to as "coordinate", contains the 2-dimension spatial 

information described as coordinates X and Y of each spot. 

 

# import numpy and specify no automatic Python to R conversion 

np <- import("numpy", convert = FALSE) 

 

# do some array manipulations with NumPy 

a <- np$array(c(1:4)) 

sum <- a$cumsum() 

 

# convert to R explicitly at the end 

py_to_r(sum) 
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The Python method SpatialDE is able to compute its workflow starting from these two 

types of objects. It is important to say that those can be considered as the basic and 

standard objects for SRT data, as they provide spatial location in addition to the 

standard count matrix of gene expression. 

To ensure the correctness of the R input data, the wrapper provides various checks 

performed with the "checkmate" package, which allows for an assessment of the right 

type of object on specific functions and returns a documented message in case of type 

errors.  

Moreover, the R wrapper was developed to support S4 objects. These represent a class 

system allowing the execution of the code within the paradigm of object-oriented 

programming. In particular, despite the Python SpatialDE run on given input of 

Pandas data frames, the R wrapper integrates the possibility to perform the SpatialDE 

workflow on SpatialExperiment (SpE) object. SpE is an infrastructure package that 

allows storing data from Spatially Resolved Transcriptomic data, independently from 

the source technology. It provides a robust infrastructure that simplifies operations on 

the data to the user. Furthermore, it is compatible with downstream analysis packages 

that use the SpatialExperiment or SingleCellExperiment class (which is the one being 

extended) [19]. 

Through, Basilisk and Reticulate, I was able to encapsulate in R all the python 

functions provided by the original SpatialDE, including the ‘automatic expression 

histology’ analysis, and provide all these functions able to accept input both as a data 
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frame or as an S4 class of SpatialExperiment. Furthermore, the wrapper provides 

functions to perform plots included in the publication of the method: ‘FVS_sig’ which 

describes the fraction spatial variance versus the Q-value; ‘multiGenePlots’ which 

allows displaying the spatial patterns of multiple genes. 
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3. Results and conclusions 

 

This project was a collaboration with other two Ph.D. students (one from the Ghent 

University and another from the California Institute of Technology). The resulting R 

package wraps the Python functions of SpatialDE, one of the most popular methods 

for the identification of spatially variable genes. The repository is publicly available on 

GitHub (at the following link https://github.com/sales-lab/spatialDE). In addition, we 

chose to publish this package also on Bioconductor (at the following link 

https://www.bioconductor.org/packages/release/bioc/html/spatialDE.html), as one of 

its missions is to provide high-quality documentation packages to simplify integration 

for the user. The linked Bioconductor page contains detailed information on how to 

install and use the package. Specifically, a “vignette” is available which provides a 

tutorial of different workflows for the identification of spatially variable genes with 

different input type data. The page also reports the reference manual that describes 

the guideline of each function created with Roxygen. Roxygen is a tool that allows 

developers to build R software documenting the code as easily as possible. Although 

the package is a wrapper of Python functions in R language, the code of each function 

was developed with comprehensive documentation. In particular, Roxygen's 
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conventions were integrated concerning the documentation for the input parameters, 

the explanation of the outputs, the description of the function, and a minimal example. 

Following this code development design, the package contains a comprehensive guide 

of the provided functions, and it also helps both the user and the developer to correctly 

maintain and update the package during the time, as the Roxygen documentation 

helps both to understand the goal of a specific function and its structure. 

In this project, I presented a wrapper package that allows users to execute in the R 

environment, a method originally designed for Python. 

Since R is a popular language for data analysis, providing a wrapper of one of the most 

popular tools for the identification of spatially variable genes may help users to 

perform such analysis on SRT data imported in R. Also, considering both the support 

for the S4 class of SpatialExperiment and the already integrated plots function, it may 

further increase the usability of this package to all the users without advanced 

technical expertise. 
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VoyageR 

 

1. Introduction 

Spatially-resolved transcriptomics (SRT) refers to recently developed technologies that 

measure gene expression along with spatial coordinates of the measurements [1]. In 

tissue, spatial locations and gene expression levels of cells play a critical role in 

diseases, and this sequencing technology has been used to study the spatial landscape 

of gene expression, for example, in the brain and cancer [1]. One of the most common 

analyses, using both the coordinates and the expression measurements, is the 

identification of spatially variable genes (SVGs), which are genes that have a spatial 

pattern of expression variation. For a more complete introduction to the SVGs, refer to 

the introduction of SpatialDE chapter. 

The present project aims to conduct a benchmarking of existing methods designed to 

identify SVGs. A comprehensive benchmark is still lacking and could be helpful for 

users to choose the best suitable procedures for their use. Furthermore, this kind of 
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study will enable comparisons across these technologies, in particular with regard to 

detection sensitivity, specificity, and capture efficiency [2]. Here I list the methods I 

have selected in this project, together with a brief description of their approach and 

the programming language used: 

• BOOST-GP (R) [3], employs the framework of gaussian process (GP) to capture 

the spatial correlation. It directly models count data using a negative binomial 

(NB) distribution to account for the over-dispersion observed in real sequencing 

data. 

• Giotto (R) [4], propose new methods based on statistical enrichment of 

binarized expression data in neighboring cells within the spatial network. Such 

network can be created by connecting neighboring cells through a Delaunay 

triangulation network, by selecting the k-nearest neighbors, or by using a fixed 

distance cut-off. For each gene, expression values are binarized using K-means 

clustering or simple thresholding on rank.  

• GLISS (Python) [5], utilizes a graph-based association measure to select and link 

genes that are spatially dependent in both data sources. 

• GPcounts (Python) [6], implements GP regression methods for modeling counts 

data using a negative binomial likelihood function. 

• JSTA (Python) [7], identifies SVGs by determining if the spatial expression 

pattern of a given gene was statistically different from a null distribution by 

permuting the gene expression values.  
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• MERINGUE (R) [8], uses spatial auto-correlation and cross-correlation 

analyses. Given a set of spatial positions such as those corresponding to single 

cells, MERINGUE first represents these cells as neighborhoods using Voronoi 

tessellation, then cells are considered adjacent if their neighborhoods share an 

edge. The computation of SVGs is performed using Moran’s I statistic. 

• nnSVG (R) [1], is based on statistical advances in computationally scalable 

parameter estimation in spatial covariance functions in GPs using nearest 

neighbor Gaussian process (NNGP) models. 

• RayleighSelection (R) [9], utilizes the combinatorial Laplacian score to rank and 

disaggregate genes according to their spatial expression pattern. 

• scGCO (Python) [10], a method based on fast optimization of Markov Random 

Fields with graph cuts. The authors describe that a crucial insight of their 

method is that identifying spatial genes is analogous to identifying objects from 

an image, which is typically optimally solved in computer vision problems. 

• Seurat (R) [11], models spatial transcriptomics data as a mark point process and 

computes a variogram, which identifies genes whose expression level is 

dependent on their spatial location. Alternatively, Moran’s I method can be 

used to identify SVGs, as spatially patterned genes also exhibit autocorrelation. 

• SingleCellHyastack (R) [12], predicts DEGs (Differentially Expressed Genes) 

using the Kullback–Leibler divergence to find genes that are expressed in 

subsets of cells that are non-randomly positioned in a multidimensional space. 
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• SOMDE (Python) [13], uses a self-organizing map to cluster neighboring cells 

into nodes and then uses a Gaussian Process to fit the node-level spatial gene 

expression to identify SVGs. 

• SPARK (R) [14], directly models spatial count data through a generalized linear 

spatial model (GLSM) with a variety of spatial kernels to accommodate count 

data generated. It relies on recently developed statistical formulas for 

hypothesis testing, providing effective control of type I errors and yielding high 

statistical power. 

• SPARK-X (R) [15], builds upon a robust covariance test framework to model a 

wide variety of spatial transcriptomics data collected through different 

technologies. It relies on algebraic innovations for scalable computation as well 

as newly developed statistical formulas for hypothesis testing, producing well-

calibrated p-values and yielding high statistical power. SPARK-X is highly 

computationally efficient and the only SE method scalable for the HDST (High-

definition spatial transcriptomics) data. 

• SpatialDE (Python) [16], uses a geostatistics class of models, testing whether 

gene expression levels at different locations covary in a manner that depends 

on their relative location, a thus spatially variable.  

• Squidpy (Python) [17], provides an approach based on the well-known Moran’s 

I statistics. 
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Moses and Pachter [18] recently published a curated review of literature on spatial 

transcriptomics, including a review of data analysis methods. However, no paper was 

published in any peer-reviewed journal performing a benchmark similar to the one 

developed in this study. For this reason, in this section of my Ph.D. thesis, I'm going 

to present materials and methods, and the first results obtained from this project (for 

both Python and R methods). I believe that the evaluation of the results' reliability, in 

addition to the report of the used memory resources, can be an important guide also 

for developers, as it allows them to compare their methods to the existing ones. Indeed, 

considering that the identification of the SVGs is one of the most popular analyses that 

can be performed on SRT data, this area of research will likely remain under active 

investigation for the near future. 

To further simplify the comparison of different methods, we have designed the 

benchmark in a modular fashion. A user creating his own method could upload a 

minimal workflow to an ad-hoc system, run his pipeline and successively evaluate his 

approach both for the results and technical factors, like the computation time or RAM 

used, and compare his method to the ones already evaluated. 
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2. Materials and Methods 

 

One of the main objectives of this project was to create a benchmarking system able to 

execute reproducible runs of methods that identify spatially variable genes.  

To achieve this goal each package pipeline was built to be executed in closed container 

environments like Docker and Singularity. Indeed, both software makes it possible to 

create and run containers including software packages in a way that is portable and 

reproducible. Singularity was specifically designed to run containers in large HPC 

clusters. To build this closed environment with all the requirements, I created a Docker 

image of the Debian Linux system with R and Python libraries and the GitHub 

repository of the packages. Indeed, in the repository of this project 

(https://github.com/sales-lab/voyageR), there is a Dockerfile that allows the creation of 

the docker image. 

Another important setup for conducting a benchmark is to define a common input 

data format to facilitate the execution on different datasets, as it is essential to evaluate 

pipelines on a diverse set of biological data. As previously described, many published 

methods perform the identification of SVGs with a different strategy, each with a 

specific input type too. For this reason, all the workflows are run starting from a 
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SpatialExperiment object (SpE) [19], even for Python packages. SpatialExperiment, as 

described in the SpatialDE project, is an infrastructure R package that allows storing 

data from Spatially Resolved Transcriptomic data, independently from the source 

technology. It provides a robust infrastructure that simplifies operations on the data 

to the user. Through the package 'zellkonverter' [19], SpE can be also saved on the disk 

in H5AD format and successively loaded in Python as AnnData format [20], which can 

be considered as a Python infrastructure to handle annotated data matrices in memory 

and on disk. 

Furthermore, Bioconductor has packages like 'TENxVisiumData' or 'spatialLIBD' that 

collect 10x Genomics Visium datasets prepared as objects of class SpatialExperiment, 

which makes SpE the perfect input format to be able to use method pipelines with 

different biological datasets, without changing code. 

The benchmark is performed for the following packages: 

• BOOST–GP (R) 

• Giotto (R) 

• GLISS (Python) 

• GPcounts (Python) 

• JSTA (Python) 

• MERINGUE (R) 

• nnSVG (R) 

• RayleighSelection (R) 
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• scGCO (Python) 

• Seurat (R) 

• SingleCellHyastack (R) 

• SOMDE (Python) 

• Spark (R) 

• Spark-X (R) 

• SpatialDE (Python) 

• Squidpy (Python) 

 

For each of these methods, the corresponding workflow was executed starting from a 

common input format. In particular, for R packages the input format is the 

SpatialExperiment object, while Python methods take in input an AnnData, loaded 

from the SpE saved on disk as H5AD format. 

However, Seurat and SingleCellHaystack packages run their methods using a 

SeuratObject, an alternative S4 class for single-cell genomic data and associated 

information, such as dimensionality reduction embeddings, nearest-neighbor graphs, 

and spatially-resolved coordinates. For this reason, for these two packages, the SpE 

object was converted to a SeuratObject by a script. 

 At the moment, the pipelines are run on the human brain dataset from Maynard et al 

[21]. It is provided by the R package 'spatialLIBD' directly as a SpE object and contains 

12 samples. For each sample, a filtering procedure at a different threshold was applied, 
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to remove low-expressed genes and/or mitochondrial genes. In particular, filtering 

retains genes containing at least X expression counts in at least Y percent of the total 

number of spatial locations (spots), with the following values of X and Y: 

• X = 3; Y = 0.1; 

• X = 3; Y = 0.3; 

• X = 3; Y = 0.5. 

Since a ground truth about spatially variable genes is not available for all datasets, it 

is important to evaluate the reliability of the results using statistical measures and plots 

which are independent from such information.  

Each sample was thus duplicated, and its coordinates were shuffled to remove any 

spatial pattern of expression. In particular, before shuffling the locations, these 

datasets were duplicated and filtered with new threshold values, in addition to the 

ones previously shown: 

• X = 2; Y = 0.1; 

• X = 2; Y = 0.3; 

• X = 4; Y = 0.1; 

• X = 4; Y = 0.3. 

This procedure was performed to produce ten replicates of each filtered dataset, and 

thus for each sample, with the expectation that spatial patterns of expression were 

removed. 

All the method's pipelines were run on all these datasets. 
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Another interesting benchmark parameter is the evaluation of the time computing of 

the methods, as a faster pipeline even with non-optimal results may be a good trade-

off in specific use cases. Thus, both the computation time and memory efficiency are 

parameters that are going to be included in the results of this project. For this purpose, 

all the workflows were controlled by the software 'GNU time' which allows for 

running other programs and then displays information about the resources used and 

collected by the system while the program was running. 

An example verbose (-v) of the collected output of 'GNU time' is shown as follows, 

performed on four seconds of sleep of the system: 

$ time -v sleep 4 

             Command being timed: "sleep 4" 

             User time (seconds): 0.00 

             System time (seconds): 0.05 

             Percent of CPU this job got: 1% 

             Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.26 

             Average shared text size (kbytes): 36 

             Average unshared data size (kbytes): 24 

             Average stack size (kbytes): 0 

             Average total size (kbytes): 60 

             Maximum resident set size (kbytes): 32 

             Average resident set size (kbytes): 24 

             Major (requiring I/O) page faults: 3 
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             Minor (reclaiming a frame) page faults: 0 

             Voluntary context switches: 11 

             Involuntary context switches: 0 

             Swaps: 0 

             File system inputs: 3 

             File system outputs: 1 

             Socket messages sent: 0 

             Socket messages received: 0 

             Signals delivered: 1 

             Page size (bytes): 4096 

             Exit status: 0 

 

Two parameters that will be integrated into the project results are the 'Maximum 

resident set size (kbytes)' and the 'Elapsed (wall clock) time (h:mm:ss or m:ss)', which 

describes the maximum RAM used in kilobytes and the execution time of the program, 

respectively. 

Each method was run on all the created datasets using Singularity containers. 
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3. Preliminary results and 

conclusions 

 

This project is a collaboration with the Department of Statistics, at the University of 

Padova, and it is still a work in progress. We nonetheless have already gathered some 

preliminary results concerning technical aspects, essentially to build the scientifically 

reproducible benchmarking system. 

After some initial test runs, I excluded from the comparisons the methods BOOST-GP, 

GPcounts, JSTA, and RayleighSelection, due to their very high computation time. 

None of the above methods was able to process a single sample in less than 4 days, 

compared to some hours for the other methods. 

We then started to evaluate the results by measuring the False Positive Rate of SVG 

calls, producing "box-plots" where each box describes the distribution of the 

percentage of the SVGs with a p-value lower than the threshold on the x-axis. Fig. 3.1 

shows the chart for results on normal datasets (thus without shuffled locations) with 

a filter to retain genes containing at least 3 expression counts in at least 0.5 percent of 

the total number of spatial locations (spots). Some methods were able to recognize a 
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reasonable number of SVGs, while others like Giotto (binSpect k-means), Seurat 

(Moran's I), or SPARK-X identified the majority of SVGs with a p-value lower than the 

threshold, suggesting an unreliable control of type I errors. 

 

Fig. 3.1: Box-plot of the results on normal datasets filtered to retain genes containing at least 3 expression counts 

in at least 0.5 percent of the total number of spatial locations (spots). 

 

This hypothesis was supported also by the box plots obtained from the shuffle datasets 

with the same filtering threshold. We stress that in this dataset the locations were 

shuffled to remove any spatial pattern of expression. It is thus expected that no SVGs 

are present in these samples. The distribution of p-values for reliable methods should 

appear in the following plots as close as possible to the selected threshold. 
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Fig. 3.2: Box-plot of the results on shuffle datasets filtered to retain genes containing at least 3 expression counts 

in at least 0.5 percent of the total number of spatial locations (spots). 

 
This characteristic was recognized by nnSVG and SpatialDE, which identified a few 

genes with a p-value lower than the threshold. Indeed, these two methods maintained 

a false positive rate below all the critical values and controlled the type-I error. 

Especially for nnSVG, this aspect was also observed in plots of the shuffle datasets 

with different filtering values (shown below), while SpatialDE seems to lose it with 

less stringent filtering. 
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Fig. 3.3: Box-plot of the results on shuffle datasets filtered to retain genes containing at least 4 expression counts 

in at least 0.1 percent of the total number of spatial locations (spots). 

 

 

Fig. 3.4: Box-plot of the results on shuffle datasets filtered to retain genes containing at least 3 expression counts 

in at least 0.3 percent of the total number of spatial locations (spots). 
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Fig. 3.5: Box-plot of the results on shuffle datasets filtered to retain genes containing at least 3 expression counts 

in at least 0.1 percent of the total number of spatial locations (spots). 

 

 

Fig. 3.6: Box-plot of the results on shuffle datasets filtered to retain genes containing at least 2 expression counts 

in at least 0.1 percent of the total number of spatial locations (spots). 
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At the time of writing, we are still fixing technical issues with the MERINGUE 

pipeline, which made it impossible to run it on all samples. 

As described, even though technical aspects are the majority of the results of this 

project, we already conducted some statistical measures to evaluate the reliability of 

the results. Other analyzes, plots, and statistical measurements will be needed, 

however, some methods have already shown an interesting signal regarding the 

reliability of identifying spatially variable genes. Moreover, even if we are comparing 

various pipelines, each one with a different strategy, the made-up benchmarking 

systems allow the possibility to easily include in future new methods e comparing the 

results and the performance with the workflows already included. All the methods 

were run saving in a file performance information about the computation time, CPU, 

and RAM used. After completing the statistical evaluation of the results, we will start 

to compare the memory and resource usage. 
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