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A B S T R A C T   

European policies are fostering the electrification of energy use, including space heating and cooling systems, in 
order to decarbonise the building stock. The significant penetration of electrical loads and domestic photovoltaic 
(PV) plants has therefore become an important topic for researchers and engineers working in the building 
sector. In this context, this paper presents a recently constructed laboratory for testing efficient management 
strategies in all-electric houses. The article describes the laboratory and the Model Predictive Control (MPC) 
strategy developed to minimize economic costs for space heating while ensuring thermal comfort in the indoor 
environment with a simulated rooftop PV system. The proposed controller leverages prior knowledge about the 
physical and geometric properties of the building and the optimization problem is formulated using mixed- 
integer quadratic programming. This article reports the results of calibration and optimization performed in 
open loop, as well as two closed loop tests where the MPC controls the HVAC system using receding horizon. The 
predictive controller was able to substantially increase PV self-consumption in both tests compared to a con-
ventional thermostat, thus cutting electricity costs for heat pump by 10–17%. Such improvement was obtained at 
the price of a higher thermal comfort violations, mainly due to oversimplified HVAC system models. In light of 
these findings, the article analyses the effect of such simplifications and suggests possible alternative modelling 
approaches.   

1. Introduction 

It is widely accepted that the large-scale deployment of heat pumps is 
a promising way toward the decarbonisation of the heating sector. This 
trend will severely affect the power consumption patterns in the elec-
trical distribution systems [1]. At the same time, increasing penetration 
of small-scale renewable energy sources such as domestic PV systems is 
pushing the energy system towards a decentralised structure [2]. In this 
context, Building Energy Management Systems (BEMS) play a key role 
as they can shift energy consumption towards the most convenient time 
windows using the available energy flexibility sources, such as batteries, 
thermal storage tanks, heat emission systems and building structures 
[3]. The latter can be used both in the heating and in the cooling season 
and their effectiveness depends on the trade-off between efficiency, 
thermal comfort and the service they are meant to provide [4]. BEMS 
may pursue individual objectives, such as cutting costs or increasing 
autarky of single buildings [5] or system-level objectives, such as 

reducing peak loads on electrical distribution grids [6] or providing 
ancillary services to the power grid [7]. Several techniques can be used 
to control technical systems in buildings. Currently, most commercial 
products rely on Rule-Based Controllers (RBC) that react on disturbances 
using simple heuristics to maintain HVAC systems within pre-defined 
boundaries. The latter are usually set to achieve safe and efficient 
operation based on manufacturers and installers’ experience, and to 
provide acceptable levels of indoor environmental quality. Model Pre-
dictive Control (MPC) is a well-established method for constrained 
control and recently has been receiving extensive attention from re-
searchers in the field of control of buildings [8]. MPC takes advantage 
from the prediction of future disturbances (weather, internal heat gains 
etc.) given some feasible ranges for the controlled variables. The un-
derlying optimization is able to overcome RBC controllers and fully 
exploit the energy flexibility of building structures and thermal storage 
systems using heat pumps [9]. Despite its potential, MPC has not yet 
gained a significant share of the building controls market, mainly due to 
the significant engineering effort needed to implement and configure a 
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controller model that can be adapted to different buildings and HVAC 
systems. Serale et al. [10] classified research on MPC in buildings ac-
cording to the objective function adopted, and found out that most of the 
proposed formulations include operational costs and thermal comfort 
terms. When costs are included in the objective function, the optimal 
control problem can be referred to as Economic MPC (EMPC). 

Zong et al. [11] presented a discussion on the challenges for eco-
nomic MPC such as forecast availability, practical constraints due to 
implementation on hardware etc. They have tested the proposed EMPC 
in a building lab with radiators and compared it to a simulated PID 
controller under the same boundary conditions, though the quantitative 
result of such comparison is not quantitatively assessed. Blum et al. [12] 
investigated the impact of seven factors (building design, model struc-
ture, model order, data set, data quality, identification algorithm and 
initial guesses) on the model accuracy and on the performance of an 
MPC for cooling purposes. They discovered that a difference of up to 
20% in cooling cost can occur between the best performing model and 
the worst one. The primary factors contributing to this result were model 
structure and initial parameter guesses during parameter estimation of 
the model. 

1.1. Simulation-based research on MPC performance 

Verhelst et al. [13] showed that simplifications of the heat pump 
characteristics, i.e., neglecting the dependency of the heat pump effi-
ciency on the compressor frequency and the supply water temperature, 
is only permitted if the square of the predicted energy cost is penalized 

in the cost function. This way, high fluctuations of the heat pump 
thermal power, which negatively affect the control performance, are 
avoided. They also found the cost function to be very flat near the 
optimal solution, since different optimal control formulations yielded 
slightly different control profiles while resulting in similar energy cost 
and thermal discomfort. Hu et al. [14] developed MATLAB-TRNSYS co- 
simulation tests to compare an MPC controller to a conventional on–off 
control for a building with floor heating system. They found out that 
MPC is able to implement automatic and optimal preheating, thus 
improving thermal comfort at the beginning of occupancy, reducing the 
energy consumption during peak periods, and to reduce the daily elec-
tricity costs by 2–19% for residential end-users. Bianchini et al. [15] 
simulated the participation of two buildings of different size in a De-
mand Response program using MPC with receding horizon and Ener-
gyPlus models for simulating real-world feedback signals. They 
demonstrated that it is possible to obtain suboptimal results by means of 
heuristic strategies with negligible loss of accuracy. In a later work, they 
demonstrated that forecast uncertainty can increase costs by up to 8% 
compared to solutions with exact forecasts, which is approximately one 
third of the cost savings obtained for their case study compared to a 
thermostat controller [16]. According to the authors, this is a conse-
quence of the receding horizon strategy, which implies that only the 
prediction errors occurring in the near future significantly affect the 
performance. Drgona et al [17] used neural networks to mimic the 
behavior of MPC to control thermal comfort and energy consumption in 
a case-study building with six thermal zones. Approximating MPC led to 
suboptimal decisions able to overcome the performance of rule-based 

Nomenclature 

Symbols 
α Absorptance [-] 
H Heat exchange coefficient [W/K] 
c Operating cost [€/kWh] 
C Thermal capacitance [J/K] 
Φ Heat flow rate (actual) [W] 
Q Heat flow rate (calculated) [W] 
I Irradiance [W/m2] 
θ Temperature [◦C] 
n Speed [Hz] 
w Power [W] 
δ Temperature difference [◦C] 
λ Price [€/kWh] 
γ Weight (coefficient in the obj. function) 
V Volume [m3] 
τ Sampling time [s] 
k Constant coefficient (generic) 
N Integer number (time steps or days) [-] 
TD Thermal discomfort index [◦C/day] 
u On-off signal (0–1) 

Subscripts/superscripts 
buy buy (purchase) 
c calibration 
conv convective 
d daily 
i Indoor air 
int Internal heat gain 
e External air 
e,eq Sol-air 
el electrical 
H Horizon 
hc Heating/cooling load 

pred Predicted (from forecast) 
hp Heat pump 
hs Heat storage 
m Thermal mass 
max maximum 
meas measured 
min minimum 
mpc Model Predictive Control 
od other devices 
opt optimal 
out output 
pv photovoltaic 
s Internal surfaces 
se External surfaces 
self Self-consumption 
sell Sell (sale) 
sol Solar 
su Start-up 
sup Supply air 
t Time 
tr Transmission 
ts Thermostat control 
u Input penalty 
ve Ventilation 

Abbreviations 
BEMS Building Energy Management System 
COP Coefficient of Performance 
DHW Domestic Hot Water 
HVAC Heating, Ventilation, Air Conditioning 
MPC Model Predictive Control 
PID Proportional Integral Derivative 
PV Photovoltaic 
RBC Rule Based Control 
RMSE Root Mean Square Error  
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controllers. Kuboth et al [18] developed a distributed MPC problem to 
minimize costs for a simulated single-family house. The MPC was able to 
reduce costs by 11.6% compared to a PID controller through an increase 
of COP, a reduction of auxiliary heater operation, an increase in 
photovoltaic self-consumption. Wang et al [19] proposed a nonlinear 
optimization to coordinate the operation of fans, pumps and chiller in a 
building equipped with a chiller-based AHU system. Simulations 
demonstrated that the proposed MPC achieved 6.2% energy consump-
tion savings and 12.3% electricity bill reduction compared to a tradi-
tional PI control. Kishore et al [20] studied different precooling 
strategies to manage the heat gains in lightweight building walls inte-
grated with phase-change materials. They showed that while without 
PCM the load shifting is limited, its integration in a lightweight building 
envelope results in a significant shift of the peak load at the price of 
higher heat gains. Therefore, a trade-off must be pursued to optimally 
manage cooling loads in these buildings. A similar study was proposed 
by Cesari et al [21], that evaluated the performance of PCMs integrated 
in a radiant floor system in a lightweight building. Simple heuristics 
based on weather forecasts were proposed to avoid overheating and 
reduce energy consumption. Simulations showed that 4–8% energy 
consumption could be saved, and that prediction horizons of 6 and 12 h 
were sufficient for the heating and cooling period, respectively. Mir-
akhorli and Dong [22] simulated electrical loads of 15,000 buildings 
with both MPC and traditional control. Each building was equipped with 
air conditioning, water heater, electric vehicles, PV and battery. The 
study showed that MPCs can be used for an aggregated price-based load 
control provided that a suitable nodal price is communicated to the 
buildings, and that penalties for voltage drops help maintain a stable 
operation of the distribution grid. MPC-based integration was capable of 
reducing the peak load by 17% and saved the generation cost by 21%, 
while buildings were able to save 22% in their operation cost. Golmo-
hamadi et al [23] formulated a three-stage stochastic programming 
problem to schedule, adjust, and regulate responsive heat pumps hier-
archically to allow their participation to day-ahead and intraday elec-
tricity markets as well as to balancing markets. A numerical example 
demonstrated that the proposed approach can provide flexibility to the 
system and at the same time reduce energy costs (up to 47%) in a Danish 
single-family house. Hou et al [24] formulated a nonlinear MPC and 
tested it via simulations using a University building in Norway as a case 
study. They demonstrated that incorporating a forecast error model in 
the MPC allows to achieve almost the same cost savings of an MPC with 
perfect forecasts, whereas the performance without error model led to a 
significantly reduced cost saving and an increase in thermal comfort 
violations compared to the RBC. Lee et al [25] proposed an MPC with 
increasing levels of detail for the variable-speed heat pump model. 
Simulations of the heat pump over the whole heating season showed 
that both energy consumption and energy supply costs are heavily 
affected by the complexity of the heat pump model. Similarly, Wang et al 
[26] proposed a nonlinear MPC control strategy for an ASHP using water 
temperature difference as one of the controllable inputs. They obtained 

a slight improvement of the energy saving over reference PI controllers 
when compared to simpler MPC formulations. 

1.2. Experimental research on MPC performance 

Joe and Karava [27] demonstrated that in an office with radiant floor 
a data-driven MPC could lead to 34% cost savings compared to baseline 
feedback control during the cooling season and 16% energy use reduc-
tion during the heating season. Fiorentini et al [8] proposed a two-level 
comfort-oriented control strategy where the higher level assessed the 
possibility to operate in natural ventilation mode and the lower level 
optimised the HVAC system operation. The control strategy was able to 
improve comfort and reduce energy consumption compared to bench-
mark controllers, as demonstrated both via experiments and simula-
tions. Afram et al [28] proposed a supervisory MPC controller to find the 
optimum set-points trajectories based on the weather forecast and 
electricity prices for a typical house in Ontario (Canada) equipped with 
radiant floor heating, air handling units and a ground source heat pump. 
Simulations and experimental results showed that cost savings at least 
16% could be obtained in the cooling season, and that during the heating 
season the cost savings caused by load shifting to off-peak hours was 
significant only during moderate weather, i.e. when the external tem-
perature was higher than 5 ◦C. Bünning et al [29] used data-driven 
models within a convex optimization to control the room temperature 
in a living lab. Compared to a conventional hysteresis controller, the 
data-driven MPC approach saved 25% of cooling energy while reducing 
comfort constraint violations by 72% in a six-day experiment. Experi-
ments with longer control horizons suggested that the applicability for 
commercial buildings might be limited. In another study, Bünning et al 
[30] demonstrated that robust MPC based on data-driven models can 
also be used to provide frequency regulation reserves using a heat pump 
and warm buffer tank. Fiorentini et al [31] proposed a Hybrid Model 
Predictive Control (HMPC) strategy to manage a PVT-assisted HVAC 
system in an Australian residential building equipped with a phase 
change material (PCM) active storage unit, integrated with a standard 
ducted air conditioning system. The experiments showed the HMPC was 
able to reduce the energy consumption especially in the cooling season 
due to enhanced natural ventilation and higher EER of the heat pump. 
Serale et al [32] formulated and implemented a similar model predictive 
control strategy for the optimal management of a latent heat thermal 
energy storage unit coupled with a solar thermal collector and a backup 
electric heater. The study relied on piecewise linearization to describe 
the solid–liquid phase change of the PCM slurry. The proposed MPC 
strategy allowed to achieve significant energy savings compared to rule- 
based controllers. 

1.3. Research gap and objectives 

Despite the considerable number of research papers on MPC applied 
to buildings, two research gaps emerged from the literature review. In 

Fig. 1. (a) Photo and (b) floor plan of the lab.  
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fact, to the best of our knowledge, only two research papers so far have 
discussed the impact of heat pump/HVAC system models on the MPC 
performance [25,26], and none of them relied on experimental tests. 
Moreover, the majority of the reviewed papers applied this control 
approach to heavyweight building structures and heat emission systems 
with slow thermal response (e.g. radiators, floor heating systems). 
Therefore, this paper investigates HVAC systems modelling issues for 
MPC applied to a lightweight building with a fast-responsive heat 
emission system (fan coils). This paper aims at filling these research gaps 
in the ongoing discussion on economic MPC performance. It reports the 
results of the implementation of an economic MPC experimentally 
applied to a lightweight building lab located in Piacenza (Italy). The 
effects of the simplifications introduced by linearizing HVAC system 
models (heat pump, thermal storage and fan coils) are discussed using 
data obtained during operation. 

2. Lab description 

The experiments were carried out in the laboratory shown in Fig. 1, 
that was built to benchmark the performance of “all-electric” buildings. 
To this end, the laboratory has been equipped with (i) an air-to-water 
heat pump air conditioning system connected to four fan coils with a 
300-liter water heat storage tank; (ii) a heat pump water heater with 
200-liter storage tank for domestic hot water (DHW) production; (iii) an 
air/air conditioning system consisting of an outdoor condensing unit 
and four indoor units with a nominal cooling capacity of 6.8 kW; (iv) 
four air extractors; (v) a set of electrical appliances (e.g., washing ma-
chine, dryer, dishwasher and combined refrigerator). The perimeter 
walls and the roof are made up of polyurethane prefabricated panels. 
The external walls also have 2.5 cm plasterboard on the inner surface. 
Above the concrete slab, the ground floor has 5 cm insulation and 5 cm 
screed that also contribute to the building’s thermal inertia. The net 
height of the rooms is 2.7 m, and they are separated from the attic by a 
false ceiling made by mineral fiber panels. Only rooms A, B, C and D 
have been considered in this work, since rooms E and F are used for 
different purposes and their heating and cooling system could not be 
controlled. The total conditioned area is therefore 59.4 m2. Further in-
formation on the stratigraphy of the building components can be found 
in Appendix A. 

The HVAC system is illustrated in Fig. 2. In the upcoming months, the 
laboratory will be also equipped with a PV system with inverter and 
storage battery. In the meanwhile, the PV system has been simulated 
–see PV model section. A monitoring system allows to read data logged 
by the environmental sensors such as temperatures, mass flow rates, 
heat and power flow and automatically controls the system and 
communication with the heat pump. The software was created in the 
LabView environment based on a personal computer and on Advantech 

acquisition modules. The communication architecture uses Modbus 
ASCII and Modbus RTU fieldbuses on RS485 network. A preliminary 
analysis on the energy performance of the lab based on EnergyPlus 
simulations showed that the specific annual energy needs are approxi-
mately 68 kWh/m2 for heating and 13 kWh/m2 for cooling, including 
both sensible and latent loads. The whole analysis has not been included 
in this article to facilitate its readability. 

3. Models 

3.1. Building model 

The lumped capacitance model used to reproduce the thermal 
behavior of the lab is a modified version of the well-known model 
proposed by Standard ISO 13790 [33]. The Standard uses the electrical 
analogy and distributes the heat gains to three temperature nodes of an 
equivalent thermal network: Φia to the indoor air temperature node (θi), 
Φst to the surface temperature node (θs) and Φm to the thermal mass 
temperature (θm) node. The modified model has a thermal capacitance 

Fig. 2. Synoptic panel of the HVAC system.  

Fig. 3. 5R3C model of the building.  
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in each temperature node, thus being a 5R3C model, as shown in Fig. 3. 
The heat loads derive from the sum of HVAC heat output Φhc, solar heat 
gains Φsol and internal heat gains Φint. The internal heat gains have been 
assumed equal to a constant heat flow rate Φint,0. The indoor air tem-
perature can then be found by solving the linear system given by the 
energy balance on the mentioned temperature nodes: 

Hve(θsup
t − θi

t)+Htr,is(θs
t − θi

t)+Φia
t + fconv Φhc

t =
Ci

τ (θi
t − θi

t− τ) (1)  

Htr,w
(
θe,eq

t − θs
t

)
+Htr,is

(
θi

t − θs
t

)
+Htr,ms

(
θm

t − θs
t

)
+Φst

t +(1− fconv)Φhc
t

=
Cs

τ (θs
t − θs

t− τ) (2)  

Htr,em
(
θe,eq

t − θm
t

)
+Htr,ms

(
θs

t − θm
t

)
+Φm

t =
Cm

τ (θm
t − θm

t− τ) (3) 

where the capacitance terms Ci, Cs and Cm represent the thermal 
inertia offered by the indoor air volume, by the lightweight components 
(furniture, internal partitions etc) and by the structural elements of the 
building (walls, floor, ceiling etc). The other building parameters are the 
ventilation heat transfer coefficient Hve, the coupling conductance be-
tween internal air and surface node Htr,is, the thermal transmission co-
efficients of the windows Htr,w and of the opaque building components 
Htr,op. The latter is divided into two components, Htr,em and Htr,ms. The air 
supply temperature due to infiltration and/or ventilation (θsup) is equal 
to the external air temperature (θe) since there is no mechanical venti-
lation system and fconv is a parameter that accounts for different radiative 
and convective contributions of HVAC terminals (example: fconv= 1 for 
fancoils, fconv = 0.5 for radiators). 

Another important difference between this model and the Standard is 
that here the solar heat gains consider only the radiation transmitted 
through the glazed surfaces ϕsol,tr. Solar radiation absorbed by exterior 
opaque surfaces was considered through a sun-air equivalent tempera-
ture θe,eq, which is a common assumption for simplified building energy 
models, calculated as follows: 

θe,eq
t = θe

t +
αse Isol,se

t

hconv,se
(4) 

The model assumes that the four rooms of the lab can be modelled as 
a single thermal zone. This assumption is justified by two reasons: (i) the 
four fan coils cannot be controlled separately and (ii) all the windows 
are oriented towards the South. Since internal heat gains do not give a 
significant contribution due to the absence of people in the lab during 
the experiments, the indoor air temperature profile should not present 
significant differences in the four rooms. Monitored data have confirmed 

this hypothesis, with the highest local deviations of indoor temperature 
recorded in room A due to door openings. 

3.2. Heat pump model 

The simplified steady-state model adopted for the air source heat 
pump consists of three equations. The first equation correlates the heat 
pump capacity, i.e. the maximum thermal power output, to tempera-
tures of the heat source (external air) and heat sink (thermal storage 
tank). In general, the polynomial law used for this correlation may be of 
the first, second or third order. Eq. (5) shows the polynomial of the 
second order. Eq. (6) assumes that the thermal power output is a fraction 
of the capacity equal to the ratio between the compressor speed n and 
the maximum speed nmax. Finally, Eq. (7) assumes that the power con-
sumption of the heat pump including auxiliaries can be calculated based 
on a polynomial similar to Eq. (4), where COP is the coefficient of per-
formance of the heat pump. 

Qhp,max
t = a0 + a1θe

t + a2θhs
t + a3θe

t
2
+ a4θhs

t
2
+ a5θe

t θ
hs
t (5)  

Φhp
t =

n
nmax

Qhp,max
t (6)  

COPt = b0 + b1θe
t + b2θhs

t + b3θe
t

2
+ b4θhs

t
2
+ b5θe

t θ
hs
t (7) 

In order to avoid the introduction of nonlinear constraints, the values 
for θhs

t have been obtained by replacing the optimal values calculated for 
each time t at the last optimization run. 

3.3. PV system model 

While the previous models were included among the constraints of 
the optimization problem, the photovoltaic system model replaces the 
real system, i.e. provides power production values depending on the 
forecasted solar radiation. The model used was taken from an open- 
source collaborative project called pvlib [34], which is based on the 
well-known clear sky model [35]. The simulated PV system is assumed 
to be positioned on the south-oriented side of the roof, with a tilt angle of 
20◦. It consists of 14 modules with 220 W nominal power. 

4. Methods 

4.1. BEMS architecture 

The Building Energy Management System (BEMS) was developed in 
Python with the logic of object oriented programming. It consists of 

Fig. 4. Qualitative scheme illustrating the BEMS architecture.  
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several processes that are cyclically run on the computer of the lab 
where all measurements are collected. These processes include: (i) 
reading measurements from the plant and environmental sensors; (ii) 
reading weather forecast and update PV production forecasts accord-
ingly; (iii) calibrating parameters of the lumped capacitance model; (iv) 
scheduling the HVAC system operation for next hours. As Fig. 4 shows, 
the BEMS relies on a model predictive control loop. Measurements of 
indoor and outdoor temperature, solar radiation and heat flow rate 
released from the HVAC plants to the indoor environment are stored in a 
history database. All these measurements are used to calibrate a lumped 
capacitance building model described in the Models Section. The cali-
bration process carried out to find the parameters of the building model 
is described in the Methods section. Instead, the calibration of the heat 
pump model consists in the calculation of the coefficients of polynomials 
a1..aN and b1..bN through a linear regression –see Eq. (5–7). Once the 
optimal parameters are found through these calibration procedure, they 
are used to build the constraints of an optimization problem described 
hereafter. The optimization relies on weather forecasts that are updated 
by an external service twice a day. 

4.2. Calibration of the building model 

The calibrated parameters are those found in Equations (1)–(3). 
More specifically, the parameters are five thermal conductances, three 
thermal capacitances, and six other auxiliary parameters for a total of 
fourteen parameters, as shown in Table 1. The auxiliary parameters 
modify the effect of the boundary conditions on the thermal response of 
the building: the convective share of the thermal load yielded by the 
system to the environment fconv, the shares of solar radiation transmitted 
through the glazed surfaces and absorbed by the opaque ones ks,gla and 
ks,opa, the internal loads due to people, lights and electrical appliances 
Φint,0 and two coefficients (kfg,1 and kfg,2) that determine the distribution 
of solar and internal loads on the temperature nodes as given in Eqs. (8)– 
(10). 

Φia
t = 0.5Φint,0 + kfg,2Φsol,tr

t (8)  

Φst
t =

(
1 − kfg,1

)[
0.5Φint,0 +

(
1 − kfg,2

)
Φsol,tr

t

]
(9)  

Φm
t = kfg,1

[
0.5Φint,0 +

(
1 − kfg,2

)
Φsol,tr

t

]
(10) 

The calibration is the numerical process by which the parameters 
describing the building’s dynamic thermal behaviour in Eqs. (1)–(3) are 
initially determined based on an approximate knowledge of the building 
physical and geometrical properties, and then iteratively recalculated to 
ensure that the lumped capacitance model described above adheres as 
much as possible to the real behaviour of the building. This operation is 
carried out by an optimisation algorithm that minimises the mean 
square error between the average indoor air temperature profile 
measured in the lab and the indoor air temperature calculated by the 
mentioned model. Thus, the objective function is: 

min
x∈X

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nc

t=1(θ
i
t(x) − θi,meas

t )
2

Nc

√

(11) 

where x is the optimal set of parameters [Cm, Htr,em, Htr,is, Htr,ms, Htr,w, 
Hve, fconv,ks,gla,ks,opa, Φint,0, ka,ks,Cs,Ci] and Nc is the length of the training 
(calibration) period. The calibration algorithm, i.e., the optimization 
method used to minimize the objective function above, is the Trust 
Region Reflective algorithm contained in the Python library scipy. 
optimize.least_squares [11]. This library is based on algorithms suited to 
solve problems in which the objective function takes the nonlinear 
convex form: 

min
x∈X

∑Nc

t=1
f (x2) (12) 

in which the decision variables are constrained in a finite domain 
defined x ∈ [lb, ub]. Two exit criteria from the iterative loop were set: 
when in two consecutive iterations the difference between the objective 
function is 0.0005%, or when the maximum number of iterations (set to 
500) is reached. 

4.3. Optimization problem 

The current version of the BEMS controls only the heat pump and the 
circulation pump of the secondary water loop (see Fig. 2). In the future, 
also the DHW boiler and other electrical devices will be integrated 
within the BEMS. The core of the BEMS is a mixed integer quadratic 
programming (MIQP) problem solved in a rolling horizon scheme. This 
means that the optimization is repeated with a predetermined sample 
time. At each step, the operation of the HVAC system is planned for the 
next hours, where NH is the number of time steps to reach the optimi-
zation horizon. The planning consists in determining the circulation 
pump on the water loop of the fancoils and the state of the heat pump, 
which consists of an on/off signal and a frequency signal communicated 
to the inverter-driven compressor. The optimization problem consists in 
the minimization of the economic objective function: 

min
Ξ

∑NH

t=1

(
λbuyt wbuy

t − λsellt wsell
t

)
+ γ

∑NH

t=1

(
δt↑ + δt↓

)
+ γu

∑Nu

t=1

[(
Φhc

t − Φhc,0
t

)2

+
(
Φhp

t − Φhp,0
t

)2
]

(13) 

subject to the constraints in Eqn 1, 2 and 3 and to those listed in the 
following: 

wbuy
t +wpv

t = wsell
t +whp

t +wod
t (14)  

θi,min
t − δt↓ ≤ θi

t (15)  

θi
t ≤ θi,max

t + δt↑ (16)  

Φhp
t − Φhc

t − UA
(
θhs
t − θi

t

)
=

ρ Vhscp
τ (θhs

t − θhs
t− τ) (17)  

θhs
H ≥ θhs

0 (18) 

Table 1 
Calibrated parameters in the grey-box building model.  

# Parameter Unit Description 

1 Cm [J/K] Thermal capacitance of heavy building components 
(walls, floors, etc.) 

2 Htr,em [W/K] Heat exchange coefficient due to transmission through 
opaque walls on the external side 

3 Htr,is [W/K] Heat exchange coefficient due to transmission between 
indoor air and surfaces 

4 Htr,ms [W/K] Heat exchange coefficient due to transmission through 
opaque walls on the internal side 

5 Htr,w [W/K] Heat exchange coefficient due to transmission through 
windows 

6 Hve [W/K] Heat exchange coefficient due to ventilation and/or 
infiltration 

7 fconv [-] Convective heat exchange rate of HVAC system terminal 
units 

8 ks,gla [-] Multiplicative factor for the solar radiation transmitted 
through transparent surfaces 

9 ks,opa [-] Multiplicative factor for the solar radiation absorbed by 
opaque surfaces 

10 Φint,0 [W] Average internal heat gain due to people, lights and 
appliances 

11 kfg,1 [-] Distribution coefficient for internal and solar heat gains 
(n.1) 

12 kfg,2 [-] Distribution coefficient for internal and solar heat gains 
(n.2) 

13 Cs [J/K] Thermal capacitance of lightweight building components 
(partitions, furniture, etc.) 

14 Ci [J/K] Thermal capacitance of heated/cooled air volume  
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Φhp
t = rminQhp,max

t uhp
t +Qhp,mod

t (19)  

Qhp,mod
t ≤ uhp

t (1 − rmin)Qhp,max
t (20)  

Φhp
t = COPtwhp

t (21)  

xsut ≥ uhp
t − uhp

t− τ (22)  

xsut ≤ uhp
t (23)  

Φhp
t ≥ xsut rmin,suQhp,max

t (24)  

Qhc
t = khc,0 + khc,1θhs

t + khc,2θi
t (25)  

Qhc
t − Φhc

t ≤
(
1 − uhc

t

)
M (26)  

Φhc
t ≤ Qhc

t (27)  

Φhc
t ≤ uhc

t M (28) 

where λbuy
t and λsell

t are the purchase and sale price of electricity; wbuy
t 

and wsell
t represent the amount of electricity purchased and sold to the 

grid, and the second sum is a penalty that aims at limiting the events in 
which the air temperature goes beyond the boundaries of thermal 
comfort. The third term of the objective function was added to improve 
stability, i.e. to limit deviations between the optimal power profiles 
obtained by consecutive optimizations. This term does not sum up all the 
power values over the whole optimization horizon, but only the first Nu 

steps. In our case, deviations were penalized in the first 6 h so that Nu 

was set to 24. The weight γu was high enough to penalize significant 
deviations from the previous decisions, but low enough to give priority 
to the first two terms of the objective function. The temperature dif-
ference between the indoor air temperature and the upper/lower ther-
mal comfort bound is defined by variables δt↑ and δt↓, respectively. 
Further details about the optimization can be found in an early version 
of this work [5]. Eq. (14) represents the electrical energy balance at 
building level; Eq. (15) and (16) define the boundaries of indoor thermal 
comfort based on the temperature setpoints fixed by the user; Eq. (17) is 
the thermal energy balance of the hot water tank and Eq. (18) imposes 
that the temperature of the water in the tank at the end of the horizon 
must be at least equal to its initial temperature. This choice was made to 
avoid continuous discharging to pursue cost minimization. Eq. (19)–(21) 
describe the heat pump performance; Eq. (22)–(24) set the minimum 
power during the heat pump start-up; Eq. (25)–(27) constrain the heat 
flow rate exchanged by the heat emitters to the water temperature in the 
tank and to the indoor air temperature, while Eq. (28) links that heat 

flow rate to their on–off status. The whole set of constraints includes 8 
equations and 12 inequalities that must be repeated for each step t in the 
horizon, i.e. ∀ t ∈ [1, NH]. There are 16 unknown variables at each step: 
uhc

t , uhp
t , Φhc

t , Φhp
t , θhs

t , θi
t, θ

s
t , θm

t , whp
t , ws

t , wb
t , xsu

t , Qhp,mod
t , Qhc,mod

t , δt↓ and δt↑. 
Considering a receding horizon of 24 h with a sampling time of 15 min 
leads to an optimization problem NH = 96 timesteps, with 8•96 = 768 
equalities, 12•96 = 1152 inequalities and 16•96 = 1536 unknown 
variables. Therefore, the problem has (16–8)•96 = 768 degrees of 
freedom. The problem was formulated in Python using Gurobi solver 
[36] using gurobipy library. Appendix B provides the description of the 
main equality constraints (i.e. the building model) using state-space 
representation. 

4.4. Comparison with rule-based control 

The performance of the proposed MPC system was compared to that 
of a conventional thermostat controller. To this end, six performance 
indicators were used, three for the assessment of building self- 
sufficiency and final costs for the user, and another three for the ther-
mal discomfort. The same indicators are calculated both for the periods 
with MPC and with rule-based control. In order to simplify the definition 
of the mentioned KPIs, it is useful to first define the heat pump self- 
consumption as the minimum (evaluated at each time-step) between 
the PV production and the HP consumption: 

whp,self
t = min (whp

t ,wpv
t

)
(29) 

The HP self-consumption is then used to define the economic in-
dicators. The electrical self-consumption is then normalized either with 
respect to the electrical demand as in Eq. (30) or with respect to the local 
generation as in Eq. (31) over the whole test period considered: 

Whp,self
hp =

∑
tw

hp,self
t

∑
tw

hp
t

(30)  

Whp,self
pv =

∑
tw

hp,self
t

∑
tw

pv
t

(31) 

A high self-consumption leads to a lower final energy cost for the 
user, defined as follows: 

cel =
∑

tλ
buy
t wbuy

t
∑

tw
hp
t

=

∑
tλ

buy
t

(
whp

t − whp,self
t

)

∑
tw

hp
t

(32) 

Notice that the cost of energy for the user calculated with Eq. (32) 
does not depend on the electricity generated by the rooftop PV system. 
This choice was intentional, because solar radiation (and in turn PV 
production) varied significantly in the test periods considered. Finally, 

Fig. 5. Examples of model calibration: (a) in the winter season; (b) in the summer season.  
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three indicators highlight the cost for the use in terms of thermal 
discomfort during the test periods considered. Thermal discomfort is 
generated when the indoor temperature violates the upper or lower 
comfort bounds, as reported in Eq. (33) and (34), respectively. The total 
thermal discomfort indicates the sum of both comfort violations –as in 
Eq. (35). 

TDd↑ =

∑
tδt↑
Nd

(33)  

TDd↓ =

∑
tδt↓
Nd

(34)  

TDd = TDd↑+TDd↓ (35) 

Where Nd is the number of days of the considered experiment. These 
discomfort indexes were calculated based on the average temperature 
and not based on local indoor air temperatures in the four rooms. 

5. Results 

The results are divided into two parts: offline results analyzing the 
calibration and optimization outputs, and online results when the HVAC 
system is actually controlled by the MPC. The first part is useful to un-
derstand the behavior during real time operation. While the first part 
includes both heating and cooling, the second part includes the heating 
only. 

5.1. Calibration and optimization results 

The calibration results refer to both the lumped capacitance building 
model and the HVAC system models. The latter include the steady-state 
models of the air source heat pump and the fancoils and the one-node 
thermal storage. 

5.1.1. Accuracy of the building model 
Fig. 5 shows two examples of building model calibration, one for the 

heating season and one for the cooling season. The graphs show three 
indoor air temperature profiles: the blue profile has been calculated 
using the nominal parameters, i.e. using the information on the physical 
and geometrical properties of the building; the orange profile has been 
obtained through parameter calibration and the dashed black line is the 
profile of the average temperature measured in the four rooms of the 
Lab. The period considered in Fig. 5(a) consists of three days, from 24 to 
27 November 2021. Due to the night setpoint attenuation, the period 
includes both oscillations within the comfort band and periods in which, 
due to a shift from a low setpoint (20 ◦C) to a high one (22 ◦C) in the 
morning (and vice versa in the evening), the frequency of the temper-
ature signal is lower. Eighty percent of the dataset was used for training 
and the remaining 20% for testing, as evidenced by the dashed red 
vertical line. High R2 values in both the training (84%) and testing 
(79%) periods highlight the ability of the calibrated model to accurately 
describe the transient behaviour at both frequencies. The average dis-
tance between the two profiles is quantified by RMSE, which is 0.46 K in 
the training period and 0.44 K in the testing period. It is interesting to 
note that this result is achieved despite the daily trend of the external 
temperature in the training period differs from that in the testing period. 
Fig. 5(b) shows the outcome of a calibration test similar to the previous 
one in duration, but carried out during the summer season, from 9 to 12 
July 2021. In this case, RMSE is 0.16 K and 0.12 K in testing, while R2 

values are 79% and 82%, respectively. 

5.1.2. Accuracy of HVAC system models 
In order to find the coefficients of the polynomial functions, a linear 

regression has been implemented selecting only data corresponding to 
inverter frequencies greater than 59.5 Hz (the maximum frequency 
being 60 Hz). The square points in Fig. 6 represent the thermal power 
and the COP as a function of external air temperature and of the average 
thermal storage temperature. The coloured area in the graphs represents 
the second-order polynomial curve obtained by the regression to 
approximate the data cloud. As Fig. 6 shows, the correlation coefficient 

Fig. 6. a) Capacity and (b) COP of the heat pump: measurements vs linear 
regression model. 

Fig. 7. Difference between heat output estimated by the simplified heat pump 
model and measured values. 
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R2 is 86% for the heat pump capacity and 63% for the COP in the 
selected period. The lower correlation index can be explained by the fact 
that the COP considers two phenomena with different dynamics: while 
the electrical power absorbed by the compressor has an almost instan-
taneous response considering a sampling time of one minute, the ther-
mal power approaches its steady-state value more slowly. These 
transients occur mainly during compressor start-up periods. In these 
moments, COPs are typically lower than during steady-state operation. 

Fig. 7 shows that the predicted heat flow rate supplied by the heat 
pump condenser (red line) is greater than the actual one (blue line) 
especially during periods when the heat pump is turned on and off 
frequently, while during periods of continuous operation the opposite 
occurs. For instance, during the morning and afternoon of December, 1st 
there is a clear underestimation of the condenser heat flow rate. This 
probably happens because the regression model tends to compensate the 
overestimation made during transients. 

Fig. 8 shows the thermal power transferred from the tank to the 
environment through the fancoils in the same timeframe. The over-
estimation of the heat pump thermal power output to the heat storage 
tank during intermittent operation leads to overestimate the average 
temperature of the heat carrier fluid. As a result, one would expect the 
fancoils model to behave similarly to the heat pump model. Instead, 
during the start-ups of the fancoils there is no clear overestimation by 

the model. 
This effect could be related to the stratification of the water in the 

storage tank. In fact, the heat carrier flows from the upper part of the 
tank to the heat emitters. Therefore, the temperature of the heat transfer 
fluid entering the fancoils is higher than the average temperature 
assumed in the simplified one-node model, which does not take into 
account the stratification. As a result, the heat transferred to the building 
over the period considered is greater than that predicted by the model 
(+13.3%), and this error is significantly lower when looking at the heat 
pump (+7.7%). Since both models tend to underestimate thermal 
output, there is not a substantial difference between the average tem-
perature in the tank predicted by the model and the measured temper-
ature (average of two sensors placed at different heights). Indeed, Fig. 9 
shows that the error is, in most cases, between +/-2◦C. 

5.1.3. Optimal planning of the HVAC system 
Fig. 10(a) shows the result of the optimisation performed in the 

laboratory at 1 am on 30/11/20 with a 24-hour horizon. The wide 
comfort range considered (21 ± 2 ◦C) was set to better appreciate the 
energy flexibility offered by the building structures and by the HVAC 
system. After an initial transient that brings the indoor air temperature 
(continuous blue line) from the initial state (approx. 23 ◦C) to the 
minimum of the comfort band (19 ◦C), the temperature remains at the 
minimum level throughout the day except when it is possible to self- 
produce energy with the PV system. In fact, when the simulated 
photovoltaic panels produce electricity (yellow line), the heat pump 
produces heat and charges the tank. The possibility of modulating the 
thermal output of the heat pump adapts its electrical consumption 
(black line) to the forecasted production of the PV modules. 

The heat produced during these hours (from about 8 am to 3 pm) is 
not discharged directly into the room, but charges the thermal storage 
tank. The latter releases heat to the room both during the night and early 

Fig. 8. Difference between heat output estimated by the simplified model of 
the plant and the measured values. 

Fig. 9. Difference between water temperature in thermal storage tank esti-
mated by simplified models and average measured values. 

Fig. 10. Optimization results during a winter day (top) and a summer 
day (bottom). 
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morning hours due to the low outdoor temperature (blue dotted line), 
and from 1 pm onwards, when the tank has reached the maximum limit 
temperature and must therefore be discharged. This strategy can be 
appreciated by observing the green line, which represents the power 
profile transferred to the environment by the fan coils. This solution 
found by the optimiser takes maximum advantage of the combined 
inertia offered by the building structures and by the HVAC system. The 
state of charge of the tank, i.e. its average temperature θhs

t (blue dotted 
line) oscillates between a minimum and a maximum. In the summer 
season (Fig. 10(b)), the situation is mirrored: the internal temperature 
predicted by the optimiser is equal to the maximum allowed, except 
when the thermal storage can supply cold water that was produced at 
low cost by means of the photovoltaic system. During the night and in 
the morning, the external air temperature is lower than the internal one. 
Therefore, the heat pump only shows limited start-ups to maintain the 
water temperature in the tank below the maximum value allowed 
(20 ◦C). During the first afternoon hours, the heat pump exploits the 
electrical energy produced locally by the PV system to cool down the 
tank. The fancoil operation is scheduled from 12 am to 11 pm with a 
maximum cooling load occurring around 4 pm. 

5.2. Optimal control results 

5.2.1. Open-loop performance 
The monitored values of temperature and energy in the lab do not 

exactly match those predicted by the optimal planning. The difference is 
mainly due to the simplifications assumed in the energy balance equa-
tions describing the thermal behaviour of the system and by the inac-
curacy of weather forecasts. Fig. 11 shows, by way of example, the 
planned and realised behaviour during a test carried out on January 
18th, 2021, where dashed lines represent the predicted optimal 
behaviour and dotted lines stand for the actual behaviour measured in 
the lab. The blue lines in Fig. 11(a) show the predicted and measured 
outdoor air temperature. During the first hours, the measured temper-
ature corresponds to the forecasted one, but from approximately 8 am it 
deviates with consequent underestimation of the heat losses due trans-
mission and ventilation. The profiles of forecasted and actual water 
temperature in the tank show a diverging trend in the late morning. This 
can be explained by observing the heat exchange rate at the heat pump 

Fig. 11. Optimal planning vs measured behaviour: (a) temperatures and (b) 
heat flow rates. 

Fig. 12. Temperature and power profiles in the laboratory on 27–28/10/2021 
under thermostat control. 

Fig. 13. Temperature and power profiles in the laboratory on 18–19/11/2021 
under MPC. 
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condenser –red lines in Fig. 11(b). Despite an overall similar trend on a 
daily basis, the spike occurring around 10 am reaches negative values, 
which means that the tank switches its role from heat sink to heat source 
in order to perform a defrosting cycle. As a result, the water temperature 
in the tank drops compared to the predicted optimal trend shown by the 
dashed green line in Fig. 11(a). As far as the secondary side of the HVAC 
system is concerned, the measured and optimal heat flow rate supplied 
by the fancoils (Φhc) also show a similar trend on a daily basis. However, 
the peak due to the start-up transient is underestimated by the linear 
model. The electrical demand of the heat pump –green lines in Fig. 11 
(b)- and the average indoor air temperature -black lines in Fig. 11(a)-, 
which are the most important variables for the optimization pursued by 
the BEMS, show a good match with the optimal values, which confirms 
the robustness of the proposed model predictive controller. 

5.2.2. Closed-loop performance 
The close loop performance was tested by comparing periods in 

which the system was operated either with the classic thermostat or with 
the MPC-based BEMS. The first test was run in thermostat mode during 
the last week of October 2021. The benchmark test with thermostat 
control was conducted in the third week of November, and days with the 
most similar weather conditions to the late October test were then 
chosen. In both periods the temperature setpoint inside the Lab was kept 
constant (23 ± 1 ◦C). The temperature and power profiles in both pe-
riods are shown in Fig. 12 and Fig. 13 for thermostat control and MPC, 
respectively. The average outdoor air temperature of the second test was 
1.5 ◦C lower than that of late October, and the global solar radiation 
(measured in the horizontal plane) was almost five times lower: 0.62 
kWh/m2/day in November versus 2.90 kWh/m2/day in late October. As 
a consequence, the heat demand of the laboratory at the same average 
indoor temperature was 57% higher in the MPC test than in the ther-
mostat test, while the simulated photovoltaic production in the two days 
of October was 52% higher than in the two days of November. In 
addition, during the thermostat test period, the intra-day temperature 
fluctuation is much greater, with maximum temperatures approaching 
20 ◦C during the day as shown in Fig. 12. The higher heat demand 
recorded in November was partially offset by the higher COP in the same 
period, in which the average temperature in the tank was 35.2 ◦C, 
against an average of 40.8 ◦C obtained in October by imposing setpoints 
42 ± 3 ◦C, thus reducing the difference in electrical energy needs be-
tween the tests. Table 2 shows that, despite the little difference in the 
electrical energy absorbed by the heat pump in the two cases, the share 
of self-consumed energy is almost doubled thanks to the predictive logic, 
which allows to go from 17.1% to 31.4%, even with a much lower 
photovoltaic production and therefore in unfavorable conditions. As far 

as thermal comfort is concerned, the system shows margins for 
improvement as in both days there is a slight overheating in the late 
morning and that in the second day the average temperature falls below 
the lower comfort bound, although such discomfort occurs for less than 
one hour and not continuously. This problem can be related to the 
overlapping of several factors: the type of building and system, the 
control strategy chosen by the optimizer and the simplifications intro-
duced by the building and system models already discussed in Sections 
5.2.1 and 5.1.2. This issue also implies that the optimal decisions taken 
by the controller are not fully respected, as one can clearly see by 
comparing the indoor temperature profiles of Figs. 10 and 13. In fact, the 
indoor temperature during MPC operation fails to follow the lower 
comfort bound during periods with no PV production, which in turn 
increases the heat demand. 

In order to test the ability of the MPC to adapt to different user 
preferences, the system was also tested in the case (typical in residential 
buildings) where the temperature setpoint is lowered during the night 
hours. Raising the setpoint during daylight hours means shifting con-
sumption towards the hours of highest electricity production. This test 
therefore challenges the ability of the MPC to improve self-consumption 
compared to the traditional control system. The periods considered are 
three days for each control system: November 25–27, 2021 for 

Table 2 
Summary of the MPC tests against a benchmark thermostat controller.  

Indicator Constant 
setpoint 

Night 
setback 

MPC Thermostat MPC Thermostat 

Period 18–19/11 27–28/10 30/11–2/12 27–29/11 
θe(◦C) 9.8 11.3 5.2 6.1 
θi(◦C) 21.9 21.9 21.1 21.0 
Φhc(kWh/day) 9.03 5.17 10.50 8.82 
Φhp(kWh/day) 9.37 5.11 10.71 9.05 
Whp(kWh/day) 2.64 2.28 3.38 3.01 
COP (-) 3.55 2.24 3.17 3.01 
Wpv(kWh/day) 2.90 4.39 2.29 1.84 
Whp,self (kWh/day) 0.83 0.34 1.20 0.58 
Whp,self

pv (%) 28.6% 8.9% 52.5% 31.3% 

Whp,self
hp (%) 31.4% 17.2% 35.5% 19.1% 

cel(€/kWh) 0.137 0.166 0.129 0.162 
TDd↑(hr ◦C/day) 1.09 0.05 1.19 0.34 
TDd↓(hr ◦C/day) 1.08 0.29 1.91 0.57 
TDd(hr ◦C/day) 2.17 0.34 3.10 0.91  Fig. 14. Temperature and power profiles in the laboratory on 25–27/11/2021 

under thermostat control. 

Fig. 15. Temperature and power profiles in the laboratory on 30/11–2/12/ 
2021 under MPC. 
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predictive control (see Fig. 14) and November 29-December 2, 2021 for 
thermostat control (see Fig. 15). 

Table 2 shows that self-consumption also increases significantly in 
this case, from 31% to 52% of the energy produced by the PV system, 
and from 19% to 35% of the electricity consumed. Also in this case, the 
cost of electricity used is significantly lowered: from 0.162 €/kWh to 
0.129 €/kWh (-20%). It can be seen that the thermal energy used to heat 
the lab is higher in the MPC case. This is due in part to the lower average 
temperature over the period considered and the suboptimal control of 
the internal temperature due to the simplifications made to the plant 
models, as extensively discussed in Section 5.1.2. These deviations of the 
actual operation from that programmed by the optimizer also leads to 
exceeding the comfort limits at certain times of the day. This increase in 
discomfort, although low in absolute terms, is one of the most critical 
points found and must be improved both to ensure greater comfort to 
occupants, and at the same time minimize consumption. From the point 
of view of efficiency, however, it should be noted that the MPC is also 
able in this test to substantially improve the COP of the heat pump, 
bringing it from 3.01 to 3.38 (+12%). This improvement was obtained 
mainly by having a lower average temperature in the thermal buffer 
tank (about 2 ◦C less) and to an efficient compressor modulation driven 
by the MPC. 

6. Discussion on limitations and future directions 

A sensitivity analysis on the accuracy of the building model was not 
reported here for sake of brevity. However, it is worth reporting that 
several calibration runs have demonstrated that second and third-order 
models outperform models with one state, and that its accuracy is 
affected by the length of the training period and by the season consid-
ered. On average, RMSE values lower than 0.6 K have been achieved in 
both heating and cooling season. The type of building structure, and in 
particular the weight and the thermal insulation of the external walls 
and the share of glazed area are expected to significantly affect the ac-
curacy of the model, as discussed in other papers [12,37]. As highlighted 
in Section 5.1.2, the simplified models of the HVAC system (heat pump, 
thermal storage and fan coils) lead to a significant discrepancy between 
the measured heat supplied to building and the optimal heat load profile 
planned by the MPC. A possible quick solution to mitigate the under-
estimation made by the models is to consider, during the calibration, 
only the periods of continuous operation, i.e. only those periods in 
which the heat pump is on for e.g. at least 30 minutes. An alternative 
solution would be to use a quasi-dynamic model considering two cor-
relations: one for the transient regime and one for the continuous 
regime. A dynamic model could also be a viable option, especially if the 
MPC is used to provide flexibility services to the distribution or trans-
mission grid, as shown in previous papers [38,39]. 

Section 5.2.2 clearly shows that the combination of such over-
simplified models leads to unnecessary heat supply, which in turn im-
plies higher thermal discomfort compared to the rule-based control. In 

light of these findings, further development is needed to improve the 
accuracy of HVAC system components and choosing an appropriate 
number of training days for building calibration so that both control-
lable inputs and disturbances in the learning phase are similar to those in 
the testing phase. 

These sections have the merit of discussing in depth the conse-
quences of oversimplified models based on monitored results, but their 
limitation is that they have not quantified the relative contribution of 
each model to the overall deviations reported in the results. Indeed, 
thermal discomfort violations could be related not only to the under-
estimation of the heat supplied to the indoor space but also to the in-
accuracy of the building model. The latter is the focus of an analysis that 
will be presented in a separate work. 

Moreover, the application of the MPC approach proposed in this 
paper is limited to single thermal zones, and should be adjusted in those 
buildings where multiple thermal zones must be controlled separately. 

It is also important to consider the effect of uncertainty in the fore-
cast data, especially concerning solar radiation due to its effect on PV 
production and in turn on the objective function of economic MPC. This 
aspect could not be analysed here because the PV system has been 
installed months after the experiments. In the future, the comparison 
between predicted PV production using solar radiation forecasts and the 
actual PV production will make it possible to close this gap. Another 
important source of uncertainty in the disturbances would be introduced 
by active users, who were not considered in the research work presented 
in this article. Such additional disturbance is particularly relevant in 
new and refurbished buildings, where internal heat gains and windows 
opening patterns affect the heating load profile significantly. 

7. Conclusions 

The research activity has shown that it is possible to manage the 
electrical loads of a lightweight all-electric building with a predictive 
logic to maximize the use of renewable energy produced on site through 
the photovoltaic system, while obtaining significant savings for the end 
user. To this end, the thermal inertia of the building-plant system has 
been exploited to shift the electrical loads for space heating with 
different comfort constraints. 

The results showed that during the winter season it is possible to 
increase the self-consumption from 17-19% to 31–35% depending on 
the climatic conditions and the comfort conditions required by the user. 
This strategy allows to obtain savings on electricity in a range of 10–17% 
compared to a conventional control. 

This result is significant since the analysed building is not equipped 
with a battery for electrical energy storage, and is a lightweight building 
characterized by low thermal inertia. Therefore, the same controller is 
expected to obtain more significant savings in heavyweight buildings 
with a different heat emission system (radiators or radiant systems). 

On the other hand, the study highlighted some inaccuracies when 
using steady-state models for a fast-responsive HVAC systems with 

Table A1 
Thermal characteristics of opaque building components.  

Building component Layer Thickness [m] Thermal Conductivity 
[W/(m K)] 

Density [kg/m3] Specific heat 
[kJ/(kg K)] 

External wall 
(U = 0.277 W/(m2 K)) 

Polyurethane 0.10 0.021 120 1.00 
Plasterboard 0.025 0.19 660 1.00  

Ground floor 
(U = 0.393 W/(m2 K)) 

PVC floor 0.005 0.21 1300 1.45 
Screed 0.05 1.4 2200 1.05 
XPS insulation 0.05 0.037 40 1.45 
Polyethylene sheet 0.001 0.4 90 1.00 
Light concrete 0.07 0.1 520 1.05 
Concrete base 0.15 2.3 2000 1.00 

Roof 
(U = 0.288 W/(m2 K)) 

Polyurethane 0.10 0.021 120 1.00 

False ceiling Mineral fiber panels 0.10 0.03 120 1.00 
Internal partitions Polyurethane 0.10 0.021 120 1.00  
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intermittent behaviour. An analysis of the results showed that, due to the 
regression performed considering data during both transient and 
continuous operation, the models significantly underestimated the 
actual heat output of both the heat pump and the fan coils. Such inac-
curacies contributed to 3–6 times higher comfort violations and a higher 
amount of thermal energy supplied for space heating, thus decreasing 
the overall performance of the MPC. The increase in energy consump-
tion was also caused by colder weather recorded during MPC tests 
(lower outdoor temperature and in one case lower solar radiation). 

The next steps will include the formulation of improved HVAC 
models, as well as the inclusion of DHW production and ventilation 
among the controlled variables. Experiments will be repeated both in the 
heating and cooling season. Finally, it would be important to test the 
control system inside a real building inhabited by people to investigate 
how user behaviour and forecasts’ uncertainty affect the results ob-
tained so far. 
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Appendix A. Thermal properties of building components 

The stratigraphy of the opaque building components and their thermal transmittance are summarized in Table A.1. The declared thermal con-
ductivity of the polyurethane panels is 0.021 W/(m K). The thermal transmittances in the Table were calculated using a more realistic value of 0.030 
W/(m K). The thermal transmittance of the door and of the windows are 1.54 and 2.29 W/(m2 K), respectively. 

Appendix B. State-space representation 

The state-space representation of the building model is the following: 

ẋ = Ax+Bu (B.1) 

where × and u represent the states and the inputs of the model, respectively. In this case, the states are xT = [θi, θs, θm] and the inputs are uT = [θsup,

θe,eq,Φia,Φst ,Φm,Φhc,δ↑,δ↓]. Among the inputs, the first five entries are disturbances that depend on the weather conditions, i.e. external air temperature 
and solar radiation, and internal gains due to human activities in the building. In particular, θsup is the supply air due to infiltration/ventilation, θe,eq is 
the equivalent sol–air temperature defined in Eq. (4) and Φia,Φst,Φm are a combination of solar and internal heat gains, as defined in Eqs. (8)–(10). The 
last component of u is the controllable input of the MPC, i.e. the heat flow rate supplied to the building through the fancoil units (Φhc). With the help of 
Eqs. (1)–(3), the state matrix and the input matrix B can be defined as shown in Eqs. (B.2)–(B.3). 

A =

⎡
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0
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(B.2)  

B =
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(B.3) 

The formulation above is a reduced version of the whole set of constraints (reported in Section 4.3) that only considers the dynamic building model. 
The whole problem should also account for additional disturbances such as the PV production wpv and additional controllable inputs such as the 
thermal power supplied by the air source heat pump Φhp, its power consumption whp and the penalties for thermal comfort violation, δ↑ and δ↓. 
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