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Abstract—We consider a set of network users (nodes) that
generate latency-constrained service requests requiring the exe-
cution of computing tasks on servers located either in the cloud
or at the network edge. We explore the efficiency of a distributed
server selection strategically performed by individual nodes.
In an earlier analysis, we argued for a stateless centralized
allocation based on a probabilistic selection between edge and
cloud servers. In that proposal, the optimal share of edge
and cloud tasks was computed according to static network
characteristics, with no knowledge of the actual network state.
In this new study, we perform an analysis based on game theory,
where we compare the globally optimal allocation performed at
a central level against a distributed server selection driven by
the selfish objectives of individual nodes. The inefficiency of the
selfish allocation can be computed as the price of anarchy, which
is shown to be very small, thus justifying a distributed strategic
implementation of stateless policies. This insight is precious
for designing algorithms for server selection and quantitatively
proves the efficiency of distributed selfish approaches.

Index Terms—Edge computing, Radio access network, Game
theory, Distributed policies, Performance evaluation.

I. INTRODUCTION

Future mobile communication networks require ubiqui-
tous availability of services based on pervasive storage and
computing [1] provided by either resource-abundant servers
physically located in the network core, or less powerful
peripheral servers offering the advantage of proximity to the
end user.

A fundamental distinction is implied in many studies,
and also reflected in our investigation, between cloud and
edge servers [2]–[4]. Under an extreme simplification, a
cloud server offers generally larger latency, but also higher
capacity than a server located at the edge of the network.
Since the ultimate performance experienced by a service
request strongly depends on the congestion encountered at
the chosen server, under working network conditions there
is no dominant choice between the two server types. Rather,
directions of individual service requests are tightly knit with
one another and they should be harmonized so as to avoid
overloads.

In the present contribution, we consider a network scenario
where user service instances must be completed within a
deadline, and their associated computing requirements can
be satisfied either at the edge or in the cloud [5]. The net-
work control can exploit different criteria to allocate service
requests to the more convenient type of server, possibly
depending on the current network conditions.

In [6], we discussed several algorithms, with the objective
of investigating how the information available about the

network state affects the overall performance and can be
captured through different parameters that lead to optimize
network management. We performed a comparison between
stateless and stateful policies [7] used to route incoming
requests, to either the cloud or the edge servers. A stateless
policy would correspond to a choice based on network
parameters (such as the server capacity and the overall
service arrival rate) that are relatively stationary and easy to
estimate, whereas a stateful policy exploits the instantaneous
network conditions. A key result that goes in favor of a low-
complexity implementation of the selection policy is that
the performance improvements brought by stateful policies
are minimal and are also prone to errors in the parameter
estimation that can sometimes lead to worse performance
with respect to stateless policies [6].

Thus, it might be more convenient to apply a simple
stateless policy, like the one called RANDALPH (randomized
alpha) in [6], which translates in the random assignment of
a given fraction α of requests to the edge server, while the
remaining share 1−α is executed in the cloud. The value of
α is computed in a centralized fashion, based on stateless
network parameters, which is proven to be overall efficient
in practical contexts.

In this paper, we push this further by analyzing whether
stateless approaches for service request allocation can be
distributed, still achieving efficient control, without awareness
of the network state that would be expensive to acquire.
To do so, we use the instruments of game theory [8], [9]
to solve a distributed selection of a local parameter αi for
each request i, chosen by a strategic agent with only local
information driven towards an individualistic objective. This
results in a game theoretic implementation of the randomized
alpha policy, therefore called GANDALPH (game theoretic
RANDALPH).

We perform a quantitative comparison of the performance
of the centralized policy RANDALPH against the distributed
policy GANDALPH, in particular by considering the globally
best assignment of the former and the Nash equilibrium (NE)
achieved by the latter, and to compute the Price of Anarchy
(PoA) [10]. While providing analytical justifications about
why the PoA is expected to be contained, we present realistic
evaluations that show that it practically falls within ranges
of less than 10%, thereby supporting a fully distributed and
scalable implementation of the selection policies.

The rest of this paper is organized as follows. Section II
addresses the related work. Section III describes our scenario
and how to evaluate a centralized stateless allocation of



jobs to edge and cloud servers. We present the distributed
allocation modeled as a static game of complete information
in Section IV, where we discuss the resulting NE and its
properties, which explains why the resulting solution is near-
optimal. Section V presents numerical results comparing the
centralized and distributed allocations, and conclusions are
drawn in Section VI.

II. RELATED WORK

The problem of cloud vs. edge server selection can be
equivalently referred to as computation offloading or also
request routing. In [2], [11], a taxonomy of different ap-
proaches to this problem is presented, according to which
a centralized offloading scheme makes decisions about di-
recting traffic to either edge or cloud through a single agent
that may or may not use information on the status of the
servers, according to which the policy is called either stateful
or stateless. In [6] we showed that ideal stateful policies,
with access to instantaneous information on either of the
available servers or both of them, can outperform stateless
policies. However, stateful policies are prone to errors, and
small uncertainty on the status of the servers dramatically
reduces their performance, well below the level that can
be achieved by stateless and simple policies. Indeed, the
advantage of stateless policies is that they are not affected
by state estimate errors by definition. In that work, we
only considered centralized policies, whereas here we discuss
distributed implementations with their specific challenges.

Making request routing a distributed and selfish approach
has been studied in various works, e.g., [7], [12]–[16]. In
general, selfish routing leads to performance degradation,
and factors like network topology [15] and load [16] play
an important role in performance degradation. However, the
authors of [17] show via analysis and experiments that the
performance loss is minimized if selfish players have little
context information, which means that conveying too much
path-load context information to service customers is coun-
terproductive when they can make decisions on their own.
This justifies why here we focus on stateless selfish routing
strategies and do not investigate more complex operational
scenarios, although it is known that providing appropriately
“curated” and “persuasive” data to routing deciders can
improve performance [18], [19].

The optimization of offloading has been subject of many
other investigations. For example, [20] proposes a scheduling
algorithm whose objective is to minimize the task execution
time. In other works, offloading is optimized together with
other aspects, such as power allocation [3], [21]. We can
say that our approach is related to the research line that
compares global (centralized) with individual (decentralized)
optimizations [22]. This problem has been addressed in many
contexts such as communication services, queueing systems,
transport optimization, and more (a non-exhaustive list of
contributions includes [23]–[28]). In all these works, and
also in our contribution, the comparison between these two
approaches is carried out by using the concept of PoA
proposed by [29] seen as a metric to quantify how much
does system performance suffer from the lack of regulation.

III. PRELIMINARIES

The structure of the system considered in our investigation
is as follows. We assume that mobile users (UEs) of a
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network slice are connected through a random access channel
(RACH) to a base station (BS) that employs two separate
network processors for uplink and downlink messages. The
RACH is assumed to use dedicated resources, so it is seen
as isolated from other network slices on the same BS. The
BS is, in turn, attached to a backhaul (BH), where an edge
server is directly connected and can be used for computing
tasks requested by the UEs, albeit with limited capacity.
Alternatively, task can be sent from the BH through the
transport network and the Internet to a physically distant
but more powerful cloud server [4], [7]. Fig. 1 illustrates
the reference scenario used in this work, with the backhaul
represented as a simple logical switch although it could be
an optical ring. Transport and core of the cellular network,
jointly with the Internet, are symbolically represented as a
transit cloud, which may include several high-speed routing
devices. Uplink and downlink messages are in different colors
because they carry different information.

For simplicity, only one server of each kind (cloud or
edge) is considered, but the analysis can be extended to
multiple servers of the same type. Also, our model allows for
inserting background traffic whenever needed. This would be
necessary whenever a quantitative comparison with practical
implementations is performed because the presence of back-
ground traffic is unavoidable in any real-world scenario, such
as a testbed, and sometimes its impact is significant [30].
However, in the present evaluations, the background traffic
does not affect the discussion that we bring forward related to
the distributed implementation of the server selection policies.

UEs are assumed to generate service requests with rate λu.
If these requests are directed to a server whose capacity is
saturated, then the request is discarded, and we consider this
to be a loss event. Moreover, we impose a delay constraint
on the execution of the request so that a failure can occur
both if the request is discarded and if a non-discarded
request violates the timeout condition (i.e., if the result of the
computation associated with the request does not reach the
UE before the timeout expiration). This means that failures
happen with probability Pfail that is greater than the loss
probability Ploss as failures are a broader condition. We also
distinguish between P

(E)
fail and P

(C)
fail (or analogously P

(E)
loss and

P
(C)
loss) as the conditional probability of failures (or losses)

that have been directed to the edge or to the cloud server,
respectively.

The foundation of the analysis is to characterize all the
system components as work-conserving FIFO queues and
therefore evaluate the experienced latency as the convolution
of the delay terms at each step. If we represent all the delay
terms of these individual components through the Laplace-



Stjeltjes transform (LST) of their probability distribution
function (pdf), the resulting overall delay has an LST obtained
by a chain multiplication of all terms.

Thus, if we assume that each request of UE i is sent
with probabilities αi or 1 − αi to the edge or cloud server,
respectively, the pdf of the overall delay of a request of UE i,
conditioned to it being successful and not lost due to buffer
overflow, has an LST f̂T (s) that can be written as

f̂T (s) =f̂R(s) f̂Lu(s) f̂Ld
(s) f̂Bu(s) f̂Bd

(s)

·
(
αi

(
1− P

(E)
loss

)
f̂E(s)

+ (1− αi)
(
1− P

(C)
loss

)
f̂Tu

(s) f̂Td
(s) f̂C(s)

)
(1)

where f̂(s) denotes an LST of the pdf of a delay term,
with subscripts referring to the RACH (R), the link between
the BS and the network processor (Lu and Ld for uplink
and downlink, respectively), the BH connection (Bu and Bd

for uplink and downlink, respectively), the transport network
(Tu and Td for uplink and downlink, respectively), and the
time spent in the edge or in the cloud server (E and C,
respectively).

The failure probability Pfail of UE i is the sum of the loss
probability observed as a weighted average over edge and
cloud servers, i.e.,

Ploss = αiP
(E)
loss + (1− αi)P

(C)
loss, (2)

and the probability that the service exceeds the timeout:

Pfail = Ploss +
(
1− Ploss

)(
1− FT (TO)

)
(3)

= 1− FT (TO)
(
1− Ploss

)
where TO is the timeout value and FT (t) is the cumulative
distribution function of the latency computed as the inverse
LST of f̂T (s)/s via numerical techniques.1 Notice that,
as described in [6], loss at edge and cloud, and timeout
probabilities, depend on the average of αi across all UEs.

Now, we sketch how these components can be modeled,
with a more detailed analysis that can be found in [6]. The
RACH model is taken from [30] and considers that user
requests experience a delay due to the transmission over
the channel, possibly encountering collisions and subsequent
backoffs. We take a sufficiently high number of allowed
retransmission attempts to prevent the RACH from losing
service requests by itself. However, losses can occur due
to the capacity of the servers being saturated, as previously
discussed. Thus, from [6] we get the following approximate
expression for the LST of the sojourn time in the RACH:

f̂T (s) =
1−e−s(Tx+Wx)

s(Tx +Wx)

kx∑
i=1

1− e−i

ei(i−1)/2

(
e−sTx

1 + τ̄B

)
(4)

where Tx, Wx, kx, and τ̄B are RACH parameters corre-
sponding to the maximum time to reply to a RACH request,
the maximum time to establish a connection after a RACH
exchange, the maximum number of transmission attempts,
and the average backoff time in case of collisions. In (4), we
consider a traffic-independent expression for the probability
that the RACH request is successful in i attempts, which

1The division by s in the LST domain corresponds to an integration in
the probability domain, so that while by inverting f̂T (s) one would obtain
a probability distribution function, by inverting f̂T (s)/s will obtain the
corresponding cumulative distribution function.

holds true if RACH losses are negligible and we adopt power
ramping over multiple transmission attempts.

From the implementation standpoint, the BH consists of
individual links and dedicated resources interconnecting the
BS, the edge server, and the transport network that bridges
to the cloud. The BH can be considered reliable, i.e., not
introducing any loss, and with high capacity. Both the edge
and the cloud servers are assumed to run on virtual machines
(VMs), whose numbers are nE and nC, respectively. Service
requests coming from UEs can be allocated to one VM
equivalently located in either server, after being queued in a
buffer with finite capacity. The maximum number of requests
that can be queued at the edge or cloud server is kE and kC,
respectively. Hence, a loss event happens if the number of
allocated requests exceeds the buffer capacity.

We model the network processor as an M/D/1-PS queue,
because time-frequency resources of a base station are shared
among all active transmissions, which can occur in parallel.
All the intermediate queues (backhaul and transport net-
works) are more simplistically modeled as M/M/1 queues
because of the serial nature of transmission over many wired
link technologies [11]. For all these systems, we just repeat
this model for both uplink and downlink directions. Finally,
the edge and cloud servers are represented as M/M/nE/kE and
M/M/nC/kC queues, respectively. The multi-server nature of
edge and cloud queues reflects the fact that they are essen-
tially computing stations with multiple processors available
for service [5]. This promptly gives us expressions for the
LST terms in (1). Additionally, the loss probabilities P

(E)
loss

and P
(C)
loss are computed from the probabilities that the buffer

at the queues is full, that is, the queue is occupied by kE or
kC requests, respectively.

Note that we model the (uplink and downlink) network
processor delays as deterministic because we consider the
case of a lightly loaded BS slice. On the contrary, we model
computing times at both the edge and cloud servers with
exponential distributions because of their intrinsic variability
and because of our focus on the latency introduced by those
computing elements.

IV. GAME THEORETIC MODEL

The idea of RANDALPH is to set the same αi = α for
all service requests. This value is computed in a centralized
way as a global optimum so that all service requests are
randomly directed to either the edge or the cloud server
with respective probabilities α and 1−α, without constant
monitoring of the network state, which makes it suitable for a
simpler implementation, whose efficiency is still comparable
to more complex stateful policies [6].

However, in light of the drawbacks of a centralized com-
putation, we want to explore a game theoretic approach to
determine whether the α–values can be efficiently computed
through a distributed evaluation by individual UEs seen as
selfish (i.e., strategic) agents. This results in the game theo-
retic procedure that we named GANDALPH. The differences
with the original centralized approach are subtle but essential.
Firstly, we consider an individual value αi for each service
request i. Since we consider continuous α-values, it does not
really matter if i identifies the atomic service request or the
UEs as this can be framed as either a fine-grained choice of
individual tasks or a probabilistic assignment of all the tasks
of the same user.



Moreover, we do not assume any communication exchange
between the agents, so they all act independently. In the
jargon of game theory, we consider a static game of complete
information [8], [24], where all the UEs are equally aware
of the network parameters but cannot communicate their
choices. This sets a difference with other game theoretic
approaches based on auctions or bargaining [27], [31], in that
our simpler implementation does not require any subsequent
interaction. Finally, the choice of each agent is selfish, i.e.,
just driven toward the minimization of the failure probability
Pfail experienced by that player.

Notably, under this approach all users will still choose
the same α for symmetry reasons. However, the rationale
of RANDALPH and GANDALPH is different. In the former, α
is a value chosen to be the same by a central optimizer so as
to achieve the best performance. In the latter, each strategic
player chooses αi so as to optimize a selfish goal while at
the same time being aware that all other players will do the
same [10]. This results in a local optimum from the individual
player’s perspective, and NEs are found as the points without
incentives for unilateral deviation towards another αi (while
the other αj , j ̸= i, are kept as they are).

The analysis summarized in the previous section strongly
motivates this approach to be sensible. In practice, the failure
probability Pfail that a single player can expect to get depends
on αi through a dependence that, avoiding the analytical
intricacies, can be summarized as (2), which uses the total
probability on the conditions of choosing the edge or the
cloud server. For a selfish player, the best choice of αi

happens where the first derivative of Pfail is zero, but it is
immediate to see that

∂Pfail

∂αi
= P

(E)
fail − P

(C)
fail + αi

∂P
(E)
fail

∂αi
+(1− αi)

∂P
(C)
fail

∂αi
. (5)

Therefore, equalizing the failure probability of edge and
cloud, e.g., with a load balancing approach, is not necessarily
enough to reach a NE. However, if the failure probabilities of
edge and cloud can be equalized in a point where both servers
are far from saturation, then that point would be near the
NE, because the partial derivatives are close to zero. Hence,
the analysis reveals that the NE would lead the system to
operate almost like in a centralized load balancing scenario
when the system load is low. Under those circumstances,
load balancing is indeed near-optimal and very robust [6].
Instead, the operating point would progressively deviate from
a balanced assignment as the load increases and the partial
derivative terms in (5) become predominant. This must not
surprise because, at high load, a load balance policy cannot
work well as it would fairly lead all jobs to fail.

In general, the partial derivative of the failure probability
must be positive for the edge at any αi, while at the
cloud it must be negative. Thus, the difference P

(E)
fail − P

(C)
fail

is a monotonic increasing function of αi, ranging from a
negative value −P

(C)
fail |αi=0 to a positive value P

(E)
fail |αi=1. The

weighted sum of the partial derivatives in (5) has a similar
behavior, but it goes from a positive to a negative value
instead. These considerations support the uniqueness of the
NE as a point where the failure probabilities at the cloud and
the edge must be different, unless edge and cloud servers
have the same characteristics. Besides, the role of the partial
derivatives is important to determine which server (edge or
cloud) must experience a higher loss rate at the NE.

A key observation from the results of [6] is that Pfail is
relatively flat around its minimum in practical situations. This
implies that: (i) a local search from an individual standpoint
is likely to achieve near-optimal values of αi; (ii) even if αi

is not exactly chosen by each individual user as the optimal
value of α for RANDALPH, the resulting Pfail is still likely
to be near-optimal.

Moreover, we are interested in obtaining a small average
failure probability, otherwise performance cannot be good
and the system operation becomes pointless. Thus, at least
one server must be far from saturation, and if one server
approaches saturation, it must receive just a little portion of
traffic. Hence, all terms of (5) are small or slowly changing
with αi, which explains why Pfail is flat around its minimum.
In particular, the last term describes the influence of a single
request on the failures in the cloud server, which again is
sensible to assume to be minimal. The same can hold for the
third term but, while we can argue that the edge server can
be more sensitive, we remark at the same time that if this is
the case, it is also likely that αi is small, thereby causing the
term to be close to 0.

As argued above, the NE of GANDALPH is necessarily
unique because of the monotonic trend that the failure prob-
ability of any selfish user must have if it deviates from the
behavior of the other UEs – in particular, it grows if αi goes to
either 0 or 1, meaning that only either the cloud or the edge
server is used. To quantitatively juxtapose the approaches,
we can compare the two values of α under a centralized
or distributed management, i.e., the optimal value chosen by
RANDALPH and the NE of GANDALPH. A further comparison
can quantify the impact that a possible difference of these α
values has on the failure probability. Thus, we compute the
PoA [10], [29] as PoA = PNash

fail /PCoordinated
fail with a clear

meaning of the superscripts.

V. EVALUATION

We designed a set of experiments to compare coordinated
and selfish routing decision strategies in the reference sce-
nario considered in this paper. In particular, we analyze and
compare performance figures in terms of failure probability
Pfail. The difference between RANDALPH and GANDALPH
will be expressed in terms of PoA. We will also show how
the two different approaches result in routing strategies that
can diverge substantially.

A. Coordinated optimum and NE search

The optimal configuration for RANDALPH is the value
of edge routing probability α, commonly adopted by all
users, that minimizes the failure probability Pfail. Since this
optimization problem is not convex in general, as we will
show with an example at the beginning of the numerical
evaluation subsection, we resort to a discretized search. In
practice, we run a brute force search with resolution 10−3

on the value of α. The search requires a few hours of
computation of a dedicated 3 GHz processor. We do not
optimize the search of a coordinated optimum, because the
object of the work is not optimization per se, rather the
evaluation of the performance and the PoA of a distributed
implementation of the server selection [22].

For what concerns the NE, using a brute force search
on condition (5) is impractical, since the computation of
partial derivatives is prone to numerical errors and would



in any case involve the computation of several values of
failure probability for each candidate value of edge routing
probability, so as to be able to estimate the partial derivative
function. Instead, we resort to design a search algorithm
which is similar to the well known binary search. To explain
how our algorithm works, first of all, consider that Pfail

observed by a selfish user has a single minimum as her
routing αi changes, i.e., with respect to the variations of edge
routing probability of the selfish user (while the rest of users
do not change their strategy). To see that, consider the only
three possible cases that can occur when the traffic of the
selfish user is routed in full to the cloud, i.e., the failure
probability at the edge, P(E)

fail |αi=1 is smaller, equal, or larger
than the failure probability at the cloud, P

(C)
fail |αi=1. In the

first case, offloading some traffic from cloud to edge is ben-
eficial, although beyond some point the offload can become
counterproductive, because P

(E)
fail can only increase while P

(C)
fail

can only decrease. The last case is similar, but this time the
offload cannot help and the minimum is observed at αi = 1. If
instead the failure probabilities are identical, we would need
to compare the partial derivatives of the conditional failure
probabilities, to see which failure probability changes faster,
and would reach the same conclusions as in the other two
cases. In all cases, the value of Pfail observed by a selfish
user has a single absolute minimum value for αi ∈ [0, 1].

From the above considerations, we infer that a selfish user
would only deviate her strategy toward a given direction,
and in so doing, she would greedily find her best routing
probability. Moreover, as users have the same characteristics
and are rational, in a distributed implementation scenario they
would all have the same incentive to move like the selfish
users we have taken as reference in the discussion so far. This
means that all users would move toward the same direction
and iteratively converge to a NE point. In particular, when we
have identified the direction that a selfish user would take, we
can assume that the entire set of users will move in the same
direction.

We therefore implement the following search for the NE
configuration. We start by considering a candidate interval
for α and take the central value of the interval as the current
routing probability of all users. The initial interval can simply
be the entire space of strategies, i.e., [0, 1]. We then split
the interval into three equally sized adjacent sub-intervals
and compute the average value of the failure probability of
a selfish user under the hypothesis that she can decide to
move toward a point in any of the three intervals. We only
take a few (3 to 5) evenly spaced samples per sub-interval,
to compute averages and identify the smallest of them. This
shows in which direction a selfish user would move if starting
from the center of the interval. Since, as previously noted,
the rest of users would follow the target selfish user, we
can next repeat the procedure by considering a half-sized
search interval that corresponds to either (a) the right half
of the original interval if the selfish user had an incentive
to increase αi, (b) the left half is the incentive was toward
decreasing αi, or (c) the central segment otherwise. Using
three possible partially overlapped intervals rather than two
separate intervals makes the search robust to numerical errors
which might appear when dealing with failure probability
values of the order of 10−6 or less, and adjusting the routing
probability by 10−3 or smaller steps. Those errors might
otherwise cause the search to remain stuck in the wrong

TABLE I
PARAMETERS USED IN THE NUMERICAL EVALUATION

Parameter Notation Default value
Number of UEs nu 50

Service request rate per UE λu 60 s−1

Number of servers at edge nE 1
Buffer size at edge kE 10 requests

Number of servers at cloud nC 10
Buffer size at cloud kC 50 requests

Average request service time µ−1 5 ms
Round trip time from UE to edge 26.955 ms
Round trip time from UE to cloud 52.498 ms

Number of RACH preambles 54
Max number of RACH retransmissions kx 10

RACH retransmission timeout 10 ms
Uplink packet size 2000 b

Downlink packet size 4000 b
Uplink radio slice capacity 10 Mb/s

Downlink radio slice capacity 25 Mb/s
Uplink BH slice capacity 20 Mb/s

Downlink BH slice capacity 35 Mb/s
Core network slice capacity 100 Mb/s

Service timeout TO 100 ms

interval, which is relevant for cases in which the failure
probability is relatively flat and can be small as required
by many commercial applications. The procedure continues
until the search interval size becomes smaller than a threshold
(10−4, in the numerical results shown in what follows). The
middle point of the last identified interval is considered as the
NE point, and the associated failure probability is computed.

B. Evaluation scenario

To illustrate the behavior of GANDALPH, we evaluate its
performance in the concrete scenario described next, which
allows us to evaluate the impact of several parameters like the
system load and the granularity at which UEs contribute to the
system load, the distance of the cloud service and its capacity.
We consider nu UEs, each issuing λu requests per second
(req/s), on average. In the plots, we use the value of the
system load ρ, which is the workload of the system, calculated
as the ratio of the aggregate offered traffic nuλu divided by
the total service capacity of the system (nC + nE)µ, which
in turn depends on the number of VMs in the edge and cloud
servers (nE and nC, respectively), and their capacity µ.

All UEs see the same distance to an edge server, since
users are connected to the same BS, hence access the same
backhaul. The edge server runs a single server, modeled as
an M/M/1/kE queue with a finite buffer space (kE=10
requests – one in service and up to 9 waiting – in the
numerical evaluations) with an exponential service at rate
µ=200 requests per second. In other words, a request takes
on average 5 ms to be served, thus representing short jobs
typical of mobile applications that require network assistance
for parsing the local context and making informed decisions,
e.g., in assisted driving applications, steering of UAV fleets,
and so on [32].

The round-trip-time (RTT) between UEs and the edge
server is the same as between UEs and BH, which we
set to 24.875 ms, plus an almost negligible extra delay in
accessing the edge server from the BH (we use 0.08 ms
as the time needed to cross the BH) plus 2 ms to account
for internal edge data center latency. The resulting RTT is
26.955 ms. These RTT values are the ones observed in a
testbed built to evaluate RANDALPH in [6]. The cloud is



an M/M/nC/kC server with nC=10 servers (each akin to
the edge server) and kC=50 maximum requests by default
(including requests under service), although we also explore
other values in specific experiments shown later. The cloud
is reachable through the same BH, and the RTT between
the BH and the cloud is set to 24.543 ms unless otherwise
specified (again, we use the values observed in [6]). We also
add 1 ms to account for internal delay in the cloud data
center. Therefore, the total RTT between UEs and cloud is
26.955 + 24.543 + 1 = 52.498 ms, without accounting for
queueing and processing at the cloud.

All requests go through the RACH procedure for which
they use 54 orthogonal preambles with a RACH opportunity
every millisecond. The maximum number of RACH transmis-
sion attempts is kx=10, enough to guarantee full reliability of
the channel, since users adopt a power ramping algorithm to
progressively increase the transmission power of their RACH
preambles after each failure. Retries are spaced according to
random backoff times with average duration 10 ms. With the
adopted configuration, the probability that the RACH will
cause a request loss is below 3 · 10−18 and can be therefore
neglected.

After success on the RACH, requests are sent in packets of
2000 bits and, as discussed in Section III, served by a network
processor at the BS, modeled as an FCFS queue, after which
they move to another queue representing a BH from which
requests are dispatched to either the edge server or to another
queue representing the core network segment between the
BH and the cloud server. The mentioned queues have infinite
buffer space, and the RACH does not cause losses, so that all
requests eventually reach either the edge or the cloud server.
Downlink transmissions from the edge or cloud server follow
the respective inverse path, and are sent in individual packets
of 4000 bits. The capacity of the RAN slice radio link is 10
Mb/s in uplink and 25 Mb/s in downlink, representing a BS
slice dedicated to the considered service. The BH capacity is
20 and 35 Mb/s in uplink and downlink, respectively. These
values consider a service that accesses only a slice of the
backhaul resources. The core network slice capacity is 100
Mb/s in both uplink and downlink.

With these system parameters, the performance bottleneck
is at the edge and cloud sites, while network elements only
cause random delays. This implies that system performance
is determined by edge/cloud losses and service timeouts. The
value of the latter is set to TO=100 ms, in line with the
requirements of real-time services for autonomous driving,
online gaming, and augmented reality, just to mention a few
use cases [32], [33].

C. Numerical evaluation

We evaluate the NE of GANDALPH as a function of the
system load ρ, the number of cloud servers nC and the round-
trip-time distance of the cloud from UEs, as well as the
number of UEs in the system. We compare the NE to the
optimum α computed by a centralized strategy that minimizes
the failure probability. The NE is numerically found as the
value of a common edge selection probability αi=αNash for
which the individual failure probability does not improve
by selfishly deviating from it, according to the procedure
described in Section V-A. Numerical results produced by
using Matlab compute the loss probability of edge and cloud
servers and the LST of the overall RTT delay of served
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Fig. 2. Example of non-convex dependency of failure probability on
edge probability routing. The “Coordinated” curve represents the failure
probability vs. the edge routing probability achieved with RANDALPH. “Best”
and “Nash” mark the optimal coordinated strategy and the NE found with
GANDALPH, respectively. All network parameters are according to Table I.

requests resulting from the load partition between edge and
cloud imposed by the chosen αi, so as to be used in (3).
Since with a centralized approach or at equilibrium all users
adopt the same value of α, and because we only consider
GANDALPH at the NE, in what follows we drop the index i
from the notation.

Table I summarizes the default parameters used in the
numerical evaluation.

We start by showing that the optimization of RANDALPH
is not a convex problem and that multiple local minima can
exist. Fig. 2 shows the case with default parameters. The
figure zooms into the interval in which the optimum can be
found, which is marked with a blue dot on the curve of Pfail

vs α. he interval shown is not small, and, as can be seen, the
failure probability is somehow flat over a large portion of the
interval, which makes the search tedious. Two local minima
are clearly visible, and the NE point (marked with a red dot)
is close to one of them, although unfortunately not the one
giving the absolute minimum. Differences in failure probabil-
ities at the two minima and the NE are however quite small.
Here, to clearly show non-convexity, we consider a case with
very high load. Indeed, the total offered traffic is nu λu=3000
req/s, while the aggregate service capacity of edge and cloud
servers is (nC+nE)/0.005=2200 req/s, i.e., ρ=1.36. This
explains why the failure probability observed in the figure
is high. In particular, since at least 3000−2200=800 req/s
cannot be served (without considering timeouts), the bare
minimum loss to observe in the system is 800/3000=0.267.
Values reported in the figure, just above 0.3, are therefore
not surprising. Next, we consider a more extensive range of
loads that implies also more reasonable failure probabilities.

Fig. 3 compares the values of α in a scenario with all
default parameters except λu, which varies from 440 req/s
(ρ=0.2) to 2640 req/s (ρ=1.2). Results were obtained through
the centralized solution (i.e., RANDALPH) or the NE where
the edge routing probability is chosen by each UE (i.e.,
GANDALPH). The two curves have a similar trend, with just a
slight divergence for values of the system load ρ higher than
1, which have limited relevance.

For the same scenario of Fig. 3, Fig. 4 compares instead
the resulting value of Pfail, which is actually more interesting
than the sheer value of α. We can see that the two selection
policies achieve very close results. The corresponding PoA
(i.e., the ratio of the two curves) is shown in Fig. 5, and it
is found to be extremely limited, always below a decrease of
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Fig. 3. Routing strategies of optimized RANDALPH (Coordinated) and
GANDALPH (Nash) with the parameter values in Table I and variable system
load (obtained by varying λu only).
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Fig. 4. Failure probability achieved with optimized RANDALPH (Coordi-
nated) and GANDALPH (Nash) with the parameter values in Table I and
variable system load (obtained by varying λu only).

efficiency of 10% for ρ > 0.25. The fact that the value is
slightly higher for low values of ρ is not very relevant, as in
this case Pfail is very close to zero. More interesting is the
fact that the PoA attains its lowest values for a system load
value close to 90%, which is a more realistic operation point.

Fig. 6 investigates the role of the granularity of a single
UE. In particular, the figure shows results for a fixed total
arrival rate of nuλu=1500 req/s, i.e., a medium-high system
load (ρ=0.682), as the number of UEs that generate the load
increases and hence the importance of each user on the system
economy progressively vanishes. The rest of parameters take
their default values. As can be seen in the figure, the “size” of
the UE (i.e., λu=1500/nu) has little impact on performance,
which empirically confirms that using α as the probability
to route a single service request of a UE does not matter,
especially when the number of UEs is high. To explain
the result, note that only the aggregate traffic matters for
RANDALPH, whereas, the efficiency of GANDALPH slightly
decreases when more UEs are considered (each with a smaller
size so that the aggregate traffic is the same). This follows
from the principle known as the tragedy of the commons [10],
i.e., the system efficiency decreases when the role of the
individual in the community is less impactful, as selfish
behaviors are encouraged. In this case, however, the efficiency
loss is just marginal (note the values on the vertical axis).

Figs. 7 and 8 show the impact of the distance to the cloud,
whose increasing value deteriorates performance, because it
causes more failures. Here, we use nu=60 and λu=250 req/s,
and variable RTT between the cloud and the BH, while the
rest of parameters take their default values. Notice that the
system load in those figures is the same as in Fig. 6.

As illustrated in Fig. 7, the selfish allocation of GANDALPH
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Fig. 5. Price of anarchy of GANDALPH over the best allocation achieved
with RANDALPH with the parameter values in Table I and variable system
load (obtained by varying λu only).
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Fig. 6. Failure probability with optimized RANDALPH (Coordinated) vs.
GANDALPH (Nash) with a variable number of UEs at fixed aggregate traffic
of nuλu=1500 req/s, and the default parameter values in Table I (ρ=0.682).

pushes up the edge routing probability α, i.e., the probability
that the edge server be selected, up to 100%. This value is
reached when requests sent to the cloud are often violating
the timeout, which occurs almost certainly as soon as the
edge-cloud RTT approaches 73 ms, the RTT between UE and
edge being just below 27 ms, and the timeout 100 ms. The
distributed assignment GANDALPH is not particularly worse
than the original centralized RANDALPH, once again keeping
the loss of efficiency within 10%, as reported in Fig. 8. That
figure also shows that the PoA diminishes at very high delay,
which is not surprising since when the RTT is too high,
no strategy can lead to good performance since almost all
requests fail, either because they are routed to the cloud and
violate the timeout constraint, as done by the coordinated
approach, or because of the overflow of the edge queue to
which they are routed by the selfish approach.

Finally, the role of the cloud capacity is explored in
Figs. 9–12. In all figures, the capacity of the cloud is changed
by varying the number of servers (nC), but the first two
plots consider a fixed offered traffic (nu=60, λu=250 req/s,
while ρ changes with nC), whereas the second pair of figures
considers a fixed number of UEs and system load (nu=60,
ρ=0.682, while λu changes with nC). The number of servers
used at the cloud is indicated as the number of VMs allocated
to the service. In these experiments, the buffer space at the
cloud also scales with the number of VMs, with a ratio 5:1,
i.e., kC=5nC. The rest of parameters are as described in
Table I. The figures show that (i) edge routing probabilities
obtained with centralized and distributed approaches are
not distant (cf. Figs. 9 and 11), and (ii) the corresponding
failure probabilities are even closer (cf. Figs. 10 and 12).
In particular, Figs. 10 and 12 show that when the cloud
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Fig. 7. Routing strategies of optimized centralized RANDALPH (Coordi-
nated) and GANDALPH (Nash) vs the distance of the cloud from the edge,
with nu=60 UEs, λu=250 req/s (ρ=0.682) and other default parameters.
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Fig. 8. PoA vs. the distance of the cloud, with nu=60 UEs, λu=250 req/s
(ρ=0.682) and other default parameters.

contains fewer servers, the performance of both GANDALPH
and RANDALPH deteriorates, and both the coordinated and
distributed approaches achieve the same level of quality. They
also dictate a more frequent selection of the edge server, save
for GANDALPH under fixed aggregate traffic, where a plateau
is reached (see Fig. 9). However, the resulting differences in
terms of failure probability (Figs. 10 and 12) are minimal.

With fixed request arrival rate (nu λu=1500 req/s) and
variable cloud capacity (Figs. 9 and 10), the load ρ is below
1 with 7 or more VMs, because each VM contributes with
a capacity of 200 services per second (and the edge has
one VM). This explains the different behaviors of the curves
before and after the point at 7 VMs. The behavior of the
algorithms with only one VM at the cloud is interesting. In
that case, the capacities of edge and cloud are the same, and
the network is largely overloaded (1500 req/s with a total
capacity of 400 services per second). The edge and cloud
servers are in this case almost equivalent, since whenever a
service request reaches a server, it has a high chance of being
lost due to a full buffer, but if the request is accepted, it is
very likely to be the last in the buffer and, thus, have in front
9 services (one in progress and 8 in the buffer) at the edge,
and 4 services (one in progress and 3 in the buffer) at the
cloud. On average this implies 45 ms waiting delay at the
edge and 20 at the cloud, plus 5 ms for the request service,
plus the RTT from/to the UE. This means 76.955 ms at the
edge server (24.875+0.08+2+45+5) and 75.498 ms at the
cloud server (24.875 + 0.08 + 24.543 + 1 + 20 + 5). Hence,
the cloud server is slightly better, and we see in Fig. 9 that its
choice probability is slightly higher than 0.5 with the selfish
approach. Instead, the best coordinated strategy consists in
sending only a small part of the traffic to the edge, and let
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Fig. 9. Best strategy of optimized RANDALPH (Coordinated) and
GANDALPH (Nash) with variable cloud capacity (i.e., variable nC, the
number of virtual machines (VMs)), with fixed aggregate traffic of 1500
req/s generated by nu=60 UEs at λu=250 req/s. The buffer space of the
cloud is kC=5nC. Other parameters are as in Table I. Network capacity
is less than offered traffic, hence ρ > 1, as long as the number of VMs is
below 7.
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Fig. 10. Failure probability of optimized RANDALPH (Coordinated) and
GANDALPH (Nash) for the same scenario as for Fig. 9.

the rest be lost. By pursuing the more appealing solution,
GANDALPH incurs higher losses, a few percents more than
RANDALPH, although this effect is not well visible in Fig. 10
due to the adopted log scale.

Conversely, with fixed system load and variable offered
traffic (Figs. 11 and 12), the differences between GANDALPH
and RANDALPH are less important. In this case, at the NE
point, the edge routing probability is always a bit higher
than at the best coordinated operation point found with
RANDALPH. This happens because, being ρ < 1 and the edge
not saturated, any selfish UE sees an incentive in offloading
some traffic from cloud to edge, thus sparing some RTT and,
in turn, reducing the timeout probability.

VI. CONCLUSIONS

We presented a game theoretic analysis of a randomized
policy for edge/cloud server selection to satisfy latency-
constrained computing-based service requests. Our objective
is to quantify the efficiency of a distributed implementation
of the policy as compared to a centralized optimization of the
server selection probabilities. Our results are extremely en-
couraging, since they show that a selfish allocation by strate-
gic agents, through an algorithm called GANDALPH, behaves
very similar to the centralized optimal policy RANDALPH,
with values of α that are close, at least when the system is
not overloaded, and resulting performance metrics that are
even closer, in all cases, for the two approaches.
These results are quite a relevant finding, since they prove
the effectiveness of a fully distributed implementation of
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Fig. 11. Best strategy of optimized RANDALPH (Coordinated) and
GANDALPH (Nash) with variable cloud capacity (i.e., variable nC, the
number of virtual machines (VMs)), with fixed system load ρ=0.682
generated by nu=60 UEs and variable λu. The buffer space of the cloud
is kC=5nC. Other parameters are as in Table I.
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Fig. 12. Failure probability of optimized RANDALPH (Coordinated) and
GANDALPH (Nash) for the same scenario as for Fig. 11.

server selection policies based on global parameters, without
the need for constant network monitoring, thus achieving an
implementation which can be at the same time simple and
efficient, as claimed by the authors of [31].

Future work may include validation of these findings in
realistic testbeds and the development of a platform imple-
mentation, based on network slicing principles as in [30].
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