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An efficient multi–field coupled dynamic model for saturated anisotropic porous materials is 
proposed here. The mathematical formulation of the dynamic deformation–diffusion problem 
is developed starting from the mixture theory and the definition of the effective stress 
for anisotropic poro–elasticity, taking into account also the fluid phase compressibility and 
anisotropic permeability. The effective stress principle is properly extended through the Biot 
tensor to predict the coupling between the shear stress of the solid skeleton and the pore 
fluid pressure. Numerical solution of the coupled problem is obtained by inf-sup stable Finite 
Element spaces. A fundamental issue for the computational efficiency of the coupled model is the 
numerical solution of the resulting large–size and non–symmetric discrete problem. In this work, 
we develop a fully implicit monolithic solver based on the Bi–Conjugate Gradient Stabilized (Bi-

CGStab) algorithm accelerated via an ad–hoc Multi–Physics Reduction (MPR) preconditioning 
technique. The proposed advances are implemented in the 3D GeoMatFem research code and 
several numerical analyses are performed to test the potential and computational efficiency of 
the proposed tool. In particular, we focus on 3D wave propagation applications in fully saturated 
single and multi-layered anisotropic media. Numerical results show that our implementation is 
able to identify the shear wave splitting phenomenon due to the different degree of material 
symmetry between the solid phase and the whole porous material.

1. Introduction

Research and development of mathematical models describing the coupled multi–physical behavior of porous materials [1,2], 
along with their accurate, robust and efficient numerical implementation in modern computing machines, is still a compelling 
challenge for engineers and scientists in various fields, from structural mechanics, to geotechnics, reservoir engineering and biome-

chanics, e.g. [3–6]. Recent notable examples can be the influence of porosity content on the mechanical properties of composite 
laminates (carbon-fiber-reinforced plastics, CFRP) used in the design of aerospace or automotive components [7], or the inference of 
destructive seismic forces acting on buildings when appropriate seismic protection tools are in place [8], but also wave propagation 
through cancellous bones or tissues is an emerging application area to survey health status or any diseases [9].

Anisotropy of solid constituents is often a fundamental property to consider for an accurate representation of many materials 
at a macroscopic scale. Such solids exhibit a different mechanical response along some directions due to spatial inhomogeneity 
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Fig. 1. REV for a fully saturated porous medium and its representation by Mixture Theory.

typically arising from the atomic arrangement (crystallography) or the micro– and macro–structure. Therefore, transverse isotropic, 
orthotropic, monoclinic and triclinic constitutive models [10] were developed, to properly describe for instance laminates, tissues, 
wood, some polymers, concrete, soils and rocks. In geophysics and geosciences, the detection of the degree of anisotropy through 
the study of wave propagation in geomaterials [11,12] can provide important pieces of information, not only on the mechanical 
properties of the solid, but also on the orientation and distribution of inner layers of water, gas, oil, coal and shale. In addition, in 
order to accurately represent the anisotropic medium it is also important to consider the different degree of anisotropy between the 
solid phase and the entire solid skeleton through the definition of an appropriate constitutive law linking stress and deformation of 
the porous medium with pore pressure [13]. In all these applications, the availability of a fully coupled multi-field model for the 
dynamic simulation of anisotropic porous materials is of paramount importance.

In the present work, we consider a two-phase (solid and fluid) material and follow the Mixture Theory [14] to establish the 
set of governing conservation laws. By using the generalized Hooke law with the definition of effective stress for anisotropic poro-

elasticity [15,16] for the solid skeleton and the generalized Darcy law for the fluid part, the multi-field formulation of the governing 
dynamic PDEs in saturated porous materials is developed [17]. The numerical solution to the resulting initial-boundary value problem 
is obtained within the classical inf-sup stable Finite Element (FEM) framework in space [18–20] and the one–step generalized 
trapezoidal method (𝜗–Method) in time [21], while the non-linearities are addressed by a Newton procedure. The resulting discrete 
problem is solved in a fully implicit monolithic way, so as to preserve the coupling between the main variables also from a numerical 
point of view with no time step size restrictions with regard to the marching scheme stability [22]. However, fully implicit schemes 
require the solution to a time-sequence of large-size ill-conditioned block-structured linear systems. To this aim, the Bi-Conjugate 
Gradient Stabilized (Bi-CGStab, [23]) algorithm was used as a linear solver accelerated by an ad–hoc Multi–Physics Reduction (MPR) 
preconditioning technique [24–26] specifically developed for the coupled problem at hand. These advances are implemented in 
a MATLAB research code, called GeoMatFEM [27], used for coupled 3D dynamic geomechanical simulations. A set of numerical 
investigations, based on the work in Reference [28], are carried out to test the overall model efficiency and robustness. Finally, we 
consider the simulation of the shear wave splitting process in an anisotropic porous solid, providing evidence that the phenomenon 
can also occur as a result of a different degree of material symmetry axes between the solid phase and the whole medium.

The paper is organized as follows. First, the mathematical model describing the coupled dynamic deformation and fluid diffusion 
in saturated porous materials is reviewed and the numerical solution is described, with reference to the space and time integration 
strategies. Then, the original preconditioned iterative method for solving the time sequence of linear systems is presented and 
discussed in detail. In the numerical results section, three classes of dynamic analyses are presented: (i) the dynamic consolidation 
of a soil column, (ii) the propagation of plane waves in an anisotropic soil in plane strain conditions, and (iii) the simulation of the 
shear wave splitting phenomenon within a three dimensional fully saturated porous medium. The solver performance and robustness 
is discussed in detail with reference to the properties of the anisotropic constitutive model. Finally, a set of remarks close the 
presentation.

2. Governing equations

In this work, a two-phase porous material is considered, consisting of a solid matrix with relatively small interconnected pores 
that are completely filled by a fluid phase. Following the Mixture Theory [14], this saturated biphasic system can be represented 
by an effective medium in the Representative Elementary Volume (REV), where the distributions of the individual constituents are 
homogenized such that the volume of each material point within the REV is occupied by a fraction of solid and fluid constituents 
(Fig. 1).

The mass and linear momentum balance equations, governing this physical model in the dynamic regime for the two phases 
(index S for the solid-phase, F for the pore fluid phase), are defined as:

𝜌𝑆 𝒗̇ =∇ ⋅ 𝝈𝑆 + 𝜌𝑆𝒈+ 𝒉𝑆 , (1a)

𝜌𝐹 𝒘̇+∇𝒘 ⋅𝒘𝑹 =∇ ⋅ 𝝈𝐹 + 𝜌𝐹 𝒈+ 𝒉𝐹 , (1b)

̇𝜌𝑆 + 𝜌𝑆∇ ⋅ 𝒗 = 0 , (1c)

𝐹

2

̇𝜌𝐹 + 𝜌 ∇ ⋅𝒘 = 0 , (1d)
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where 𝜌𝐹 = 𝜑𝜌𝐹 and 𝜌𝑆 = (1 − 𝜑)𝜌𝑆 are the partial mass densities of the two phases, computed as the product of the volume 
fraction, with 𝜑 the porosity, and the intrinsic mass density, with 

∑
𝛼=𝑆,𝐹 𝜌

𝛼 = 𝜌; 𝒗, 𝒘, 𝒘𝑹 are the solid, fluid and relative (fluid 
minus solid) velocity vectors; 𝝈𝛼 is the partial Cauchy stress tensor of the 𝛼-phase; 𝒈 is the gravitational acceleration and 𝒉𝛼 is the 
volume specific local interaction force between the phases, so that 

∑
𝛼=𝑆,𝐹 𝒉

𝛼 = 𝟎. Furthermore, we indicate by ̇(∗) the material time 
derivative with respect to the motion of the solid phase, by ∇(∗) the spatial gradient operator, by “⋅” the scalar product and by ∇⋅
the divergence operator. Thermal effects as well as any mass exchange between the constituents are not taken into account here, 
while the compressibilities of the two phases are regarded with a standard barotropic state law.

Considering a homogeneous, linear elastic and anisotropic solid, the constitutive relationships for the solid matrix are provided 
by an extension of Terzaghi’s principle, as illustrated in [13], and by Hooke’s law:

𝝈′𝑆 = 𝝈 +𝑨𝑝 = C ∶ 1
2
(
∇𝒖+∇𝑇 𝒖

)
= C ∶ ∇𝑠𝒖, (2a)

𝑨 =
(
I − C S𝑆

)
∶ 𝟏, (2b)

where 𝝈′𝑆 is the 2nd order effective stress tensor of the solid skeleton; 𝝈 = 𝝈𝑆 + 𝝈𝐹 is the total stress tensor of the mixture, sum of 
the partial stresses; 𝑨 is the 2nd order Biot effective stress coefficient tensor; 𝑝 is the pore fluid pressure; C is the 4th order elastic 
constitutive tensor of the mixture depending on the material proprieties; ∇𝑠 denotes the symmetric gradient operator; 𝒖 is the solid 
displacement vector, whereas S𝑆 refers to the elastic compliance tensor of the solid part. As described in [15,16], the type of Biot 
tensor 𝑨, namely full, diagonal or identity, depends on the degree of anisotropy of the solid phase and the entire porous material. In 
this work, the most general condition of a full Biot tensor is taken.

Generalized Darcy’s law is considered as the constitutive equation for the fluid phase in laminar flow, relating the fluid flow rate 
to the pore pressure gradient:

𝜑𝒘𝑅 =
(
−𝒌𝐹 ∕𝛾𝐹

)
∇𝑝 , (3)

where 𝜑𝒘𝑅 is the Darcy velocity, 𝒌𝐹 is the 2nd order hydraulic conductivity tensor, while 𝛾𝐹 = 𝜌𝐹 𝑔 is the fluid intrinsic unit weight, 
with 𝑔 = |𝒈| the scalar gravitational acceleration. The hydraulic conductivity tensor can be anisotropic and, if so, its components can 
be obtained through experimental methods [29]. Finally, for the volume-specific local interaction force 𝒉𝐹 we have:

𝒉𝐹 = −𝜑2𝛾𝐹𝒌𝐹 ,−1𝒘𝑅 + 𝑝∇𝜑 (4)

By combining the constitutive relationships (2) and (3) with the governing laws (1) and the force definition (4), the following set 
of partial differential equations (PDEs) is obtained:

𝜌𝑆 𝒗̇ =∇ ⋅
[
𝝈′𝑆 −

(
𝑨−𝜑𝟏

)
𝑝
]
+ 𝜌𝑆𝒈+𝜑2𝛾𝐹𝒌𝐹 ,−1𝒘𝑅 − 𝑝∇𝜑 , (5a)

𝜌𝐹 𝒘̇+ 𝜌𝐹∇𝒘 ⋅𝒘𝑅 = −𝜑∇𝑝+ 𝜌𝐹 𝒈−𝜑2𝛾𝐹𝒌𝐹 ,−1𝒘𝑅 , (5b)

Λ𝑝̇+𝑨 ∶ ∇𝑠𝒗+ 1
𝜌𝐹

∇ ⋅
(
𝜌𝐹𝒘𝑅

)
= 0 , (5c)

where the first and the second equations prescribe the momentum balance of the solid and fluid phases, respectively, while the third 
one is the mass balance of the entire mixture obtained by considering the same procedure described in [30] properly extended to an 
anisotropic medium. The scalar quantity Λ is the compressibility modulus, computed as [15]:

Λ = (1 −𝜑)
𝖪𝑆

+ 𝜑
𝖪𝐹

−𝑨 ∶ S ∶𝑨 = (1 −𝜑)
𝖪𝑆

+ 𝜑
𝖪𝐹

− 𝟏 ∶ S𝑆C S𝑆 ∶ 𝟏, (6)

with 𝖪𝛼 the bulk modulus of the 𝛼-phase and S the elastic compliance tensor of the entire mixture. By considering the small strain 
hypothesis, the coupled equations (5a)-(5c) are linear and, in addition, by assuming that 𝜑 ≈ 𝜑0, ∇𝜑 ≈ 𝟎, the convective term 
∇𝒘 ⋅𝒘𝑅 ≈ 𝟎 and the fluid density gradient ∇𝜌𝐹 ≈ 𝟎 can be overlooked.

To simultaneously compute the solid displacement and velocity, the corresponding strong definition, i.e., 𝒖̇ = 𝒗, is added to the 
previous set of governing PDEs. Finally, in order to improve the stability of the numerical solution [17], equations are rearranged by 
adding the linear momentum of fluid phase (5b) to the linear momentum of solid phase (5a) and to the mass balance equation (5c), 
so as to obtain the governing initial-boundary value problem (IBVP) that follows.

Let Ω ⊂ ℝ𝑑 and Γ denote the domain occupied by a porous medium and its boundary, respectively, with 𝒙 the position vector 
in ℝ𝑑 and 𝑑 = 2, 3 the problem dimension. We indicate the time with 𝑡, belonging to an open interval  =]0, 𝑇 [ of length 𝑇 > 0, 
while a bar above a set in ℝ𝑑 denotes the union of the same set with its boundary, e.g. Ω = Ω ∪ Γ. The boundary is decomposed 
as Γ = Γ𝑢 ∪ Γ𝜎 = Γ𝑝 ∪ Γ𝑞 , with Γ𝑢 ∩ Γ𝜎 = Γ𝑝 ∩ Γ𝑞 = ∅, and 𝒏 denotes its outer normal vector. Then, we want to find the functions: 
𝒖 ∶ Ω × [0, 𝑇 ] → ℝ𝑑 (displacement), 𝒗 ∶ Ω × [0, 𝑇 ] → ℝ𝑑 (solid velocity), 𝒘 ∶ Ω × [0, 𝑇 ] → ℝ𝑑 (fluid velocity), 𝑝 ∶ Ω × [0, 𝑇 ] → ℝ
(pressure), such that:

𝒖̇− 𝒗 = 𝟎, in Ω× , (7a)

(1 −𝜑)𝜌𝑆 𝒗̇+𝜑𝜌𝐹 𝒘̇−∇ ⋅ (C ∶ ∇𝑠𝒖−𝑨𝑝) = 𝜌𝒈, in Ω× , (7b)
3

𝜌𝐹 𝒘̇−𝜑𝛾𝐹𝒌𝐹 ,−1𝒗+𝜑𝛾𝐹𝒌𝐹 ,−1𝒘+∇𝑝 = 𝜌𝐹 𝒈, in Ω× , (7c)
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−∇ ⋅
(
𝒌𝐹

𝑔
𝒘̇

)
+Λ𝑝̇+𝑨 ∶ ∇𝑠𝒗−∇ ⋅

(
𝒌𝐹

𝛾𝐹
∇𝑝

)
= −∇ ⋅

(
𝒌𝐹

𝑔
𝒈

)
, in Ω× , (7d)

with the following set of boundary and initial conditions:

𝒖 = 𝒖̄, on Γ𝑢 × , (8a)

(C ∶ ∇𝑠𝒖−𝑨𝑝) ⋅ 𝒏 = 𝒕̄, on Γ𝜎 × , (8b)(
𝒌𝐹

𝛾𝐹
∇𝑝

)
⋅ 𝒏 = 𝑞, on Γ𝑞 × , (8c)

𝑝 = 𝑝̄, on Γ𝑝 × , (8d)

𝒖(𝒙,0) = 𝒖0, 𝒙 ∈Ω, (8e)

𝒗(𝒙,0) = 𝒗0, 𝒙 ∈Ω, (8f)

𝑝(𝒙,0) = 𝑝0, 𝒙 ∈Ω, (8g)

where 𝒖̄, ̄𝒕, 𝑞, and 𝑝̄ are the prescribed boundary displacement, traction, fluid flux and excess pore pressure, respectively, whereas 𝒖0, 
𝒗0, and 𝑝0 are the initial displacement, solid velocity and excess pore pressure. The solid velocity definition and generalized Darcy’s 
law along the domain boundary and at the initial instant close the formulation:

𝒗 = 𝒖̇, on Γ × , (9a)

𝒘 = − 𝒌𝐹

𝜑𝛾𝐹
∇𝑝+ 𝒗, on Γ × , (9b)

𝒘(𝒙,0) = − 𝒌𝐹

𝜑𝛾𝐹
∇𝑝0 + 𝒗0, 𝒙 ∈Ω. (9c)

Following the usual notation, let us denote by 𝐻1(Ω) and 𝑯1(Ω) the Sobolev space of scalar and vector functions, respectively, 
whose first derivatives are square-integrable, i.e., they belong to the Lebesgue space 𝐿2(Ω); by 𝑯(div; Ω) the Sobolev space of vector 
functions with square-integrable divergence; by 𝐻1

0 (Ω), 𝑯
1
0(Ω) and 𝑯0(div; Ω) the corresponding spaces with null trace on Γ, and 

by 𝑯1∕2(Γ) the space of square-integrable traces on Γ of vector functions in 𝑯1(Ω). Introducing the spaces:

 = {𝒖 ∈𝑯1(Ω) | 𝒖|Γ𝑢 = 𝒖̄ ∈𝑯1∕2(Γ)}, (10a)

 = {𝒗 ∈𝑯1(Ω) | 𝒗|Γ = 𝒖̇ ∈𝑯1∕2(Γ)}, (10b)

 = {𝒘 ∈𝑯(div;Ω) | 𝒘|Γ = − 𝒌𝐹

𝜑𝛾𝐹
∇𝑝+ 𝒗}, (10c)

 = {𝑝 ∈𝐻1
0 (Ω)}, (10d)

the weak form of the IBVP (7) reads: for every time 𝑡 ∈  find {𝒖, 𝒗, 𝒘, 𝑝} ∈ × × × such that:

𝑎(𝝍 ,𝒖,𝒗) = 0, ∀𝝍 ∈𝑯1
0(Ω), (11a)

𝑏(𝝍 ,𝒖,𝒗,𝒘, 𝑝) = (𝝍 , 𝜌𝒈)Ω + (𝝍 , 𝒕̄)Γ𝜎 , ∀𝝍 ∈𝑯1
0(Ω), (11b)

𝑐(𝝓,𝒗,𝒘, 𝑝) = (𝝓, 𝜌𝐹 𝒈)Ω − (𝝓 ⋅ 𝒏, 𝑝̄)Γ𝑝 , ∀𝝓 ∈0(div,Ω), (11c)

𝑑(𝜂,𝒗,𝒘, 𝑝) = (𝜂,div
𝒌𝐹

𝑔
𝒈)Ω + (𝜂, 𝑞)Γ𝑞 , ∀𝜂 ∈𝐻1

0 (Ω), (11d)

where 𝑎(⋅), 𝑏(⋅), 𝑐(⋅), and 𝑑(⋅) are the bilinear forms:

𝑎(𝝍 ,𝒖,𝒗) = (𝝍 , 𝒖̇)Ω − (𝝍 ,𝒗)Ω, (12a)

𝑏(𝝍 ,𝒖,𝒗,𝒘, 𝑝) = (𝝍 , 𝜌𝑆 𝒗̇)Ω + (𝝍 , 𝜌𝐹 𝒘̇)Ω + (∇𝑠𝝍 ,C ∶ ∇𝑠𝒖)Ω − (∇𝑠𝝍 ,𝑨𝑝)Ω, (12b)

𝑐(𝝓,𝒗,𝒘, 𝑝) = (𝝓, 𝜌𝐹 𝒘̇)Ω − (𝝓, 𝜑𝛾𝐹𝒌𝐹 ,−1𝒗)Ω + (𝝓, 𝜑𝛾𝐹𝒌𝐹 ,−1𝒘)Ω − (div 𝝓, 𝑝)Ω, (12c)

𝑑(𝜂,𝒗,𝒘, 𝑝) = (𝜂,div
𝒌𝐹

𝛾𝐹
𝒘̇)Ω + (𝜂,Λ𝑝̇)Ω + (𝜂,𝑨 ∶ ∇𝑠𝒗)Ω + (∇𝜂, 𝒌

𝐹

𝛾𝐹
∇𝑝)Ω, (12d)

and (⋅, ⋅)Ω denote the inner products of scalar functions in 𝐿2(Ω), vector functions in [𝐿2(Ω)]𝑑 , or second-order tensor functions in 
4

[𝐿2(Ω)]𝑑×𝑑 , as appropriate, and (⋅, ⋅)Γ∗ denote the inner products of scalar functions or vector functions on the boundary Γ∗.
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3. Numerical model

3.1. Space and time discretization

By approximating the weak form (11) via a Finite Element approach and replacing the continuous with the corresponding discrete 
spaces, the following system of 1st order differential equations in time is obtained:

𝐌𝐳̇ +𝐊𝐳 + 𝐟 = 𝟎, (13)

where:

• 𝐳 = [𝐮; 𝐯; 𝐰; 𝐩]𝑇 is the vector of discrete 𝑛𝑢 + 𝑛𝑣 + 𝑛𝑤 + 𝑛𝑝 unknowns;

• 𝐌 and 𝐊 are the global mass and stiffness matrix, respectively:

𝐌 =

⎡⎢⎢⎢⎢⎢⎣

𝐼𝑢 0 0 0
0 𝑀𝑣𝑣 𝑀𝑣𝑤 0
0 0 𝑀𝑤𝑤 0
0 0 𝑀𝑝𝑤 𝑀𝑝𝑝

⎤⎥⎥⎥⎥⎥⎦
, 𝐊 =

⎡⎢⎢⎢⎢⎢⎣

0 −𝐼𝑢 0 0
𝐾𝑣𝑢 0 0 𝐾𝑣𝑝

0 𝐾𝑤𝑣 𝐾𝑤𝑤 𝐾𝑤𝑝

0 𝐾𝑝𝑣 0 𝐾𝑝𝑝

⎤⎥⎥⎥⎥⎥⎦
, (14)

• 𝐟 = [𝟎; 𝐟𝑣; 𝐟𝑤; 𝐟𝑝]𝑇 is the vector collecting the forcing functions and natural boundary conditions for the solid velocity (𝐟𝑣), fluid 
velocity (𝐟𝑤), and pressure (𝐟𝑝).

Full details on the specific form of every block of equations (14) are reported in Appendix A.

The differential-algebraic system (13) is solved in time by the standard 𝜗-Method, which leads to the following recurring expres-

sion of the residual:

𝐛̄ =
[
𝜗𝐊𝑡∗ +

𝐌𝑡∗
Δ𝑡𝑛

]
𝐳𝑛+1 −

[𝐌𝑡∗
Δ𝑡𝑛

− (1 − 𝜗)𝐊𝑡∗
]
𝐳𝑛 + 𝜗𝐟𝑛+1 + (1 − 𝜗) 𝐟𝑛 = 0, (15)

with time 𝑡∗ = 𝜗𝑡𝑛+1 + (1 − 𝜗) 𝑡𝑛, 𝜗 ∈ [0, 1]. Equation (15) is weakly non-linear because of the compressibility of the phases, hence 
a Newton scheme is implemented. We require the norm of the residual 𝐛̄ to be smaller than a prescribed tolerance, otherwise a 
correction of the solution vector 𝐳𝑛+1 is necessary. This update is computed at Newton step 𝑖 + 1 by adding the increment 𝑑𝐳 = 
[𝑑𝐮; 𝑑𝐯; 𝑑𝐰; 𝑑𝐩]𝑇 to the previously computed solution vector 𝐳𝑖

𝑛+1 through the following linear system with size 𝑛𝑢 + 𝑛𝑣 + 𝑛𝑤 + 𝑛𝑝:

𝐀̄ 𝑑𝐳 = 𝐛̄𝑖, (16)

where ̄𝐛𝑖 is the residual (15) computed in 𝐳𝑖
𝑛+1. The system matrix 𝐀̄ has the following form:

𝐀̄ =

⎡⎢⎢⎢⎢⎢⎣

𝐼𝑢∕Δ𝑡𝑛 −𝜗𝐼𝑢 0 0
𝜗𝐾𝑣𝑢 𝑀𝑣𝑣∕Δ𝑡𝑛 𝑀𝑣𝑤∕Δ𝑡𝑛 𝜗𝐾𝑣𝑝

0 𝜗𝐾𝑤𝑣 𝜗𝐾𝑤𝑤 +𝑀𝑤𝑤∕Δ𝑡𝑛 𝜗𝐾𝑤𝑝

0 𝜗𝐾𝑝𝑣 𝑀𝑝𝑤∕Δ𝑡𝑛 𝜗𝐾𝑝𝑝 +𝑀𝑝𝑝∕Δ𝑡𝑛

⎤⎥⎥⎥⎥⎥⎦
, (17)

where the time increment index in the matrix has been removed for better reading.

By explicitly writing the first equation in (16), we can derive the displacement increment 𝑑𝐮:

𝑑𝐮 = 𝜗Δ𝑡𝑛 𝑑𝐯+ 𝐮𝑖
𝑛+1 − 𝜗Δ𝑡𝑛𝐯

𝑖
𝑛+1 − 𝐮𝑛 − (1 − 𝜗)Δ𝑡𝑛𝐯𝑛, (18)

which, substituted into the second equation, allows us to reduce the dimension of the system. This gives the reduced form for the 
residual 𝐛 = [𝐛𝑣; 𝐛𝑤; 𝐛𝑝]𝑇 :

𝐛𝑣 =[𝑀𝑣𝑣∕Δ𝑡𝑛 + 𝜗2Δ𝑡𝑛𝐾𝑣𝑢]𝐯𝑖𝑛+1 +𝑀𝑣𝑤∕Δ𝑡𝑛𝐰
𝑖
𝑛+1 + 𝜗𝐾𝑣𝑝𝐩

𝑖
𝑛+1

+𝐾𝑣𝑢𝐮𝑛 − [𝑀𝑣𝑣∕Δ𝑡𝑛 − 𝜗(1 − 𝜗)Δ𝑡𝑛𝐾𝑣𝑢]𝐯𝑛 −𝑀𝑣𝑤∕Δ𝑡𝑛𝐰𝑛 + (1 − 𝜗)𝐾𝑣𝑝𝐩𝑛
+ 𝜗𝐟 (𝑣)

𝑛+1 + (1 − 𝜗)𝐟 (𝑣)
𝑛
, (19)

𝐛𝑤 =𝜗𝐾𝑤𝑣𝐯𝑖𝑛+1 + [𝑀𝑤𝑤∕Δ𝑡𝑛 + 𝜗𝐾𝑤𝑤]𝐰𝑖𝑛+1 + 𝜗𝐾𝑤𝑝𝐩
𝑖
𝑛+1

+ (1 − 𝜗)𝐾𝑤𝑣𝐯𝑛 − [𝑀𝑤𝑤∕Δ𝑡𝑛 − (1 − 𝜗)𝐾𝑤𝑤]𝐰𝑛 + (1 − 𝜗)𝐾𝑤𝑝𝐩𝑛
+ 𝜗𝐟 (𝑤)

𝑛+1 + (1 − 𝜗)𝐟 (𝑤)𝑛 , (20)

𝐛𝑤 =𝜗𝐾𝑝𝑣𝐯𝑖𝑛+1 +𝑀𝑝𝑤∕Δ𝑡𝑛𝐰
𝑖
𝑛+1 + [𝑀𝑝𝑝∕Δ𝑡𝑛 + 𝜗𝐾𝑝𝑝]𝐩𝑖𝑛+1
5

+ (1 − 𝜗)𝐾𝑝𝑣𝐯𝑛 −𝑀𝑝𝑤∕Δ𝑡𝑛𝐰𝑛 − [𝑀𝑝𝑝∕Δ𝑡𝑛 − (1 − 𝜗)𝐾𝑝𝑝]𝐩𝑛
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Fig. 2. Sketch of the MPR approach.

+ 𝜗𝐟 (𝑝)
𝑛+1 + (1 − 𝜗)𝐟 (𝑝)𝑛 , (21)

and the system matrix 𝐀:

𝐀 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜗2Δ𝑡𝑛𝐾𝑣𝑢 +
𝑀𝑣𝑣
Δ𝑡𝑛

𝑀𝑣𝑤
Δ𝑡𝑛

𝜗𝐾𝑣𝑝

𝜗𝐾𝑤𝑣 𝜗𝐾𝑤𝑤 + 𝑀𝑤𝑤Δ𝑡𝑛
𝜗𝐾𝑤𝑝

𝜗𝐾𝑝𝑣
𝑀𝑝𝑤

Δ𝑡𝑛
𝜗𝐾𝑝𝑝 +

𝑀𝑝𝑝

Δ𝑡𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
𝐴𝑣𝑣 𝐴𝑣𝑤 𝐴𝑣𝑝

𝐴𝑤𝑣 𝐴𝑤𝑤 𝐴𝑤𝑝

𝐴𝑝𝑣 𝐴𝑝𝑤 𝐴𝑝𝑝

⎤⎥⎥⎥⎦ . (22)

A key issue for the application of the proposed 3-field dynamic poro-elastic model in real-world problems is the efficient solution, 
at every Newton iteration in every time step, of the block linear system:

𝐀𝐱 = 𝐛 , (23)

where 𝐀 is the system matrix (22), 𝐛 is the residual vector (19) – (21), and 𝐱 = [𝑑𝐯; 𝑑𝐰; 𝑑𝐩]𝑇 is the increment of the solution.

3.2. Linear solver

It is easy to observe that the diagonal blocks of 𝐀, i.e., 𝐴𝑣𝑣, 𝐴𝑤𝑤 and 𝐴𝑝𝑝, are Symmetric Positive Definite (SPD) matrices. 
However, generally 𝐴𝑣𝑤 ≠𝐴𝑇𝑤𝑣, 𝐴𝑣𝑝 ≠𝐴

𝑇
𝑝𝑣, and 𝐴𝑤𝑝 ≠𝐴𝑇𝑝𝑤, so the overall system is non-symmetric. Therefore, Krylov methods such 

as the Generalized Minimal Residual (GMRES, [31]) or the Bi-Conjugate Gradient Stabilized (Bi-CGStab, [23]) should be used for 
large-size problems.

It is very well-known that the use of a preconditioner, 𝐏−1, is necessary to accelerate the convergence of the linear solver [32–34]. 
Generally speaking, we denote as preconditioner 𝐏−1 of 𝐀 a non-singular operator whose application to a vector resembles as much 
as possible that of 𝐀−1. It is not necessary to know 𝐏−1 explicitly, the only algorithm needed being the sequence of operations 
required to compute 𝐠 ∈ ℝ𝑛𝑣+𝑛𝑤+𝑛𝑝 equal to 𝐏−1𝐫 for some given vector 𝐫 ∈ ℝ𝑛𝑣+𝑛𝑤+𝑛𝑝 . Here we use a Multi-Physics Reduction 
(MPR) approach that progressively restricts the system to a single-physics problem and then prolongs it back to the fully-coupled 
problem (Fig. 2). Of course, each restriction fills the reduced matrix, so that it must be carried out approximately. According to the 
selected sequence of reductions, different algorithms may arise. In this work, we follow the natural sequence going from the largest 
to the smallest physical block, i.e., solid velocity–fluid velocity–pressure. The proposed MPR approach can be also recast in other 
similar frameworks, such as the MultiGrid Reduction [35,36] or the general algebraic method proposed in the context of coupled 
contact and poro-mechanics [25,37].

Let us partition 𝐫 and 𝐠 as 𝐫 = [𝐫𝑣; 𝐫𝑤; 𝐫𝑝]𝑇 and 𝐠 = [𝐠𝑣; 𝐠𝑤; 𝐠𝑝]𝑇 , with 𝐫𝑣, 𝐠𝑣 ∈ ℝ𝑛𝑣 , 𝐫𝑤, 𝐠𝑤 ∈ ℝ𝑛𝑤 , and 𝐫𝑝, 𝐠𝑝 ∈ ℝ𝑛𝑝 . The exact 
application of 𝐀−1 to 𝐫 would require the solution of the system:

⎧⎪⎨⎪⎩
𝐴𝑣𝑣𝐠𝑣 +𝐴𝑣𝑤𝐠𝑤 +𝐴𝑣𝑝𝐠𝑝 = 𝐫𝑣
𝐴𝑤𝑣𝐠𝑣 +𝐴𝑤𝑤𝐠𝑤 +𝐴𝑤𝑝𝐠𝑝 = 𝐫𝑤
𝐴𝑝𝑣𝐠𝑣 +𝐴𝑝𝑤𝐠𝑤 +𝐴𝑝𝑝𝐠𝑝 = 𝐫𝑝

. (24)

Compute 𝐠𝑣 from the first equation:( )

6

𝐠𝑣 =𝐴−1𝑣𝑣 𝐫𝑣 −𝐴𝑣𝑤𝐠𝑤 −𝐴𝑣𝑝𝐠𝑝 , (25)



Journal of Computational Physics 510 (2024) 113082N. De Marchi, G. Xotta, M. Ferronato et al.

and introduce equation (25) in the second and third equation of (24), thus eliminating 𝐠𝑣:{ (
𝐴𝑤𝑤 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤

)
𝐠𝑤 +

(
𝐴𝑤𝑝 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝

)
𝐠𝑝 = 𝐫𝑤 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐫𝑣(

𝐴𝑝𝑤 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤
)
𝐠𝑤 +

(
𝐴𝑝𝑝 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝

)
𝐠𝑝 = 𝐫𝑝 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐫𝑣

. (26)

Setting:

𝐵𝑤𝑤 =𝐴𝑤𝑤 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤, (27a)

𝐵𝑤𝑝 =𝐴𝑤𝑝 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝, (27b)

𝐵𝑝𝑤 =𝐴𝑝𝑤 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤, (27c)

𝐵𝑝𝑝 =𝐴𝑝𝑝 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝, (27d)

the reduced system (26) reads:{
𝐵𝑤𝑤𝐠𝑤 +𝐵𝑤𝑝𝐠𝑝 = 𝐫𝑤 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐫𝑣
𝐵𝑝𝑤𝐠𝑤 +𝐵𝑝𝑝𝐠𝑝 = 𝐫𝑝 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐫𝑣

, (28)

where, recalling the definitions of the related blocks ((42) and (43) in Appendix A), it can be observed that 𝐵𝑤𝑤, 𝐵𝑝𝑝 ≻ 0. Solution 
to (28) can be again computed by eliminating the unknown 𝐠𝑤 from the first equation:

𝐠𝑤 = 𝐵−1
𝑤𝑤

(
𝐫𝑤 −𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐫𝑣 −𝐵𝑤𝑝𝐠𝑝

)
, (29)

thus obtaining:(
𝐵𝑝𝑝 −𝐵𝑝𝑤𝐵−1

𝑤𝑤𝐵𝑤𝑝
)
𝐠𝑝 = 𝐫𝑝 −𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐫𝑣 −𝐵𝑝𝑤𝐵

−1
𝑤𝑤𝐫𝑤 +𝐵𝑝𝑤𝐵−1

𝑤𝑤𝐴𝑤𝑣𝐴
−1
𝑣𝑣 𝐫𝑣. (30)

Equation (30) defines the 2nd-level Schur complement:

𝐶𝑝𝑝 =𝐵𝑝𝑝 −𝐵𝑝𝑤𝐵−1
𝑤𝑤𝐵𝑤𝑝, (31)

which can be indefinite according to the specific material properties and is generally non-symmetric. Of course, the 1st - and 2nd-level 
Schur complements, (27a) and (31), can be neither computed explicitly nor inverted. However, introducing approximations of 𝐴−1

𝑣𝑣
, 

𝐵−1
𝑤𝑤, and 𝐶−1

𝑝𝑝 into equations (25)-(30) can provide the vector 𝐠 resulting from the application of some preconditioning operator 𝐏−1

to 𝐫. The quality of such a preconditioner basically depends on the approximations chosen for these three blocks.

𝐴𝑣𝑣 is an SPD linear combination of a stiffness and mass matrix (see eqs. (42a) and (43a)). As such, different effective algebraic 
approaches are already available from the literature, such as a classical incomplete triangular factorization:

𝐴−1
𝑣𝑣

≃𝐴−1
𝑣𝑣

=
[
ILU(𝐴𝑣𝑣)

]−1
. (32)

Since 𝐴𝑣𝑣 is SPD, the most effective ILU algorithm is the Incomplete Cholesky (IC) factorization. Other approaches are very appro-

priate as well, especially in view of the code extension to large-size problems and memory-distributed computational frameworks, 
such as advanced Algebraic Multigrid methods, e.g. [38–40]. Since our code is currently written at a Matlab prototypical level, to 
test the algorithmic capabilities of the proposed approach we simply rely on the approximation (32).

The matrix 𝐵𝑤𝑤 is the sum of the mass block 𝐴𝑤𝑤 with the product of a “mixed” stiffness and mass block. We compute this 
contribution through the Fixed-Stress (FS) algorithm:

𝐵𝑤𝑤 ≃𝐵𝑤𝑤 =𝐴𝑤𝑤 − FS(𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤), (33)

where the FS operator provides a diagonal or block-diagonal correction following the algebraic techniques introduced in [24]. The 
idea underlying the FS algorithm is to provide a lumped approximation of a matrix available in the general form 𝑄1𝐾

−1𝑄2, for some 
square SPD 𝐾 and rectangular 𝑄1 and 𝑄2. If 𝐾 is a stiffness matrix, the diagonal or block-diagonal entries of FS(𝑄1𝐾

−1𝑄2) are 
representative of the capability of deforming of the elements surrounding each node of the computational grid. From an algebraic 
point of view, we consider a set of 𝑚 adjacent rows of 𝑄1, say 𝑄(𝑖)

1 , and the corresponding set of columns of 𝑄2, denoted as 𝑄(𝑖)
2 . The 

𝑖-th 𝑚 ×𝑚 diagonal block of FS(𝑄1𝐾
−1𝑄2), 𝐷(𝑖), is computed as:

𝐷(𝑖) = 𝑟(𝑄(𝑖)
1 )𝐾|−1𝑖 𝑟(𝑄(𝑖)

2 ), (34)

where 𝐾|𝑖 is the submatrix of 𝐾 gathered from the entries located in the rows and columns corresponding to the position of the 
non-zero entries of 𝑄(𝑖)

1 and 𝑄(𝑖)
2 , respectively (see Fig. 3 for a sketch of the 𝐾|𝑖 identification), and 𝑟(⋅) is a restriction operator on 

the submatrix within brackets retaining the non-zero entries only. The natural way to select 𝑚 is to set 𝑚 = 𝑑, i.e., we consider the 
block of rows corresponding to the physical unknowns associated to the same grid node, so that the position of the non-zero entries 
allows for reconstructing the graph of the connections with the surrounding nodes. Equation (34) cannot be safely used if either 
𝐾 is rank-deficient, because 𝐾|𝑖 could be singular, or the non-zero pattern of 𝑄𝑇2 is different from 𝑄1, because 𝐾|𝑖 is generally 
7

rectangular. In order to be more general, we compute the entries 𝑑(𝑖) of 𝐷(𝑖) using an appropriate norm of 𝑄(𝑖)
1 , 𝑄(𝑖)

2 and 𝐾|𝑖:
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Fig. 3. Non-zero entries gathered from 𝐾 in the approximation of 𝑄1𝐾
−1𝑄2 according to the FS algorithm.

𝑑(𝑖) =
‖𝑄(𝑖)

1 ‖ ‖𝑄(𝑖)
2 ‖‖𝐾|𝑖‖ , (35)

for instance the 2-norm, as it is typically done in augmented Lagrangian approaches, e.g. [41].

Since 𝐵𝑤𝑤 is the sum of a mass matrix (𝐴𝑤𝑤) and a lumped approximation of 𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤 through the FS algorithm, a good 
approximate application of this matrix is the inverse lumped one:

𝐵−1
𝑤𝑤 =

[
lump(𝐵𝑤𝑤)

]−1
. (36)

From a physical viewpoint, 𝐵𝑤𝑤 represents the stiffness matrix associated to the whole bulk made by both the solid part of the 
porous medium and the fluid. Actually, the solid stiffness matrix 𝐴𝑣𝑣 is modified isotropically by a volumetric component, which is 
consistent with the fluid deformation behavior.

Finally, the 2nd-level Schur complement is the projection on the mass balance equation of the bulk compressibility effect. 
Therefore, the contribution in equation (31) depending on 𝐵−1

𝑤𝑤 has the physical meaning of an elastic storage term that can be 
approximated in the following way:

𝐶𝑝𝑝 ≃ 𝐶𝑝𝑝 =𝐵𝑝𝑝 − (𝐵𝑝𝑤𝐵−1
𝑤𝑤𝐵𝑤𝑝). (37)

A classical incomplete triangular factorization or more advanced algebraic multigrid strategies are expected to provide effective 
approximations for the application of 𝐶−1

𝑝𝑝 . In our code, we rely on a simple incomplete triangular factorization, as already done for 
𝐴−1𝑣𝑣 :

𝐶−1
𝑝𝑝

≃
[
ILU(𝐶𝑝𝑝)

]−1
. (38)

𝐵𝑝𝑝, 𝐵𝑝𝑤 and 𝐵𝑤𝑝 depend on the inverse of 𝐴𝑣𝑣 in a similar way as 𝐵𝑤𝑤, hence they can be computed by using Fixed-Stress (FS) 
operator:

𝐵𝑝𝑝 ≃𝐵𝑝𝑝 =𝐴𝑝𝑝 − FS(𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝), (39a)

𝐵𝑝𝑤 ≃𝐵𝑝𝑤 =𝐴𝑝𝑤 − FS(𝐴𝑝𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑤), (39b)

𝐵𝑤𝑝 ≃𝐵𝑤𝑝 =𝐴𝑤𝑝 − FS(𝐴𝑤𝑣𝐴−1𝑣𝑣 𝐴𝑣𝑝), (39c)

Notice that in equations (39b) and (39c) the FS algorithm must be used with equation (35) only, because the involved rectangular 
blocks have different dimensions. The natural choice is to follow the unknowns associated to each grid node, i.e., each row of 𝐴𝑝𝑣 is 
associated with 𝑑 adjacent columns of 𝐴𝑣𝑤 and each group of consecutive 𝑑 rows of 𝐴𝑤𝑣 is associated to a single column of 𝐴𝑣𝑝.

The construction and application of the resulting preconditioning operator 𝐏−1 is summarized in Algorithms 3.1 and 3.2, respec-

tively. A left-preconditioned Bi-CGStab solver making use of 𝐏−1 is recalled in Algorithm 3.3.

Algorithm 3.1 PRECONDITIONER CONSTRUCTION [𝐴𝑣𝑣, 𝐵𝑤𝑤, 𝐶𝑝𝑝, 𝐵𝑝𝑤, 𝐵𝑤𝑝]=cpt_prc(𝐀).

1: 𝐴𝑣𝑣 = ILU(𝐴𝑣𝑣);
2: 𝐵𝑤𝑤 = lump

[
𝐴𝑤𝑤 − FS(𝐴𝑤𝑣𝐴−1

𝑣𝑣
𝐴𝑤𝑣)

]
;

3: 𝐵𝑝𝑤 =𝐴𝑝𝑤 − FS(𝐴𝑝𝑣𝐴−1
𝑣𝑣
𝐴𝑣𝑤);

4: 𝐵𝑤𝑝 =𝐴𝑤𝑝 − FS(𝐴𝑤𝑣𝐴−1
𝑣𝑣
𝐴𝑣𝑝);

5: 𝐶𝑝𝑝 = ILU(𝐴𝑝𝑝 − FS(𝐴𝑝𝑣𝐴−1
𝑣𝑣
𝐴𝑣𝑝) −𝐵𝑝𝑤𝐵−1

𝑤𝑤
𝐵𝑤𝑝);
8
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Algorithm 3.2 PRECONDITIONER APPLICATION [𝐠𝑣, 𝐠𝑤, 𝐠𝑝]=app_prc(𝐀, 𝐴𝑣𝑣, 𝐵𝑤𝑤, 𝐶𝑝𝑝, 𝐵𝑝𝑤, 𝐵𝑤𝑝, 𝐫𝑣, 𝐫𝑤, 𝐫𝑝).
1: 𝐱𝑣 =𝐴−1

𝑣𝑣
𝐫𝑣 ;

2: 𝐬𝑤 = 𝐫𝑤 −𝐴𝑤𝑣𝐱𝑣 ;
3: 𝐭𝑤 =𝐵−1

𝑤𝑤
𝐬𝑤 ;

4: 𝐭𝑝 = 𝐫𝑝 −𝐴𝑝𝑣𝐱𝑣 −𝐵𝑝𝑤𝐭𝑤 ;

5: 𝐠𝑝 = 𝐶−1
𝑝𝑝
𝐭𝑝 ;

6: 𝐲𝑤 = 𝐵𝑤𝑝𝐠𝑝 ;
7: 𝐱𝑤 = 𝐵−1

𝑤𝑤
𝐲𝑤 ;

8: 𝐠𝑤 = 𝐭𝑤 − 𝐱𝑤 ;

9: 𝐬𝑣 =𝐴𝑣𝑤𝐠𝑤 +𝐴𝑣𝑝𝐠𝑝 ;
10: 𝐭𝑣 =𝐴−1

𝑣𝑣
𝐬𝑣 ;

11: 𝐠𝑣 = 𝐱𝑣 − 𝐭𝑣 ;

Algorithm 3.3 LEFT-PRECONDITIONED BLOCK BI-CGSTAB [𝐱𝑣, 𝐱𝑤, 𝐱𝑝] = block_Bi-CGStab(𝐀, 𝐛𝑣, 𝐛𝑤, 𝐛𝑝, 𝜀, 𝑘max).

1: [𝐱𝑣; 𝐱𝑤; 𝐱𝑝] = 𝟎;

2: [𝐴𝑣𝑣, ̃𝐵𝑤𝑤, 𝐶𝑝𝑝, ̃𝐵𝑝𝑤, ̃𝐵𝑤𝑝] = cpt_prc(𝐀);
3: [𝐫𝑣, 𝐫𝑤, 𝐫𝑝] = app_prc(𝐀, 𝐴𝑤𝑤, ̃𝐵𝑣𝑣, 𝐶𝑝𝑝, ̃𝐵𝑝𝑣, ̃𝐵𝑣𝑝, 𝐛𝑣, 𝐛𝑤, 𝐛𝑝);
4: 𝐫 = [𝐫𝑣; 𝐫𝑤; 𝐫𝑝];
5: 𝐫∗ = 𝐫;

6: 𝐩 = 𝐫;

7: 𝑘 = 0;

8: 𝑟0 = ‖𝐫‖2 ;

9: 𝑟𝑘 = ‖𝐫‖2 ∕𝑟0 ;

10: 𝜌𝑘 = 𝐫𝑇 𝐫∗ ;

11: while 𝑟𝑘 > 𝜀 & 𝑘 < 𝑘max do

12: 𝑘 ← 𝑘 + 1;

13: [𝐯∗
𝑣
; 𝐯∗
𝑤
; 𝐯∗
𝑝
] =𝐀𝐩;

14: [𝐯𝑣, 𝐯𝑤, 𝐯𝑝] = app_prc(𝐀, 𝐴𝑣𝑣, ̃𝐵𝑤𝑤, 𝐶𝑝𝑝, ̃𝐵𝑝𝑤, ̃𝐵𝑤𝑝, 𝐯∗𝑣, 𝐯∗𝑤, 𝐯∗𝑝);
15: 𝐯 = [𝐯𝑣; 𝐯𝑤; 𝐯𝑝];
16: 𝛼 = 𝜌𝑘∕(𝐯𝑇 𝐫∗);
17: 𝐬 = 𝐫 − 𝛼𝐯;

18: 𝐮∗ =𝐀𝐬;
19: [𝐮𝑣, 𝐮𝑤, 𝐮𝑝] = app_prc(𝐀, 𝐴𝑣𝑣, ̃𝐵𝑤𝑤, 𝐶𝑝𝑝, ̃𝐵𝑝𝑤, ̃𝐵𝑤𝑝, 𝐮∗𝑣, 𝐮∗𝑤, 𝐮∗𝑝);
20: 𝐮 = [𝐮𝑣; 𝐮𝑤; 𝐮𝑝];
21: 𝜔 = 𝐬𝑇 𝐮∕(𝐮𝑇 𝐮);
22: [𝐱𝑣; 𝐱𝑤; 𝐱𝑝] ← [𝐱𝑣; 𝐱𝑤; 𝐱𝑝] + 𝛼𝐩 +𝜔𝐬;
23: 𝐫 = 𝐬 −𝜔𝐮;

24: 𝑟𝑘 = ‖𝐫‖2 ∕𝑟0 ;

25: 𝜌𝑘+1 = 𝐫𝑇 𝐫∗ ;

26: 𝛽 = 𝜌𝑘+1𝛼∕(𝜌𝑘𝜔);
27: 𝐩 ← 𝐫 + 𝛽𝐩 −𝜔𝛽𝐯;

28: end while

The overall cost for Algorithm 3.2 is roughly two ILU applications with size 𝑛𝑣, one ILU application with size 𝑛𝑝, three matrix-

vector products with size 𝑛𝑣 × 𝑛𝑝, two matrix-vector products with size 𝑛𝑣 × 𝑛𝑝, two matrix-vector products with size 𝑛𝑤 × 𝑛𝑝 and two 
vector-vector products with size 𝑛𝑤.

4. Numerical examples

Three numerical examples have been analyzed to test the capability and efficiency of the proposed numerical model, which has 
been included in the GeoMatFem [27] Matlab research code for coupled solid-deformation and fluid-diffusion simulations. In all test 
cases, the inf-sup stable ℚ2 −ℚ1 Taylor-Hood discretization introduced in Appendix A, has been used. Furthermore, the incomplete 
factorizations required for 𝐴𝑣𝑣 and 𝐶𝑝𝑝 in the preconditioner construction, are computed with zero fill-in.

In the first example, the dynamic consolidation of a soil column is analyzed considering the compressibility of the individual 
phases. In the second one, wave propagation in a plane domain is studied, considering a layered soil characterized by an anisotropic 
constitutive model. In both cases, the results were compared using different space discretizations, time schemes and steps in order to 
verify the convergence and accuracy of these dynamic processes. Finally, wave splitting phenomena are investigated in an anisotropic 
and fully saturated porous material by considering the effect of a different degree of anisotropy between the solid phase and the 
mixture, through the Biot effective coefficient stress tensor. The purpose of this last example is twofold: first to demonstrate that is 
possible to capture this phenomenon due to the mechanical non-coaxiality of the solid medium, and second to show the robustness 
and efficiency of the updated coupled FEM code.

4.1. Dynamic consolidation of a soil column
9

The first benchmark, taken from [28], considers a column of fully saturated soil subjected to a harmonic load (Fig. 4). Unlike the 
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Fig. 4. Dynamic consolidation of a soil column.

Table 1

Soil column material parameters.

Parameter Value S.I. unit

𝐸 14.52×106 Pa

𝜈 0.30

𝜑0 0.33

𝐾
𝑆

6.05×109 Pa

𝐾
𝐹

2.20×109 Pa

𝑘𝐹 10−2 m/s

𝜌
𝑆

2000 kg/m3

𝜌
𝐹

1000 kg/m3

simulations in [42,28], here we account for the compressibility of both phases. All material parameters are given in Table 1. Two 
spatial discretizations, consisting of 100 (Fig. 4(a)) and 200 elements along the vertical direction, respectively, have been used, while 
two values of the parameter 𝜗, equal to 1 (Backward Euler, B.E.) and 1/2 (Crank-Nicolson, C.N.), have been assumed by using a time 
step Δ𝑡 = 5 ⋅ 10−4 s. The total number of degrees of freedom for the two grids is equal to 𝑛 = 5240 and 𝑛 = 10440, respectively.

Results, in terms of vertical displacement, solid and fluid velocity at the top surface of the column and fluid pore pressure on the 
bottom surface, are reported in Fig. 5. Both numerical analyses give the same results, with only a very slight difference smaller than 
2% on the peak values of fluid velocity as an effect of the mesh size. The overall outcome is fully consistent with the results obtained 
for the same problem configuration in Reference [28]. Considering the Crank-Nicholson scheme, Fig. 6 shows the convergence 
profiles of the Left-preconditioned Block Bi-CGStab for four different time steps at the second Newton-Raphson iteration for both 
discretizations. A fast and stable convergence is appreciated with no significant deterioration due to the mesh refinement, despite 
the use of incomplete triangular factorization for the preconditioning of the inner blocks.

By this example, we can conclude that the two spatial discretizations with ℚ2 − ℚ1 Taylor-Hood elements provide accurate 
solutions for the dynamic analysis of a vertical soil column with compressible phases, as well as the time marching schemes with the 
selected time-step size.

4.2. Wave propagation in a 2D soil domain

In the second example, taken from [28] as well, a rectangular slice of soil in plane strain conditions is subjected to an impulsive 
load 𝑓 (𝑡) = 105 sin (25𝜋𝑡)[1 −𝐻(𝑡 − 𝜏)], where 𝐻(𝑡 − 𝜏) is the usual Heaviside function and 𝜏 = 0.04 s is the duration of the impulse 
(Fig. 7). For this model, an elastic anisotropic constitutive law has been considered for both the solid phase (intrinsic) and the entire 
porous material (structural), with transversely isotropic elastic constants and assuming a horizontal plane of symmetry. This allows 
for the Biot effective stress coefficient tensor to be considered a diagonal matrix as usual. Furthermore, an anisotropic permeability 
tensor has been adopted, with higher permeability coefficients along the horizontal direction. All the material parameters are given 
in Tables 2 and 3.

The wave propagation analysis has been carried out by considering different discretizations of the plane domain, from a coarse 
mesh of 21×20 elements to a fine mesh of 168×160 elements. Two types of time-marching schemes (B.E. and C.N.) and three different 
time increments have been adopted.

Numerical results are reported in Fig. 8, using a constant time step Δ𝑡 = 1 ×10−3 s and the C.N. scheme. No variation can be noted 
in the vertical displacement for the corner node C under the impulsive load as the mesh is refined, while the vertical velocity appears 
10

to be less accurate in the coarsest discretization. Again, the most sensitive variable to the grid size is the fluid velocity, especially at 
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Fig. 5. Dynamic consolidation results of a soil column.

Fig. 6. Convergence profiles for the dynamic consolidation of a soil column (toll = 10−14).
11

Fig. 7. Plane strain model.
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Table 2

Plane strain problem material parameters.

Parameter Value S.I. unit

𝐸𝑥,𝐸𝑦 15.00×106 Pa

𝐸𝑧 9.00×106 Pa

𝜈𝑥𝑦, 𝜈𝑦𝑥 0.25

𝜈𝑦𝑧, 𝜈𝑥𝑧 0.30

𝜈𝑧𝑥, 𝜈𝑧𝑦 0.18

𝐺𝑥𝑦 =
𝐸𝑥

2(1+𝜈𝑥𝑦 )
6.00×106 Pa

𝐺𝑦𝑧,𝐺𝑥𝑧 3.60×106 Pa

𝑛𝐹0 0.33

𝑘𝐹
𝑥
, 𝑘𝐹
𝑦

10−2 m/s

𝑘𝐹
𝑧

10−4 m/s

𝜌
𝑆

2000 kg/m3

𝜌
𝐹

1000 kg/m3

𝐾
𝐹

2.20×109 Pa

Table 3

Solid phase material parameters.

Parameter Value S.I. unit

𝐸𝑥,𝐸𝑦 3.0×107 Pa

𝐸𝑧 1.8×107 Pa

𝜈𝑥𝑦, 𝜈𝑦𝑥 0.25

𝜈𝑦𝑧, 𝜈𝑥𝑧 0.30

𝜈𝑧𝑥, 𝜈𝑧𝑦 0.18

𝐺𝑥𝑦 1.2×107 Pa

𝐺𝑦𝑧,𝐺𝑧𝑥 7.2×106 Pa

the peak values. In Fig. 8(b), the pore pressure evolution for the internal node B is also shown. Only the coarse mesh provides higher 
pressure peaks (4÷6%) than the other grids.

Fig. 9(a) and 9(b) show the plane motion and fluid velocity at node A. In the first panel, it can be seen that all meshes give the 
same result except for the coarsest, which differs by about 6% in some time steps, while the difference between the models is more 
evident in the fluid velocity. Considering the 84×80 elements discretization, Fig. 9(c) and 9(d) show the behavior of the previous 
main variables for different time schemes and steps. In both graphs, by adopting the B.E. scheme and decreasing the time increments, 
Δ𝑡 = 2 × 10−3 s, 1 × 10−3 s and 5 × 10−4 s (indicated in the legend as “2”, “1” and “05”), the solid motion and the speed of fluid 
increase. Differently, taking the C.N. scheme and varying the time steps, the solution curves remain unchanged and are larger than 
the previous ones. B.E. scheme’s stiff results, also explained in [17], are due to its artificial damping, not present in the C.N. scheme, 
which provides accurate results also with relatively large time steps.

In Fig. 10 the amplified deformed mesh and the Euclidean norm of soil displacements are reported at four different time steps 
with the finest mesh (168×160 elements). By this graphic representation, the propagation of the body and surface waves, from the 
impulsive load to the opposite boundary, are clearly visible.

Finally, Fig. 11 shows the convergence profiles for all the different discretizations, obtained with the C.N. scheme, at given time 
steps. Though a detrimental effect of the mesh refinement can be now appreciated, convergence is still satisfactorily fast and stable 
throughout the full transient simulation for any grid.

In this example, plane wave propagation in a transverse isotropic porous material has been well reproduced. The model con-

sistency and stability have been verified by both progressive space and time grid refinements. All the results for this example are 
consistent with the outcome obtained in [28].

4.3. 3D wave propagation

In this section, wave propagation and shear wave splitting, arising from an impulsive source, in a 3D anisotropic soil domain 
have been reproduced and investigated. In general, the splitting phenomenon occurs when a polarized shear wave hits an anisotropic 
medium and thus splits into two waves of different speed and orientation. In our case, specifically, we are interested in numerically 
studying this phenomenon in the particular situation of non-coaxiality between the mechanical properties of the single solid phase 
and the entire porous medium, which will generate a coupling between the volumetric and deviatoric stresses of the mixture, and in 
12

turn create different shear waves.
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Fig. 8. Wave propagation results for different discretizations of the 2D soil domain.
13

Fig. 9. Node A results for different discretizations, time schemes and steps.
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Fig. 10. Deformed mesh (amplified by scale factor 500) and contour of the norm of soil displacements ‖𝐮‖ =
√
𝑢2
𝑥
+ 𝑢2
𝑧

for 2D domain. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 11. Convergence profiles for different discretizations of the 2D soil domain (toll = 10−10).

We consider the square soil prism shown in Fig. 12, consisting of a transversely isotropic soil with the material properties of 
the previous 2D example (Tables 2 and 3) and an isotropic 2-m thick surface layer. The impulsive source is a concentrated vertical 
14

pressure of 𝐼 = 2546.5 Ns∕mm2 positioned between the two soil layers and applied in 1 m2 around point A. The analysis time in this 
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Fig. 12. 3D soil model.

Fig. 13. Wave propagation results in 3D soil domain under varying rotation of the intrinsic isotropic plane of solid phase.

case is 0.25 s. As for the boundary conditions, soil displacements and fluid velocities orthogonal to the lateral and bottom surfaces 
are precluded and a zero pore fluid pressure is also prescribed on the top surface.

A set of analyses has been carried out by rotating the intrinsic isotropic plane of the solid phase along the 𝑋 direction (see 
schematic REV in Fig. 12), in order to catch the shear wave splitting phenomenon that arises from the different degree of anisotropy 
between the solid phase and the entire porous skeleton, accounted for by the Biot coefficient stress tensor. When the intrinsic isotropic 
plane is horizontal or orthogonal to the 𝑌 axis, it is possible to restrict the domain to one quarter only of the full porous prismatic 
volume. By distinction, when the intrinsic isotropic plane is rotated, it can be necessary to use half or even the whole volume, if a 
generic inclination is assumed. Therefore, we need to use different models of increasing size.

In Fig. 13, the time evolution of some variables of interest is plotted as the rotation angle 𝛼 of the intrinsic isotropic plane 
changes. Considering the vertical displacement of the point directly above the impulsive load (node C), just a small variation of 𝑢𝑧, 
equal to about 7%, can be noticed on the peak value (Fig. 13(a)). As for the vertical fluid velocities at the same node C, the vertical 
15

displacements are slightly less pronounced but aligned with those obtained with the reference value 𝛼 = 0◦ (Fig. 13(b)). In the two 
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Fig. 14. Wave splitting for 3D soil domain.

bottom frames Fig. 13(c) and 13(d), the pore pressure evolution for the two nodes B and D are shown. No rotation (𝛼 = 0◦) produces 
the same pressure diagram (black line) in both nodes, while different diagrams with higher pressure peaks are obtained when 𝛼 is 
varied.

Fig. 14, which plots the plane motion of four nodes belonging to the orthogonal directions 𝑋 and 𝑌 , is particularly meaningful to 
analyze the wave splitting effect. In the two top frames, the nearly circular shape describes the typical Rayleigh waves (plane motion 
on solid surface) of the opposite nodes F and E, as a result of the combination of shear and pressure waves incident on the surface 
of the medium. In contrast, the two bottom frames represent the typical motion due to shear waves orthogonal to the direction of 
propagation. It can be observed that, with no rotation of the intrinsic isotropic plane, the motions of the nodes are the same (black 
line). However, as 𝛼 changes, the waves take different shapes between the two directions. The rotation of the intrinsic isotropic plane 
induces a larger stiffness reduction along the 𝑌 direction, given the smaller stress state and reduced displacements. This important 
result computationally demonstrates the shear wave splitting that arises from a different degree of anisotropy between the solid 
phase and the porous matrix.

Fig. 15 illustrates the amplified deformed mesh and Euclidean norm of solid displacements at six different times. This allows the 
wave propagation, due to an impulsive loading on the porous medium, to be visualized graphically. Shear and Rayleigh waves move 
faster and with greater amplitude along the 𝑋 direction.

In Fig. 16, the sparsity pattern for two different 3D discretizations, i.e., the finest and the intermediate mesh, are shown together 
with the corresponding convergence profiles of the linear solver with 𝛼 = 0◦ and 𝛼 = 45◦. In order to improve the efficiency of 
the incomplete triangular factorizations, the nodal numbering in each mesh is reordered by a geometric sorting algorithm, so as to 
reduce the bandwidth of the stiffness blocks 𝐾𝛼𝛽 . Also in these 3D complex dynamic coupled analyses, the proposed preconditioned 
iterative solver always exhibits a fast and robust behavior, reaching the exit criterion in few iterations (37 and 39 on average for two 
discretizations, respectively).

In summary, the numerical model here discussed is able to represent the propagation of seismic waves in the 3D space of a 
saturated anisotropic porous medium and to simulate the phenomenon of shear wave splitting, also in the particular case of non-

coaxiality of the mechanical properties between the solid phase and the entire solid skeleton. Furthermore, by using a suitable spatial 
and temporal discretization, the code demonstrates its robustness providing stable and accurate results.

5. Solver performance

The computational efficiency of the linear solver has been investigated in more detail as compared to the available default Matlab 
algorithm (“backslash”, \). Numerical tests have been performed on a standard desktop workstation, equipped with an Intel(R) 
16

Core(TM) i7-9800X processor with 3.80 GHz (CPU) and 32.0 GB of RAM for serial simulations. In Table 4, the performance of the 
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Fig. 15. Deformed mesh (amplified by scale factor 500) and contour of the norm of soil displacements ‖𝐮‖ =√
𝑢2
𝑥
+ 𝑢2
𝑦
+ 𝑢2
𝑧

for 3D domain.

left preconditioned Bi-CGStab solver has been summarized. As expected, in the case of 1D and 2D relatively small models, Matlab 
(\) solver either outperforms or is roughly comparable to our iterative method. However, in 3D models the use of preconditioned 
iterations is mandatory. Notice that even our prototypical Matlab implementation run on a standard desktop PC is able to solve 3D 
coupled models with up to 1.2 million unknowns, while the \ direct solver fails for memory issues at about 300000 unknowns. These 
results, along with the algorithmic robustness shown in all numerical experiments, provide evidence that the proposed approach 
appears to be very promising for a future high-performance implementation.

A thorough theoretical analysis of the properties of the proposed preconditioner is not easy because the global block system matrix 
𝐀 does not possess any clear structure. Therefore, the quality of the preconditioner has been experimentally assessed by comparing 
the eigenspectrum of the native system matrix 𝐀 and that of the preconditioned matrix 𝐏−1𝐀. For this analysis we consider a coarser 
discretization made of 12×12×12 F.E., similar to the model in Fig. 12 and totaling 8281 nodes and 30212 dof. Fig. 17(a) and the 
upper part of Table 5 provide evidence of the pronounced non-symmetric nature of 𝐀, which has two clear eigenvalue clusters largely 
apart one from the other (around 10−6 and 105, respectively) and very large imaginary parts (up to about 104). By distinction, the 
eigenspectrum of the preconditioned matrix 𝐏−1𝐀 (Fig. 17(b) and lower part of Table 5) is very well clustered between 0.04 and 
1, with almost negligible imaginary parts around 10−3. It is well-known that the convergence of non-symmetric solvers depends 
not only on the eigenvalues of the preconditioned matrix, but also on the properties of the eigenvectors. The numerical experience, 
however, shows that a preconditioned matrix with a clustered eigenspectrum sufficiently far from 0 rarely provides unsatisfactory 
results. Hence, the outcome shown here appears to be quite promising for the proposed approach.

The solver robustness is investigated by a sensitivity analysis on: (i) the rotation 𝛼 of the axis of the transverse anisotropy 
constitutive model, and (ii) the type of anisotropic elastic constitutive model. We still consider the 3D wave propagation problem, 
17

but now use a mesh refinement corresponding to 21×42×20 F.E., which totals 295552 dof. Fig. 18(a) plots the total solution time 
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Fig. 16. Pattern and convergence profile for two different 3D discretizations (toll = 10−10).

Table 4

Left preconditioned Bi-CGStab solver performance.

Case Mesh Nodes dof𝑡𝑜𝑡 CPU Time [s]

Bi-CGStab Matlab (\)

1D 1×1×100 1208 2000 0.12 0.02

1D 1×1×200 2408 4000 0.19 0.04

2D 1×21×20 3148 8552 1.50 0.69

2D 1×42×40 12173 33969 5.67 3.85

2D 1×84×80 47863 142028 36.21 65.14

2D 1×168×160 189803 566384 665.46 960.01

3D 12×12×12 8281 30212 55.24 1011.54

3D 21×21×20 39248 148804 74.29 1303.28

3D 25×25×24 65624 254224 276.69 1932.60

3D 21×42×20 77153 295552 325.86 –

3D 25×50×24 129349 504124 735.05 –

3D 42×42×20 151661 586948 956.24 –

3D 50×50×24 254949 999649 2663.80 –

3D 42×42×40 297861 1159788 3367.95 –

of the linear system with respect to different rotations of the isotropic symmetry plane. Two scenarios are considered, namely the 
rotation of the isotropic plane of the solid matrix (red profile) and the rotation of the isotropic plane of the entire porous matrix 
(blue profile). In both scenarios, a variation of 𝛼 causes a relatively small impact on both the total solution time and iteration count. 
The variation is at most equal to 7% for 𝛼 = 45◦ in the case of non coaxiality of the porous matrix and 17% for the rotation of the 
18

material axes of the entire porous medium at the same angle.
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Fig. 17. Eigenvalue distribution for a 12×12×12 3D mesh.

Table 5

Extreme eigenvalues for a 12 × 12 × 12 3D mesh.

Eigenvalues Re part Im part

𝜆(𝐀)𝑋𝑚𝑖𝑛 2.0391×10−7 0.0

𝜆(𝐀)𝑋𝑚𝑎𝑥 3.7633×106 0.0

𝜆(𝐀)𝑌 𝑚𝑎𝑥 2.5166×105 9.0827×103

𝜆(𝐏−1𝐀)𝑋𝑚𝑖𝑛 0.0381 0.0

𝜆(𝐏−1𝐀)𝑋𝑚𝑎𝑥 1.0409 0.0

𝜆(𝐏−1𝐀)𝑌 𝑚𝑎𝑥 0.7949 0.0028

Fig. 18. CPU time solution (continuous line) and number of iterations (dashed line) with respect to anisotropy.

A similar outcome is obtained by varying the type of anisotropic elastic constitutive model (Fig. 18(b)). Employing 7 different 
behaviors for the porous medium (the same type of anisotropy has been assumed for the solid phase), solution times and iteration 
counts are shown as a function of the corresponding number of independent elastic constants. Horizontal axis has been built starting 
from the isotropic material, with two elastic parameters 𝐸 = 12.00 × 106𝑃𝑎 and 𝜈 = 0.3. Then, the cubic model has 3 independent 
parameters 𝐸, 𝜈, 𝐺, the transversely isotropic depends on 5 parameters (Tables 2 and 3), up to models where the number of elastic 
symmetries (see [16] for further details) is reduced until the triclinic material, which requires 21 different parameters for the 
description of its mechanical behavior. Also from this analysis, it can be appreciated that the solver is very marginally affected 
by the variation of the constitutive model and is able to solve the linear system on average in the same time, at most with a 5% 
difference. Notice that there was no need of operating on the parameters of the selected inner preconditioners, such as the triangular 
factorizations. All the test cases have been solved by simply assuming zero fill-in for both the IC and ILU factorizations used for 𝐴𝑣𝑣
and 𝐶𝑝𝑝, respectively.

All the tests above highlight the robustness of the proposed approach, which is able to solve effectively the problem at hand with 
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approximately the same computational effort, regardless of the rotation of the isotropic plane and the type of constitutive model.
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6. Conclusion

In this work, a multi–field coupled dynamic model for anisotropic porous materials has been developed and implemented. The 
mathematical formulation accounts for the intrinsic and macroscopic constitutive property of the poro–elastic material, through an 
extension of Terzaghi’s stress principle. The numerical solution to the governing coupled PDEs is obtained by using a FEM framework 
together with the implicit monolithic 𝜗–method as a time-marching scheme.

A significant issue for this type of model, which often limits its use in practical 3D applications, relies on the coupled multi–

physical nature of the resulting discretized system of equations that require ad hoc solver developments for large-size 3D applications. 
In this work, a specific preconditioned iterative algorithm, used for solution of the ill-conditioned multi–block non–symmetric systems 
that arise from the selected discretization spaces, is presented. The application of the proposed algorithm turns out to be robust and 
computationally efficient even in the prototypical Matlab implementation tested herein, allowing for the solution on a standard 
desktop PC of complex 3D models with up to 1.2 million unknowns. Numerical applications have been analyzed to investigate the 
shear wave splitting phenomenon in a 3D anisotropic soil setting. The results show the capabilities and the potential of the proposed 
numerical model for complex multi–field dynamic simulations. Further work is ongoing to move from the current prototypical Matlab 
implementation of the GeoMatFem research code to a high-performance version.
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Appendix A

A.1. Finite element details

A Finite Element approach is used to approximate the weak form (11) of the coupled dynamic differential equations for a fully 
saturated porous material. The following approximations 𝒖ℎ, 𝒗ℎ, 𝒘ℎ, 𝑝ℎ are introduced for the unknown fields:

𝒖ℎ =
𝑛𝑢∑
𝑖=1
𝝍 𝑖(𝒙)𝑢𝑖(𝑡), 𝒗ℎ =

𝑛𝑣∑
𝑖=1
𝝍 𝑖(𝒙)𝑣𝑖(𝑡), 𝒘ℎ =

𝑛𝑤∑
𝑗=1
𝝓𝑗 (𝒙)𝑤𝑗 (𝑡), 𝑝ℎ =

𝑛𝑝∑
𝑖=𝑘
𝜂𝑘(𝒙)𝑝𝑘(𝑡) , (40)

where 𝑛𝑢, 𝑛𝑣, 𝑛𝑤, and 𝑛𝑝 denote, respectively, the number of degrees of freedom for the displacements (𝑢𝑖), solid velocities (𝑣𝑖), 
fluid velocities (𝑤𝑗 ), and pressures (𝑝𝑘), collected in the vectors 𝐮 ∈ℝ𝑛𝑢 , 𝐯 ∈ ℝ𝑛𝑣 , 𝐰 ∈ ℝ𝑛𝑤 , and 𝐩 ∈ ℝ𝑛𝑝 . The vector functions 𝝍 𝑖, 
𝝓𝑗 , and the scalar functions 𝜂𝑘 are the basis for the finite element approximation spaces. For instance, a consistent inf-sup stable 
discretization is generated by ℚ2 −ℚ1 Taylor-Hood elements. By defining a partition  ℎ of Ω made of non-overlapping elements Ω𝑒, 
the basis functions in equation (40) can be set as follows:

𝝍 𝑖 ∈ ℎ𝑢,𝑣(Ω) = {𝝍 ∈𝑯1(Ω),𝝍 |Ω𝑒 ∈ [ℚ2(Ω𝑒)]𝑑 ∀Ω𝑒 ∈  ℎ}, 𝑖 = 1,… , 𝑛𝑣, (41a)

𝝓𝑗 ∈ ℎ𝑤(Ω) = {𝝓 ∈𝑯(div;Ω),𝝓|Ω𝑒 ∈ [ℚ1(Ω𝑒)]𝑑 ∀Ω𝑒 ∈  ℎ}, 𝑗 = 1,… , 𝑛𝑤, (41b)

𝜂𝑘 ∈ ℎ𝑝 (Ω) = {𝜂 ∈𝐻1(Ω), 𝜂|Ω𝑒 ∈ℚ1(Ω𝑒) ∀Ω𝑒 ∈  ℎ}, 𝑘 = 1,… , 𝑛𝑝, (41c)

with ℚ1(Ω𝑒) and ℚ2(Ω𝑒) the space of 𝑑-linear and 𝑑-quadratic polynomials in Ω𝑒, respectively. With the space selection (41), we 
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have 𝑛𝑢 = 𝑛𝑣, 𝑛𝑣 > 𝑛𝑤, and 𝑛𝑝 < 𝑛𝑤 (𝑛𝑝 = 𝑛𝑤∕𝑑).
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By introducing the approximations (40) into the weak form (11) and replacing the continuous with the discrete spaces (41), we 
obtain the system of 1st order differential equations in time (13). The internal blocks in 𝐌 and 𝐊 of (14) consist of 𝐼𝑢, i.e., the 
identity in ℝ𝑛𝑢×𝑛𝑢 , and:

[𝑀𝑣𝑣]𝑖𝑗 = (𝝍 𝑖, 𝜌𝑆𝝍 𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑣, 𝑗 = 1,… , 𝑛𝑣, (42a)

[𝑀𝑣𝑤]𝑖𝑗 = (𝝍 𝑖, 𝜌𝐹𝝓𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑣, 𝑗 = 1,… , 𝑛𝑤, (42b)

[𝑀𝑤𝑤]𝑖𝑗 = (𝝓𝑖, 𝜌𝐹𝝓𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑤, 𝑗 = 1,… , 𝑛𝑤, (42c)

[𝑀𝑝𝑤]𝑖𝑗 = (𝜂𝑖,div
𝒌𝐹

𝑔
𝝓𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑝, 𝑗 = 1,… , 𝑛𝑤, (42d)

[𝑀𝑝𝑝]𝑖𝑗 = (𝜂𝑖,Λ𝜂𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑝, 𝑗 = 1,… , 𝑛𝑝; (42e)

and:

[𝐾𝑣𝑢]𝑖𝑗 = (∇𝑠𝝍 𝑖,C ∶ ∇𝑠𝝍 𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑣, 𝑗 = 1,… , 𝑛𝑢, (43a)

[𝐾𝑣𝑝]𝑖𝑗 = −(∇𝑠𝝍 𝑖,𝑨𝜂𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑣, 𝑗 = 1,… , 𝑛𝑝, (43b)

[𝐾𝑤𝑣]𝑖𝑗 = −(𝝓𝑖, 𝜑𝛾𝐹𝒌𝐹 ,−1𝝍 𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑤, 𝑗 = 1,… , 𝑛𝑣, (43c)

[𝐾𝑤𝑤]𝑖𝑗 = (𝝓𝑖, 𝜑𝛾𝐹𝒌𝐹 ,−1𝝓𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑤, 𝑗 = 1,… , 𝑛𝑤, (43d)

[𝐾𝑤𝑝]𝑖𝑗 = −(div 𝝓𝑖, 𝜂𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑤, 𝑗 = 1,… , 𝑛𝑝, (43e)

[𝐾𝑝𝑣]𝑖𝑗 = (𝜂𝑖,𝑨 ∶ ∇𝑠𝝍 𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑝, 𝑗 = 1,… , 𝑛𝑣, (43f)

[𝐾𝑝𝑝]𝑖𝑗 = (∇𝜂𝑖,
𝒌𝐹

𝛾𝐹
∇𝜂𝑗 )Ω, 𝑖 = 1,… , 𝑛𝑝, 𝑗 = 1,… , 𝑛𝑝; (43g)
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