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Randomized selection trials are frequently used to compare experimental treatments that have 
the potential to be beneficial, but they often do not include a control group. While time-to-

event endpoints are commonly applied in clinical investigations, methodologies for determining 
the required sample size for such endpoints, except exponential distribution, are lacking. In 
recent times, there has been a shift in clinical trials, with a growing emphasis on progression-

free survival as a primary endpoint. However, the utilization of this measure has typically 
been restricted to specific time points for both sample size determination and analysis. This 
alteration in approach could wield a substantial influence on the clinical trial process, potentially 
diminishing the capacity to discern variances between treatment groups. In the calculation of 
sample sizes for randomized trials, this investigation operates under the assumption that the 
time-to-event endpoint conforms to either an exponential, Weibull, or generalized exponential 
distribution.

1. Introduction

Clinical trials are research studies that test the effectiveness of medical, surgical, or behavioral interventions on humans. Most 
researchers rely on these trials to evaluate whether new therapies or interventions, such as a new medication, diet, or medical device 
(such as a pacemaker), are safe and effective in humans. In the majority of cases, clinical trials are designed to test whether a new 
treatment is more efficient or has fewer side effects than the existing treatment [1]. It also aims to diagnose a disease early sometimes 
before there are any symptoms and also improve the quality of life for people suffering from life-threatening diseases. Thus, to fulfill 
these aims people volunteer for clinical trials. The participants of a trial are usually referred to as clinical subjects. The number of 
participants in a trial, thus, becomes a major part of the process.

The calculation of sample size (SS) to achieve the research objectives is a key step in the design of clinical studies and it must be 
chosen after careful consideration [2]. Planning the SS is essential if the population to be investigated for the study is challenging to 
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examine, such as a population with a rare condition where there are enough participants to undertake a trial of the standard size or 
a situation where trial participation is constrained, such as pediatric populations. The amount of precision needed, the anticipated 
impact size, the outcome’s unpredictability, and the desired level of significance all play a role in determining SS. In terms of 
statistical power, the SS should be sufficient to distinguish the experimental group from the control group without being excessive in 
terms of resource consumption. Additionally, false negative results may be caused by insufficient sample sizes, whereas false positive 
results may be caused by excessive sample sizes.

The design and analysis of randomized clinical trials focus largely on the expected time until an event occurs as the key outcome 
variable. The key outcome variable also known as the time-to-event outcome variable reflects the time until a participant has an 
event of interest. Sample size calculation methods are well-established for binary endpoints, but for time-to-event endpoints, which 
are commonly utilized in clinical trials, there is a lack of corresponding methods except the exponential distribution as discussed 
by Kieser [3]. Schober and Vetter [4] pointed out that the event under consideration should have clinical significance, a clear and 
precise definition, lack any ambiguity, and ideally, be easily observable.

Lewis [5] discussed that the SS is dependent upon the trial’s characteristics. For example, the therapy for many chronic diseases 
seeks to stop or lessen instances of a disease while for a rare chronic disease, the situation might be different. In such scenarios, 
entry criteria for clinical trials commonly involve estimating a minimum number of occurrences within a baseline period. McMahon 
et al. [6] gave SS formulae that take account of the entry criterion, and derived them for comparison of the mean number of events 
at follow-up and the proportion of patients with zero events at follow-up. Sargent and Goldberg [7] discussed a design guided by a 
specific decision criterion. Gogtay [8] discussed various formulae to calculate the SS. Chow [9] discussed three approaches for SS 
calculation which can be employed depending on the situation. The typical three distinct methods rely on the analysis of precision, 
analysis of power, and formulation of probability statements. Precision analysis is used to control the rate of Type I error. Power 
analysis is designed to attain a targeted likelihood of accurately identifying a clinically significant distinction when such a distinction 
genuinely exists. The intent behind the probability statement is to ensure that the chance of observing a specific event is lower than 
a predetermined set of values.

Iasonos and O’Quigley [10] discussed the role of randomization in the early phases of a clinical trial. Pourhoseingholi et al. [11]

discussed certain suggestions for distinct phases within a clinical trial stemming from considerations of SS. Spiegelhalter and Freed-

man [12] identified the weakness in the ‘textbook’ approach for the calculation of SS. To overcome that weakness a new prediction 
technique is introduced that considers previous clinical opinions regarding the treatment difference. Cotterill and Whitehead [13]

discussed Phase II trials involving binary endpoints for time-to-event outcomes. Bayesian computations for SS are outlined for both 
single-arm and randomized Phase II studies, incorporating proportional hazard models as the basis for time-to-event endpoints. Later 
Kakizume et al. [14] extended this idea further in explanatory trials. Zhou et al. [15] discussed a Bayesian optimal Phase II design 
tailored for time-to-event endpoints by employing exponential-inverse gamma model.

Dehbi and Hackshaw [16] computed sample sizes for both two- and three-arm randomized selection trials using precise binomial 
probabilities, with a predefined margin of practical equivalence (MPE). Later, Dehbi et al. [17] developed the theory for SS calculation 
in selection trials. Billings et al. [18] gave an alternative approach for the calculation of SS. This approach is based on the assumption 
that both the Type I and Type II errors were symmetric. This approach is heavily grounded in the assumption that the mean treatment 
response among groups is well-established, enabling precise medical decision-making and consequently minimizing the likelihood 
of a Type III error. The emphasis of this approach is on optimality, rendering the role of the powerless pertinent. Miller et al. [19]

discussed different approaches for SS calculation for clinical trials in rare diseases. Wang and Chow [20] discussed the significance 
of time-to-event within clinical trials. Assumptions revolving around proportional hazards (PH) or the exponential distribution of 
survival times have been conventionally integrated into SS estimations for two-arm clinical trials featuring a time-to-event endpoint. 
Phadnis and Mayo [21] discussed a methodology for calculating sample sizes in specific cases of both non-proportional hazard 
and non-proportional time scenarios has been developed. This involves considering that the survival durations for the control and 
treatment arms stem from two distinct Weibull distributions with varying location and shape parameters.

The conventional objective of power for a significance test may not always be an achievable or desirable goal for the investigation. 
However, selecting this approach and then specifying the necessary parameters for it fairly is a crucial stage in determining SS. This 
needs to be done so that the SS may neither exceed nor fall short of the target value. Wrong choice of parameter may lead to either 
a very large or small value of the SS which has serious consequences in the trial. If the SS is too small, it becomes difficult to detect 
a relevant treatment effect. However, if it is too large, patients enrolled in the trial later might be assigned to a treatment that is 
known to be less effective [3].

This study involves a selection trial [17] with time-to-event endpoints and the main objective of this research is to determine 
SS assuming generalized exponential distribution and further compare it with Weibull distribution based calculation. This study 
is useful to determine how well the drug works in subjects at a given dose to assess efficacy [22–25]. The reason for considering 
this particular distribution is explained as follows. According to Gupta and Kundu [26], three-parameter survival distributions 
like gamma, Weibull, exponentiated Weibull distribution, etc., contain three parameters namely location, shape, and scale, which 
contribute toward their adaptability and suitability for different domains of life. These are preferable to use than the exponential 
distribution which has a constant hazard rate. In these distributions, the hazard rate changes as the shape parameter changes as it 
is not constant like exponential distribution. However, there are certain limitations associated with the mentioned distributions. For 
instance, in the context of the Weibull distribution, the maximum likelihood estimation (MLE) becomes ineffective for specific values 
of the location parameter. Similarly, the median survival for the gamma distribution is obtained numerically. Thus, an alternative 
probability distribution, known as the generalized exponential distribution, is introduced by Gupta and Kundu [27], which has a 
2

closed-form hazard function and competing model to gamma and Weibull models. This distribution can be seen as a specific instance 
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of the exponentiated Weibull distribution when the location parameter is set to zero. The discrimination between the Weibull and 
generalized exponential distributions is thoroughly explained in a study by Gupta and Kundu [28].

The rest of the study is divided into four different sections. In Section 2, methods that are used for the analysis of SS calculation 
are presented. The results are discussed in Section 3. The conclusion and recommendations are given in Section 4.

2. Methodology for SS calculation for different distributions

This section discusses different methods for the calculation of SS for data generated from two different distributions. Let the 
dosage levels be selected and the trial would end in any of three possible states: superiority, practical equivalence, and inferiority. 
Let 𝑝𝑠𝑢𝑝, 𝑝𝑖𝑛𝑓 , 𝑝𝑒𝑞𝑢𝑖 denote the probabilities associated with these three states and 𝑝𝑠𝑢𝑝 + 𝑝𝑖𝑛𝑓 + 𝑝𝑒𝑞𝑢𝑖 = 1. The probability of the 
efficacious dose selected is defined as 𝜋. This may occur in one of two ways.

(1) If the observed median for dose 2 surpasses that of dose 1’s median by an extent greater than the MPE, which occurs with 
probability 𝑝𝑠𝑢𝑝.

(2) The observed medians lie within the MPE range, which happens with probability 𝑝𝑒𝑞𝑢𝑖. Therefore, the selection of dose 2 is 
determined by other factors, such as toxicity and quality of life.

The principle of indifference is applied in the case of lack of information about dose 2 and 𝜋 = 𝑝𝑠𝑢𝑝 + 0.5𝑝𝑒𝑞𝑢𝑖. Thus, it is crucial to 
calculate SS given a hypothesized median and MPE for the given two doses which ensures that the 𝜋 exceeded some threshold value, 
i.e., 0.80. Such studies are used to determine how well the drug works in subjects at a given dose to assess efficacy [3,22–25].

2.1. SS for exponentially distributed randomized trial

The reason for considering exponential distribution is its simplicity and wide application in time-to-event studies. Assuming no 
censoring, consider a trial that compares two levels of different dosages, specifically labeled as 1 and 2. The survival times, denoted 
as T follow an exponential distribution, i.e., 𝑇1 ∼𝐸𝑥𝑝(𝜃1) and 𝑇2 ∼𝐸𝑥𝑝(𝜃2), 𝜃𝑖 > 0. The exponential density function is given by:

𝑔(𝑡) = 𝜃𝑒−𝜃𝑡, 𝑡 > 0

Assuming 𝜃1 > 𝜃2, that the median time for dose 1 is greater than dose 2 implies that the median survival time with dose 2 is 
greater than that with dose 1. This is represented as, 𝑇̄1 =

1
𝜃1
< 𝑇̄2 =

1
𝜃2

and 𝑇1 =
ln(2)
𝜃1
< 𝑇2 =

ln(2)
𝜃2

. Thus, in terms of hypotheses, we 

can state 𝐻0 ∶ 𝑇1 = 𝑇2 and 𝐻1 ∶ 𝑇1 < 𝑇2. When there is no censoring, the median survival time estimator, denoted as 𝑇 , is unbiased.

Next, consider the case with no MPE. The main issue is to determine SS to verify that Pr(𝑇1 < 𝑇2) ≥ Q for a given threshold Q. In 
this context, Pr(𝑇1 < 𝑇2) is 𝑝𝑠𝑢𝑝.

Using MPE the efficacious treatment is chosen in two cases:

(1) The margin is exceeded by the observed difference in mean survival time between the other level and the more effective dose 
level.

(2) In a situation of practical equivalence with only two possibilities the most efficacious treatment is selected with a probability of 
50% provided other factors (like toxicity, cost) are unrelated to efficacy.

Let 𝜋𝑛(MPE) be defined as the likelihood of selecting the more effective treatment given an SS n and a given MPE, like three 
months of survival. Then, for the exponential distribution, we have

𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝑇1 − 𝑇2 < −𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(−𝑀𝑃𝐸 ≤ 𝑇1 − 𝑇2 <𝑀𝑃𝐸). (2.1)

Here, Pr(𝑇1 − 𝑇2 < -MPE) represents 𝑝𝑠𝑢𝑝, denoting the probability of the trial concluding with dose 2 being more effective. Addi-

tionally, Pr(-MPE ≤ 𝑇1 − 𝑇2 < MPE) is 𝑝𝑒𝑞𝑢𝑖, signifying the probability of the trial resulting in a state of practical equivalence. The 
resulting SS, denoted as 𝑛, is determined to ensure that 𝜋𝑛(MPE) exceeds a specified threshold 𝑄.

Consider survival data with right censoring next. In this case, we observe (𝑈𝑖, 𝛿𝑖), 𝑖 = 1, 2, ..., 𝑛, where 𝑈𝑖= min(𝑇𝑖, 𝐶𝑖), 𝛿𝑖 = 
I(𝑇𝑖 ≤ 𝐶𝑖), and 𝐶𝑖 representing the random potential censoring time. Since 𝑇𝑖 is independent of 𝐶𝑖, we assume non-informative 
right censoring. Considering that the (𝑈𝑖, 𝛿𝑖), 𝑖 = 1, 2, ..., 𝑛 are exponentially distributed in an identical and independent manner, the 
likelihood is

𝐿(𝜃) =
𝑛∏
𝑖=1

(𝜃𝑒−𝜃𝑢𝑖 )𝛿𝑖 (𝑒−𝜃𝑢𝑖 )1−𝛿𝑖 = 𝜃𝑟𝑒−𝜃𝑊 , (2.2)

where 𝑟 =
∑𝑛
𝑖=1 𝛿𝑖 and 𝑊 =

∑𝑛
𝑖=1 𝑢𝑖. The first and second derivatives of the log-likelihood can be expressed as 𝜕 ln𝐿(𝜃)

𝜕𝜃
= 𝑟

𝜃
−𝑊 and 

𝜕2 ln𝐿(𝜃)
𝜕2𝜃

= −𝑟
𝜃2

, respectively. In this context, 𝑟 signifies the number of observed events, and 𝑊 is the cumulative sum of observed 
event times. The observed information I(𝜃) computed by the negation of the second derivative of the log-likelihood, is given by 
3

𝑟

𝜃2
. With r following a binomial distribution with a non-censoring probability of p, for a SS of n, we have I(𝜃) = 𝑛𝑝

𝜃2
. Utilizing the 
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central limit theorem, the sampling distribution of 𝜃̂ = 𝑟
𝑊

converges to 𝜃 ∼𝑁(𝜃, 𝐼−1(𝜃)) =𝑁(𝜃, 𝜃
2

𝑛𝑝
) as 𝑛 →∞. By using the delta 

method, the natural logarithm of 𝜃 also follows a normal distribution, ln𝜃 ∼𝑁(ln𝜃, 1
𝑛𝑝
). Since the sampling distribution of ln𝜃 is 

normal, the distribution of ln𝜃2 − ln𝜃1 is also normal, ln𝜃2 − ln𝜃1 ∼𝑁(ln𝜃2 − ln𝜃1, 
2
𝑛𝑝
). Here, the ratio 𝜃2

𝜃1
corresponds to the hazard 

ratio (HR). Thus the expression gets reduced to ln𝜃2 − ln𝜃1 ∼𝑁(ln(𝐻𝑅), 2
𝑛𝑝
). These findings enable the calculation of the necessary 

SS through the standard normal distribution. Assuming 𝜃1 > 𝜃2, equation (2.1) can now be expressed as 𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝜃2 − 𝜃1 <
−𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(−𝑀𝑃𝐸 ≤ 𝜃2 − 𝜃1 <𝑀𝑃𝐸). This is followed by calculating the adequate SS to achieve 𝜋𝑛(𝑀𝑃𝐸)

𝑛 = 𝑛(𝑀𝑃𝐸,𝑄) = min{𝑛 ∈𝑁 ∶ 𝜋𝑛(𝑀𝑃𝐸) ≥𝑄}

2.2. SS for Weibull randomized trial

Since the Weibull distribution is a generalization of the exponential distribution and is more flexible in terms of hazard shape, it 
is also used as a benchmark model in time-to-event studies. Let the time-to-event for the kth arm (k = 1, 2) adheres to the Weibull 
distribution with shape parameter 𝛼𝑘 and rate parameter 𝜃𝑘. For 𝑡 > 0, the density function is expressed as

𝑔(𝑡) = 𝛼𝑘𝜃𝑘(𝜃𝑘𝑡)𝛼𝑘−1𝑒−(𝜃𝑘𝑡)
𝛼𝑘
, (𝜃𝑘, 𝛼𝑘) > 0.

Furthermore, let 𝜇𝑘 represent the median time-to-event in the kth arm. For the Weibull distribution, the median time to an event is 
𝜇 = 𝜃−1 ln2

1
𝛼 . We consider doses 1 and 2 practically equivalent if the difference in medians falls within the predefined MPE, i.e.,

|𝜇2 − 𝜇1| <𝑀𝑃𝐸.
If the median event time for dose 2 surpasses that of dose 1 by a margin greater than the predetermined MPE (Margin of Practical 
Equivalence), denoted as 𝜇2 − 𝜇1 > MPE, then dose 2 is deemed superior to dose 1. The current emphasis lies in estimating the 
median event time for each treatment arm, while accounting for non-informative random right censoring. The likelihood function 
pertinent to this scenario can be formulated as follows:

𝐿(𝛼, 𝜃) =
𝑛∏
𝑖=1

{𝛼𝜃𝛼𝑢𝛼−1𝑖 }𝛿𝑖 𝑒−(𝜃𝑢𝑖)𝛼 (2.3)

Using profile likelihood, the MLE of 𝜃 [29] (and supplementary text of [17]) is calculated as follows:

𝜃(𝛼) =

(∑𝑛
𝑖=1 𝑢

𝛼
𝑖∑𝑛

𝑖=1 𝛿𝑖

)−1∕𝛼

(2.4)

and after obtaining 𝜃, the estimate of 𝛼 can be obtained easily [27]. According to the invariance principle, the MLE of the median 
becomes 𝜇 = 𝜃−1 ln2

1
𝛼 . Then, employing the delta method, the standard error (SE) for 𝜇 in large samples can be obtained.

To estimate the SS, we use a large sample approximation, wherein 𝜇𝑘 ∼𝑁(𝜇𝑘, ̂𝜎2𝜇,𝑘), where 𝜇𝑘 signifies the median time-to-event 
in treatment arm k under the Weibull model, and 𝜎𝜇,𝑘 stands for the corresponding standard error (SE). For a pre-specified MPE, the 
probability of selecting the more effective dosage level is calculated as:

𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝜇2 − 𝜇1 >𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(|𝜇2 − 𝜇1| ≤𝑀𝑃𝐸)
= 1 − 1

2
Φ

{
𝑀𝑃𝐸 − (𝜇2 − 𝜇1)√

𝜎𝜇,1 + 𝜎𝜇,2

}
− 1

2
Φ

{
−𝑀𝑃𝐸 − (𝜇2 − 𝜇1)√

𝜎𝜇,1 + 𝜎𝜇,2

}
(2.5)

where Φ(.) denotes the cumulative probability of 𝑁(0, 1). Using 𝜋𝑛(MPE) and ensuring a probability of selection of at least Q, the 
required SS for identifying the most effective treatment is determined

𝑛 = 𝑛(𝑀𝑃𝐸,𝑄) = min{𝑛 ∈𝑁 ∶ 𝜋𝑛(𝑀𝑃𝐸) ≥𝑄}

To verify the power computations using equation (2.5), simulated Weibull datasets were generated with shape and rate parameters 
(𝛼1, 𝜃1) and (𝛼2, 𝜃2) for doses 1 and 2, respectively. For each treatment arm, k ∈ 1,2, the MLE of the median 𝜇𝑘 and its corresponding 
standard error 𝜎𝜇,𝑘 were calculated [30]. The probability of choosing a more efficacious treatment 𝜋𝑛(𝑀𝑃𝐸) for a specified MPE 
was calculated using two methods:

(1) Using a large sample approximation as given in equation (2.5).
4

(2) Empirically by averaging 𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝜇2 − 𝜇1 >𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(|𝜇2 − 𝜇1| ≤𝑀𝑃𝐸).
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2.3. SS for generalized exponential randomized trial

For the generalized exponentially distributed data, our starting point involved instances without censoring, where the time taken 
by each participant to experience a specific event is documented. As previously, let a trial encompassing two different dosage 
levels, denoted as levels 1 and 2. The survival times T were distributed according to the generalized exponential distribution. More 
specifically, 𝑇1 ∼ GenExp(𝛼1, 𝜃1) and 𝑇2 ∼ GenExp(𝛼2, 𝜃2), where 𝛼𝑖 > 0 and 𝜃𝑖 > 0 for i = 1,2. The generalized exponential density 
function is

𝑔(𝑡) = 𝛼𝜃𝑒−𝜃𝑡{1 − 𝑒−𝜃𝑡}𝛼−1 (2.6)

For a generalized exponential distribution governed by a shape parameter 𝛼 and a rate parameter 𝜃, the median time-to-event is 
given by −1

𝜃
(ln(1 − 0.51∕𝛼)). We deem doses 1 and 2 as practically equivalent if the disparity between their medians falls within the 

MPE range, expressed as |𝜇2 − 𝜇1| <𝑀𝑃𝐸. When the median of dose 2 surpasses dose 1 by a margin greater than the MPE, which 
is expressed as 𝜇2 − 𝜇1 > MPE, we consider dose 2 to be superior to dose 1. Moving forward, our objective is to estimate the median 
event time for each of the two treatment arms by utilizing non-informative random right censoring. In the case of a particular arm, 
the data is represented as tuples (𝑈𝑖, 𝛿𝑖), where 𝑈𝑖 =min(𝑇𝑖, 𝐶𝑖), and 𝛿𝑖 is one if 𝑇𝑖 ≤ 𝐶𝑖 and zero otherwise. The likelihood is

𝐿(𝛼, 𝜃) =
𝑛∏
𝑖=1
𝛼𝜃𝑒−𝜃𝑡{1 − 𝑒−𝜃𝑡}𝛼−1 (2.7)

Using the MLE method, we estimated the parameters 𝛼 and 𝜃 while using the invariance property, the MLE of the median is thus 
obtained, which is 𝜇 = −1

𝜃
(ln(1 − 0.51∕𝛼)).

To estimate the SS, a large sample approximation is employed where 𝜇𝑘 follows a normal distribution 𝑁(𝜇𝑘, ̂𝜎2𝜇,𝑘). Here, 𝜇𝑘
represents the median time-to-event in treatment arm k based on the generalized exponential model, and 𝜎𝜇,𝑘 is the associated SE. 
Given the MPE, we determine the probability of selecting the more effective dosage level using:

𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝜇2 − 𝜇1 >𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(|𝜇2 − 𝜇1| ≤𝑀𝑃𝐸)
= 1 − 1

2
Φ

{
𝑀𝑃𝐸 − (𝜇2 − 𝜇1)√

𝜎𝜇,1 + 𝜎𝜇,2

}
− 1

2
Φ

{
−𝑀𝑃𝐸 − (𝜇2 − 𝜇1)√

𝜎𝜇,1 + 𝜎𝜇,2

}
(2.8)

where Φ(.) denotes the cumulative distribution function of 𝑁(0, 1). Using 𝜋𝑛(MPE) and ensuring a probability of selection of at least 
Q, the required SS for identifying the most effective treatment is determined by

𝑛 = 𝑛(𝑀𝑃𝐸,𝑄) = min{𝑛 ∈𝑁 ∶ 𝜋𝑛(𝑀𝑃𝐸) ≥𝑄}

For verifying the power calculations presented in equation (2.8), a series of simulations were conducted for various sample sizes 
n ∈ 5,10, ...,100. These simulations involved generating datasets with distinct shape and rate parameters (𝛼1, 𝜃1) and (𝛼2, 𝜃2) for both 
dosages. For each treatment arm k ∈ 1,2, the MLE of the median 𝜇𝑘 and the corresponding SE 𝜎𝜇,𝑘 are calculated. Subsequently, 
the probability of selecting a more effective treatment, denoted as 𝜋𝑛(𝑀𝑃𝐸), is computed for a specified MPE using two different 
methods:

(1) Using a large sample approximation as given in equation (2.8).

(2) Empirically by averaging 𝜋𝑛(𝑀𝑃𝐸) = 𝑃𝑟(𝜇2 − 𝜇1 >𝑀𝑃𝐸) + 0.5 × 𝑃𝑟(|𝜇2 − 𝜇1| ≤𝑀𝑃𝐸).
3. Data generation and results

In survival analysis, the data usually consists of two columns, i.e., survival time and censoring status. Data are generated by 
varying both parameters of the distribution using the library temporal as discussed in McCaw [30]. The steps involved in SS calculation 
are given as follows.

(1) Generate data from a given distribution.

(2) Estimate the parameters of the model using the optimize function of the R package maxLik. In this study, we used two sets of 
parameters. The first one is 𝛼2 =2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 and 𝜃2 =0.08 and 0.09, whereas the second set of parameters is 
𝛼2 =1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, and 𝜃2 =0.10 and 0.11 for the models considered in 
this study.

(3) Calculate the median and SE of the median using estimated parameters.

(4) Specify the power or the target probability and calculate the probability for the correct selection of treatment that meets the 
minimum threshold value.
5

(5) The required value of n is the smallest value for which the condition in Step 4 becomes true.
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Table 1

Sample size for Weibull randomized trial.

censoring (%) 𝜃2 𝛼2

2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.08 10 10 10 10a 10a 10a 10a

0.09 71 48 36 29 26 22 20

10 0.08 10 10 10 10a 10a 10a 10a

0.09 72 49 39 31 27 23 20

20 0.08 10 10 10 10a 10a 10a 10a

0.09 75 50 40 32 27 24 20

30 0.08 10 10 10 10a 10a 10a 10a

0.09 81 55 42 35 29 25 22

40 0.08 10 10 10 10a 10a 10a 10a

0.09 88 60 46 38 33 28 25

a Adjusted value.

3.1. Results and discussion

This section discusses the results computed using different models. We begin with the values of median survival of the two arms. 
The median survival in arm 1 in the case of Weibull is 8.3 months which occurs when 𝛼 = 2 and 𝜃 = 0.10. For arm 2, we vary the 
values of the parameters such that our initial assumption of 𝜃1 > 𝜃2 remains true. We consider different values of the parameters of 
the second treatment arm such that the median difference between the two arms is up to 4 months. The results for different median 
differences of the two arms are discussed below.

3.1.1. SS for Weibull distribution

This section presents and discusses the results of SS calculated for randomized trials under the Weibull distribution. The results 
for different median differences of the two arms in cases with and without censoring are shown and discussed here. Table 1 considers 
the cases of censoring from 0% to 40%. It shows that for a given value of the rate parameter say 0.09, a smaller SS is required to 
attain the condition of practical equivalence for increasing values of the shape parameter. To achieve 80% statistical power, the 
necessary SS required is 71 patients. This calculation takes into consideration the MPE of one month. Consequently, when dealing 
with smaller median differences, a larger SS is needed to attain 80% power. On the other hand, as the median difference becomes 
larger, a smaller SS suffices to achieve the same 80% power. When the censoring rate is raised to 10%, and the shape parameter is 
adjusted while keeping the rate parameter constant, the necessary SS decreases. However, it is important to highlight that, even in 
this scenario, larger sample sizes are needed compared to those required in the absence of censoring. We attribute this to the loss of 
information while censoring. For example, for 𝛼2 = 2.4 and 𝜃 = 0.09 a sample of 72 patients is required to attain 80% power. Now in 
the case of 20% censoring, the SS rises to 75 under the same conditions. As the censoring rate increases from 20% to 30% the SS gets 
larger, i.e., the SS rises to 81. With 40% censoring, the SS needed is 88. This leads us to the observation that as the rate of censoring 
increases, a greater SS becomes necessary to achieve the desired power level (80% in our study). Another noteworthy aspect is the 
median difference’s influence. A decrease in median difference demands a larger SS for reaching the desired power, while an increase 
in median difference demands a smaller SS to achieve the desired power while keeping all other factors constant.

As in Table 1 one can notice that for 𝜃 = 0.08 the value for SS is 10 for all values of 𝛼2. This arises due to a greater difference in 
the two median arms compared to the other value which is equal to 0.09. When the median difference between the two arms gets 
greater, a smaller SS is required to achieve the practical equivalence. Therefore, in this case, the SS is smaller as the difference is 
greater (the minimum value of SS in the result).

We also assumed 𝜃2 = 0.10 and 0.11, where the median survival in arm 1 in the case of Weibull is 6.5 months which occurs when 
𝛼 = 1.5 and 𝜃1 = 0.12. For arm 2, we vary the values of the parameters such that our initial assumption of 𝜃1 > 𝜃2 remains true. We 
consider different values of the parameters of the second treatment arm such that the median difference between the two arms is 
up to 4 months. The results for different median differences of the two arms are listed in Table 2. Table 2 considers the cases of 
censoring from 0% to 40%. It shows that for a given value of the rate parameter say 0.11, a SS of 60 patients is required to attain the 
condition of practical equivalence for increasing values of the shape parameter. Consequently, when dealing with smaller median 
differences, a larger SS is needed to attain 80% power. On the other hand, as the median difference becomes larger, a smaller SS 
suffices to achieve the same 80% power. When the censoring rate is raised to 10%, the necessary SS increases. The results are further 
illustrated in Fig. 1.

3.1.2. SS for the generalized exponential distribution

This section presents and discusses the results of different median differences of the two arms in cases with and without censoring 
for a randomized trial assuming the generalized exponential distribution.

Table 3 lists the results for SS estimation with 0% to 40% censoring. It shows that for a given value of the rate parameter say 0.08 
smaller SS is required to attain the condition of practical equivalence for increasing values of the shape parameter. The calculations 
6

show that for five-month difference in the median between the two arms, a SS of 15 patients per arm is needed to attain 80% power 
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Table 2

Sample size for Weibull randomized trial.

censoring (%) 𝜃2 𝛼2

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.10 18 15 13 11 10 10 10 10 10 10 10 10 10 10 10 10

0.11 61 42 33 28 23 19 17 16 14 13 13 12 11 10 10 10

10 0.10 18 16 14 12 11 10 10 10 10 10 10 10 10 10 10 10

0.11 62 43 33 28 23 20 19 16 14 13 13 12 12 11 10 10

20 0.10 20 16 14 12 11 10 10 10 10 10 10 10 10 10 10 10

0.11 66 46 35 30 25 22 19 17 17 14 14 13 12 11 10 10

30 0.10 21 17 15 13 12 11 10 10 10 10 10 10 10 10 10 10

0.11 69 49 37 31 27 23 21 19 17 15 15 13 12 12 11 10

40 0.10 22 19 15 14 13 12 11 10 10 10 10 10 10 10 10 10

0.11 76 51 41 33 28 25 22 20 19 16 15 14 13 12 11 10

Fig. 1. Sample Size for Weibull randomized trials assuming (a) 0%, (b) 10%, (c) 20%, (d) 30%, and (e) 40% censoring.

with the MPE of one month. For the value 0.09 of the rate parameter, the median difference gets smaller for the same values of shape 
parameters. Hence, as the shape parameter remains constant, the median difference diminishes, and for narrower median differences, 
a larger SS is necessary to achieve 80% power. Conversely, when the median difference rises, a smaller SS suffices to attain 80% 
power.

For 10% censoring, the SS increases. However, it is essential to observe that despite this trend, the required SS remains larger 
for the specific parameter values than that was required in the case without censoring. For example, for 𝛼2 = 2.4 and 𝜃 = 0.09, a 
7

sample of 39 patients is required to attain 80% power whereas when there is no censoring, a study would need a SS of 34 patients 
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Table 3

Sample size for generalized exponential randomized trial.

censoring (%) 𝜃2 𝛼2

2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.08 15 13 11 10 10 10a 10a

0.09 34 38 22 20 17 15 14

10 0.08 17 14 13 11 11 10 10a

0.09 39 30 25 22 19 17 15

20 0.08 20 16 15 13 11 10 10a

0.09 45 36 29 25 21 19 18

30 0.08 22 19 17 15 14 13 11

0.09 53 42 34 28 26 23 21

40 0.08 27 23 21 20 16 15 14

0.09 67 52 41 34 29 27 26

a Adjusted value.

Table 4

Sample size for generalized exponential randomized trial.

censoring (%) 𝜃2 𝛼2

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.10 35 28 20 18 15 14 12 11 10 10 10 10 10 10 10 10

0.11 47 32 25 23 20 18 15 14 12 11 10 10 10 10 10 10

10 0.10 39 30 24 20 17 15 13 12 12 10 10 10 10 10 10 10

0.11 52 43 34 28 24 19 17 16 14 13 12 11 11 10 10 10

20 0.10 43 36 27 25 21 17 15 13 12 11 10 10 10 10 10 10

0.11 60 45 40 31 25 21 19 17 16 14 13 12 11 10 10 10

30 0.10 50 40 28 26 23 21 17 16 14 13 12 11 11 10 10 10

0.11 72 51 40 34 31 27 23 20 18 16 15 14 13 12 11 10

40 0.10 60 43 34 31 28 25 21 20 18 15 14 13 13 12 11 10

0.11 80 56 46 37 33 30 26 23 22 20 19 17 16 15 14 10

given the same conditions. Therefore, it can be inferred that the presence of censoring necessitates a larger SS to satisfy the specified 
conditions. As the censoring rate increases from 10% to 20% understandably the required SS gets larger. The SS which was 34 and 
39 in the presence of 0% and 10% censoring, respectively, now rises to 45 under the same conditions. Similarly, as the censoring 
rate increases from 20% to 30%, the required SS gets greater. The SS which was 45 in the presence of 20% censoring, now rises to 
53 under the same conditions. The SS, which is 53 under 30% censoring, grows to 67 for 40% censoring. This illustrates that as the 
censoring rate becomes greater, a larger SS becomes necessary to achieve the designated power of 80%. Similarly, the results for 
other censoring rates can be interpreted.

Table 4 considers the case with 0% to 40% censoring. It shows that for a given value of the rate parameter say 0.11 smaller SS 
is required to attain the condition of practical equivalence for increasing values of the shape parameter. Calculations show that for 
five months difference in median between the two arms SS of 35 patients per arm is needed to attain 80% power. For the value 0.11 
of the rate parameter, the median difference gets smaller for the same values of shape parameters. Hence, as the shape parameter 
remains constant, the median difference diminishes, and for narrower median differences, a larger SS is necessary to achieve 80% 
power. Conversely, when the median difference rises, a smaller SS suffices to attain 80% power. The SS increases as the censoring 
rate increases. For example, the SS which was 28 and 30 in the presence of 0% and 10% censoring for 𝛼2 = 1.6, respectively, now 
rises to 36 for 20% censoring. The results are further illustrated in Fig. 2.

3.2. Comparison of results of the two distributions

After calculating the SS assuming Weibull and generalized exponential distributions, the question now arises which distribution 
is better to determine SS. The better one under the same conditions would be the one that requires a smaller SS compared to the 
other. As one can notice from the tables the SS required for generalized exponential distribution is smaller compared to the Weibull 
distribution for the given value of shape and rate parameter. For example, assuming 𝛼2 = 2.4 and 𝜃1 = 0.09 to attain 80% power 
without censoring, the Weibull distribution requires a SS of 71, while the generalized exponential distribution requires a SS of 34. 
However, as the censoring rate increases, the SS also increases but it is smaller for the generalized exponential distribution compared 
to the Weibull distribution. Similarly, for 𝛼 = 1.5 and 𝜃 = 0.11, to attain 80% power, the Weibull distribution gave a SS of 60, while 
the generalized exponential distribution requires a SS of 28 without censoring. This demonstrates that the generalized exponential 
distribution outperforms the Weibull distribution in achieving the stated practical equivalence under the MPE of one month and 80% 
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power. An important observation here pertains to the value of the MPE. When the MPE value is zero, the probability of selection of 
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Fig. 2. Sample Size for generalized exponential randomized trials assuming (a) 0%, (b) 10%, (c) 20%, (d) 30%, and (e) 40% censoring.

the right treatment approaches one as the SS increases. Conversely, if the MPE is greater, i.e., 2, which indicates that the expected 
median difference is within the MPE, the probability of selection of treatment approaches 0.5 as the SS increases. Generally, when 
the anticipated difference in the median is within the MPE, the probability of selecting the more effective treatment is expected 
to decrease towards 0.5 with larger sample sizes. This phenomenon is due to the increasing likelihood that the median difference 
will fall within the MPE range as the SS grows. In the case of small sample sizes, the more effective treatment could inadvertently 
demonstrate a superiority over the competitor by a margin exceeding the MPE. It is important to emphasize that planning a trial 
holds limited practical significance in cases where the difference in medians is within the MPE. For this reason, an MPE of one is 
chosen.

4. Conclusion and recommendations

The goal of randomized selection trials is to suggest the best treatment option. However, the treatment decision must take into 
account more than just efficacy unless there is a considerable difference in the options’ efficacy. The MPE can be incorporated into 
the research design phase to achieve the goal of best treatment systematically. Randomized trials are particularly relevant when a 
recognized standard of care is absent. In such cases, the notion of Type I error does not directly relate to sample size calculation, 
as the absence of an internal competitor. However, researchers can define a minimal efficacy threshold that a treatment approach 
should satisfy to warrant further consideration. Considering external or historical references, such a threshold can be created.

This study focused on determining the necessary sample size for a selection randomized trial involving time-to-event endpoints, 
utilizing parametric survival distributions. Our methodology is particularly suitable when there’s limited prior knowledge about the 
survival curve or when external data indicates that Weibull or generalized exponential models suitably approximate the curves. While 
the exponential model assumes a constant hazard function, the Weibull and generalized exponential models exhibit a monotonic 
hazard function. In cases where there is a possibility of a different hazard function shape, simulations can be employed to derive the 
requisite sample size. In this research, a probability threshold of 0.80 is taken. The treatment’s probability of being correctly selected 
9

is considered higher than this threshold value for a specific sample size n. The minimum value of n for which it attains the threshold 
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value of 0.80 is thus the required sample size. It is shown that a large sample size is required if there is a large censoring and vice 
versa. Similarly, assuming the same values of parameters, generalized exponential results into smaller sample sizes to achieve the 
same power.

In the future, this study can be expanded by employing other survival distributions such as gamma, generalized gamma, and 
log-normal distributions.
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