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Metabolic modeling and machine learning are key components in
the emerging next generation of systems and synthetic biology
tools, targeting the genotype–phenotype–environment relation-
ship. Rather than being used in isolation, it is becoming clear
that their value is maximized when they are combined. How-
ever, the potential of integrating these two frameworks for
omic data augmentation and integration is largely unexplored.
We propose, rigorously assess, and compare machine-learning–
based data integration techniques, combining gene expression
profiles with computationally generated metabolic flux data to
predict yeast cell growth. To this end, we create strain-specific
metabolic models for 1,143 Saccharomyces cerevisiae mutants
and we test 27 machine-learning methods, incorporating state-
of-the-art feature selection and multiview learning approaches.
We propose a multiview neural network using fluxomic and
transcriptomic data, showing that the former increases the pre-
dictive accuracy of the latter and reveals functional patterns
that are not directly deducible from gene expression alone. We
test the proposed neural network on a further 86 strains gen-
erated in a different experiment, therefore verifying its robust-
ness to an additional independent dataset. Finally, we show
that introducing mechanistic flux features improves the predic-
tions also for knockout strains whose genes were not modeled
in the metabolic reconstruction. Our results thus demonstrate
that fusing experimental cues with in silico models, based on
known biochemistry, can contribute with disjoint information
toward biologically informed and interpretable machine learn-
ing. Overall, this study provides tools for understanding and
manipulating complex phenotypes, increasing both the predic-
tion accuracy and the extent of discernible mechanistic biological
insights.

metabolic modeling | machine learning | flux balance analysis |
systems biology | multimodal learning

The analysis of complex, high-dimensional biological data
from heterogeneous sources is currently one of the main bot-

tlenecks in molecular biology. Such data are generated by a range
of high-throughput devices that target specific biomolecules or
biological processes and are collectively known as omic data.
Representative examples are the global genetic composition of
an organism—the genome—and the overall activation level of
its genes at a certain time—the transcriptome.

Popular technologies permit the monitoring of various phe-
nomena on a genetic and epigenetic level. However, in several
applications, information on genes may have limited relevance
to the task at hand, describing only a part of the processes tak-
ing place in biological organisms. Metabolic data are closer to
the cellular phenotype but, despite recent innovations in omic
technologies, sampling metabolic activity on a large scale is still
challenging (1). Machine learning provides tools to identify and
exploit patterns within this metabolic information, which can aid
in our understanding of the underlying biological mechanisms
(2). In this context, the heterogeneity of omic data has fos-
tered the development and application of multimodal learning
methods (3).

Machine-learning techniques generally ignore previous bio-
logical knowledge in driving the pattern analysis, limiting the
trustworthiness and interpretability of any obtained model.
To fill these gaps, constraint-based modeling (CBM) can be
used to simulate steady-state metabolism on a cellular scale.
Metabolic flux profiles generated in silico have been previ-
ously used to inform specific machine-learning models (4–
9), in some cases providing predictive advantages, as recently
reviewed (10). However, an integrative approach that fully
exploits the multimodal learning potential to integrate such
models with experimental omics and is therefore able to incorpo-
rate mechanistic biological knowledge in the learning process is
still lacking.

In this work, we propose a multimodal learning frame-
work that leverages both transcriptomic data and strain-specific
metabolic models to predict phenotypic traits of interest. We use
this framework to predict the cellular growth for 1,143 strains
of Saccharomyces cerevisiae, one of the main eukaryotic plat-
forms in basic research as well as in biotechnology and, more
recently, used for characterizing the processes associated with
human diseases (11).
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Cellular growth and gene expression are closely related in uni-
cellular organisms, as they coparticipate in mutual regulation.
On the one hand, growth is sustained by genes implicated in
ribosomal and translational functions. In parallel, the expres-
sion of genes is affected by global and unspecific regulation
originating from the physiological state of the cell (12). This
relationship has yet to be fully understood, and therefore pre-
dicting cellular growth following genetic manipulations is still
challenging. Understanding and controlling cellular growth have
important applications in disease modeling, in biotechnology,
and for the development of efficient cell factories (13). CRISPR-
Cas9–enabled genetic engineering now allows modifying yeast
DNA with single-nucleotide precision in vivo (14), achieving
engineered strains that maximize a desired output. However, the
identification of such strains is a complex issue (15). For instance,
streamlining yeast metabolism for the production of valuable
compounds often requires the deletion of multiple genes and
efficient diversion of resources toward production pathways (16).

In an attempt to fully elucidate relationships between cel-
lular growth and other processes, mathematical models have
been developed, particularly in bacteria and yeast (17–19). For
instance, coarse-grained models were designed to describe the
global relationship between the allocation of resources toward
protein synthesis and growth (20). Further, extensive models
of metabolic networks are commonly used to simulate cel-
lular metabolism under different growth conditions (21, 22).
These models offer quantitative mechanistic representations of
molecular processes, but often require detailed knowledge about
uptake rates from the environment to achieve precise estimates.

On the other hand, accurate and flexible models connecting
gene expression and cell growth can be obtained by data-driven
statistical and machine-learning methods. As gene expression
maintains a steady state during the log phase (23), it is possi-
ble to predict the growth rate even in cases where experimental
measurements are not feasible. This is particularly relevant in
the development of synthetic systems, where phenotypic traits
have to be tightly controlled. Previous research has focused on
building linear predictive models for yeast growth (24) and more
recently machine learning for both Escherichia coli and S. cere-
visiae (25). While both studies used gene expression profiles
alone, metabolic activity is also tightly bound to cell growth (26).

Our idea is that reconnecting metabolic activity to cell growth
with a data-driven and multiview approach should support more
accurate machine-learning predictions, while incorporating bio-
logical mechanisms within the learning process. To investigate
this idea, we used a compendium of 1,143 single-gene knockout
S. cerevisiae strains, with their genome-wide expression profiles
as training data to build models that predict cell doubling times.
We augmented the array of biological predictors by incorporat-
ing a metabolic modeling phase, wherein we use transcriptomic
profile integration in CBM to simulate strain-specific metabolism
using parsimonious flux balance analysis (pFBA). From these
simulations, we extracted reaction fluxes as additional features
(fluxomic data). We then applied machine-learning methods
using the transcriptomic and fluxomic datasets combined across
27 data–method combinations, testing different approaches for
their multiview integration. When the integration of the two
omics was performed within a neural network architecture, we
found a significant improvement compared to using transcrip-
tomic data alone. Upon finding that the proposed model, a
multimodal artificial neural network, achieves the best perfor-
mance, we tested it on a further 86 “unseen” strains generated
in a different experiment and not used in the training phase,
verifying its robustness to this independent dataset.

Our contributions thus focus on two aspects: 1) an inves-
tigation into the viability of building predictive models using
transcriptomic and fluxomic information through a comparison
of machine-learning, feature selection, and multiview data inte-

gration approaches and 2) an examination of the benefits of using
metabolic modeling in building multimodal machine-learning
predictive models, evaluating to what extent these mechanistic
data are used to drive the learning process.

Results
Our goal was to develop and evaluate a multiomic mechanism-
aware pipeline for predicting S. cerevisiae growth rate. To this
end, we developed the workflow summarized in Fig. 1. In brief,
we used CBM of metabolism to estimate the metabolic activity
of each yeast mutant in the exponential growth phase, starting
from their transcriptional activity. Then, we built and cross-
compared 27 machine-learning models of yeast growth from a
combination of transcript abundance and metabolic flux infor-
mation. These steps and their output are described in detail
in the following.

Strain-Specific Metabolic Modeling of Yeast Mutants. Genome-
scale metabolic models (GSMMs) aim to capture and simulate
the entire metabolic activity within a cell. Since different tran-
scription rates lead to alterations of cell behavior, we used gene
expression data to create 1,229 strain-specific models that emu-
late the corresponding metabolism. Through these simulations,
we extracted a measure of this metabolic activity in the form of
reaction fluxes for each strain (fluxomic data).

In particular, we focused on a transcriptomic dataset with
1,143 single deletion strains of S. cerevisiae (27) and a second
dataset comprising 86 single and double mutants (28), for a
total of 1,229 strains. The former was used as the main resource
for model training, optimization, and testing, while the latter
served as an experimentally independent test set in the pre-
dictive modeling stage. We used a recently refined GSMM of
yeast metabolism (29) in conjunction with Eq. 2 in Materials
and Methods to build the corresponding 1,229 strain-specific
models. This was achieved through a set of 908 genes involved
in metabolism, represented within the yeast GSMM and put
in relation to the biochemical reactions they control. In the
following, we refer to the full transcriptomic profiles as “gene
expression” (GE) data and to the reduced transcript information
from these 908 genes as “metabolic gene expression” (MGE), as
depicted in Fig. 1B.

To create the strain-specific metabolic models, we altered the
reaction bounds within the yeast GSMM based on expression
fold-change levels in the MGE dataset. To reproduce nutritional
conditions, we set the uptake rates according to the feed com-
position used in the original study (Materials and Methods). We
then used pFBA to determine the reaction fluxes for the entire
network by maximizing the biomass accumulation rate subject
to model constraints. In this setting, we ensure that metabolic
activity is coupled with gene expression and independent of envi-
ronmental conditions, which are homogeneous across all strains
(Fig. 2A). Fig. 2 B and C shows the relationship between the
pFBA-predicted biomass accumulation rate and the experimen-
tally measured relative cell doubling time in the two sets of
mutants. As expected, we obtained a clear negative correlation
between the two quantities, with a Pearson’s correlation coef-
ficient (PCC) =− 0.66, P < 10−15 in the first set and PCC =
− 0.76, P < 10−15 in the second set.

Metabolic modeling of the yeast mutant populations also
allowed us to identify pathways of biological interest that
are highly correlated with growth, therefore providing means
to assess the mechanistic knowledge supporting the machine-
learning models we developed in the next stage. Fig. 2D shows
the mean absolute correlation of fluxes inside each pathway
with the relative doubling time. Among those pathways that
correlate most strongly with growth (|PCC| ≥ 0.6) we found
amino acid and aminoacyl-tRNA metabolism, as well as path-
ways involved in producing the fuel for growth such as starch,
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Fig. 1. Our multiomic integration and prediction framework, including all of the datasets and machine-learning methods used in this study. The input
is a gene expression screen of 1,143 single-knockout yeast strains (plus 86 single- and double-knockout strains used for independent validation), coupled
with their relative growth rate and a GSMM of S. cerevisiae (A). Our methodology is divided into two main stages. In the metabolic modeling stage (B),
we extracted the gene expression (GE) data for the genes involved in metabolism (MGE) and used the data to tailor the flux constraints of the GSMM in a
strain-specific manner. Next, we applied pFBA to such strain-specific GSMMs to obtain the associated metabolic fluxes (MFs). In the machine-learning stage
(C), we used the GE, MGE, and MF data to construct machine-learning models of yeast growth. This was achieved through (C.I) single-view learning—using
only GE, MGE, or MF; (C.II) concatenation, feature selection, and single-view learning—reducing the number of GE and MF predictors; and (C.III) multiview
learning—integrating the multiomic data with algorithms designed for multiple data sources (also referred to as data modes or data views). In total, 27
dataset–model combinations were tested in this stage, including a custom multimodal neural network (MMANN).

sucrose, riboflavin, and fructose metabolism, in keeping with
previous experimental results (30). Other highly correlated path-
ways act as intermediaries between processes that are important
for cell growth, such as C5-branched dibasic acid and galac-
tose metabolism. Furthermore, we identified purine metabolism,

which has been found to regulate cell growth (31); RNA degra-
dation, which has been shown to be strongly correlated with yeast
growth rates (32); and sulfur metabolism, which can actively
promote initial cell division (33). Finally, the fact that growth
rate is also correlated with pyrimidine supports recent research
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Fig. 2. Results of strain-specific metabolic modeling of yeast knockouts. (A) Relationship between cell growth and the main biological processes. While
most models consider either gene expression or metabolism, here we seek to integrate both views within a unified computational framework. In our study,
environmental conditions are fixed, and hence cellular growth and metabolism are mainly driven by the influence of varying gene regulation and expression
conditions. (B and C) Yeast mutant experimental relative doubling time plotted against their biomass accumulation rate, computationally estimated by
strain-specific pFBA, both for the initial set (B) and for the experimentally independent test set (C). The negative correlation suggests that our strain-specific
constraint-based modeling approach recapitulates the measured yeast growth. (D) Mean absolute correlation between experimental relative doubling time
and strain-specific GSMM reaction fluxes within each metabolic pathway. High correlations were identified for meiosis, amino acids, and carbohydrates
metabolism.
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suggesting that its limitation causes the depletion of UTP and
CTP, which in turn limits RNA biosynthesis, a limiting factor for
cell growth (34).

Prediction of Cellular Growth Based on Transcriptomic and Fluxomic
Profiles. Starting from GE and metabolic flux (MF) profiles of
yeast mutants as two data views, we used the associated relative
growth rate as a target to train our predictive machine-learning
models. As the nutritional conditions are fixed for all of the
strains, we assumed that variation on the level of gene reg-
ulation and expression is the main contributor to metabolism
and growth. In this stage, we adopted the workflow depicted
in Fig. 1C.

First, we explored three traditional machine-learning tech-
niques, each one with previous encouraging results in biological
predictive tasks: 1) support vector regression (SVR)—often the
learning tool of choice in computational biology due to its non-
linear decision boundary and ability to handle high-dimensional
datasets (35, 36); 2) random forest (RF)—able to handle hetero-
geneous data types in high dimensions and to account for both
correlation and interaction among features, which has led to suc-
cess in predictive modeling in multiple biological domains (37);
and 3) artificial neural networks (ANNs)—extremely effective
in learning and modeling complex systems, with recent research
reconstructing cell functionality (38) and predicting phenotypes
from multiomic data (39). We applied these methods to GE,
MGE, and MF data separately, in a single-view fashion, to obtain
a baseline performance for the following steps.

In a second stage, we studied the integration of base omic
datasets. Because our combined data represent two distinct views
on the same biological systems, to thoroughly investigate the use
of complementary information we explored three data strategies:
1) early integration, where GE and MF are concatenated and
treated as a single dataset denoted as GE-MF; 2) intermediate
integration, where model building is carried out on a combined
transformation of the input views; and 3) late integration, where
a model is separately built within each view and then the models
are fused (3).

For intermediate and late integration, we used three multiview
methods based on those employed in the single-view scenario.
First, we considered Bayesian efficient multiple-kernel learning
(BEMKL) (40), applying separate radial basis kernels to the MF
and GE datasets. Second, we used bagged random forest (BRF)
with distinct forests learned on transcriptomic and fluxomic pro-
files. Finally, we designed and built a multimodal artificial neural
network (MMANN) to independently extract latent information
from the two omic views and then fuse it together via additional
neural layers (see SI Appendix for details).

The multiomic datasets considered in our predictive frame-
work have a large number of features, which in general can
contribute to various extents toward the predicted growth value.
Noncontributing features add noise to the data, therefore giving
potentially weaker predictive models while increasing the train-
ing effort. To overcome this “curse of dimensionality,” feature
selection and regularization techniques were incorporated with
the aim of isolating the most predictive features. Also in this
task, we explored three state-of-the-art approaches: 1) sparse
group lasso (SGL) (41), due to its ability to take into account the
correlated and modular nature of biological functions; 2) non-
dominated sorting genetic algorithm II (NSGA-II) (42), for its
ability to optimize multiple objectives; and 3) iterative random
forests (iRF) (43), for its ability to capture nonlinear interactions
among features (SI Appendix). Each of these techniques offers a
different perspective on feature selection and is applied to GE-
MF as an additional step of early integration. We thereby created
three further datasets (SGL data, NSGA-II data, and iRF data,
respectively) comprising the features identified by each of these
approaches.

Comparison of 27 Multiomic Machine-Learning Models of Yeast
Growth. The methods outlined in the previous section globally
constitute a wide and diversified collection of state-of-the-art
data-driven prediction tools, applicable to different sets of omic
data. To identify the most effective approach, we performed
a systematic comparison of their predictive accuracy, covering
27 dataset–method combinations. We evaluated each combina-
tion by training and optimizing a model with 80% of the 1,143
samples in our primary dataset and testing it with the remain-
ing 20%. The hyperparameters were selected by grid search as
described in Materials and Methods. The entire procedure was
repeated 100 times to capture the random variation in training
and validation, while maintaining the same final test set.

Table 1 and Fig. 3 give a breakdown of the predictive model-
ing results. First, we found highly variable scores for single-omic
predictions, depending on whether they referred to transcrip-
tomic or fluxomic data. In fact, both GE and MGE consistently
achieved higher accuracy than MF profiles. Analogously, the
complete GE performs better than the MGE subset, there-
fore highlighting the importance of metabolic or nonmetabolic
genes that are not currently used by the yeast GSMM. Second,
our results suggest that early- and late-integration approaches
on average do not improve single-omic accuracy, although also
this trend is associated with large variation depending on the
specific data–method combination. Conversely, a small but tan-
gible improvement was observed for intermediate integration
approaches. Third, SVR- and ANN-based approaches generally
tend to be more accurate than tree-based approaches. It is inter-
esting to observe that, overall, the most accurate dataset–method
combination is the MMANN model using both GE and MF,
immediately followed by SVR trained on GE alone, with sta-
tistically significant median absolute error (MDAE) differences
between the two (Fig. 3D).

By examining the predictive scores achieved by single-view and
multiview ANNs, we notice a clear improvement of multiomic
models against the stand-alone GE- and MGE-based models,
in contrast to other multiview methods. It thus emerges that
ANNs constitute the most suitable framework for the integra-
tion of transcriptomic and fluxomic data in terms of predictive
benefits, among those considered here. Our results also sug-
gest that, despite the relatively weak performance of the fluxes
alone, their useful information cannot be discerned from GE and
is therefore complementary to it. This is supported by examin-
ing the prediction output correlations shown in Fig. 3D, where
the models produced using the fluxomic data have a predic-
tion set that largely differs from the other models. MMANNs
seem thus to use the metabolic modeling to gain information
that cannot be acquired from the gene expression alone. Addi-
tionally, using fluxes as additional features improves the ability
to mechanistically explain the predictions from ANNs, making
them biologically interpretable.

Furthermore, data condensation through feature selection
(SGL, NSGA-II, and iRF data) increases the predictive capa-
bility of SVR and occasionally RF, but our results indicate that
this is not the case with ANNs. Since our ANNs include at least
two hidden layers, this suggests that ANNs can identify predictive
nonlinear relationships among genes and metabolic reactions
that involve a larger set of features.

Generalization to an Experimentally Independent Dataset. For a
machine-learning model to be considered generalizable and of
high utility, performance stability is paramount. Especially in
those settings where new data are collected in environments that
differ from those of the training data, it is imperative that the
prediction accuracy does not degrade under this new and unseen
setting. However, this can be challenging to achieve when all
of the training, validation, and test data originate from a single
experiment (44). To verify the ability of our MMANN model to
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Table 1. Full set of accuracy scores across all 27 dataset–algorithm combinations, shown in Fig. 3: root-mean-squared error (RMSE),
mean absolute error (MAE), median absolute error (MDAE), Pearson’s correlation coefficient (PCC), and fluxomic features
representation (FFR, the percentage of metabolic flux features over the total number of features)

Dataset(s) Method RMSE MAE MDAE PCC FFR, %

Single omics
GE SVR 0.102 ± 3e-04* 0.067 ± 0.001* 0.045 ± 0.004 0.902 ± 0.001 0
GE RF 0.127 ± 0.001 0.077 ± 4e-04 0.049 ± 0.001 0.864 ± 0.002 0
GE ANN 0.122 ± 0.007 0.079 ± 0.008 0.053 ± 0.010 0.876 ± 0.004 0
MGE SVR 0.115 ± 0.003 0.070 ± 4e-04 0.046 ± 2e-04 0.872 ± 0.006 0
MGE RF 0.130 ± 0.001 0.079 ± 4e-04 0.050 ± 0.001 0.855 ± 0.002 0
MGE ANN 0.139 ± 0.008 0.091 ± 0.008 0.065 ± 0.011 0.838 ± 0.005 0
MF SVR 0.203 ± 0.006 0.117 ± 0.003 0.065 ± 3e-04 0.504 ± .033 100
MF RF 0.185 ± 0.002 0.109 ± 0.001 0.065 ± 0.002 0.611 ± 0.009 100
MF ANN 0.196 ± 0.009 0.125 ± 0.016 0.083 ± 0.021 0.588 ± 0.003 100

Early integration
GE-MF SVR 0.132 ± 0.009 0.079 ± 0.004 0.048 ± 0.004 0.828 ± 0.029 36
GE-MF RF 0.126 ± 0.001 0.077 ± 0.001 0.048 ± 0.001 0.866 ± 0.003 36
GE-MF ANN 0.132 ± 0.007 0.085 ± 0.009 0.057 ± 0.011 0.847 ± 0.006 36
SGL data SVR 0.117 ± 0.001 0.082 ± 3e-04 0.058 ± 0.001 0.867 ± 0.002 34
SGL data RF 0.130 ± 0.001 0.082 ± 5e-04 0.053 ± 0.001 0.844 ± 0.003 34
SGL data ANN 0.163 ± 0.011 0.105 ± 0.013 0.072 ± 0.019 0.805 ± 0.005 34
NSGA-II data SVR 0.178 ± 0.014 0.103 ± 0.005 0.063 ± 0.002 0.653 ± 0.069 24
NSGA-II data RF 0.179 ± 0.020 0.110 ± 0.010 0.067 ± 0.004 0.653 ± 0.077 24
NSGA-II data ANN 0.154 ± 0.011 0.100 ± 0.014 0.067 ± 0.017 0.804 ± 0.013 24
iRF data SVR 0.108 ± 0.002 0.072 ± 0.001 0.050 ± 0.001 0.891 ± 0.002 0
iRF data RF 0.120 ± 0.001 0.074 ± 3e-04 0.049 ± 0.001 0.870 ± 0.002 0
iRF data ANN 0.136 ± 0.008 0.090 ± 0.010 0.065 ± 0.014 0.854 ± 0.003 0

Intermediate and
late integration
GE and MF BEMKL 0.182 ± 1e-04 0.110 ± 2e-04 0.066 ± 1e-04 0.626 ± 0.001 36
GE and MF BRF 0.145 ± 0.001 0.086 ± 3e-04 0.053 ± 0.001 0.810 ± 0.003 36
GE and MF MMANN 0.102 ± 0.001* 0.067 ± 0.001* 0.043 ± 0.002* 0.906 ± 0.002* 36
MGE and MF BEMKL 0.182 ± 7e-05 0.110 ± 1e-04 0.067 ± 2e-04 0.625 ± 3e-04 79
MGE and MF BRF 0.147 ± 0.001 0.087 ± 4e-04 0.054 ± 0.001 0.803 ± 0.003 79
MGE and MF MMANN 0.112 ± 0.001 0.073 ± 0.001 0.047 ± 0.002 0.882 ± 0.003 79

Values in boldface type represent the best scores for each data integration scenario, while the best global performance for each measure is highlighted
by an asterisk. The MMANN model consistently outperforms all other models and, with 36% of the features being fluxomic, demonstrates the utility of the
additional metabolic modeling stage in our pipeline.

generalize to experimentally independent data, we applied it to
a different set of yeast mutants cultivated in the same nutritional
conditions. Importantly, the new mutants not only comprise
single-knockout strains, but also double knockouts, exposing our
model to epistatic effects on which it was not trained (28). This
analysis therefore allowed us to investigate the additional ques-
tion of whether our multiomic MMANN model, trained only on
single mutants, could also generate reasonable predictions for
double mutants (further details can be found in Materials and
Methods).

Fig. 3C shows the results on the experimentally independent
test set. In the single-knockout case, mean absolute error (MAE)
and MDAE increase, but root-mean-squared error (RMSE) and
Pearson’s correlation coefficient (PCC) improve compared to
the first test case. This might be caused by potential batch
effects across experiments that represent a source of system-
atic error, often particularly visible on the level of MDAE (45).
However, the key patterns are captured as RMSE and PCC
are consistent with previous tests. Double knockouts were not
present in the training dataset and therefore, expectedly, the
model performs less well in this scenario. We note also that,
even in this out-of-distribution double-gene knockout setting, the
correlation with target growth rates is particularly strong. This
suggests that, if a relative rather than absolute strain identifica-
tion is required, then training on single knockouts and testing
on double knockouts using the MMANN approach would give
a setting from which strains could be compared with confi-

dence. Taken together, assuming an appropriate training envi-
ronment and batch effect corrections, these results support the
use of MMANN as a strong predictive method for this task and
demonstrate robust generalization across experiments.

Functional Classification of Relevant Multiomic Predictors. As
described above, the application of feature selection methods
allowed us to reduce the number of biological variables to facili-
tate model learning. At the same time, it provided us with concise
sets of predictors that hold a strong association with the cel-
lular growth from a data-driven point of view. We found that
SGL yields 71 GE and 36 MF features as most relevant, while
iRF identifies 68 unique GE features. Third, with the NSGA-
II feature selection, nine variable sets are selected as members
of the Pareto front of possible optimal solutions (SI Appendix),
which include 218 GE and 51 MF unique features. Fig. 4A shows
the metabolic pathways associated with the GSMM reactions
selected by each of these algorithms, while Fig. 4B illustrates the
main functional categories for the selected genes, obtained by
querying the PANTHER classification system (46).

Among all biological processes, metabolic processes are the
most prominent class for all three feature selection algorithms.
By examining the organic metabolic processes, we found that a
large proportion of reactions and pathways correspond to the
biosynthesis and metabolism of macromolecules and organic
compounds, such as factors for transcription, translational ini-
tiation, and elongation (Fig. 4C). This is consistent with the
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Fig. 3. Machine-learning yeast growth prediction results. (A) Comparison of model predictive performance across data integration strategy and machine-
learning model type. Intermediate integration is overall the most effective approach and notably better than single-omic models. Concomitantly, ANN- and
SVR-based techniques appear generally more effective than tree-based techniques. (B) Comparison of model accuracy for all dataset–learning algorithm
combinations, corresponding to numeric results shown in Table 1. The MMANN using both GE and MF profiles is overall the most accurate model, followed
by GE-based SVR. (C) Error scores on the experimentally independent test set. Dashed red lines represent the corresponding error score on the main test
set, while shaded areas represent their associated SD. (D) In blue, Pearson’s correlation between error score vectors on the test set, for each pair of data–
method combination. In red, P values are shown of Wilcoxon rank-sum tests assessing the significance of MDAE differences, for each pair of data–method
combination. *, **, and *** represent significance at thresholds of 0.05, 0.01, and 0.001, respectively, rescaled by Bonferroni correction.

role in protein synthesis played by the translational machinery,
which is critical for cell growth (47). No functional class was
found statistically enriched, indicating that the joint contribu-
tion of multiple processes determines the actual growth rate.
Regarding MF features, SGL selected reactions largely involved
in the metabolism of glycerolipids, glycerophospholipids, and
secondary metabolites, whereas reactions selected by NSGA-II
encapsulate a more diverse variety of functions (Fig. 4A), ranging

from the biosynthesis of amino acids and secondary metabo-
lites to the metabolism of fatty acids, glycerophospholipids, and
nucleotides.

The gene YDR472W (also known as TRS31) was selected by
all three feature selection methods and encodes a core com-
ponent of a subunit present in TRAPP complexes, which are
responsible for Rab-mediated vesicle trafficking (48). All other
selected genes and metabolic reactions are exclusive to one or
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Fig. 4. Contribution of the omic features to the learning process. (A) Pathway classification of the metabolic features selected by SGL, NSGA-II, and
MMANN. (B and C) Functional classification of the genes selected by SGL, NSGA-II, iRF, or MMANN, based on Gene Ontology biological processes and
metabolic molecular functions, respectively. The number of features per functional class is independent of the selection method for SGL, NSGA-II, and iRF
(χ2 test of independence, null hypothesis H0 retained, P = 0.72> 0.05 for biological processes and P = 0.18> 0.05 for metabolic processes), but dependent
for MMANN (null hypothesis H0 rejected, P = 6.3 · 10−4 < 0.05 for biological processes and P = 2.2 · 10−3 < 0.05 for metabolic processes). (D) Overlap in
the individual features selected by SGL, NSGA-II, and iRF. A single feature is shared among iRF, NSGA-II, and SGL, represented by the expression of gene
YDR472W. This suggests that individual features are used interchangeably by the feature selection methods (e.g., highly correlated gene expression values
or reactions with similar flux in a linear pathway) while, at a higher functional level, the pathway-level selected signal is consistent across all methods (as
shown in B). (E) Distribution of feature importance in the MMANNs. These distributions are extracted from the MF and GE components of the MMANN
models. Although the GE SHAP values have an overall higher contribution, the MF has a small number of features determined as highly contributing,
demonstrating their predictive utility. (F) Metabolic flux through the citric acid cycle in two mutants: PET112 (Left) and ATG10 (Right), illustrating how
condition-specific CBM can capture metabolic perturbations generated by the knockout of two genes not present in the GSMM, whose fluxes are exploited
downstream by the machine-learning approaches. The color scale from gray (low) to red (high) indicates the amount of flux carried by each reaction in the
pathway.
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two methods. Among the nine features selected by both iRF and
NSGA-II, there are genes encoding binding proteins and trans-
porters (Dataset S1). Similarly, the genes selected by SGL and
NSGA-II also coded for mitochondrial transport and mRNA
binding. The selection of genes linked to tRNA and cellular
amino acid-related metabolic processes is consistent with the
process of translational elongation during the assembly of amino
acids into proteins, which consequently affects cellular growth
and maximization of biomass. Despite the limited overlap among
the features selected by the three methods (Fig. 4D), their high-
level functional classification is statistically coherent (χ2 tests
of independence, null hypothesis retained, P =0.72 for biolog-
ical processes and P =0.18 for metabolic processes). This is
consistent with the nature of cell systems, based on functional
modularity and redundancy, and characterized by widespread
cross-correlated omic cues.

For metabolic genes or reactions, their contribution to cell
growth could be inferred also through CBM-only approaches,
e.g., by simulating the effect of their artificial alterations. To
compare a CBM-only approach with our multimodal machine-
learning approach, we performed a sensitivity analysis through
in silico single-gene knockdown directly within the metabolic
model, examining the impact on the biomass accumulation rate
(SI Appendix). The genes and pathways that have the greatest
effect on the biomass are listed in Dataset S1, among which
we found some overlap with the feature selection algorithms.
The down-regulation of genes related to tRNA metabolic pro-
cesses and the biosynthesis of amino acids such as arginine and
phenylalanine resulted in zero biomass flux, consistent with the
features identified by SGL and NSGA-II. From the perspec-
tive of individual algorithms, overlapping iRF-selected genes are
related to pyrimidine and phospholipid biosynthesis and to the
pentose phosphate pathway. The NSGA-II genes whose deletion
resulted in zero biomass are related to the metabolism of vitamin
D and sphingolipid biosynthesis.

Analogously, we carried out a flux-coupling analysis to iden-
tify reaction fluxes on which growth rate is mutually dependent
(fully coupled) or unilaterally dependent (directionally coupled)
(49) (see SI Appendix for details). A total of 234 reactions were
classified in either one of the two categories (Dataset S1). Also
in this case, we observed an overlap between some features that
were selected by SGL or NSGA-II. Of the 36 reactions selected
by SGL, only 3 reactions are coupled with the biomass pseu-
doreaction (with 1 fully coupled and 2 directionally coupled
reactions), whereas 19 of the 51 reactions selected by NSGA-II
were found to be coupled (with 1 fully coupled and 18 direc-
tionally coupled reactions). However, it should be noted that
CBM approaches are limited to the enzymes included in the
genome-scale metabolic model and overlook the role of external
biological factors. Thus, we argue that our integrative framework
can be complementary to more traditional CBM approaches and
capture cross-omic relationships missed by them.

Interestingly, when examining rules within the GSMM that
dictate the gene–protein-reaction associations, some of the
reactions selected uncover formerly overlooked connections.
For instance, the reactions involved in glycerophospholipid
metabolism are selected by SGL but the corresponding genes are
not. In fact, a closer inspection of these results revealed that the
functionalities of the selected gene and reaction features hardly
overlap. Five reactions that constitute part of the glycerophos-
pholipid metabolic pathway are controlled either exclusively or
partially by the gene YPR140W, which is essential for maintain-
ing the phospholipid content of the mitochondrial membrane.
Indeed, S. cerevisiae is a popular choice of organism for studying
glycerophospholipid homeostasis in eukaryotes, owing to toler-
ance with respect to its membrane lipid composition (50). These
results support the case for the inclusion of both flux and gene
features to augment the machine-learning model with more data,

while improving our mechanistic understanding of the role that
each omic plays in the wider biological context.

Finally, given the high prediction accuracy of MMANN mod-
els, we sought to determine their most contributing features.
To this end, we exploited recent advances in ANN interpre-
tation via the SHapley Additive exPlanations (SHAP) method
(51), a general approach for determining the contribution (called
SHAP value) of individual features to model outputs. We applied
SHAP to a randomly selected model from the set of MMANN
models, selecting features with absolute mean SHAP values in
the top percentile as highly relevant and obtaining 71 belonging
to the transcriptomic domain and 10 to GSMM reaction fluxes
(Dataset S1). MMANN-associated GE features yield statistically
significant differences from those selected by the feature selec-
tion methods in terms of functional classification (Fig. 4 B and C,
χ2 tests of independence, null hypothesis rejected, P =6.3 · 10−4

for biological processes and P =2.2 · 10−3 for metabolic pro-
cesses). The information extracted by these models thus seems
notably distinct, which may explain the higher performance of
MMANNs. Among the top-contributing genes in MMANNs,
many produce proteins binding to RNA, with several genes act-
ing as mRNA splicing factors involved in preprocessing via the
spliceosome. Some genes encode proteins that bind to DNA
to repair mismatched nucleotides, as well as proteins responsi-
ble for dephosphorylation and protein/tRNA modification. This,
along with the presence of an amino acid transporter gene, reaf-
firms the role of protein synthesis in relation to growth. Among
the top-contributing reactions, the main pathways (glycerophos-
pholipid and inositol metabolism) are very closely linked, since
inositol signaling is responsible for homeostasis and regulation
of lipid metabolism (52).

Contribution of Fluxomic Information in Multiomic Machine-Learning
Models. Although from the single-omic results it is clear that
a large contribution in the most accurate multimodal learn-
ing model (MMANN) comes from the transcriptomic data, we
showed that a significant and complementary amount of relevant
signal is present in the metabolic view. Thus, we further investi-
gated the extent to which this method exploits the information
in MF rather than in GE. The variable importance distribution
for each data source, estimated through SHAP, is plotted in
Fig. 4E. Although transcriptomic features have a higher mean
absolute SHAP value and constitute the majority of the infor-
mation used, fluxomic features also contribute a subset with
high SHAP values. This shows that the predictive improvement
obtained by the addition of MF profiles is directly attributable to
active information sourcing from this data view.

Finally, to ascertain how the addition of MF affected the pre-
dictive accuracy on individual knockout strains, we compared the
absolute error differences between ANNs (using only GE) and
MMANNs (using both GE and MF). The knockout strains that
recorded the highest differences between the mean errors were
regarded as providing a more accurate prediction of growth rate
due to the addition of MF to the model. The full list of strains
for this analysis can be found in Dataset S2. Among the 20 high-
est differences were many gene knockouts that played a role
in DNA transcription or RNA processing, as well as enzymes
involved in the sorting and modification of proteins. Interest-
ingly, only 2 of these 20 genes are present within the GSMM.
This shows that MF and machine learning can jointly contribute
toward extracting more accurate and biologically interpretable
predictions by indirectly propagating perturbations on biological
components into a GSMM, even when such components are not
explicitly included in the GSMM. As an example, Fig. 4F displays
the difference in metabolic flux in the citric acid cycle between
two different mutants, illustrating how our condition-specific
CBM approach can capture metabolic perturbations generated
by the knockout of genes not present in the GSMM (PET112 and
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ATG10), which in turn can be exploited by a data-driven model
used downstream. This advocates the use of metabolic reactions
as features for machine-learning methods, using ad hoc feature
selection techniques for any given application.

Discussion
This work investigates the application of multiview and multi-
stage learning to integrating experimental and in silico-generated
omic data for the prediction of yeast cellular growth. This frame-
work is proposed and systematically evaluated across several
machine-learning approaches. The wide spectrum of models and
data integration techniques considered here provides a useful
starting point for future benchmarking. We verified that combin-
ing experimental transcriptomic and artificial fluxomic data can
increase the prediction strength over individual omics, although
the improvement is subject to the predictive model choice. In
our study, the largest improvement was obtained through arti-
ficial neural networks, with multimodal neural networks being
the strongest predictive model overall. Additionally, we demon-
strated that the advantages in terms of prediction accuracy and
biological insights can reach beyond what is directly captured
mechanistically by the metabolic reconstruction used to generate
the fluxomic profiles.

Although transcriptomic-constrained flux balance analysis is
widely used in genome-scale metabolic modeling, there are
additional methods that can inject further constraints in flux
simulations (53–55). Similarly, additional information may lie in
the solution space of strain-specific models. For instance, addi-
tional features could be extracted from a metabolic model, e.g.,
from the results of flux variability analysis or sampling. While
in this work we focused on cross-comparing machine-learning
methods, an analogous survey could be performed on the level
of constraint-based modeling techniques to generate reaction-
level fluxes, as well as on the level of different base metabolic
reconstructions. Furthermore, in this work, we adopted tran-
scriptomic data as a benchmark, given their widespread use
across biology and biotechnology studies. In the cases where
further omic data are available, they could be implemented to
perform predictions across different biological layers (5). Simi-
larly, our framework could be extended to investigating varying
environmental conditions.

It is interesting to note that multimodal artificial neural net-
works achieve higher accuracy compared to single-view neural
networks and to other methods overall, but also transcriptomics-
based support vector regression achieves good performance
scores. Indeed, multiomic data integration does not always guar-
antee improved predictions, especially when benchmarking over
gene expression (56). While any difference in accuracy gen-
erally depends on the task, our findings demonstrate that the
knowledge embedded in genome-scale metabolic models is com-
plementary to gene expression and may support its exploitation
by data-driven models in a variety of scenarios. Therefore, sup-
port vector regression also appears to be a promising framework
for further improving the predictions guided by transcriptomic
and fluxomic data, once such complementarity is fully exploited.

Finally, it is important to note that metabolic flux information
has a straightforward mechanistic interpretation, as it is directly
linked to the underlying biochemistry. Data augmentation based
on metabolic networks, combined with multiview learning, can
therefore increase predictivity while providing direct mechanis-
tic insights into the condition-specific interaction of metabolites
that give rise to the phenotypic outcome. This can translate into
advantages in terms of human ability to trust and employ more
biologically interpretable machine-learning models, especially in
scenarios where it is important to understand the effect of cell
or metabolic engineering operations (10). Our results thus sup-
port the extension of such data- and knowledge-based multiomic
machine learning to biological engineering and to other relevant

phenotypic targets, such as the secretion of metabolites for drug
development.

Materials and Methods
Transcriptomic and Growth Data. The main transcriptomic dataset used in
this work was collected in a previous study (27), which provides two-channel
microarray profiles for 1,484 single-gene deletion strains of S. cerevisiae dur-
ing the midlog phase. We downloaded these data from the supplementary
material of a second study (57), which provides also relative growth rates
compared to the wild type for 1,312 strains, expressed as the log2 of the
doubling-time ratio between each strain and the wild type. After merging
transcriptomic profiles and growth rates, we obtained 1,143 samples with
their associated growth rates, which we used in the following stages.

An independent dataset for testing the proposed MMANN was obtained
from a third study (28), providing gene expression profiles for single and
double gene deletion strains of S. cerevisiae on the same microarray plat-
form. Among these strains, we selected the single mutants that do not
overlap with those in our primary dataset (14 strains) and all of the dou-
ble mutants (72 strains). In this second dataset, 58 of the genes present in
the main training dataset were missing. To ensure consistency of features,
i.e., the same gene sets, and feed these new data into our pretrained mod-
els, we imputed the gene expression values for the missing genes by linear
regression based on the other variables. Upon imputation of missing val-
ues, the obtained 86 mutants represented an experimentally independent
set of conditions and served as a real-case scenario for using our proposed
MMANN method.

Genome-Scale Metabolic Modeling. A GSMM is a collection of all known
biochemical reactions and transmembrane transporters that occur within
an organism. The reaction network is mathematically represented as a
stoichiometric matrix S, capturing the exact proportions of reactants and
products involved in each biochemical transformation (58). Reaction rates
(fluxes) are mass and energy balanced assuming a metabolic steady state
and can be described by a vector v of reaction fluxes through the net-
work, limited by their lower and upper bounds vlb and vub. The constraints
given by vlb and vub can be modified to model varying genetic or environ-
mental factors, yielding a context-specific metabolic model consistent with
experimental data.

We estimated the metabolic fluxes associated to each transcriptional
condition by solving the following parsimonious FBA problem:

min
v
‖v‖1

subject to w>v = f ,

S v = 0,

vlb Θ≤ v≤ vub Θ.

[1]

Here w is a binary vector expressing the biomass pseudoreaction as a unique
objective, while f is the maximal growth rate achievable by the network
under the given constraints. The impact of each transcriptional condition is
represented by Θ, which is the gene set expression vector obtained by map-
ping the expression of the individual genes onto the associated reactions.
This involves converting logical gene–protein-reaction association rules into
max/min operations, as

Θ(g1 ∧ g2) = min{θ(g1), θ(g2)}

Θ(g1 ∨ g2) = max{θ(g1), θ(g2)},
[2]

where θ(g) represents the expression level of a gene g, and Θ represents the
effective expression level of the gene set {g1, g2} (59). We refer the reader
to SI Appendix for more details regarding the nutritional conditions.

In this work, we used the iSce926 yeast GSMM, which includes 926 genes,
3,494 reactions, and 2,223 metabolites (29). Among these 926 genes, a total
of 908 (98%) are present in our main transcriptomic dataset. To solve Eq. 1,
we used the COBRA toolbox 3.0 (60) with the PDCO solver. The solutions
provide steady-state fluxes for every reaction in the iSce926 GSMM across
the 1,143 yeast strains from the main dataset and the 86 strains from the
experimentally independent dataset.

Machine-Learning Models. To predict the relative doubling time, expressed
as the log2 of the doubling-time ratio with respect to the wild type,
we started from the transcriptomic and fluxomic profiles as features, and
we used the following supervised learning methods: SVR (35), RF (37),
and ANNs (61). To integrate omic profiles and obtain multiomic machine-
learning models, we employed the following multiview methods: BEMKL
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(40), BRF, and MMANNs. Further, to reduce the number of omic predictors,
we employed SGL (41), NSGA-II (42), and iRF (43) (see SI Appendix for details
on each of these methods).

Machine-Learning Model Selection, Training, and Testing. To assess model
generalization, we randomly split our samples into train and test subsets
composing 80% and 20% of the main dataset, respectively. Training data
were used for fitting the models and learning latent patterns present in the
data, which can predict the relative doubling time of yeast mutants. Since
many of the adopted methods have hyperparameters that can impact the
learning process, we performed a grid search to identify the optimal hyper-
parameter settings with the use of validation data subsets. Using the 80%
data portion, we applied fivefold cross-validation repeated three times for
all methods, except the ANN-based models, for which we used a fixed 10%
of the training set for validation. After selecting the hyperparameters, we
trained each model again, this time using the full training data—validation
samples included. To measure model performance, we used the obtained
models to make predictions on all of the samples in the test set, which are
disjoint from those in the training and hyperparameter selection phases.

To account for stochastic variability—whether in cross-validation or
during the optimization process in the case of ANN—we repeated the
training–test procedure 100 times for each combination of dataset and
ANN-based model and repeated the selection–training–test procedure 100
times for each other dataset–method combination. Feature selection meth-
ods were optimized and applied one time only. Finally, we applied a
randomly selected MMANN model to the experimentally independent test
set to simulate a real-use scenario. To ensure full reproducibility, we provide
the train–test split indexes and the random seed used, along with details
on methods, software packages, and hyperparameter search spaces in
SI Appendix.

Data Normalization and Performance Metrics. When feeding the different
data views to the machine-learning techniques, we used z-score normal-
ization, where the mean and SD of the training data were also used to
normalize the test data to prevent information leakage. We used the nor-
malized data in all of the learning approaches due to the different data
distributions of the two views (fluxes and gene expression), also noting
in general that normalization is a requirement for SVR and enables faster
convergence in ANNs.

The hyperparameter selection focused on minimizing the RMSE,

RMSE =

√∑n
i=1 (ŷi − yi)2

n
, [3]

where model predictions yi are compared with observed growth rates ŷi

across all n strains. The RMSE emphasizes incorrect predictions. When eval-
uating and comparing models, we used three additional metrics, namely
the MAE,

MAE =

∑n
i=1 |ŷi − yi|

n
; [4]

the MDAE,
MDAE = median(|ŷ1− y1|, . . . , |ŷn− yn|); [5]

and the PCC. MDAE statistical differences across data–method pairs were
estimated by Wilcoxon rank-sum tests through the wilcox.test R function,
whose P− values were adjusted via Bonferroni correction.

Artificial Neural Network Interpretation. To quantify the variable contribu-
tions in the MMANN models, we used the SHAP method (51). SHAP uses a
game-theoretic approach to determine the importance of a particular fea-
ture to individual data inputs. SHAP values are thus feature importance
scores defined to satisfy local accuracy, missingness, and consistency prop-
erties. We used a variant of the SHAP method specifically designed for ANN
models, called Deep SHAP (51), whose working principle is the back propa-
gation of unit activation differences to input features. The top-contributing
features inspected in terms of biological classification were chosen as those
in the largest mean SHAP value percentile, where the mean was computed
over the training samples.

Biological Feature Classification. The biological classification for the genes
identified by the feature selection methods and SHAP was obtained with
the PANTHER classification system (46). The KEGG pathway annotation (62)
for GSMM reactions was obtained from a curated S. cerevisiae GSMM (63).
The statistical enrichment tests on PANTHER were run with default parame-
ters. To assess associations between the feature selection methods and the
selected gene features, χ2 independence tests were run on biological and
metabolic process classification classes via the chisq.test R function. These
tests were performed first across SGL, NSGA-II, and iRF and finally with the
inclusion of the MMANN features obtained through SHAP.

Data Availability. The microarray and growth data obtained for this study
are available on Gene Expression Omnibus (GEO) (accession nos. GSE42526,
GSE42527, and GSE42536), on Array Express (E-MTAB-1383, E-MTAB-1384,
and E-MTAB-1385), and as flat files from the authors of the original studies
(27, 28, 57). The yeast metabolic model can be found in the supple-
mentary material of the corresponding paper (29). All data, models, and
code used in this work are also available on GitHub at https://github.com/
multiOmicMechanismAwareML/CodeBase, along with the information for
replicating the results presented.
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