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1 Introduction

The unexpected invariance of strong interactions under transformations flipping the arrow
of time is one of the most challenging puzzles in fundamental physics. This remarkable ex-
perimental fact is equivalent to state that Quantum ChromoDynamics (QCD) is invariant,
within experimental uncertainties, under the combination of parity and charge conjugation
(CP) in agreement with the CPT theorem. Such a CP violation by strong interactions is
parameterized by an effective dimensionless parameter θ̄ that is expected to be of order
one, but the lack of observation of a fundamental neutron electric dipole moment put the
spectacular constraint θ̄ . 10−10 [1–3]. Anthropic explanations are not viable [4, 5], and
understanding this severe inequality is known as the strong CP problem.
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The Peccei-Quinn (PQ) mechanism [6, 7] is one of the most appealing solutions. A
new Abelian U(1)PQ symmetry, anomalous under strong interactions and spontaneously
broken, plays the role of the main character. At energies much lower than the PQ breaking
scale fa, the only residual degree of freedom is an approximate Nambu-Goldstone boson a
known as the axion [8, 9] that acquires the anomalous coupling to gluons

LPQ ⊃
αs
8π

a

fa
GAµνG̃

Aµν . (1.1)

Here, we denote the QCD fine structure constant by αs = g2
s/(4π), the gluon field strength

by GAµν with the index A = 1, . . . , 8 running over the adjoint indices of the color gauge
group, and its dual by G̃Aµν ≡ εµνρσGAρσ/2. Once strong interactions confine, QCD non-
perturbative effects generate a potential that leads to an axion mass [10, 11]

ma ' 5.7µeV
(

1012 GeV
fa

)
. (1.2)

The PQ breaking scale fa suppresses axion couplings as well. Such a scale is constrained
by terrestrial and astrophysical axion searches, and accounting only for the axion coupling
to gluons in eq. (1.1) leads to the rather conservative bound fa & 108 GeV: the axion must
be light and weakly-coupled. The field evolution in the early universe goes through two
main phases: the axion is initially stuck by Hubble friction, and once its mass becomes
comparable to the expansion rate it begins oscillating around the minimum of its potential.
The oscillation amplitude gets damped by the Hubble friction, and the axion settles down
at its minimum which is CP-conserving as ensured by the Vafa-Witten theorem [12]: QCD
dynamics itself solves the strong CP problem. The energy density stored in the field oscil-
lations can account for the observed dark matter abundance [13–15]. Furthermore, axion
interactions with standard model (SM) fields are responsible for a plethora of phenomena
in the early universe [16] and the target of an intensive experimental effort [17–19].

This work investigates a distinct cosmological signal of PQ theories: the production of
relativistic axions from scatterings and/or decays of particles belonging to the primordial
thermal bath [20]. Given their thermal origin, such hot axions are produced with energies
of the size of the bath temperature, and their typical energy will stay of the size of the one
for photons as long as they are relativistic. This statement holds regardless of whether they
thermalize or not, and the axion mass in eq. (1.2) ensures that axions produced thermally
are still relativistic as late as at recombination.

Such hot axions manifest themselves experimentally as an additional contribution to
radiation in the early universe. How do we have access to this quantity? Two key events in
the expansion history allow us to bound the energy density stored in relativistic particles.
Following a chronological order, the first is Big Bang Nucleosynthesis (BBN) when the
thermal bath synthesized light nuclei. The successful agreement between predictions and
observations gives us information about the expansion rate at BBN and it bounds additional
radiation. This effect is parameterized by an effective number of neutrino species on top
of the SM contribution, Nν = 3 + ∆Nν . After the recent measurement of the deuterium
burning rate by LUNA [21], ref. [22] found the constraint Nν = 2.880± 0.144.
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Another important event is the formation of the Cosmic Microwave Background (CMB)
since additional radiation alters the CMB anisotropy spectrum at small angular scales.
This effect is also parameterized in terms of an effective number of additional neutrino
species Neff = NSM

eff + ∆Neff . The SM naive prediction NSM
eff = 3 does not hold because

neutrino decoupling is not instantaneous [23], and we have NSM
eff ' 3.0440 [24–26]. The

most stringent constraint, Neff = 2.99± 0.17, comes from the Planck collaboration [27].
Future CMB surveys forecast an extraordinary improvement in measuring this quan-

tity, and conservative configurations of CMB-S4 can reach ∆NCMB−S4
eff (1σ) ' 0.02 −

0.03 [28, 29]. What does this value imply for fundamental physics? Let us consider a
scalar field, such as the axion, and let us assume that it reaches thermal equilibrium in the
early universe. Even if we take the most pessimistic hypothesis that decoupling happened
well above the weak scale, the resulting contribution would be ∆Neff ' 0.027. If decou-
pling happened at lower temperatures and/or if the field has a larger number of internal
degrees of freedom the expected value is larger. Thus future CMB-S4 surveys are sensitive
to any relic light particle that was once in equilibrium with the standard model thermal
bath [30, 31].

Figure 1 shows how future CMB surveys provide a powerful probe of light and elusive
physics beyond the SM. Here, we choose the conservative value ∆NCMB−S4

eff (1σ) = 0.03.
For hot relics that thermalized at early times and decoupled when the bath temperature
was TD, we take four dark radiation candidates Φ: scalar, Weyl fermion, massive vector,
and Dirac fermion. The effective relativistic degrees of freedom contributing to the energy
density at high temperatures are g∗Φ = {1, 7/4, 3, 7/2}. The prediction for ∆Neff as a
function of TD, derived in eq. (D.20) of appendix D, explicitly reads

∆Neff ' g∗Φ × 13.69 gSM
∗s (TD)−4/3 (1.3)

with gSM
∗s (TD) the effective number of SM entropic degrees of freedom at TD. We employ

two different sets of data for gSM
∗s (TD), refs. [32] (dashed lines) and [33] (dotted lines), and

we notice how the treatment of thermal bath has a tiny effect on the final predictions
(see appendix D for more discussion). This result is valid for a standard thermal history
with no significant releases of entropy that would dilute the expected amount population
of relativistic axions. Exceptions are possible, as for example around the time of the QCD
phase transition (QCDPT) [34] or the electroweak phase transition (EWPT) [35].

An important message from figure 1, which is quantified by the expression in eq. (1.3),
is that the later the relic decouples the larger is its contribution to ∆Neff . Planck data
already exclude dark radiation that decoupled around the time of the QCDPT, and future
experiments will probe hot relics that decoupled earlier. Production of dark radiation
around or below the QCDPT is particularly timely and promising for future experiments.
This is true for any dark radiation candidate, and in particular for the QCD axion which
is the subject of our investigation.

These spectacular projections make rigorous calculations a top priority. Recently,
several collaborations revised predictions for the hot axion abundance. Production above
the weak scale via quark and gluon scattering was investigated by ref. [36] with the inclusion
of Debye screening effects. Later on, refs. [37, 38] provided rigorous treatments of thermal
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Figure 1. Contribution to ∆Neff from light relics that were once in thermal equilibrium as a
function of the decoupling temperature TD. Different colors represent different particle spins, and
the width of each line corresponds to the two different treatments of the relativistic degrees of
freedom provided in refs. [32] (dashed lines) and [33] (dashed lines). The shaded region is excluded
by Planck [27], the dot-dashed lines show the CMB-S4 discovery reach [28, 29].

effects, and ref. [38] extended the analysis to production via electroweak gauge fields and
top quark. These studies considered production above the weak scale. Scatterings of heavy
quarks below the electroweak scale were analyzed by refs. [39, 40], and this analysis is valid
only well above the QCDPT. At lower temperatures, hadron scatterings were considered
by refs. [41–46]. The analysis in ref. [47] bound the axion mass to ma < 7.46 eV and
ma < 0.91 eV for thermalization with gluons and pions, respectively. Ref. [48] investigated
production via lepton scatterings and decays, which is immune to QCD complications, and
it pointed out a possible connection with the so-called Hubble tension [49, 50].

The presence of mass thresholds across which production rates change dramatically is
an issue rarely addressed in the literature. As a step forward toward the proper treatment
of the EWPT, ref. [51] provided a smooth connection between rates within an effective field
theory framework containing only one Higgs doublet. Although it is not the most general
case for PQ theories, it is always a good approximation in the so-called decoupling limit
where the heavy Higgs bosons are much more massive than the weak scale. A threshold
common to all axion models is the QCDPT where axion interactions with quarks and
gluons become non-perturbative, strong interactions confine and one must resort to non-
perturbative techniques. Recently, ref. [52] provided the first smooth treatment of the
QCDPT for the axion coupling to gluons in eq. (1.1).

In this work, we provide predictions for the amount of axion dark radiation within UV
complete models. Our methodology features two key steps. First, we evaluate the axion
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production rate at any temperature with smooth treatments of all mass thresholds. With
the rate in hand, we solve the Boltzmann equation for the axion abundance and translate
the resulting amount into a correspondent ∆Neff .

Notwithstanding the broad landscape of PQ theories [53, 54], we can divide them into
two main classes according to the origin of the color anomaly.

• KSVZ axion [55, 56]. SM fields are PQ-neutral, and the color anomaly is due to
a new heavy-colored fermion Ψ that gets mass from PQ breaking. Following the
chronology of the expansion history, the first mass scale that we encounter is the
fermion Ψ. Binary collisions involving Ψ are the main production channel above
such a threshold. Gluon scatterings mediated by the operator in eq. (1.1), which
is generated once we integrate out Ψ, control the production rate at temperatures
below the Ψ mass. These processes are the main production channel until we reach
the scale where strong interactions confine. This is the second and the last threshold
that we need to treat for this framework, and we connect the production rate above
confinement with the one where the relevant degrees of freedom become hadrons.

• DFSZ axion [57, 58]. SM quarks are responsible for the color anomaly and the
Higgs sector is extended with another weak doublet. We work in the decoupling limit
where the heavy Higgs bosons have a mass mA substantially larger than the weak
scale. Such a high mass scale is the first threshold: we have a two Higgs doublet
model (2HDM) above and the SM below, respectively. The second threshold is the
EWPT, not present for the KSVZ case because the axion did not couple to the Higgs
field; PQ charges of the Higgs and SM fermions make it relevant for this case. Finally,
the QCDPT is also something to account for as we did for the previous case, although
the details of the matching are different as a consequence of different axion couplings.

We compute the production rate at any temperature for the KSVZ and DFSZ axion
in sections 2 and 3, respectively. We employ these results in section 4 to quantify how
many axions are produced thermally in the early universe and to predict the resulting
contribution to ∆Neff . Section 5 contains our conclusions, and we defer all technical details
to appendices.

2 The KSVZ axion

The minimal ingredients for the KSVZ framework are an electroweak singlet complex scalar
ϕ and a vector-like colored fermion Ψ. Electroweak charges for the fermion are allowed but
not mandatory, and we work in the scenario where it is only charged under the fundamental
of the SU(3)c gauge group. The Lagrangian for this case reads

LKSVZ = (∂µϕ)† ∂µϕ+ Ψ̄i /DΨ− VKSVZ (ϕ)−
(
yΨ ϕ

†Ψ̄LΨR + h.c.
)
. (2.1)

A bare fermion mass term is forbidden by some suitable symmetry, and we identify well-
defined chiralities ΨL,R = PL,RΨ through the action of chiral projectors PL,R = (1∓γ5)/2.
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The theory features a global symmetry that acts on the fields as follows

ϕ→ eiqϕαϕ , ΨL → eiqLαΨL , ΨR → eiqRαΨR . (2.2)

For any value of the transformation parameter α, the Lagrangian in eq. (2.1) is invariant as
long as the scalar potential VKSVZ(ϕ) does not change and the charges satisfy qϕ = qR−qL.
Furthermore, two crucial ingredients must be satisfied for this to be a viable PQ symmetry:
broken in the vacuum state and anomalous under strong interactions. The potential

VKSVZ(ϕ) = λϕ
(
|ϕ|2 − v2

ϕ/2
)2

, (2.3)

where λϕ is the quartic self-coupling for the field and vϕ its vacuum expectation value
(vev), satisfies the first requirement. The condition on the anomaly is satisfied as long
as the global symmetry is not vector-like, qL 6= qR (i.e., qϕ 6= 0). Thus the phase of the
complex scalar ϕ, which corresponds to the KSVZ axion, appears in the gluon anomaly
operator in eq. (1.1) and it eventually leads to a natural solution of the strong CP problem.

The KSVZ axion originates solely from the phase of the complex scalar ϕ. As long
as the quartic coupling is λϕ ∼ O(1), the radial mode of ϕ is rather heavy with a mass
O(vϕ). We neglect fluctuations along the radial direction, and we identify the axion a as
the phase of the complex field, ϕ →

(
vϕ/
√

2
)
eia/vϕ . The Yukawa coupling is responsible

for a fermion mass, mΨ = yΨvϕ/
√

2, which can be smaller than the symmetry breaking
scale vϕ if yΨ is small, but not in conflict with collider searches for heavy colored states
(mΨ & TeV).

The effective Lagrangian below the symmetry breaking scale reads

L(linear)
KSVZ = 1

2∂
µa∂µa+ Ψ̄i /DΨ−

[
mΨe

−ia/vϕΨ̄LΨR + h.c.
]
. (2.4)

We find this Lagrangian convenient to compute the axion production rate at temperatures
above mΨ. At lower temperatures, it is preferable to employ a different field basis. Let us
describe in detail the difference between these two choices to exploit the interplay between
the axion and PQ-charged fields. On one hand, the PQ symmetry can be linearly realized
and the axion appears as the phase of the PQ breaking scalar as in eq. (2.1). On the
other hand, the PQ symmetry can be non-linearly realized and the axion shifts under a
PQ transformation, a → a + const. The second option can be reached by performing the
axion-dependent chiral rotation Ψ→ exp

[
i a

2vϕ γ
5
]

Ψ, and the resulting Lagrangian contains
the changes at the classical level as well as the effects of the anomaly through eq. (A.31)

L(non−linear)
KSVZ = 1

2∂
µa∂µa+ Ψ̄i /DΨ− ∂µa

2vϕ
Ψ̄γµγ5Ψ + αs

8π
a

vϕ
GAµνG̃

Aµν . (2.5)

We introduce the axion decay constant fa and we set it to fa = vϕ so we reproduce the
normalization in eq. (1.1). Although the field basis to describe axion interactions is not
unique, the scattering cross sections calculated in appendix C are independent on such a
choice.

The production of the KSVZ axion goes through three main cosmological phases that
are separated by two mass thresholds: (i) the mass of Ψ; (ii) the confinement scale.

– 6 –
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2.1 Matching at the heavy PQ fermion threshold

Above the heavy fermion mass mΨ, axion production is driven by the scatterings

Ψ + Ψ̄→ g + a , Ψ/Ψ̄ + g → Ψ/Ψ̄ + a , (2.6)

where g is a gluon. Below mΨ, the rate is controlled by quark (q) and gluon scatterings

g + g → g + a , q + q̄ → g + a , q/q̄ + g → q/q̄ + a . (2.7)

The long range nature of gluon interactions leads to IR divergences that need some care.
The prescription to regularize such divergences of ref. [59], which holds for soft external
momenta (p ' gsT ), works only in the weak-coupling regime for axion production [37].
Once the QCD coupling gs gets stronger one needs to go beyond the hard thermal loop
(HTL) approximation. Ref. [38] parameterized the rate in such a regime as follows1

γgg ≡
dNa

dV dt
= 2ζ(3)dg

π3

(
c̃Ψ
g (T )αs
8πfa

)2

F3 (T ) T 6 . (2.8)

Here, c̃Ψ
g (T ) denotes the effective gluon anomaly coefficient discussed in the next paragraph.

The numerical factors are dg = 8 and ζ(3) ' 1.2 for the dimension of the SU(3) adjoint
representation and the Riemann zeta function, respectively. The result for F3(T ) provided
by ref. [38] for temperatures well above the weak scale allows us to deal with the heavy PQ
fermion threshold, but it is not enough to approach the QCDPT. We evaluate F3(T ) in
appendix B at any temperature in the QCD perturbative regime, and we keep into account
the decoupling of heavy quarks. We evaluate the rate with the aid of the ‘RunDec’ [60]
code that accounts for the running of the strong coupling constant αs up to four loops.

The UV origin of gluon scatterings is due to a heavy PQ-charged colored fermion. At
temperatures much larger than its mass the effect is negligible, and it becomes relevant only
once we integrate out the fermion for physical processes with typical energies smaller than
the mass of the fermion itself. We can make this statement quantitative by evaluating the
1PI effective action.2 For a generic colored fermion χ charged under PQ, we can perform
a chiral rotation to induce the trilinear axion anomalous coupling to gluons

L(Wilson)
a = cχg ×

αs
8π

a

fa
GAµνG̃

Aµν . (2.9)

Here, the Wilson coefficient cχg is a constant number that depends on the quantum numbers
of the fermion χ. However, if one cares about the axion production rate the relevant
quantity to consider is the 1PI effective action that we parameterize as follows

L(1PI)
a = c̃χg (q2)× αs

8π
a

fa
GAµνG̃

Aµν . (2.10)

1Expressions analogous to eq. (2.8) hold for subdominant processes mediated by electroweak gauge
bosons with appropriate modifications of F3(T ), group theory factors, and gauge coupling constants [38].

2This important difference between Wilsonian and 1PI effective coupling was pointed out by ref. [61]
within the context of axino production for SUSY PQ theories.
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Figure 2. KSVZ axion production rate across the heavy colored PQ fermion mass mΨ = 105 GeV.
The black solid line indicates the total rate, and it is the sum of Ψ scatterings (solid blue) and
thermal gluon scattering (solid red). We show for comparison the gluon scattering rate obtained
with only the Wilsonian action contribution (dashed red).

Contrarily to the previous case, the effective coupling c̃χg (q2) depends on the momentum
exchanged in the physical process under consideration. The relation between the Wilson
coefficient and the 1PI effective coupling reads

c̃χg (q2)
cχg

= 1
τχ


arcsin2√τχ τχ ≤ 1

−1
4

[
log 1+

√
1−τ−1

χ

1−
√

1−τ−1
χ

− iπ
]2

τχ > 1
, (2.11)

where we express the momentum dependence in terms of the dimensionless τχ = q2/4m2
χ.

After this general discussion, we get back to the KSVZ axion (cΨ
g = 1) and set q2 ≈ T 2

in eq. (2.11). When Ψ is a degree of freedom of the thermal bath, with the universe much
hotter than mΨ, one-loop 1PI corrections effectively cancel out the Wilson coefficient lead-
ing to c̃Ψ

g (T 2)/cΨ
g ∼ (mΨ/T )2 log2 [T/mΨ]. The diminished gluon scatterings at T � mΨ

ensures the dominance of Ψ collisions. At temperatures below mΨ, the effective coefficient
c̃Ψ
g (T � mΨ) becomes nearly unity and this is the radiative remnant of Ψ.

We set mΨ = 105 GeV (vertical green line), and we plot the combination γaf
2
a as a

function of the temperature in figure 2. Axion interactions below mΨ mediated by the
dimension 5 operator with gluons lead to the scaling γa ∝ f−2

a . In the opposite regime, the
axion interacts via a renormalizable Yukawa coupling yΨ =

√
2mΨ/fa, and the rate scales

as γa ∝ y2
Ψ ∝ f−2

a also at high temperatures once we fix the fermion mass. The solid black
line denotes the total rate that is the sum of Ψ (solid blue line) and gluon (solid red line)
scatterings. In order to appreciate the difference between Wilsonian and 1PI descriptions,
we also show the gluon scattering rate that we would get by accounting for the Wilsonian
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contribution only (dashed red line); this corresponds to setting c̃Ψ
g (T ) = 1 in eq. (2.8)

at any temperature. Consistently with our picture, the solid and dashed red lines are
in exact agreement for T < mΨ, and they differ significantly for larger temperatures. In
particular, γw/o 1PI

gg ∝ T 6 dominates even at large temperatures while the correct functional
dependence for the production rate in the UV scales as γΨ ∝ T 4.

2.2 Matching at the QCD threshold

The picture where the axion field interacts with quarks and gluons breaks down once we
approach the scale ΛN ∼ 2 GeV and strong interactions become non-perturbative. Quarks
are confined within hadrons at lower energies, and one must resort to non-perturbative
techniques. Here, we employ the ones of chiral perturbation theory (ChPT) to compute
the axion production rate from hadron collisions, and we provide a smooth result across the
QCDPT. As we review in appendix A, the correct prescription to determine axion couplings
to hadrons is to match currents with the same symmetry properties between the UV and
IR theories [62, 63]. Such a procedure is straightforward within the KSVZ framework since
the axion interacts with the strong sector only through the anomalous coupling to gluons.
We find it convenient to rotate it away due to the large instanton effects at low energy,
and this is done via the axion-dependent field redefinition of the light quarks

q → e
−icq a

fa
γ5
q , (2.12)

where cq = M−1
q /2 Tr[M−1

q ] and Mq = diag(mu,md,ms). As a result, we switch to axion
interactions to quark currents via the derivative interactions

∑
q=u,d,s

cq
∂µa

fa
q̄γµγ5q . (2.13)

The matching conditions provided in appendix A allow us to find axion couplings to mesons
(for coupling to baryons see ref. [42]).

Up to what UV cutoff ΛChPT can we push ChPT? We treat the primordial plasma
within the hadron resonance gas (HRG) approximation [64–66] which is inconsistent with
lattice QCD results above T > 150 MeV [67]. Furthermore, leading order ChPT for axion
production suffers perturbativity problems at T > 62 MeV [68]. Notwithstanding both
values of ΛChPT being smaller than ΛN, we find it plausible that the axion production
rate between ΛChPT and ΛN is connected smoothly since the QCDPT is a crossover where
thermodynamic variables are continuos [69, 70]. Such a connection for the anomalous
coupling to gluons, and in particular for the KSVZ axion, was provided recently by ref. [52].

Contributions to axion production from processes involving baryons (e.g. nucleons) and
heavy mesons (e.g. K and η mesons) are highly suppressed since ΛChPT ∼ O(100) MeV.
The leading contribution, within the region where the ChPT formalism is reliable, comes
from scatterings of pions that couple to the axion via the interactions

L(aπππ)
KSVZ = ∂µa

fa

cKSVZ
aπππ

fπ

(
π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0

)
. (2.14)
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Figure 3. KSVZ axion production rate across the QCDPT. Pion scatterings dominate at low
temperatures (T . ΛChPT) whereas thermal gluon scatterings control the rate where QCD is
perturbative (T & ΛN). We interpolate between these two regimes for the two different values
ΛChPT = 62 MeV (dashed red) and 150 MeV (dashed blue).

Here, cKSVZ
aπππ = (2/3)Tr[λ3cq] with λ3 a Gell-Mann matrix. We follow ref. [11] and take the

average of the values provided by refs. [71–73]: we find mu/md = 0.48 and mu/ms = 0.024
that leads to cKSVZ

aπππ ' 0.12. The processes producing axions in this regime are

π+ + π− → π0 + a , π+ + π0 → π+ + a , π− + π0 → π− + a . (2.15)

We summarize their cross sections in appendix C.
Figure 3 illustrates the production rate across the QCDPT. Solid black lines show

numerical results in the two regions where we have control of our calculations: low tem-
peratures (T . ΛChPT) by pion scatterings (γππ), and high temperatures (T & ΛN) by
thermal gluon scatterings (γgg). We interpolate them with the cubic ‘spline’ method.
The dashed red and dashed blue lines correspond to the best-fit interpolated results with
ΛChPT = 62 MeV and 150 MeV, respectively. They closely coincide with each other, and the
consistency of the interpolation demonstrates confidence in our inference of a seamlessly
connected rate.

2.3 Summary: production rate for the KSVZ axion

We summarize the KSVZ axion production rate in the whole temperature range in figure 4.
Renormalizable interactions at large temperatures give γΨ ∝ T 4, gluon scattering mediated
by a dimension 5 operator below mψ give γgg ∝ T 6. The rate drops below the QCDPT
because of an exponential Maxwell-Boltzmann suppression for the pion number density.
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Figure 4. KSVZ axion production rate for a heavy colored PQ fermion mass mΨ = 105 GeV.

3 The DFSZ axion

A complex scalar singlet ϕ is also the starting point for the DFSZ framework. However,
instead of introducing a new colored fermion we extend the SM Higgs sector with another
weak doublet. We consider a two Higgs doublet model (2HDM) where the Higgs fields Hu

and Hd carry opposite hypercharges ±1/2 and couple to up- and down-quarks, respectively.
The essential 2HDM features needed for our discussion are summarized in appendix A.

The Lagrangian for scalars within the DFSZ framework takes the schematic form

LDFSZ = (DµHu)†DµHu + (DµHd)†DµHd + (∂µϕ)† ∂µϕ− VDFSZ (Hu, Hd, ϕ) . (3.1)

Unlike the previous case, SM fields are PQ-charged and in particular the combination HuHd

carries a non-vanishing PQ charge. The specific scalar potential is model-dependent, but
it must ensure the spontaneous breaking of two symmetries: PQ at the scale vϕ, and elec-
troweak at the scale v. The latter is due to the vevs of the Higgs field Hu and Hd that
we parameterized as vu/

√
2 and vd/

√
2, respectively. Following a standard convention in

the literature, we parameterize their ratio as tan β = vu/vd. Moreover, scalar potential
interactions must couple the PQ breaking field ϕ with the two Higgs doublets to have a
solution to the strong CP problem. Options for this latter constraint include the renor-
malizable coupling ϕ†2HT

u iσ
2Hd and the super-renormalizable coupling ϕ†HT

u iσ
2Hd. We

keep our discussion general and we parameterize this coupling as follows

VDFSZ (Hu, Hd, ϕ) ⊃ B
(

ϕ†

vϕ/
√

2

)r
HT
u iσ

2Hd + h.c. , (3.2)

where we introduce the vev of the complex scalar field 〈ϕ〉 = vϕ/
√

2. Upon appropriate
field redefinitions, it is always possible to set the B parameter to be real and positive. The
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exponent r is connected to the so-called domain wall number via the relation NDW = 3r,
and NDW corresponds to the number of degenerate vacua of the axion potential. Finally,
SM fermions have the following Yukawa interactions with the Higgs fields

L2HDM−II
Yukawa = −Q̄L H̃u y

(u)uR + Q̄L H̃d y
(d)dR + L̄L H̃d y

(e)eR + h.c. . (3.3)

where H̃α = iσ2H∗α and y(α), with α = u, d, e, are Yukawa matrices for the type-II 2HDM.
At energies below PQ breaking, the phase of the scalar field ϕ corresponds to the

axion. As in the KSVZ scenario, there are the two typical ways to delineate the ef-
fective axion interactions to other fields. When the PQ symmetry is linearly-realized,
ϕ→

(
vϕ/
√

2
)
e−ia/vϕ , the effective axion Lagrangian is given by

Llinear
DFSZ = 1

2∂
µa∂µa−B

[
e
−iNDW

3
a
vϕHT

u iσ
2Hd + h.c.

]
. (3.4)

On the contrary, we can realize the PQ symmetry non-linearly via axion-dependent
field redefinitions ξ → exp

[
iqξ

a
vϕ

]
ξ, where we rotate all fields ξ carrying a non-vanishing

PQ charge qξ. The PQ invariance of the scalar potential in eq. (3.2) imposes the constraint
qHu + qHd = r = NDW/3. Likewise, the invariance of the Yukawa couplings in eq. (3.3)
imposes the relations among global charges: qHu = −qQL + quR , qHd = −qQL + qdR , and
qHd = −qLL + qeR . After these rotations, we find the Lagrangian

Lnon−linear
DFSZ = 1

2∂
µa∂µa−

∂µa

vϕ

∑
f

qf f̄γ
µf +

∑
α

qHαH
†
αi
←→
D µHα


+ a

vϕ

[
NDW

g2
s

32π2G
A
µνG̃

Aµν + cW
g2

32π2W
I
µνW̃

Iµν + cY
g′2

32π2BµνB̃
µν

]
,

(3.5)

where f denotes SM fermions and we introduce the spin-one Higgs currents H†αi
←→
D µHα =

H†α(iDµHα) − (iDµH
†
α)Hα. The anomaly coefficients after these rotations can be deter-

mined through the general result in eq. (A.31), and they explicitly read cW = −9qQL−3qLL ,
cY = −qQL + 8quR + 2qdR − 3qLL + 6qeR . As we discuss later, generic values of qHu and
qHd induce after electroweak symmetry breaking a mixing between the axion and the lon-
gitudinal Z weak gauge boson. Finally, we parameterize the axion anomalous coupling to
photons below the weak scale in the standard form as follows E (a/vϕ)

(
e2/32π2)FµνF̃µν .

We extract if from the couplings in eq. (3.5) and we find E = (8/3)NDW.
We work in the so-called decoupling limit where the extra Higgs bosons are much

heavier than the weak scale. Indeed, the 2HDM is phenomenologically constrained to be
in such a region to respect LHC bounds [74–77]. There are three thresholds in this case.
Two of them are analogous to the KSVZ scenario: the heavy Higgs bosons mA, and the
QCD non-perturbative scale ΛN ∼ 2 GeV. An additional threshold is the EWPT.

3.1 Matching at the heavy Higgs bosons threshold

Above the EWPT, the axion field lives entirely inside the phase of ϕ. The linear realization
of the PQ symmetry, with interactions as in eq. (3.4), is the most convenient option to
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perform the rate calculation in this phase. The single axion coupling reads

Llinear
DFSZ ⊃ i

a

fa

B

3
(
HT
u iσ

2Hd

)
+ h.c. , (3.6)

where the factor of (1/3) comes from the normalization of the Wilson coefficient of the
gluon anomaly operator, vϕ = NDWfa, to reproduce the convention in eq. (1.1).

Above the mass scalemA, axion production is controlled by scatterings of Higgs bosons
mediated by the interactions in eq. (3.6). At temperatures below mA, the number density
of heavy Higgs bosons gets Maxwell-Boltzmann suppressed and axion production is due
to scatterings of SM particles (including the lighter Higgs doublet corresponding to the
SM-like Higgs). The interactions mediating scatterings at low temperatures can be found
by integrating out the heavy scalars

Llinear
DFSZ

∣∣∣
T<mA

= i
a

fa

(
−cosα cosβ

3 Q̄LH̃SM Y (u)uR −
sinα sin β

3 Q̄LHSM Y (d)dR +

−sinα sin β
3 L̄LHSM Y (e)dR

)
+ h.c.

(3.7)

with HSM the SM-like Higgs doublet. The Yukawa matrices y(α) for the 2HDM appearing
in eq. (3.3) and the correspondent Y (α) defined in eq. (A.7) are related as follows

y(u) = 1
sin βY

(u) , y(d) = 1
cosβY

(d) , y(e) = 1
cosβY

(e) . (3.8)

The mixing angle α between the two doublets is a temperature dependent quantity and it
is defined in eq. (C.8). As the temperature drops below mA, thermal corrections to the
Higgs mass matrix become sub-dominant with respect to the overall mass scale

√
B. Hence

the mixing angle α is approximated by β and the mass eigenstates coincide nearly with
those in the vacuum defined in eq. (A.23)–(A.25).

The interactions in eq. (3.7) are equivalent, via appropriate field redefinitions, to the
commonly used DFSZ axion interactions with SM fields parameterized as follows

Lnon−linear
DFSZ = ∂µa

fa

(
cQLQ̄Lγ

µQL + cuR ūRγ
µuR + cdR d̄Rγ

µdR + cLLL̄Lγ
µLL + ceR ēRγ

µeR
)

(3.9)
with cQL− cuR = cos2 β/3 and cQL− cdR = cLL− ceR = sin2 β/3. We point out how working
with a linearly realized PQ symmetry and with axion interactions in eq. (3.7) prevents any
axion mixing with the Z boson. The lack of such a mixing, which for the non-linear
realization in eq. (3.9) must be achieved by hand, is automatic with our procedure.

The scatterings producing final state axions and their relative cross sections are sum-
marized in appendix C, and they lead to the rate shown in figure 5. Consistently with
our choice to work in the decoupling limit, we set

√
2B = 105 GeV and the resulting heavy

Higgs bosons mass is around the same scale. We visualize this mass threshold with a verti-
cal green line. The total rate is given by the solid black line. At temperatures larger than
mA, scatterings of heavy Higgs bosons dominate the total rate, and this is the contribution
γA that we denote with a solid magenta line. As expected, the magenta line drops expo-
nentially at temperatures below mA. Scatterings of SM particles control axion production

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
4

��� ��� ��� ��� ���

��

��

��

��

��

��

��

�����

�
��
�
�
�γ

�
� ��
��
��

�
�

γ��

γ�

���� ���β = ��

(����� ����� ������ ���������)

��

Figure 5. DFSZ axion production rate across the heavy Higgs bosons thresholds. We set tan β = 10
and

√
2B = 105 GeV ' mA. The solid black line denotes the total rate. The solid magenta line

(γA) is the partial rate from scatterings of heavy Higgses. The dashed gray line (γSM) corresponds
to the rate due to only SM particle scattering processes.

below mA. At temperatures much smaller than mA, the rate can be evaluated either with
the interactions in eq. (3.7) or the ones in eq. (3.9). As explained, once the temperature
is much smaller than mA the temperature dependent angle α reaches the constant value
β and the two Lagrangians are equivalent. However, once we are not too far from mA,
the correct prescription is to evaluate axion production via eq. (3.7). For comparison, we
report the rate computation obtained by using the non-linear realization in eq. (3.9) at
all temperatures (γSM, dashed gray line). As expected, it agrees with the full result at
temperatures below mA but it is substantially different at large temperatures.

3.2 Matching at the electroweak threshold

We work in the decoupling limit and therefore we can match across the electroweak thresh-
old. Axion interactions in eq. (3.9) are valid both above and below the EWPT and this
is the field basis we employ to go across this threshold. We only consider the 2HDM pa-
rameter space with a smooth EWPT. If the mass of the heavy neutral pseudo-scalar mA

defined in eq. (A.24) is much heavier than the SM Higgs and Z boson, as it is the case for
the decoupling limit, then the EWPT would be second order [78, 79].

Similarly to the KSVZ scenario, the anomalous coupling to gluons mediates axion
production, and the rate is given again by the expression in eq. (2.8). The UV origin
for this interaction in the KSVZ scenario was the Yukawa operator of the heavy colored
fermion Ψ. On the contrary, for the DFSZ scenario this operator originates from the
Yukawa operators of SM quarks. The coupling c̃qg(q2) in the 1PI effective action receives
threshold corrections from each quark as prescribed by eq. (2.11). The low-energy remnant
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once we integrate each quark can be read off eq. (3.9): cug = cos2 β/3 and cdg = sin2 β/3
for the each family of up-type quarks and down-type quarks, respectively. The production
rate through the gluon anomaly vanishes above the EWPT, and it subsequently becomes
more and more significant due to the accumulated effective 1PI gluon coupling.

Furthremore, quark scatterings via the couplings given in eq. (3.9) also contribute to
axion production. Their cross sections are provided in appendix C. The matching across
the EWPT for this class of interactions was spelled out in ref. [51]. Axion production via
SM fermion scatterings requires a chirality flip. Above the EWPT, a chiral flipping can
occur only via the Yukawa interactions in eq. (3.7) so that only fermion scatterings with
components of the Higgs doublet contribute to the axion production. On the contrary, after
spontaneous electroweak symmetry breaking, the same Yukawa interactions provide quark
masses that allow for chirality flips also for scatterings with gauge bosons, with gluons
dominating the rate because of the hierarchy among the gauge coupling constants.

3.3 Matching at the QCD threshold

The procedure to investigate DFSZ axion production below the QCDPT is analogous to the
one discussed in section 2.2 for the KSVZ scenario. The leading order axion coupling to the
strong sector in the KSVZ scenario originates only in the gluon anomalous term, whereas
there are the additional axion interactions to the quark currents in the DFSZ scenario as
given by eq. (3.9). In other words, the effective axion interactions to the current of the light
quarks (u, d, and s below ΛN) can be written as eq. (2.13) with the replaced coefficients

cu = m−1
u

2 Tr
[
M−1
q

] − cos2 β

6 ,

cd = m−1
d

2 Tr
[
M−1
q

] − sin2 β

6 ,

cs = m−1
s

2 Tr
[
M−1
q

] − sin2 β

6 .

(3.10)

Here, the first element for each coefficients comes from the gluon anomaly in common with
the KSVZ scenario and the second one comes from the PQ charge of SM quarks.

Through the same matching procedure discussed in appendix A, we find the effective
axion couplings to hadrons. We report here the ones to pions, which dominate the rate,
and they are still given by the operator in eq. (2.14) but with the replaced coefficient

cDFSZ
aπππ = cKSVZ

aπππ −
cos 2β

9 . (3.11)

Figure 6 shows the numerical result for the axion production rate across the QCDPT.
The total rate is denoted by the solid black line. At temperatures right below the confine-
ment scale, pion scatterings (γππ) dominate axion production. As discussed already for the
KSVZ scenario, this evaluation for the rate is trustworthy only up to the cutoff ΛChPT, and
we interpolate the axion production rate between ΛChPT and ΛN = 2 GeV. The dashed red
and dashed blue lines correspond to the interpolations for ΛChPT = 62 MeV and 150 MeV,
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Figure 6. DFSZ axion production rate across the QCDPT. We set tan β = 10. QCD is perturbative
for T > ΛN = 2 GeV and the rate is controlled by both gluon and quark scatterings. Right below
confinement, but still above T ∼ 10 MeV, pion scatterings (γππ) dominate. Below T . 10 MeV,
lepton scatterings (γe,µ) is the only production channel available. We interpolate for the two values
ΛChPT = 62 MeV (dashed red) and 150 MeV (dashed blue). The brown region identifies the EWPT.

respectively. Unlike the KSVZ scenario, these two interpolations give slightly different re-
sults for the DFSZ case. We will discuss the impact of the interpolation on cosmological
observables in the next section.

The DFSZ axion also interacts with leptons via the effective couplings in eq. (3.9).
Perturbation theory can be employed at all temperatures for production via leptons since
they do not carry color charge. The relevant scattering processes together with their cross
sections are summarized in appendix C. As shown in figure 6, when the universe cools
down much below ΛChPT (i.e., T � mπ), the pion contribution to the axion production
rate diminishes exponentially and lepton scatterings (γe,µ) become eventually dominant.

The bump arising near the EWPT (brown region) in the high temperature region of
figure 6 is the combination of several effects. Below the EWPT, the production rate is the
sum of two contributions: thermal gluon scatterings via the axion anomalous coupling with
a rate γgg ∝ T 6, and bottom quark scatterings with gluons with a rate scaling as γb ∝ T 4

(the different scaling is because the bottom mass provides the chirality flip). As we go
above the weak scale, the thermal gluon scattering rate γgg switches off, and top quark
scatterings become available. However, we do not have fermions masses and therefore
bottom and top quark scatterings (comparable since of tan β = 10) lead to the scaling as
γb,t ∝ T 6.

– 16 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
4

��-� ��-� ��� ��� ��� ��� ��� ��� ��� ���

-��

-��

�

��

��

��

�����

�
��
�
�
�γ

�
� ��
��
��

�
�

����

Λ
�
��
�
=
�
��
�
��

Λ
�
��
�
=
��
�
��

���β = ��

���β = �

���
�
�
�

Figure 7. DFSZ axion production rate for mA '
√

5× 105 GeV, tan β = (10, 3) (solid, dashed).

3.4 Summary: production rate for the DFSZ axion

We summarize the production rate for the DFSZ axion in the whole temperature range
in figure 7. Besides providing results for tan β = 10 (solid black), as done already for
the previous figures, we show the rate also for tan β = 3 (dashed black). To ease the
comparison, we set B to reproduce the same heavy Higgs boson mass in the two cases,
mA '

√
B tan β =

√
5 × 105 GeV. Similarly to the KSVZ case, axion production is con-

trolled by renormalizable interactions above the heaviest threshold, the heavy Higgs boson
mass in the DFSZ scenario, and the rate consequently scales as γA ∝ T 2. At temperatures
below mA but still above the EWPT, axion production processes proceed via dimension
5 operators coupling the axion to SM fermions (with top and bottom dominating), and
therefore the rate scales as γt,b ∝ T 6. Axion couplings to top quarks exhibit the tan2 β sup-
pression discussed previously, and as a consequence the production rate with tan β = 3 at
temperatures between mA and the EWPT is relatively larger than the one for tan β = 10.
Below the EWPT, quark scatterings with gluons are dominant but top quarks quickly
disappear from the bath, and the production rate is almost independent on tan β. Con-
trarily to the previous case, below the weak scale the SM fermion scattering rate scales as
γt,b ∝ T 4, and in this region it dominates over the thermal gluon scattering that becomes
active below the top quark mass with scaling γgg ∝ T 6. Pion scatterings dominate below
the QCDPT and before we hit the Maxwell-Boltzmann suppression. Another important
difference with respect to the KSVZ scenario is that the production is active even below
the QCDPT since the axion couples to leptons, and interactions with muons and electrons
give a rate with the scaling γe,µ ∝ T 4.
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4 QCD axion dark radiation

Scatterings of thermal bath particles produce axions in the final state, and the typical
energy involved in each process is the bath temperature: the produced axions carry a
kinetic energy much larger than their mass and therefore they are ultra-relativistic. What
happens next? Initially, there are not enough axions to give the inverse (axion destruction)
process and to ensure ultimately thermal equilibrium; axions just free-streams with their
momentum decreasingly as the inverse scale factor. If axion production is efficient, we
produce enough of them to thermalize with the primordial bath until the universe gets
too cold and diluted, and they decouple with a relativistic thermal abundance exactly as
neutrinos do.

A natural and useful application of the rates computed in sections 2 and 3 is keeping
track of the axion abundance. Our conceptual starting point is an early universe going
through an inflationary expansion, and inflaton decays generate the thermal bath afterward.
Our only assumption is that inflationary reheating ends at high scales, and in particular the
primordial thermal bath of relativistic SM particles dominates the energy budget earlier
than the EWPT. However, we do not commit to any explicit hypothesis about axion
production during inflationary reheating, but we consider two opposite cases in our analysis:
we end reheating with no axions whatsoever, or we begin the radiation dominated era with
a full thermal axion abundance. These two extremes cover all the options in between.

The quantitative tool to track the axion abundance is the Boltzmann equation

dna
dt

+ 3Hna = Ca . (4.1)

Here, na is the axion number density and t is the cosmic time. The number density dilution
due to the Hubble expansion is accounted for by the term on the left-hand side proportional
to the Hubble parameter H; in the absence of interactions, this is the only effect changing
the axion number density. If number changing processes happen at an appreciable rate,
we have to include their effects through the collision term Ca on the right-hand side.

We focus here on collisions producing one axion in the final state. For this class of
processes, which is by far dominant as a consequence of the tiny couplings, the general
expression for the collision term takes the form

Ca = γa

(
1− na

neq
a

)
. (4.2)

Here, the function γa is the total axion production rate which is the sum of several contri-
butions, one for each process that we account for. If we consider thermal gluon scatterings
the rate is given by the expression in eq. (2.8). For a generic binary collision

Bi Bj → Bk a (4.3)

with Bi a bath particle (SM or beyond the SM), the associated rate reads

γij→ka = neq
i n

eq
j 〈σBiBj→Bkavrel〉 . (4.4)
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Initial state bath particles are in thermal equilibrium, the scattering cross section is mul-
tiplied by the Moeller velocity, and the brackets denote a thermal average over all possible
initial states. We use the Maxwell-Boltzmann statistics for the equilibrium density of bath
particles since quantum degeneracy effects lead to negligible corrections

neq
i = gim

2
iT

2π2 K2

(
mi

T

)
. (4.5)

The particle mass and internal degrees of freedom are denoted by mi and gi, respectively,
and the second kind modified Bessel functions are denoted by Ki(x). The explicit expres-
sion for the thermally averaged cross section reads [80]

γij→ka = gigjT

32π4

∫ ∞
smin

ds
λ(s,mi,mj)√

s
σij→ka(s)K1

(√
s

T

)
. (4.6)

The integral accounts for all the possible squared center of mass energies s in the collision
with cross section σij→ka(s). The lower integration extreme corresponds to the kinematical
threshold smin = Max

[
(mi +mj)2,m2

k

]
, and the Källén function λ is defined as follows

λ(s,mi,mj) ≡
[
s− (mi +mj)2

] [
s− (mi −mj)2

]
. (4.7)

It is convenient to rewrite the Boltzmann equation in terms of dimensionless quantities.
We trade na with the comoving number density Ya = na/sR, where sR is the entropy density
of the thermal bath. Other than being dimensionless, the comoving number density is
advantageous because it scales out the effect of the Hubble expansion and therefore it varies
only if number changing processes are in action. Likewise, we replace the time evolution
variable t with the dimensionless inverse temperature x = M/T . Here, the choice for the
scale M is purely conventional. Upon using the general result provided in eq. (D.8) of
appendix D, which is a consequence of entropy conservation, we trade t with x and rewrite
the Boltzmann equation in terms of dimensionless quantities

dYa
d log x =

(
1− 1

3
d log g∗s
d log x

)
γa(x)

H(x)sR(x)

(
1− Ya

Y eq
a

)
. (4.8)

Our ultimate goal is to quantify how axions contribute to ∆Neff . Regardless of the
details of axion production, there will be a point where Hubble expansion takes over the
production, and this can happen because of two reasons. Particles participating in axion
production can be massive, and as the bath temperature decreases number densities get
exponentially suppressed. Even if production is mediated by massless particles, the universe
gets too cold and diluted eventually to give appreciable interactions within a Hubble time.
Such a freeze-out of interactions happens when the bath temperature was TF.O., long before
the CMB formation, and the axion comoving density freezes to a constant value

Ya(T ≤ TF.O.) = Y∞a = constant . (4.9)

Finding such an asymptotic value is the goal of our Boltzmann equation analysis. Once we
have it, we evaluate ∆Neff via the general relation in eq. (D.23) that for the axion reads

∆Neff = 4
7

(11
4

)4/3
 2π4

45ζ(3) g
SM
∗s (TCMB)Y∞a

1− 2π4

45ζ(3) Y
∞
a

4/3

. (4.10)
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Figure 8. Axion comoving number density Ya as a function of x = GeV/T for the KSVZ axion.
The three colors for the solid lines correspond to different axion decay constants fa. Each solution
is presented as a band whose width corresponds to two different treatments of the thermal bath
relativistic degrees of freedom. The dashed black line describes the equilibrium distribution. The
vertical axis on the right identifies the contribution to ∆Neff .

Here, gSM
∗s (TCMB) is the SM contribution to the effective number of entropic degrees of free-

dom, and the second term in the denominator accounts for the axion contribution to the en-
ergy density. As explained in appendix D, this correction can be at most 1/(1+gSM

∗s (TF.O.))
and therefore becomes more relevant for late axion production. The SM contribution can-
not be less than approximately 4, hence the correction can be at most 25%. However,
axions are produced well above the MeV scale for most of the parameter space we explore,
and our complete results are well described by the approximated expression

∆Neff '
4
7

(11
4

)4/3
[

2π4

45ζ(3) g
SM
∗s (TCMB)Y∞a

]4/3

. (4.11)

4.1 KSVZ axion

The production rate for the KSVZ axion, with a smooth treatment of the heavy colored
PQ fermion and the QCDPT thresholds, is shown in figure 4 as a function of the temper-
ature. We feed the Boltzmann equation in eq. (4.8) with this rate, and we show results
from numerical integrations in figure 8. We set the mass of the heavy PQ fermion to
mΨ = 105 GeV, as done already in section 2, and we run our code starting from an initial
temperature Ti = 107 GeV. Thus we always go across the Ψ threshold. Furthermore, we set
na(Ti) = 0 as the initial condition to produce this figure, and this choice has no impact on
our final results as we discuss below. We employ the dimensionless combination x = M/T

as the evolution variable, and we set M = 1 GeV to have the QCDPT around the region
x ' 1.

Different colors denote different choices for the axion decay constant fa which is the
only free parameter within the KSVZ framework. As a matter of fact, each solution is
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not a line but rather a band whose width is due to the two different datasets [32, 33] that
we employ for the temperature evolution of the effective relativistic bath degrees of free-
dom. Finally, the dashed black line denotes the axion equilibrium comoving density whose
analytical expression is rather simple, Y eq

a (x) = 45 ζ(3)/(2π4 g∗s(x)), and whose tempera-
ture dependence is only due to the change in the effective entropic degrees of freedom of
the thermal bath. The three solid lines reach the thermal equilibrium distribution rather
quickly, as early as T ' 106 GeV, and therefore setting the initial condition na(Ti) = 0 has
no impact on the final results for the values of fa chosen in figure 8.

At small enough temperatures (i.e., large x), the number density reaches an asymptotic
value in agreement with eq. (4.9). We include a second vertical axis on the right of figure 8
to identify the corresponding value of ∆Neff as quantified by eq. (4.10). This contribution
increases as we go to lower values of fa, consistently with the picture that larger axion
couplings keep physical processes efficient at lower temperatures (see eq. (1.3) and figure 1).

Our choices for the axion decay constant correspond to generating a ∆Neff equal to the
Planck bound at 2σ (red), 2σ and 1σ for CMB-S4 surveys (green and blue, respectively).
Astrophysical constraints bound the axion decay constant from below [81–83]. We impose
the bound from SN1987A provided by the recent ref. [84] that for the KSVZ axion results
in fa & 1.4× 108 GeV. Neutron star cooling provides bounds in the same ballpark [85, 86].
Thus current Planck bounds on ∆Neff are sentitive to KSVZ axions with fa one order of
magnitude below the stellar exclusion bound, and future CMB-S4 surveys will probe the
range fa ∼ (108, 109) GeV that is still not in conflict with any experimental constraint.

We investigate how ∆Neff depends on fa in figure 9. We solve the Boltzmann equation
again with initial condition na(Ti) = 0, but we consider a few different values for Ti
corresponding to the different solid colored band (whose width quantifies our uncertainties
due to different treatments of the bath). The red line shows ∆Neff as a function of fa
for any value of Ti much larger than the PQ fermion mass that we keep mΨ = 105 GeV
as in the previous plots. Axion production at temperatures above mΨ is controlled by
a renormalizable coupling, and the rate normalized by the Ψ number density scales as
γa/nΨ ∝ T as long as Ψ are relativistic. This has to be compared with the Hubble
expansion rate that scales as H ' T 2/MPl. Thus axion production is most efficient at
low temperatures, and most axions coming from Ψ scatterings are created at temperatures
around mΨ.3 On the contrary, below the heavy PQ fermion we have a rate normalized by
the bath number density scaling as γa/nB ∝ T 3, and this temperature behavior is stronger
than the one for the Hubble rate: axion production is most efficient in the UV at the highest
temperature available Ti. This explains the different results for large values of fa: axions
do not have enough interaction strength to thermalize in the early universe, and smaller
initial temperatures lead to smaller ∆Neff because at low temperatures the production is
less efficient. At low enough values of the axion decay constant thermalization is achieved,
and all colored lines coincide: the resulting prediction for ∆Neff does not depend on Ti.

We provide in figure 9 also the prediction for ∆Neff once we set the thermal equilibrium
distribution as initial condition for the axion number density at temperatures above the

3This “IR domination” is the same as the one for dark matter freeze-in [87].
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Figure 9. Contribution to ∆Neff as a function of the axion decay constant fa for the KSVZ axion.

weak scale (dashed gray line). Large axion decay constants, fa & 3 × 109 GeV, lead to
∆Neff ' 0.027 which is the value associated with a spin-0 particle that was once in thermal
equilibrium and decoupled above the weak scale (green line in figure 1 at large TD). In this
range of fa, we set the initial abundance to the equilibrium value by hand and interactions
are completely harmless. Things are different as we approach lower fa since couplings get
stronger and they can keep the axion in equilibrium below the weak scale. The resulting
prediction for ∆Neff coincides with the solid red band for fa . 3 × 109 GeV regardless of
the initial value of Ti as long as we keep Ti & 1 TeV (for lower values of Ti the expected
∆Neff would be larger, see eq. (1.3)). This result can be understood from the plot in
figure 8: for the axion decay constant range we are interested in, axions always reach
equilibrium long before the time when the bath temperature gets to the TeV scale. Thus in
the physical region of our interest where the signal is detectable, 108 GeV . fa . 109 GeV,
our predictions for ∆Neff do not depend on the initial condition for the axion number
density.

4.2 DFSZ axion

We now turn to the DFSZ framework. The production rate, this time with smooth treat-
ments of three different mass thresholds, is shown in figure 7 as a function of the tem-
perature. Exactly as we just did for the KSVZ axion, we feed the Boltzmann equation in
eq. (4.8) with this rate, find the asymptotic value of the axion comoving number density
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Figure 10. Axion comoving number density Ya as a function of x = GeV/T for the DFSZ frame-
work. Notation as in figure 8.

and quantity the correspondent contribution to ∆Neff . We fix the model parameters to
the same values as in section 3, tan β = 10 and mA '

√
2B = 105 GeV, and we run our

Boltzmann code again starting from an initial temperature Ti = 107 GeV; this ensures that
we pass again all the mass thresholds in the scenario under investigation. The numerical
output of the differential equation integrations is shown in figure 10. The axion number
density reaches its equilibrium value rather quickly, and therefore setting its initial value to
zero does not impact our final results. At low temperatures, consistently with our previous
discussion, the comoving number density settles to a constant value. We choose again three
numerical values for the axion decay constant leading to ∆Neff equal to the Planck bound
and the projected sensitivities of future CMB experiments. They are in the same ballpark
as the ones for the KSVZ scenario.

Astrophysical bounds are more severe for this case. Data from SN 1987A [83] constrain
again the axion decay constant, but this time the numerical value associated to the bound
is slightly different because the DFSZ axion couples also to quarks. For the tan β chosen in
this analysis, we find fa & 1.9× 108 GeV. However, this is not the leading bound since the
DFSZ axion couples to electrons as well. Studies of red giants [88] and white dwarfs [89]
provide competitive bounds, with the one coming from the latter slightly stronger. For the
DFSZ parameter chosen in our analysis, this corresponds to the bound on the axion decay
constant fa & 5.2×108 GeV. Thus future CMB-S4 surveys will probe a rather small region
of the DFSZ parameter space that is still not excluded.

We quantify the last statement in figure 11 where we explore how ∆Neff depends on the
axion decay constant. Solid colored bands provide the prediction obtained with vanishing
initial axion abundance at various initial temperatures Ti. For comparison, we report also
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Figure 11. Contribution to ∆Neff as a function of the axion decay constant fa for the DFSZ axion.

the prediction for the case when we begin the Boltzmann equation evolution with axions
already in thermal equilibrium. As it was the case for the KSVZ axion, the predictions
differ only at large values of the axion decay constant. This figure shows manifestly how
the severe astrophysical constraints rule out most of the region where the signal in ∆Neff
is detectable in the future. Even if we consider large values of Ti and small enough axion
decay constants, fa . 2×109 GeV, the signal is barely within the reach of CMB-S4 surveys.

Finally, we explore how our predictions depend on tan β in figure 12 where we show
∆Neff as a function of fa for tan β = 3. We set the heavy Higgs boson mass mA to the
same value as for figure 11, and we update stellar bounds consistently to account for the
different axion couplings. As explained in section 3, the production rates for tan β = 3 and
10 differ only above the EWPT with the former enhanced by approximately one order of
magnitude. If axions are in thermal equilibrium until the time when the bath temperature
is of the order of the weak scale there will be no difference between the two cases. This
is manifest from a comparison between figures 11 and 12: the resulting hot DFSZ axion
abundances with fa . O(109) GeV are very similar for tan β = 10 and 3. However, we
notice an effect at larger values of fa where it takes more effort for the axion to thermalize,
and the predicted amount of dark radiation is enhanced for tan β = 3. Thus ∆Neff does
depend on tan β at large values of fa, and smaller tan β makes the signal detectable for a
wider range of axion decay constant values.
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Figure 12. Same as figure 11 but for tan β = 3.

4.3 Interplay with inflationary reheating

Our analysis so far relied upon the assumption that the energy density of the universe was
dominated by a gas of relativistic particles at the time of axion production. This is the
extrapolation of how we “look at” our universe at the time of BBN, and it is worth keeping in
mind that it is an extrapolation not supported by any observation. Within the inflationary
paradigm, this extrapolation must come to an end because back enough in time the energy
budget was controlled by the vacuum energy of the inflaton field. Inflaton decays populate
the thermal bath eventually, and the highest temperature TR ever achieved during the
radiation dominated epoch is known as the reheating temperature. Thus throughout our
numerical Boltzmann analysis we have always implicitly assumed the hierarchy TR > Ti.

Our predictions are insensitive to the dynamics of inflation as long as the reheating
temperature is high enough. For both of the frameworks under investigation, axion pro-
duction is mediated by renormalizable couplings above the highest mass threshold; we have
a Yukawa interactions with the Ψ fermion and a scalar potential cubic term with the Higgs
fields Hu and Hd in the KSVZ and DFSZ framework, respectively. The renormalizability
of the axion couplings ensures that production is most efficient in the IR, and therefore
around the mass of the heavy particles. Thus all we need is a reheat temperature larger
than the heavy thresholds: TR > mΨ and TR > mA for the KSVZ and the DFSZ frame-
work, respectively. As a matter of fact, inflaton decays can provide an additional source
for axion dark radiation. However, we consider also this option since in our analysis we
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accounted for the two extreme situations, na(Ti) = 0 and na(Ti) = neq
a (Ti), and this en-

sures that we cover all possible options. As we have already explained, our final predictions
in the parameter space region where the signal is detectable do not depend on the initial
conditions.

What happens for lower values of TR? Inflationary dynamics can play a relevant role
only for TR < mΨ or TR < mA. In this regime, we solve the coupled Boltzmann equations
describing inflationary reheating4

dρφ
dt

+ 3Hρφ = −Γφρφ , (4.12)
dρR
dt

+ 4HρR = Γφρφ . (4.13)

This system describes the evolution of the inflaton (φ) and the radiation bath (R) energy
densities. Inflaton decays, with a rate Γφ, deplete the former and enhance the latter.
The Hubble expansion rate, which allows us to understand when axions are produced most
efficiently once we compare it with the production rate, is given by the Friedmann equation
and it has the following scaling

H =
√
ρφ + ρR√

3MPl
' T 2

MPl

 1 T < TR

(T/TR)2 TR ≤ T ≤ TMAX
. (4.14)

Below the reheat temperature TR we have the typical scaling for a radiation dominated
epoch. The reheat temperature is connected to the inflaton decay width through the rela-
tion TR '

√
ΓφMPl. Although this is defined as the highest temperature ever achieved by

the thermal bath during the radiation dominated epoch, this is not the highest temperature
achieved by the thermal bath in general. The bath itself exists even for temperatures larger
than TR as a sub-dominant component since the decaying inflaton is still dominating the
energy budget. The highest temperature ever achieved is usually denoted by TMAX and
it scales as TMAX '

(
MPlΓφE2

I

)1/4, with E4
I the constant energy density driving the in-

flationary expansion. Thus the bath temperature spans a potentially large range between
TMAX and TR before becoming the dominant energy component. During this phase, which
corresponds to an early matter domination with the energy budget controlled by inflaton
oscillations, the Hubble rate is proportional to T 4.

If we consider renormalizable interactions, production of particles via scatterings is
efficient at low temperatures for a radiation dominated universe. This is the case also
during inflationary reheating given the higher power of the temperature appearing in the
scaling for the Hubble parameter. One can be more quantitative and state that in the
range 5 ≤ d ≤ 8, with d the mass dimension of the operator mediating scatterings, the
production is dominated at small temperatures during reheating and therefore maximized
at TR [91–94]. In particular, for d < 8 the final abundance does not depend on TMAX.
Only for d > 8 particle production is UV dominated also during inflationary reheating,
and therefore the resulting abundance is sensitive to TMAX and to the details of reheating.

4The second equation is valid only if radiation has the equation of state pR = ρR/3. Strictly speaking,
this is only valid above the weak scale. For corrections to this simplified description see ref. [90].
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For the axion frameworks studied in this work, we never go above mass dimension 5
and therefore we are never sensitive to the peculiarities of inflationary reheating. Whether
we are below the mass of Ψ for the KSVZ or the mass of A for the DFSZ, axion interactions
are mediated by dimension 5 effective operators and the production is maximed at TR. This
is the scenario investigated by ref. [38] with the gluon and top quark couplings dominating
the production rate for the KSVZ and DFSZ axion, respectively.

5 Conclusions

The PQ mechanism, where the θ parameter of QCD is promoted to a dynamical field,
is undeniably one of the most elegant solutions to the strong CP problem. A plenitude
of UV complete candidate models provides viable realizations of PQ symmetry breaking,
but they all share the same low-energy residual: an approximate Nambu-Goldstone boson.
Such a field, known as the axion, features the model-independent coupling to gluons given
in eq. (1.1) as well as model-dependent interactions with other SM particles. Given the
Nambu-Goldstone nature of the axion, its couplings to visible matter are suppressed by the
large PQ breaking scale and this makes axion detection very challenging. Notwithstanding
these difficulties, the field of axion experimental searches has been literally blossoming in
the recent decade, and the present time is rather unique for the quest for axions.

In spite of the rich set of options for axion couplings, all the terrestrial searches are
sensitive to a handful of them: the ones to light quarks and gluons that in turn describe
coupling to nuclei, the one to electrons, and the one to photons. An effective low-energy
theory with only these interactions, with any UV completion that can be matched onto it,
is enough to capture the phenomenology of axion searches.

We focused on an experimental signature to which all axion couplings can potentially
contribute. The physics is the one of thermal axion production in the early universe,
and the experimental manifestation is the presence of additional radiation that we infer
from the CMB anisotropy spectrum. The net signal is accumulated through the expansion
history with axions produced from bath particle collisions possibly at all temperature scales.
Trustworthy predictions are possible only upon knowing axion couplings to all SM particles
and to the model-dependent beyond the SM degrees of freedom specific to each theory.

The effect we consider is quantified by an additional contribution to the effective num-
ber of neutrinos species ∆Neff . Bounds on the amount of axion dark radiation from the
Planck data are already quite remarkable, and prospects provided by CMB-S4 surveys
make this signal rather intriguing for the future. This population of relativistic axions can
also leave an imprint on cosmological structure through baryon acoustic oscillations (BAO),
and this effect provides an additional constraint on ∆Neff [95–97]. Future large scale struc-
ture surveys will provide an improved BAO measurement, and this determination will be
complementary to the CMB anisotropy spectrum. Furthermore, ref. [98] suggested recently
how such a cosmic axion background could be detected even with experiments in our ter-
restrial laboratories, although the signal is more sensitive to non-thermal energy spectra.
These impressive projections combined with the top-down motivation make reliable theo-
retical predictions for the amount of axion dark radiation of the utmost importance.
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This work addressed the presence of mass thresholds through the expansion history.
As we showed with two explicit examples, the KSVZ and the DFSZ frameworks, passing
through them alters the production rate significantly. For the KSVZ scenario, the rate
changes significantly across the heavy fermion mass because renormalizable axion interac-
tions become non-renormalizable, and this changes the rate temperature dependence. An
analogous threshold is due to the heavy Higgs bosons in the DFSZ scenario, and in such a
case the EWPT is also an important threshold where axion production mediated by fermion
scattering changes drastically its temperature behavior as a consequence of chirality flips
induced by fermion masses [51]. Finally, the QCDPT is common to both frameworks, and
the matching procedure is far from being straightforward [52].

The central results of our analysis are predictions for ∆Neff as a function of the axion
decay constant fa. They are explicitly presented in figure 9 for the KSVZ framework, and
in figures 11 and 12 for the DFSZ framework. Scatterings of thermal bath particles lead
to a detectable signal in the future for both cases. For the KSVZ axion, the less severe
stellar bounds allow for a stronger signal, as large as the 2σ sensitivity of future CMB-S4
surveys and for values of the axion decay constant fa . 3 × 109 GeV. On the contrary,
white dwarf bounds for the DFSZ axion allow for a signal only detectable at 1σ in the
future. The range of testable axion decay constants for the KSVZ axion depends on the
specific value of tan β. For the two representative cases we analyzed, tan β = 10 and 3, the
signal is testable for axion decay constants satisfying the upper bounds fa . 2 × 109 GeV
and fa . 6× 109 GeV, respectively.

We assumed a radiation dominated universe through our analysis, but the production
rates in figures 4 and 7 are independent of the cosmological history. They can be employed
to investigate axion production for alternative scenarios such as late inflationary reheating.
Our methodology can also be extended to other microscopic realizations besides the two
frameworks studied here. Flavor-violating axion couplings, with the production rate con-
trolled by decays of bath particles instead of scatterings, are of particular interest. Plausible
origins for the flavor violation can be loop corrections to axion couplings [99–103], or they
can even be present at tree-level as a consequence of the PQ charge assignments [104, 105].
Predicting ∆Neff for specific axion UV complete models, along the lines of the analysis
presented here, would be a piece of useful information to discriminate among them.
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A Conventions and useful results I: particle physics

We collect in this appendix our notations and conventions for SM fields and Lagrangian.
Starting from the electroweak symmetric phase, we describe the SM gauge group and the
matter content. We present spectrum and interactions, above and below the weak scale, for
the case of a minimal Higgs sector with just one scalar weak doublet. The DFSZ framework
features two Higgs doublets, and we discuss spectrum and interactions for this case as well.
We quantify the effect of anomalous chiral rotations that are necessary to perform changes
of field basis. Finally, we provide basic notions of ChPT and we introduce the formalism
that, among several applications, allows us to determine axion couplings to hadrons.

Standard Model with minimal Higgs sector. At energies above the Fermi scale, the
theory enjoys a full SU(3)c × SU(2)L ×U(1)Y gauge symmetry, and the Lagrangian takes
the form

LSM = Lgauge + Lfermion + LHiggs + LYukawa . (A.1)

The first term contains gauge boson kinetic terms

Lgauge = −1
4G

AµνGAµν −
1
4W

I µνW I
µν −

1
4B

µνBµν , (A.2)

and they are constructed by employing the field strengths defined as follows

GAµν = ∂µG
A
ν − ∂νGAµ + gs f

ABCGBµG
C
ν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ + g εIJKW J
µW

K
ν ,

Bµν = ∂µBν − ∂νBµ

(A.3)

with fABC and εIJK the structure constants of the non-Abelian groups SU(3)c and SU(2)L,
respectively. The indices A = 1, . . . , 8 and I = 1, 2, 3 run over the adjoint representations.
Fermion and scalar kinetic terms are expressed via the gauge covariant derivative

Dµ = ∂µ − igs
λA

2 GAµ − ig
σI

2 W
I
µ − ig′Y Bµ . (A.4)

The non-Abelian generators are Gell-Mann (λA) and Pauli (σI) matrices, and they act on
color and weak-isospin indices (if any), respectively. The Abelian part has instead a term
proportional to the hypercharge Y of the field the covariant derivative acts on. The SM
matter fields with their quantum numbers are listed in table 1. Upper case fermions denote
weak doublets whereas lower case fermions are singlet under the weak-isospin group, and
the index i runs over the three fermion generations. Fermion kinetic terms read

Lfermions = Q̄L i /DQL + ūR i /DuR + d̄R i /DdR + L̄L i /DLL + ēR i /DeR . (A.5)
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QLi uRi dRi LLi eRi H

SU(3)c 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y +1/6 +2/3 −1/3 −1/2 −1 +1/2

Table 1. SM matter fields and gauge quantum numbers (i runs over the three generations).

We use a compact notation where the sum over the three different generations is under-
stood. The Lagrangian for the Higgs field has a canonically normalized kinetic term and
the most general renormalizable scalar potential leading to electroweak symmetry breaking

Lscalar = |DµH|2 − VSM(H) = |DµH|2 + µ2H†H − λ

4 (H†H)2 . (A.6)

Finally, the Yukawa part of the Lagrangian (also in a compact matrix form) reads

LYukawa = −Q̄L H̃ Y (u)uR − Q̄LH Y (d)dR − L̄LH Y (e)eR + h.c. , (A.7)

where H̃ = iσ2H∗. In the most general fermion basis, Y (u,d,e) are generic 3× 3 matrices in
flavor space, and they can be diagonalized upon performing bi-unitary rotations

Y (ψ) = U †ψL Ŷ
(ψ)UψR . (A.8)

Here, ψ = u, d, e and the matrices Y (ψ) are diagonal. Hence we redefine fermion fields by
performing the following unitary rotations in flavor space

QL → UuLQL , uR → UuRuR , dR → UdRdR , LL → UeLLL , eR → UeReR . (A.9)

After these operations, the Yukawa Lagrangian in eq. (A.7) takes the form

LYukawa = −Q̄L H̃ Ŷ (u)uR − Q̄LH VCKM Ŷ (d)dR − L̄LH Ŷ (e)eR + h.c. , (A.10)

where we introduce the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM ≡ U †uLUdL .

Electroweak symmetry breaking. The scalar potential in eq. (A.6) has an electroweak
symmetry breaking minimum where the Higgs field gets a vacuum expectation value (vev)

〈H〉 = 1√
2

(
0
v

)
, v2 = 4µ2

λ
= (246 GeV)2 . (A.11)

As a consequence, electroweak gauge bosons acquire mass terms and mix among each other.
The complete gauge boson mass spectrum reads

W±µ =
W 1
µ ∓ iW 2

µ√
2

, mW± = g

2v ,

Zµ = cwW
3
µ − swBµ , mZ =

√
g2 + g′2

2 v ,

Aµ = swW
3
µ + cwBµ , mγ = 0 ,

(A.12)
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where the photon remains massless and we define the weak mixing angle

(sw, cw) = 1√
g2 + g′2

(g′, g) . (A.13)

Likewise, the Yukawa operators in eq. (A.10) provide fermion masses once the Higgs field
gets a vev. The presence of the CKM matrix makes fermion mass terms still not diagonal,
and the unitary rotation dL → VCKM dL on the left-handed down quarks brings us to the
physical states. The fermion mass eigenvalues are equal to the diagonal entries of the
Yukawa matrices multiplied by v/

√
2.

Once electroweak symmetry is broken, the Lagrangian schematically reads again as in
eq. (A.1) but this time the four contributions have different ingredients. The piece for gauge
bosons contains again kinetic terms for gauge bosons, but this time with field strengths of
the electroweak mass eigenstates, and also mass terms for the W and Z bosons. Fermions
fill vector-like representations of the gauge group, and gauge interactions are conveniently
expressed in terms of the covariant derivative

Dµ = ∂µ−igs
λA

2 GAµ−i
g√
2

(
σ+

2 W+
µ + σ−

2 W−µ

)
−i g
cw

(
σ3

2 − s
2
wQ

)
Zµ−ieQAµ. (A.14)

Here, we introduce the Pauli matrices σ± ≡ σ1 ± iσ2 that are used to define the ladder
operators for the weak isospin group. Furthermore, we define (minus) the electron charge
e ≡ gg′/gw > 0 and the electric charge generator Q ≡ σ3/2 + Y . The same covariant
derivative describes gauge interactions for the radial model of the Higgs field, the Higgs
boson h, and this is the only scalar appearing in the Yukawa interactions with fermions.

Two Higgs Doublet Model. The Lagrangian for a theory with two weak doublets Hu

and Hd is richer than the one given in eq. (A.6), and it takes the schematic form

L(2HDM)
scalars = |DµHu|2 + |DµHd|2 − V2HDM(Hu, Hd) . (A.15)

We assign opposite hypercharges to the scalars, Yu,d = ±1/2, and only operators with an
even number of Higgs fields can appear in the scalar potential since they are weak doublets.
Considering only renormalizable operators, we can only have terms with two of four Higgs
fields built from the only three quadratic gauge invariant combinations: H†uHu, H†dHd, and
HT
u iσ

2Hd. The first two options cannot carry a net PQ charge whereas the last one can.
Keeping in mind that we are interested in the DFSZ framework, we consider theories where
the combination HuHd has a non-vanishing PQ charge.

We consider the renormalizable and gauge invariant scalar potential

V2HDM(Hu, Hd) = −µ2
uH
†
uHu − µ2

dH
†
dHd +

(
BHT

u iσ
2Hd + h.c.

)
+

λ1
4 (H†uHu)2 + λ2

4 (H†dHd)2 + λ3(H†uHu)(H†dHd)+

λ4(HT
u iσ

2Hd)(HT
u iσ

2Hd)† .

(A.16)

The only operator that is not invariant under PQ is the quadratic one proportional to B.
Within the DFSZ framework, it arises once the PQ breaking scalar gets a vev, and the
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phase of B contains the axion field above electroweak symmetry breaking. Upon redefining
the Higgs doublets, it is possible to take the PQ-breaking coefficient B to be real and
positive.

We search for an EWSB minimum where only the neutral components acquire vevs

〈Hu〉 = 1√
2

(
0
vu

)
= 1√

2

(
0

v sin β

)
,

〈Hd〉 = 1√
2

(
vd

0

)
= 1√

2

(
v cosβ

0

)
.

(A.17)

The vevs satisfy the constraint v2 = v2
u + v2

d = (246 GeV)2, and we define the angle β as
tan β ≡ vu/vd. The minimum conditions are

µ2
u = v2

2

[
λ1
2 sin2 β + (λ3 + λ4) cos2 β

]
− B

tan β ,

µ2
d = v2

2

[
λ2
2 cos2 β + (λ3 + λ4) sin2 β

]
−B tan β .

(A.18)

We expand around this EWSB vacuum and we determine the mass spectrum. The
Higgs doublets can be decomposed in terms of neutral and charged scalar components

Hu =

 H+
u

vu+Su+iPu√
2

 , Hd =

 vd+Sd+iPd√
2

H−u

 . (A.19)

For neutral fields, we distinguish between CP-even and CP-odd scalars. The squared mass
matrices for the charged, pseudo-scalar and scalar fields read respectively

m2
C =

(
B/ tan β − 1

2λ4v
2 cos2 β B − 1

4λ4v
2 sin 2β

B − 1
4λ4v

2 sin 2β B tan β − 1
2λ4v

2 sin2 β

)
,

m2
P =B

(
1/ tan β 1

1 tan β

)
,

m2
S =

(
B/ tan β + 1

2λ1v
2 sin2 β −B + 1

2 (λ3 + λ4) v2 sin(2β)
−B + 1

2 (λ3 + λ4) v2 sin(2β) B tan β + 1
2λ2v

2 cos2 β

)
.

(A.20)

The first two matrices have vanishing determinant, and this ensures massless Goldstones
to provide longitudinal components for the W and Z gauge bosons. The masses of the
heavy charged (H±) and pseudo-scalar (A) Higgs bosons can be found from the trace

m2
H± = Tr[m2

C ] = 2B
sin(2β) −

λ4v
2

2 ,

m2
A = Tr[m2

P ] = 2B
sin(2β) .

(A.21)

The CP-even Higgs bosons, the SM-like h and the heavier H, are both massive. We provide
here the mass eigenvalues in the decoupling limit which is valid when B � v2

m2
h '

[
λ1 sin4 β + λ2 cos4 β + (λ3 + λ4) sin2(2β)

] v2

2 ,

m2
H '

2B
sin(2β) +

[
λ1 + λ2

4 − (λ3 + λ4)
]

sin2(2β)v
2

2 .

(A.22)
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The charged mass eigenstates result in(
G+

H+

)
=
(

sin β − cosβ
cosβ sin β

)(
H+
u

H−†d

)
, (A.23)

where G+ is the charged Goldstone eaten up by the W boson. Likewise, if we dub G0 the
Goldstone eaten by the Z boson, we have the pseudo-scalar mass eigenstates(

G0

A

)
=
(

sin β − cosβ
cosβ sin β

)(
Pu

Pd

)
. (A.24)

Finally, in the decoupling limit (B � v2), we have the CP-even mass eigenstates(
h

H

)
=
(

sin β cosβ
− cosβ sin β

)(
Su

Sd

)
. (A.25)

Anomalous chiral rotations. Chiral, axion dependent, rotations on fermion fields can
be useful to find a new field basis better suited for the specific framework under investiga-
tion. Here, we state our conventions for these field transformations and we quantify gauge
anomaly effects. For a generic Dirac fermion χ, before accounting for any interaction, the
theory has a U(1)V symmetry where both left- and right-handed Weyl components are ro-
tated with the same phase, and we have a conserved Noether’s vector current J (V )

µ = χ̄γµχ.
If the fermion is massless (mχ = 0) then the theory has also the U(1)A symmetry, where
left- and right-handed Weyl components are rotated with opposite phases, and the result-
ing Noether’s current results in J

(A)
µ = χ̄γµγ

5χ. On the contrary, if the fermion field is
massive, we have that the axial current has a non-vanishing divergence

∂µJ (A)
µ

∣∣∣
classical

= 2mχ χ̄iγ
5χ . (A.26)

The result above is valid at the classical level. Once we include quantum corrections,
the axial current can be non-conserved if the fermion carries gauge charges, even if the
fermion itself is massless. It is possible to derive its divergence by different methods, like
evaluating the Green function of the axial current with gauge bosons in perturbation theory
(triangle diagrams) [106, 107], or via the Jacobian of the path integral measure [108].

We start from the well-known QED result

∂µJ (A)
µ

∣∣∣
anomaly

= − e2

8π2 FµνF̃
µν . (A.27)

The generalization to a non-Abelian gauge theory, such as QCD, does not require any new
calculation, all we need to do is adding a group theory factor to the QED expression in
Eq. (A.27) (the triangle diagrams have the same Lorentz structure)

∂µJ (A)
µ

∣∣∣
anomaly

= − g2
s

8π2 Tr
[
tCtD

]
GCµνG̃

Dµν = − g2
s

16π2 G
C
µνG̃

Cµν , (A.28)

where tC are generators of the color group normalized as Tr
[
tCtD

]
= δCD/2.
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We have all the tools to quantify the effects of performing chiral rotations. For a
generic massless Dirac fermion χ, charged under a representation R of the SU(3)c gauge
group, we perform the local axial rotation

χ → exp[iαA(x)γ5]χ . (A.29)

As a consequence, the Lagrangian changes due to both classical and quantum effects. The
former is straightforward whereas the latter can be found by computing the change in the
path integral measure [108]. We do not need to reproduce the derivation since we know
that this contribution must reproduce the equation of motion in Eq. (A.28). Thus we have

− ∂µαA χ̄γµγ5χ+ ∆Lχ|anomaly = αA∂µJ
(A)µ + ∆Lχ|anomaly = 0 . (A.30)

Upon comparing we find how chiral rotations alter the Lagrangian at the quantum level

∆Lχ|anomaly = 2αA ×
αs
8π G

C
µνG̃

Cµν . (A.31)

This is valid for an axial rotation of a Dirac fermion as in eq. (A.29). If we only rotate one
Weyl component the result is half the one above and with the appropriate sign.

Rudimental ChPT. We review basic notions of Chiral Perturbation Theory
(ChPT) [109–111] needed to study axion couplings. Our starting point is the QCD La-
grangian with Nf = 3 quark flavors

LQCD = −1
4G

µνGµν + qi /Dq − [q̄RMqqL + h.c.] . (A.32)

For the ease of notation, we introduce the quark vector in flavor space q = (u d s)T where
each entry is a Dirac field with left and right-handed components. Chiral projectors, defined
in the usual way PL,R = (1∓ γ5)/2, extract the different quark chiralities: qL,R = PL,R q.
The quark mass matrix in the mass eigenbasis reads Mq = diag (mu,md,ms).

If we neglect the quark mass matrix, left- and right-handed quarks are decoupled
and the QCD Lagrangian in Eq. (A.32) is invariant under independent rotations of the
two fermion chiralities: the theory has a global U(3)L × U(3)R symmetry. The vectorial
part of the symmetry group where both chiralities are rotated by the same angle, namely
the baryon number U(1)V and the isospin SU(3)V , are good approximate symmetries
of Nature; the former is broken by gauge anomalies whereas the latter is only broken
by quark mass differences and electroweak interactions. The axial part U(1)A × SU(3)A
is spontaneously broken by the quark condensate, and we do not expect mixed parity
multiplets in the hadronic spectrum but rather Goldstone bosons associated to the broken
axial generators. However, there is no Goldstone boson associated to the broken U(1)A
symmetry since mη′ � mπ. This was dubbed as the U(1)A problem of QCD [112] and
it was solved only thanks to a complete understanding of the rich structure of the QCD
vacuum [113, 114]. We do not have a ninth Goldstone boson η′ in the spectrum because
the U(1)A is not even an approximate symmetry of the QCD Lagrangian in the massless
limit since it is anomalous.
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Concerning the spontaneous breaking of the SU(3)A part, we employ a non-linear
sigma model to describe the associated Goldstone bosons. Keeping only terms with two
derivatives, which correspond to quadratic terms in the exchanged momentum O(p2), we
have the low-energy chiral Lagrangian

LChPT = f2
π

4 Tr
[
∂µU † ∂µU

]
, U = exp

[
i
πa λa

fπ

]
, (A.33)

where λa are the SU(3) Gell-Mann matrices and fπ ' 93 MeV. The Goldstone bosons πa,
with a = 1, . . . , 8, enter through the unitary matrix U that under a generic chiral rotation
transforms as U → LU R†. We pick the basis

πa λa =


π0 + η√

3

√
2π+ √

2K+
√

2π− −π0 + η√
3

√
2K0

√
2K−

√
2 K̄0 −2 η√

3

 . (A.34)

This choice is convenient since these fields are physical eigenstates once we introduce chiral
symmetry breaking quark masses.

The Lagrangian in Eq. (A.33) holds for exact chiral symmetry in the high-energy
theory. Quark masses, which break chiral symmetry, are easily incorporated by applying
the formalism of Refs. [110, 111] for matrix elements of currents in the chiral effective theory.
Furthermore, this method also allows us to derive axion couplings to the Goldstone octet
in eq. (A.34). We review this method starting from the QCD Lagrangian written as follows

LQCD+S = −1
4G

µνGµν + q̄ i /Dq − [q̄L(s+ ip)qR + h.c.]− q̄L lµγµqL − q̄R rµγµqR . (A.35)

Here, we include four different external sources S: scalar s, pseudo-scalar p, vector left
lµ, and vector right rµ. The QCD Lagrangian with quark mass terms in Eq. (A.32) is
recovered for lµ = rµ = p = 0 and s = Mq. Setting the spin-one sources to a non-vanishing
value allows us to deal with coupling to vector bosons, such as the photon, as well as the
spin-one axion currents. Finally, the pseudo-scalar current p also plays an important role
to determine axion couplings.

The Lagrangian in eq. (A.35) has a local SU(2)L × SU(2)R symmetry where left- and
right-handed quarks transform separately

qL(x) → L(x)qL(x) , qR(x) → R(x)qR(x) , (A.36)

and the sources also transform as follows
s(x) + ip(x) → L(x) [s(x) + ip(x)]R(x)† ,

lµ(x) → L(x) lµ(x)L(x)† + i∂µL(x)L(x)† ,
rµ(x) → R(x) rµ(x)R(x)† + i∂µR(x)R(x)† .

(A.37)

In the above equations, we restore the explicit dependence on the space-time location x to
emphasize that the transformation is local. The spin-one sources transform as gauge fields
so we define the covariant derivative

DµU = ∂µU + ilµU − iUrµ , (A.38)
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and we can match the Lagrangian in Eq. (A.35) onto a low-energy chiral Lagrangian

LChPT+S = f2
π

4 Tr
[
DµU †DµU

]
+ µ

f2
π

2 Tr
[
(s+ ip)U † + U(s− ip)

]
. (A.39)

Here, µ is a dimensionful parameter that we determine by the requirement of reproducing
the meson masses

LG.B.mass = LChPT+S |p=l
µ=rµ=0

s=M = µ
f2
π

2 Tr
[
M(U † + U)

]
=

− µ

2

[
(mu +md)π0π0 + 2mu −md√

3
π0η + mu +md + 4ms

3 η2
]

+

− µ
[
(mu +md)π+π− + (md +ms)K0K0 + (mu +ms)K+K−

]
.

(A.40)

If we look at the pion mass, and we neglect the mixing with the η, we findm2
π = µ(mu+md).

B Conventions and useful results II: thermal corrections

We discuss thermal corrections in this appendix. We analyze axion production via thermal
gluon scattering, and we compute thermal masses for the DFSZ Higgs sector.

Thermal corrections to axion production via gluon loops. The axion production
rate can be expressed in terms of the axion self-energy [115, 116]

γa = −2
∫

d3pa

2Ea (2π)3 fBE(Ea) Im Πa =
∫

d3pa

2Ea (2π)3 Π<
a . (B.1)

Here, fBE(Ea) is the Bose-Einstein distribution and Π<
a denotes the non time-ordered ax-

ion two-point function. At finite temperature, the expansion parameter is not anymore
αs/(4π) but rather the gauge coupling constant gs because of collinear enhancements [59],
and this require in principle the resummation of infinite processes involving many particles.
However, as explained by ref. [38], such an enhancement is absent for the axion anomalous
interaction given in eq. (1.1), and we can safely consider only binary scatterings. Never-
theless, even if one restricts to binary collisions there are still IR divergences to take care
of. The production rate with IR divergence properly accounted for can be found in ref. [38]
but only at high temperatures, T & 104 GeV. We extend this study to lower temperatures.

Only one diagram contributes to the production rate, the one-loop axion two-point
functions with virtual gluons. Within the context of the optical theorem, this contribution
could be interpreted as the thermal gluon decay [38]; using the cutting rules, we could
identify diagrammatically as gth → gth + a where gth indicates the thermal excitation of
the gluon field in a medium. This is the reason why ref. [38] dubbed it the ‘decay” diagram.
We evaluate the it with the resummed thermal gluon propagators in the loop, and we work
at the leading order in gs because we can restrict to binary collisions. At this point, all we
need to derive a proper thermal gluon propagator.

For a generic gauge theory, thermal effects induce the following correction to the gluon
two-point function in momentum space

∆Lthermal = −1
2G

A
µΠµνGAν . (B.2)
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The thermal self energy Πµν is a function of the external momentum Kµ = (ω, kk̂). Here
and thereafter, capital characters denote four-vectors whereas lower-case characters their
components. The four-vector K has a spatial component of size k and direction k̂.

There are two5 sources for the gluon self-energy at one-loop: gluon self-interactions
and gauge interactions of colored fermions (i.e., quarks)

Πµν = Πµν
G +

∑
q

Πµν
q . (B.3)

The pure gauge contribution reads

Πµν
G = g2

s

2 C2(G)
∫

d3p

2p (2π)3 fBE(p)

×
[
gµν

(
4p · k − 2k2)− 8pµpν + 2kµkν − 5pµkν − 3pνkµ

2p · k + k2

+gµν
(
4p · k + 2k2)+ 8pµpν − 2kµkν − 3pµkν − 5pνkµ

2p · k − k2

]
,

(B.4)

where C2(G) denotes the quadratic Casimir operator for the adjoint representation and
fB.E.(p) is the Bose-Einstein distribution. The contribution from a quark q with mass mq

results in

Πµν
q = 2g2

s

∫
d3p

2Ep (2π)3

[
fFD(Ep) + f̄FD(Ep)

]
×
[
gµνp · k − 2pµpν − pµkν − pνkµ

2p · k + k2 + gµνp · k + 2pµpν − pµkν − pνkµ
2p · k − k2

]
,

(B.5)

where Ep =
√
p2 +m2

q , and fFD(Ep) and f̄FD(Ep) are the Fermi-Dirac distributions for the
quark q and the anti-quark q̄, respectively.

We decompose Πµν into its longitudinal (L) and transverse (T) components [118, 119]

πL = −ω
2 − k2

k2 Π00 , (B.6)

πT = −1
2πL + 1

2gµνΠµν . (B.7)

The longitudinal and transverse gauge contributions read

πL|G = −C2(G) g
2
s

2π2

(
ω2 − k2

k2

)∫
dpfBE (p)

[
2pL+ M

k
− k

4L−
]
, (B.8)

πT|G = −1
2 πL|V + C2(G) g

2
s

2π2

∫
dpfBE (p)

[
2pL+ 5(ω2 − k2)

8k L−

]
, (B.9)

5If we consider axion production from thermal scatterings of SU(2)L weak or U(1)Y hypercharge gauge
bosons there is an additional one from Higgs doublets [117].
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where we set Ep = p and

L ≡ 1− ω

k
log

[
ω+
ω−

]
, (B.10)

L± ≡ log
[
p+ ω+
p+ ω−

]
± log

[
p− ω+
p− ω−

]
, (B.11)

M ≡ (p+ ω+) (p+ ω−) log
[
p+ ω+
p+ ω−

]
− (p− ω+) (p− ω−) log

[
p− ω+
p− ω−

]
(B.12)

with ω± ≡ (ω ± k)/2. We assume a negligible particle/antiparticle asymmetry for quarks,
and consistently we set fFD(Ep) = f̄FD(Ep). We find

πL|q = − g2
s

8π2

(
ω2 − k2

k2

)∫
dp
p2

Ep
fFD(Ep)

[
8−

(ω2 − k2) + 4E2
p + 4Epω

pk
N+

+
(ω2 − k2) + 4E2

p − 4Epω
pk

N−

]
, (B.13)

πT|q = − 1
2 πL|q + g2

s

8π2

∫
dp
p2

Ep
fFD(Ep)

[
8−

2m2
q + (ω2 − k2)

pk
(N+ −N−)

]
, (B.14)

where
N± = log

[
2(Epω + pk)± (ω2 − k2)
2(Epω − pk)± (ω2 − k2)

]
. (B.15)

For a massless quark (m2
q = 0), we recover the analytic expressions in the literature [38].

With the gluon self-energy at our disposal, we can evaluate the spectral densities

ρT = −2 Im 1
ω2 − k2 − πT

, (B.16)

ρL = −2 Im ω2 − k2

k2
1

ω2 − k2 − πL
. (B.17)

The imaginary part must be extracted according to the rescription ω → ω+i0+. In order to
deal with technical difficulties in the numerical analysis, we take into account the spectral
densities rewritten as

ρi(k) = 2πZi (k) δ
(
ω2 − ω2

i (k)
)

+ ρcont
i , (B.18)

where i = (T,L) and Zi indicates the residues at the poles of ω = ±ωi (k) which are located
in the time-like region (|ω| > k), and we consider the contribution from the continuum parts
ρcont
i only in the space-like region (|ω| < k) [117].

We express the axion two-point function in terms of spectral densities

Π<
a = dg

4π3

(
g2
s

32π2fa

)2 1
pa

∫ ∞
−∞

dk0

∫ ∞
0

dk

∫ k+pa

|k−pa|
dq fB (k0) fB (Ea − k0)

×
{

(ρT (k) ρL (q) + ρL (k) ρT (q))
[
(k + q)2 − p2

a

] [
p2
a − (k − q)2

]

+ρT (k) ρT (q)
[(

k2
0
k2 + q2

0
q2

)((
k2 − p2

a + q2
)2

+ 4k2q2
)

+ 8k0q0
(
k2 + q2 − p2

a

)]}
,

(B.19)
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Figure 13. The control function F3 defined in eq. (2.8) as a function of the temperature (left) and
the strong coupling gs (right). The dashed gray line on the right panel corresponds to the Hard
Thermal Loop (HTL) approximation [37, 59], and it is valid only for small couplings gs < 0.5.

where dg = 8 is the dimension of the SU(3) strong gauge group and the four momentum
of the gluons are Kµ = (k0, kk̂) and Qµ = Pµa −Kµ = (q0, qq̂). We integrate numerically
eq. (B.1) where we use eq. (B.19) for the axion self-energy. We employ the ‘RunDec’ [60]
code to account for the running of the strong coupling constant up to four loops. The
numerical result of the control function F3 defined in eq. (2.8) is shown in figure 13; the
left and right plots illustrate the value of F3 in the function of temperature T and the strong
coupling gs, respectively, including the decoupling of quarks at different temperatures.

Thermal masses for the electroweak sector. The tree-level scalar potential for the
2HDM is given in eq. (A.16). The thermal evolution of electroweak sector in the 2HDM is
the subject of refs. [120–123], and one-loop thermal corrections to the potential read

Vth (Hi, T ) = T 4

2π2

∑
b,f

[
nbJB

[
m2
b(Hi)/T 2

]
− nfJF

[
m2
f (Hi)/T 2

] ]
. (B.20)

Here, we include contributions from bosons and fermions, and we denote their (Higgs fields
dependent) masses mb(Hi) and mf (Hi), respectively. The relative minus sign is due to
fermion fields running in the loop. The dimensionless quantities nb and nf count the num-
ber of internal degrees of freedom. The function JF and JB are defined as follows [118, 119]

JB
[
m2
b/T

2
]

=
∫ ∞

0
dxx2 log

[
1− e−

√
x2+m2

b
/T 2
]
, (B.21)

JF
[
m2
f/T

2
]

=
∫ ∞

0
dxx2 log

[
1 + e

−
√
x2+m2

f
/T 2
]
. (B.22)

At high temperatures, more specifically for mb,f/T < 1.8 [124], we can approximate

JB
[
m2
b/T

2
]
≈ −π

4

45 + π2

12
m2
b

T 2 −
π

6

(
m2
b

T 2

)3/2

− 1
32
m4
b

T 4 log m2
b

abT 2 +O
(
m6
b

T 6

)
, (B.23)

JF
[
m2
f/T

2
]
≈ 7π4

360 −
π2

24
m2
f

T 2 −
1
32
m4
f

T 4 log
m2
f

afT 2 +O
(
m6
f

T 6

)
, (B.24)

where af = π2 exp(3/2− 2γE) and ab = 16af with the Euler-Mascheroni number γE .
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In the electroweak symmetric phase, the global minimum is located with the Higgs
fields at the origin, vu,d(T > TEWPT) = 0. The thermal corrections to the quadratic
fluctuations of the Higgs fields around the origin read

V T
2HDM = δµ2

u (T )H†uHu + δµ2
d (T )H†dHd , (B.25)

where

δµ2
u (T ) = T 2

24

9
2g

2 + 3
2g
′2 + 6

∑
i

(
Ŷ

(u)
i

)2

sin2 β
+ 3λ1 + 4λ3 + 2λ4

 , (B.26)

δµ2
d (T ) = T 2

24

9
2g

2 + 3
2g
′2 + 6

∑
i

(
Ŷ

(d)
i

)2

cos2 β
+ 2

∑
i

(
Ŷ

(e)
i

)2

cos2 β
+ 3λ2 + 4λ3 + 2λ4

 . (B.27)

The factors of cosβ or sin β come from the Yukawa interactions to reproduce the SM
fermion spectrum. One can obtain the thermally corrected mass matrices for the Higgs
sector by ∂2

(
V2HDM + V T

2HDM

)
/∂Hi∂Hj where V2HDM denotes the zero-temperature and

tree-level scalar potential in eq. (A.16). These corrected masses will be used in the calcula-
tion of cross sections for axion production above the weak scale (see appendix C for more
details).

C Conventions and useful results III: cross sections

We present results for the cross section for each binary collisions producing hot axions in
the final state. With the only exception of thermal gluon scatterings, which we evaluated
in the previous appendix, these are the processes that we have to account for. We express
each cross section as a function of the (squared of the) center of mass energy, and we
evaluate the thermal average as prescribed by eq. (4.6). The interaction rate in eq. (4.4)
is what we need to incorporate into our Boltzmann equation analysis. We employ the
FeynCalc package to check all analytical expressions for cross sections [125, 126].

KSVZ axion above the heavy fermion threshold. At temperatures larges than
mΨ the dominant processes for axion production are scatterings of the heavy colored PQ
fermion through the interaction in eq. (2.5). We set the axion decay constant fa to nor-
malize the gluon anomalous coupling, and we find the cross sections

σΨ+Ψ̄→g a = g2
s

9πf2
a

m2
Ψ
s

1− 4m
2
Ψ
s

artanh

√1− 4m
2
Ψ
s

] , (C.1)

σΨ+g→Ψ+a = σΨ̄+g→Ψ̄+a = g2
s

192πf2
a

m2
Ψ
s

1− m2
Ψ
s

(
4m

2
Ψ
s
− m4

Ψ
s2 − 3− 2 log

[
m2

Ψ
s

])
. (C.2)

DFSZ axion above the heavy Higgs bosons threshold. In this phase, we find
it convenient to work with the linear realization of PQ symmetry with the only axion
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interaction in eq. (3.6). Quark-antiquark annihilations have cross sections

∑
ij

σ
Q̄iL+ujR→H

†
d
+a =

∑
ij

σ
QiL+ūjR→Hd+a = B2

576πf2
as

2

∑
i

∣∣∣Ŷ (u)
i

∣∣∣2
sin2 β

1−
m2
Hd
s(

1− m2
Hu
s

)2 , (C.3)

∑
ij

σ
Q̄iL+djR→H

†
u+a =

∑
ij

σ
QiL+d̄jR→Hu+a = B2

576πf2
as

2

∑
i

∣∣∣Ŷ (d)
i

∣∣∣2
cos2 β

1− m2
Hu
s(

1−
m2
Hd
s

)2 . (C.4)

The indices i, j run over quark flavors, mHu,d are the thermally corrected masses of the each
Higgs doublet, and Ŷ (u,d) are the diagonalized Yukawa matrices appearing in eq. (A.10)
for up-quarks and down-quarks, respectively. The expressions in eqs. (C.3) and (C.4) have
poles at the mass of the Higgs boson different from the one on the external state, and this
can lead to divergences when we integrate over the phase space. We regularize such an
unpleasant behavior with Breit-Wigner corrections to internal propagators, and we use the
decay widths

ΓHu '
(

3
∑ |Ŷ (u)|2

sin2 β

)
mHu

8π , ΓHd '
(

3
∑ |Ŷ (d)|2

cos2 β
+
∑ |Ŷ (l)|2

cos2 β

)
mHd

8π . (C.5)

When Higgs fields appear in the initial state we have the cross sections∑
ij

σ
QiL+H†

d
→ujR+a =

∑
ij

σ
ujR+Hd→QiL+a =

∑
ij

σ
Q̄iL+Hd→ūjR+a =

∑
ij

σ
ūjR+H†

d
→Q̄iL+a

= B2

288πf2
as

2

∑
i

∣∣∣Ŷ (u)
i

∣∣∣2
sin2 β

1(
1−

m2
Hd
s

)2

2 arcoth

1−
m2
Hd
−2m2

Hu

s

1−
m2
Hd
s

− 1−
m2
Hd
s

1−
m2
Hd
−m2

Hu

s

 ,

(C.6)∑
ij

σ
QiL+H†u→djR+a =

∑
ij

σ
djR+Hu→QiL+a =

∑
ij

σ
Q̄iL+Hu→d̄jR+a =

∑
ij

σ
d̄jR+H†u→Q̄iL+a

= B2

288πf2
as

2

∑
i

∣∣∣Ŷ (d)
i

∣∣∣2
cos2 β

1(
1− m2

Hu
s

)2

2 arcoth

1−
m2
Hu
−2m2

Hd
s

1− m2
Hu
s

− 1− m2
Hu
s

1−
m2
Hu
−m2

Hd
s

 ,

(C.7)

for scatterings mediated by up-type and down-type quark Yukawa interactions, respec-
tively. The expressions in eqs. (C.4) and eq. (C.7) describe lepton scatterings with Ŷ (d) →
Ŷ (l).

The doublets Hu and Hd are not mass eigenstate but we provide a simple two-step
procedure to convert the cross sections above into the ones for mass eigenstates.6

6The axion coupling in eq. (3.6) possesses the SO(2) symmetric property for the Higgs doublets, and
the cubic vertex can be written as iB(a/fa)H†i ε

ijHj with Hj =
(
Hu, iσ

2H∗d
)
and ε12 = −ε21 = 1.
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1. We introduce the temperature dependent mixing angle α(
Hu

iσ2H∗d

)
=
(

sinα cosα
− cosα sinα

)(
H1

H2

)
, (C.8)

where H1 and H2 denote the lighter and the heavier physical states, respectively. As
expected, we recover α ≈ β at low temperatures, T � (2B/ sin 2β)1/2.

2. We can replace the interaction states Hu,d in eqs. (C.3)–(C.7) with the physical
eigenstates H1,2 through the rotation above. As an example

∑
ij

σ
Q̄iL+ujR→H

†
1+a = cos2 α

B2

576πf2
as

2

∑
i

∣∣∣Ŷ (u)
i

∣∣∣2
sin2 β

(
1−m2

H1
/s
)

(
1−m2

H2
/s
)2 , (C.9)

∑
ij

σ
Q̄iL+ujR→H

†
2+a = sin2 α

B2

576πf2
as

2

∑
i

∣∣∣Ŷ (u)
i

∣∣∣2
sin2 β

(
1−m2

H2
/s
)

(
1−m2

H1
/s
)2 . (C.10)

Furthermore, there are the additional contributions to the axion production from gauge
boson scatterings. In this case, since the Higgs doublets are identical in terms of the gauge
charge assignment there are no mixing angles appearing in the cross section for physical
states. After straightforward calculations, we find the cross section for the case of the
initial gauge boson state

σ
Hi+Vµ→H†j 6=i+a

= σ
H†i +Vµ→Hj 6=i+a

= g2
VB

2

144πf2
as

2

(1 + sj) artanh
[
1− 2 sj

1+sj

]
+ sj − 1

(1− si)3

(C.11)
with si ≡ m2

Hi
/s and gV the corresponding gauge coupling. If the gauge boson in the final

state we find

σHi+Hj 6=i→Vµ+a = σ
H†i +H†

j 6=i→Vµ+a

= dV g
2
VB

2

288πf2
as

2
1

1− 2 (si + sj) + (si − sj)2

(
− 2

√
1− 2 (si + sj) + (si − sj)2

+ artanh


√

1− 2 (si + sj) + (si − sj)2

1 + (si − sj)

+ artanh


√

1− 2 (si + sj) + (si − sj)2

1− (si − sj)


+ (1− 2si − 2sj) arcoth

 1− (si + sj)√
1− 2 (si + sj) + (si − sj)2

) . (C.12)

DFSZ axion below the heavy Higgs bosons and above the EWPT. As the uni-
verse cools down further below the heavy Higgs boson masses, such heavy degrees of free-
dom are integrated out and the bath contains effectively only SM particles. We employ
here the non-linear realization of the PQ symmetry with axion couplings given in eq. (3.9).
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Matrix elements of SM fermion scatterings depend only on the combinations [51]

ĉu = −cQL + cuR ,

ĉd = −cQL + cdR ,

ĉe = −cLL + ceR

(C.13)

for the up-type quarks u = (u, c, t), the down-type quarks d = (d, s, b), and the charged-
lepton e = (e, µ, τ ), respectively. The chirality flip mentioned in the main text is such that
only processes with the components of the complex Higgs doublet contribute to the rate.
Thus the rate will be dominated by third generation SM fermions since their interaction
strength with the Higgs field is proportional to the Yukawa couplings. We parameterize the
Higgs field HT = (χ+ , χ0), where each doublet component is a complex scalar field, and
we also introduce χ− ≡ χ†+ and χc0 ≡ χ†0. The scattering cross sections take a particular
simple form once we ignore CKM factors, which lead only to few percent corrections since
the rate is controlled by third generation fermions. If both initial state particles are SM
fermions

σff̄→χ0a
=σff̄→χc0a

=
ĉ2
f y

2
f

64πf2
a

, (C.14)

σff̄ ′→χ+a
=σf ′f̄→χ−a =

ĉ2
f y

2
f + ĉf ′ y

2
f ′

64πf2
a

. (C.15)

Here, f is a generic SM fermions and yf the associated Yukawa coupling in the basis where
such a coupling is diagonal. The fermion f ′ is the weak-isospin partner of f . If a scalar
appears in the initial state we have

σfχ0→fa =σf̄χc0→f̄a
= σfχc0→fa = σf̄χ0→f̄a =

ĉ2
f y

2
f

64πf2
a

, (C.16)

σfχ−→f ′a =σf̄χ+→f̄ ′a =
ĉ2
f y

2
f + ĉf ′ y

2
f ′

64πf2
a

. (C.17)

DFSZ axion below the EWPT and above the QCDPT. Below the EWPT, SM
fermions and gauge bosons acquire a finite mass. We perform calculations in this phase with
the PQ symmetry non-linearly realized, and cross sections still depend only on the same
combinations in eq. (C.13). We report here explicit expressions for quark scattering cross
sections, the lepton case is a straightforward generalization. Here, we generalize the results
provided by ref. [51] by accounting also for flavor-violating processes whose contributions
lead to corrections proportional to CKM factors.

We begin with quark/antiquark annihilations. For final state gluons we have

σq+q̄→g+a =
ĉ2
qg

2
s

9πf2
a

m2
q/s

1− 4m2
q/s

artanh

√1−
4m2

q

s

 . (C.18)

If we replace the gluon with the SM Higgs boson, we find

σqi+q̄i→h+a =
ĉ2
q

∣∣∣Ŷ (q)
i

∣∣∣2
64πf2

a

1− m2
h
s

1− 4m2
qi
s

√1−
4m2

qi

s
−

4m2
qi

s
artanh

√1−
4m2

qi

s

 . (C.19)
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Quarks can also annihilate to weak gauge bosons. For final state Z bosons we have

σui+ūi→Z+a =
ĉ2
u

∣∣∣Ŷ (u)
i

∣∣∣2
576πf2

a

1− m2
Z
s

m2
Z
s

√
1− 4m2

ui
s

(
9m

2
Z

s

(
1− 2m

2
Z

s

)

+4
17m

4
Z
s2 + 32m

4
W
s2 −

m2
Z
s

(
9m

2
ui
s + 40m

2
W
s

)
√

1− 4m2
ui
s

artanh

√1−
4m2

ui

s


 , (C.20)

σdi+d̄i→Z+a =
ĉ2
d

∣∣∣Ŷ (d)
i

∣∣∣2
576πf2

a

1− m2
Z
s

m2
Z
s

√
1−

4m2
di
s

(
9m

2
Z

s

(
1− 2m

2
Z

s

)

+4
5m

4
Z
s2 + 8m

4
W
s2 −

m2
Z
s

(
9
m2
di
s + 4m

2
W
s

)
√

1−
4m2

di
s

artanh

√1−
4m2

di

s


 (C.21)

for up and down quarks, respectively. Quark/antiquark annihilations to the charged weak
gauge boson W± can be flavor-changing processes, and their cross sections read

σui+d̄j→W++a = σdj+ūi→W−+a =
∣∣∣V ij

CKM

∣∣∣2 g2

128πf2
a

1− m2
W
s

m2
W
s

[
1−

(mui+mdj )2

s

] [
1−

(mui−mdj )2

s

]

×


(
ĉ2
u

m2
ui

s
+ ĉ2

d

m2
dj

s

)(
1− 2m2

W

s

)√√√√
1−

(
mui +mdj

)2

s

√√√√
1−

(
mui −mdj

)2

s
+

+ 2ĉ2
u

m2
ui

s

2m2
W −m2

ui +m2
dj

s
arcoth

 1 +
m2
ui
−m2

dj

s√
1−

(
mui+mdj

)2
s

√
1−

(
mui−mdj

)2
s

+

+ 2ĉ2
d

m2
dj

s

2m2
W +m2

ui −m
2
dj

s
arcoth

 1−
m2
ui
−m2

dj

s√
1−

(
mui+mdj

)2
s

√
1−

(
mui−mdj

)2
s

+

+ 4ĉuĉd
m2
uim

2
dj

s2 arcoth

 1−
m2
ui

+m2
dj

s√
1−

(
mui+mdj

)2
s

√
1−

(
mui−mdj

)2
s


 .

(C.22)

We switch to quark or antiquark scattering with SM bosons. For a gluon we have

σqi+g→qi+a = σq̄i+g→q̄i+a =
ĉ2
qg

2
s

192πf2
a

m2
qi
s

1− m2
qi
s

[
4
m2
qi

s
−
m4
qi

s2 − 3− 2 log
[
m2
qi

s

]]
. (C.23)
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For a SM Higgs boson in the initial state we find

σqi+h→qi+a = σq̄i+h→q̄i+a =
ĉ2
q

∣∣∣Ŷ (q)
i

∣∣∣2
64πf2

a

1− m2
qi
s(

1− (mh+mqi)
2

s

)(
1− (mh−mqi)

2

s

)

×


(

1−
m2
h −m2

qi

s

)√
1− (mh +mqi)

2

s

√
1− (mh −mqi)

2

s
+

− 4
m2
qi

s
arcoth

 1− m2
h−m

2
qi

s√
1− (mh+mqi)

2

s

√
1− (mh−mqi)

2

s


 .

(C.24)

In the case of incident Z bosons, cross sections read

σui+Z→ui+a = σūi+Z→ūi+a =
ĉ2
u

∣∣∣Ŷ (u)
i

∣∣∣2
1728πf2

a

1− m2
ui
s

m2
Z
s

√
1− (mZ+mui)

2
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√
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2

s

×
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2
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17m

4
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s2 + 32m
4
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2
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)
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(
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4
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s

(
3
m2
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s
+ 40m

2
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s

))
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+ 4
17m

4
Z
s2 + 32m

4
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s2 −
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s

(
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2
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2
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2
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s


 ,

(C.25)

σdi+Z→di+a = σd̄i+Z→d̄i+a =
ĉ2
d

∣∣∣Ŷ (d)
i

∣∣∣2
1728πf2
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1−
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s
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Z
s

√
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2
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√
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(C.26)
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for up and down quarks, respectively. Likewise, flavor-chaging processes with charged weak
gauge bosons W± give the cross section

σui+W−→dj+a =σūi+W+→d̄j+a =
∣∣∣V ij

CKM

∣∣∣2 g2

384πf2
a

1−
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s

m2
W
s

√
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2
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2
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×
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+ĉ2
d

m2
dj

s

(
1+

m2
W−2m2

ui

s
−

2m2
W−m2

Wm
2
ui−m

4
ui

s2

)
+2ĉuĉd
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 .

(C.27)

One can easily derive the cross section of the scatterings of dj +W+ → ui + a (equiv-
alently, d̄j +W− → ūi + a) from eq. (C.27) with the exchange of mui ↔ mdj and ĉu ↔ ĉd.

KSVZ and DFSZ axions below the QCDPT. The ChPT formalism describes low-
energy axion interactions with the strong sector. As discussed in the main text, we trust
calculations in this regime only up to ΛChPT ∼ 100 MeV. Thus axion production is domi-
nated by pion scatterings mediated by the Lagrangian

Laπππ = ∂µa

fa

caπππ
fπ

(
π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0

)
. (C.28)

The dimensionless coupling caπππ was given in the main text both for the KSVZ and the
DFSZ axion, and the consequent cross sections for pion scatterings result in

σπ±π0→π±a = 3s
64π

(
caπππ
fπfa

)2

(
1− m2

π±
s

)3
(

1− 2m2
π±
−m2

π0
s +

(
m2
π±
−m2

π0
)2

s2

)
√

1− (mπ0−mπ± )2

s

√
1− (mπ0+mπ± )2

s

, (C.29)

σπ+π−→π0a = 9s
64π

(
caπππ
fπfa

)2

(
1− m2

π0
s

)3

√
1− 4m2

π±
s

. (C.30)
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DFSZ axion with leptons. The DFSZ axion has also interactions with leptons giving
cross sections [48]

σli l̄i→γ a = e2

4π
ĉ2
e

f2
a

(
m2
li
s

)
artanh

(√
1−

4m2
li
s

)
(

1−
4m2

li
s

) , (C.31)

σli γ→li a =σl̄i+γ→l̄i+a = e2

32π
ĉ2
e

f2
a

(
m2
li
s

)[
4
(
m2
li
s

)
−
(
m2
li
s

)2
− 3− 2 log

(
m2
li
s

)]
(

1−
m2
li
s

) , (C.32)

where the coupling ĉe is defined in eq. (C.13).

D Conventions and useful results IV: cosmology

In this work, we study production of thermal axions during a radiation dominated era. We
collect in this appendix useful properties of the primordial thermal bath. The cosmological
background where axion production takes place is a Friedmann-Lemaître-Robertson-Walker
(FLRW) expanding universe with metric

ds2 = dt2 − a(t)2δijdx
idxj . (D.1)

The growth of the scale factor a(t) is quantified by the Hubble parameterH(t)≡(da/dt)/a(t)
which in turn depends on the energy density ρ of the universe via the Friedmann equation

H =
√
ρ√

3MPl
. (D.2)

We use the reduced Planck mass MPl = (8πG)−1/2 = 2.44× 1018 GeV. Within our frame-
work, the energy budget is dominated by a thermal bath of relativistic particles in thermal
equilibrium with temperature T . The associated energy density scales as follows

ρR(T ) = π2

30 g∗(T )T 4 , (D.3)

where g∗(T ) denotes the effective number of relativistic degrees of freedom contributing to
the energy density. Another crucial property of the thermal bath is its entropy density

sR(T ) = 2π2

45 g∗s(T )T 3 . (D.4)

Likewise, g∗s(T ) are the effective number of entropic relativistic degrees of freedom.

Temperature as the evolution variable. The cosmic time t appearing in the FLRW
metric in eq. (D.1) is not the most convenient variable to describe the evolution of a
radiation dominated universe. The presence of a thermal bath makes the temperature T
of the bath itself the most natural variable to keep track of the expansion. For a radiation
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dominated universe the expansion is adiabatic and the entropy in a comoving volume sRa3

does not change with time
dsR
dt

+ 3HsR = 0 . (D.5)

We plug the definition given in eq. (D.4) into eq. (D.5) and we find

dT

dt
= − HT

1 + 1
3
d log g∗s(T )
d log T

. (D.6)

Given a generic function of time ξ, such as the axion number density na appearing in the
Boltzmann equation, we can trade easily time with temperature derivatives

dξ

d log T = −
(

1 + 1
3
d log g∗s(T )
d log T

) 1
H

dξ

dt
. (D.7)

It is often convenient to employ the dimensionless evolution variable x ≡ M/T , with the
overall mass scale M purely conventional. Thus we find another useful relation

dξ

d log x = − dξ

d log T =
(

1− 1
3
d log g∗s(x)
d log x

) 1
H

dξ

dt
. (D.8)

Temperature dependence of gSM
∗ (T ) and gSM

∗s (T ). At large temperatures all the de-
grees of freedom are relativistic so g∗(T ) and g∗s(T ) are constant. However, we consider
axion production at temperatures below the weak scale where these quantities change as
SM particles become non-relativistic. It is worth noting thanks to eq. (D.8) that not only
the absolute values matter but also their temperature derivatives. This effect is particu-
larly significant around the QCDPT. We employ in our analysis the two different choices
for the SM effective relativistic degrees of freedom.

• Ref. [32]. At temperatures above the EW scale all particles are considered free and
massless and respecting the Stephan-Boltzmann law for bosons and fermions due to
the crossover nature of EW transition in the SM. For massive particles around and
below the EW scale when the temperature reaches each particle mass one should
follow Fermi and Bose statistics. For the strongly interacting fluid especially above
100MeV including the crossover QCD transition at 150MeV the result of lattice
simulation is used for up, down and strange quarks (2 + 1 flavors) added to the
result for the charm quark at 1GeV. Then they matched to the free gas limit at
very high temperatures. For temperatures below 100MeV the hadron resonance
gas result for equation of state is used that matches to the lattice simulation of
equation of state below the QCD transition epoch. At temperatures around 1MeV
the result of evolution of neutrino temperature with respect to photon temperature
that includes the effect of decoupling of different types of neutrinos is implemented.
In this model the number effective neutrinos based on previous calculation is assumed
as Neff ' 3.046. The rest of SM particles considered free. Considering all these effects
improves the calculation for the extra number of relativistic particles for any given
models. There are uncertainties on hadron resonance gas model, lattice simulation,
and thermal effect of QCD at high temperatures, and electroweak transition.
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Figure 14. Effective number of SM relativistic degrees of freedom contributing to the energy
density g∗(T ) and to the entropy density g∗s(T ) as a function of the temperature. We report the
results of ref. [32] (green solid line) and ref. [33] (red solid line).

• Ref. [33]. This study uses a different treatment for the electroweak and QCD tran-
sitions, hadron resonance gas model, and neutrino decoupling. Around the EW tran-
sition the thermal corrections on the Higgs field evolution including the perturbative
and nonperturbative effects for the interaction in the EW sector are used. Since
around the EW transition the change of d.o.f. is not abrupt like the QCD case, due
to lesser interacting particles in the thermal bath, these corrections will have tiny
effects on the final result. Below 120MeV the hadron resonance gas model and above
that the QCD equation of state from a different lattice simulation for 2+1+1 flavors
are used. Then it is freely matched to the perturbative QCD equation of state above
1GeV. Around 1MeV the neutrino decoupling is considered assuming Neff ' 3.045.
Also, the negligible effects of plasma on electrons and photons are illustrated.

We compare the two different treatments in figure 14 where we show the tempera-
ture evolution for gSM

∗ (T ) (left panel) and gSM
∗s (T ) (right panel). As it is manifest from

these results, theoretical uncertainties will cause at most 10% difference in our prediction
for the energy density stored in axion dark radiation. Furthermore, there are additional
contributions to the effective relativistic degrees of freedom at high temperatures for the
frameworks studied in this paper: the heavy PQ fermion and the extra Higgs bosons for
the KSVZ and the DFSZ models, respectively. We include their effects by treating them as
free particles with contributions given by the integrals in eqs. (2.9) and (2.10) of ref. [32].

How to compute ∆Neff . We provide the definition for the effective numbers of neutrino
species ∆Neff valid for a generic dark radiation candidate Φ. When the universe was
approximately 380,000 years old, the plasma opacity to electromagnetic radiation suddenly
dropped and photons free-streamed until they reached our detectors today. At this stage the
bath temperature was approximately TCMB ' 0.3 eV, and the only relativistic SM degrees
of freedom were photons and neutrinos. The total energy density stored in radiation reads

ρR(TCMB) = ργ + ρν + ρΦ =
[
1 + 7

8
(
NSM

eff + ∆Neff
)( 4

11

)4/3
]
ργ . (D.9)
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In the last equality, the effect of Φ is parameterized by an effective number of additional
neutrinos ∆Neff which we can find by direct comparison

∆Neff = 8
7

(11
4

)4/3 ρDR
ργ

∣∣∣∣∣
CMB

. (D.10)

We evaluate ∆Neff for a dark radiation candidate Φ that reaches thermal equilibrium
with the bath at early times and it decouples subsequently. Thermal equilibrium erases
the memory of whatever happened at earlier times and we can neglect physics before
decoupling. As long as Φ is coupled, the number and energy densities result in

nΦ(T ) = gnΦ
ζ(3)
π2 T 3 , gnΦ = gΦ

{
1 boson

3/4 fermion
, (D.11)

ρΦ(T ) = g∗Φ
π2

30T
4 , g∗Φ = gΦ

{
1 boson

7/8 fermion
. (D.12)

Here, gΦ is a constant number accounting for the internal degrees of freedom (e.g., spin)
of the particle Φ, and the distinction between bosons and fermions is due to the different
phase-space equilibrium distributions. The Riemann ζ function appearing in the number
density is approximately ζ(3) ' 1.2. We get rid of the temperature in the equations above
to find the relation between energy and number densities

ρΦ = g∗Φ
30

(
π7/2

ζ(3)

)4/3 (
nΦ
gnΦ

)4/3
. (D.13)

Another useful expression is the one between energy and entropy densities for the photons

ργ = 2× π2

30T
4 = π2

15

( 45
2π2

sR
g∗s(T )

)4/3
. (D.14)

We use eqs. (D.13) and (D.14) to evaluate the dark radiation amount via eq. (D.10)

∆Neff = g∗Φ
4
7

(11
4

)4/3
(

2π4

45 ζ(3) g∗s(TCMB)YΦ(TCMB)
gnΦ

)4/3

(D.15)

with YΦ = nΦ/sR the Φ comoving number density. After decoupling, which happens at a
temperature TD, Φ’s just free-stream: the phase-space distribution keeps a thermal shape
with temperature red-shifting with the scale factor as TΦ ∝ a−1, and the number density
gets diluted as nΦ ∝ a−3. Thus the comoving number density stays constant because of
entropy conservation throughout the expansion

YΦ(TCMB) = YΦ(T ≤ TD) = YΦ(TD) = nΦ(TD)
sR(TD) = gnΦ

g∗s(TD)
45 ζ(3)

2π4 . (D.16)

We plug this expression for the comoving yield into eq. (D.15) and we find

∆Neff = g∗Φ
4
7

(11
4

)4/3 (g∗s(TCMB)
g∗s(TD)

)4/3
. (D.17)
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The effective number of relativistic entropic degrees of freedom includes contributions from
both the SM bath and Φ. We define it as follows

g∗s(T ) = gSM
∗s (T ) + gΦ

∗s(T ) . (D.18)

The SM part is illustrated in the right panel of figure 14, and we quantify the additional
contribution by knowing that Φ’s decouple at TD and free-stream subsequently

gΦ
∗s(T ) = g∗Φ

 1 T > TD
gSM
∗s (T )

gSM
∗s (TD) T ≤ TD

. (D.19)

By using this result we can find an equivalent way to express ∆Neff that reads

∆Neff = g∗Φ
4
7

(11
4

)4/3
(
gSM
∗s (TCMB)
gSM
∗s (TD)

)4/3

. (D.20)

Unlike eq. (D.17), this result contains only the SM contribution to the entropic degrees of
freedom that we can read off the plots in figure 14. Furthermore, this relation is consistent
with the temperature ratio at the CMB formation as dictated by entropy conservation

TΦ
Tγ

∣∣∣∣∣
CMB

=
(
gSM
∗s (TCMB)
gSM
∗s (TD)

)1/3

. (D.21)

The numerical result in eq. (1.3) of the introduction is a consequence of eq. (D.20), and the
value gSM

∗s (TCMB) = 2 + NSM
eff × (7/11) ' 3.94 that we use accounts for non-instantaneous

neutrino decoupling. The output of this analysis describes the curves in figure 1.
The case discussed above is not the most general one. Thermalization may not be

achieved, and even if Φ’s reach thermal equilibrium the temperature TD is not the most
practical variable to employ. As we do in our analysis for the QCD axion, the standard
procedure is to solve the Boltzmann equation and find the asymptotic density. We conclude
this appendix with the explanation of how to use such an asymptotic value to find ∆Neff .
The starting point is still eq. (D.15) since it does not rely upon any assumption about
thermalization. The only unknown quantity in that expression is the number of effective
entropic degrees of freedom at recombination g∗s(TCMB): the SM part is known, we need
to quantify the contribution from Φ in terms of YΦ(TCMB)

gΦ
∗s(TCMB) = g∗Φ

(
TΦ
Tγ

)3
∣∣∣∣∣∣
CMB

= g∗Φ
2π4

45ζ(3)g∗s(TCMB)YΦ(TCMB)
gnΦ

. (D.22)

The full number of entropic relativistic degrees of freedom appearing after the last equality
is given by the two contributions in eq. (D.18). Thus the above equation allows us to solve
for gΦ

∗s(TCMB) and eventually for g∗s(TCMB), and we find our final result

∆Neff = g∗Φ
4
7

(11
4

)4/3
 2π4

45ζ(3) g
SM
∗s (TCMB) YΦ(TCMB)

gnΦ

1− 2π4

45ζ(3)g∗Φ
YΦ(TCMB)

gnΦ

4/3

. (D.23)
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Figure 15. Left panel: production rate for the KSVZ axion employed in our paper (black), and
factor of 2 enhancement (red) or suppression (green) around the QCDPT. Right panel: predictions
for ∆Neff for the three different cases.

The second term in the denominator accounts for the entropy associated to the dark radi-
ation particle Φ. We estimate its relevance by looking back at the case when Φ’s decouple
at the temperature TD, and we plug the explicit equilibrium comoving density as given in
eq. (D.16). We find that the correction results in g∗Φ/(gSM

∗s (TD) + g∗Φ), and therefore it
is relevant only if the dark radiation stays in thermal equilibrium until a time when its
effective number of entropic degrees of freedom is comparable with the one of the SM bath.

Theoretical uncertainty on ∆Neff due to the interpolation. We conclude this ap-
pendix with a discussion of theoretical uncertainties associated with our interpolation across
the QCDPT. In our work, we performed a smooth interpolation for the production rate
between ΛChPT and ΛN with the cubic ‘spline’ method, motivated by the fact that the
QCDPT is a crossover leading to mild shifts of thermal properties. One may wonder how
our predictions for ∆Neff are sensitive to the details of such an interpolating method. We
take the KSVZ axion case for concreteness, and we modify the production rate as shown in
the left panel of figure 15. The solid black line corresponds to the rate used in our analysis.
We consider two extreme cases where around the temperature scale 500 MeV the actual
rate is a factor of two larger (red line) or smaller (green line), and we make sure to match
these lines with our results below ΛChPT and above the mass of QCD resonances. The
resulting predictions for ∆Neff are shown in the right panel of figure 15. For values of the
axion decay constant not excluded experimentally, our predictions are quite insensitive to
the detail of the interpolation and therefore utterly solid.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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