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Abstract. In this paper, we present a novel data-driven optimization approach for 
trajectory-based air traffic flow management (ATFM). A key aspect of the proposed 
approach is the inclusion of airspace users’ trajectory preferences, which are computed 
from traffic data by combining clustering and classification techniques. Machine learning is 
also used to extract consistent trajectory options, whereas optimization is applied to resolve 
demand-capacity imbalances by means of a mathematical programming model that judi-
ciously assigns a feasible four-dimensional trajectory and a possible ground delay to each 
flight. The methodology has been tested on instances extracted from the Eurocontrol data 
repository. With more than 32,000 flights considered, we solve the largest instances of the 
ATFM problem available in the literature in short computational times that are reasonable 
from the practical point of view. As a by-product, we highlight the trade-off between pre-
ferences and delays as well as the potential benefits. Indeed, computing efficient solutions 
to the problem facilitates a consensus between the network manager and airspace users. In 
view of the level of accuracy of the solutions and the excellent computational performance, 
we are optimistic that the proposed approach can make a significant contribution to the 
development of the next generation of air traffic flow management tools.
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1. Introduction
The air traffic industry is a strategically important sector 
that makes a crucial contribution to the overall world 
economy and employment. In 2018, the European avia-
tion industry supported almost 5 million jobs and con-
tributed e300 billion to the European GDP (EU 
Commission). Despite its vital role, the air traffic system 
was experiencing severe congestion phenomena on a 
daily basis that were impairing the air traffic industry’s 
sustainability. Eurocontrol reported 19.2 million min-
utes of en route air traffic flow management delays in 
2018. In the same calendar year, the total air traffic 
delays cost the EU economy e17.6 billion (Eurocontrol 
2019). This situation was even more exacerbated in the 
United States, with overall delay costs for the year 2018 
estimated at $28 billion (Lukacs 2019). Recent delay sta-
tistics depict an even gloomier picture, with the average 
delay per flight increasing to a five-year high of 
14.5 minutes in the first quarter of 2023 (Eurocontrol 
2023). To modernize the air transport systems, major 
R&D programs have been deployed. One of the corner-
stones of these initiatives is the implementation of the 
ICAO’s trajectory-based operations (TBO) concept. The 
ambition of the TBO concept is to provide the capability 

of flying a path that is as close as possible to the user- 
preferred one. From a full implementation of the TBO 
concept, airspace users expect to achieve a higher 
degree of flexibility to manage their operations and 
meet their business objectives. To enable TBO opera-
tions, it is critical to resolve demand-capacity imbal-
ances in a more efficient way than today’s practice.

Several air traffic flow management (ATFM) initia-
tives and dedicated tools are currently used to resolve 
air traffic congestion. For instance, in Europe, the Net-
work Manager, that is, the authority in charge of 
smoothing traffic flows on the entire air traffic network, 
allocates time slots by means of the Computer-Assisted 
Slot Allocation (CASA) algorithm (e.g., see Tibichte and 
Dalichamp 1997). CASA implements a set of rules, with 
the first scheduled, first served (FSFS) being the primary 
one. The FSFS rule underpins all the major ATFM tools 
and initiatives in the United States as well. However, 
the CASA algorithm, as well as most, if not all, of the 
ATFM procedures deployed so far, is far from being 
optimal with the assignment of “unnecessary” large 
delays; see Estes and Ball (2019) and Ruiz, Kadour, and 
Choroba (2019). This undesirable behavior is because of 
the application of the FSFS rule in the decision process, 
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without any estimate of the potential downstream 
effects of such decisions.

To address the optimality issue, that is, computing 
(control) decisions that optimize the system perfor-
mance, the scientific community has developed several 
mathematical models and optimization algorithms. 
Nevertheless, most of these approaches do not provide 
a representation of flight trajectories at the level of accu-
racy that is needed for TBO operations. In fact, TBO 
requires operational trajectories in the four dimensions, 
that is, space, including altitude (or flight level), and 
time. Moreover, there are still some intrinsic issues on 
the computational side as well as on their impact on 
practice. On the computational side, although remark-
able progress has been made in developing faster algo-
rithms, the scalability problem is still a concern, and real 
daily instances of the problem with four-dimensional 
trajectories have not been solved yet. As far as impact 
on practice, it is still quite limited because the proposed 
solutions often fail to meet airspace users’ business 
objectives and operational requirements. This shortcom-
ing is mostly due to a lack of information rather than 
modeling capabilities. In any case, the importance of ful-
filling business objectives and operational requirements 
is not only desirable, it is now not deferable.

To enable a collaborative decision-making environ-
ment in air traffic flow management with a more active 
engagement of airspace users in the decision-making 
process, the Collaborative Trajectory Options Program 
(CTOP) has been developed and deployed in the United 
States (FAA 2014). For each flight, airspace users submit 
a set of feasible trajectories, each with a relative cost. The 
relative trajectory cost is an expression of preference 
and relative value. If congestion occurs, the Federal Avi-
ation Administration (FAA) assigns to each flight the 
most desirable trajectory among the feasible ones, fol-
lowing the FSFS rule. However, quoting Hoffman et al. 
(2018), “despite CTOP having been deployed in 2014, 
the FAA has been reluctant to use CTOP because almost 
none of the air carriers are prepared to generate [and 
manage] trajectory option sets.” To the best of our 
knowledge, only a few air carriers have invested in tools 
to choose multiple trajectories and rank or weight them. 
Likely, this is due to a lack of a clear assessment of the 
potential CTOP benefit. Indeed, a tool for the estimation 
of CTOP benefit is missing in the traffic flow manage-
ment system, and benefit calculation has been key to the 
successful deployment of some traffic flow manage-
ment capabilities, for example, slot substitution and slot 
compression. The lack of tools, combined with the lack 
of incentives for disclosing preference information 
(Estes and Ball 2019), has proven to be a barrier to the 
adoption of CTOP by airspace users. However, airspace 
organizations are actively looking into procedures and 
tools to offer alternative trajectories to airspace users, 
with the ultimate goal of ensuring the most dynamic 

and efficient possible use of the airspace network. On 
this subject, we can mention the FAA’s projects prede-
parture reroute and airborne reroute and the Eurocon-
trol’s flight efficiency initiative. More specifically, the 
flight efficiency initiative offers aircraft users the most 
efficient routes on the day of operation. It operates on 
the basis of a dynamic route generator and an automati-
cally maintained catalog of routes flown in the past 
(Eurocontrol 2022).

As far as the concept of trajectory preference, it has 
been also discussed by European practitioners (see, e.g., 
OptiFrame Consortium 2016). A preference was con-
ceived as a partial order of feasible control options, that 
is, time, flight level, lateral deviation, or a combination 
of them, to deviate a flight from the preferred trajectory 
in order to manage delays at a tactical level. These 
options are all observable features of a trajectory that 
determine a preference. However, determinants of a 
preference are, in many cases, only partially known or, 
even, unknown.

The ability of capturing airspace users’ preferences 
combined with the selection and assignment of feasible 
four-dimensional (4D) trajectories has the potential of 
facilitating a consensus of all the parties, thus accelerat-
ing the ATFM decision process. In this respect, the pre-
ferences’ criterion has to be combined with the criterion 
of delays, traditionally considered to assess the perfor-
mance of ATFM initiatives. We observe that approaches 
aiming at minimizing delays, such as the ones based on 
mathematical models, often underpin an implicit and 
optimistic assumption that any trajectory can be 
accepted. These approaches will benefit from airspace 
users’ preference information toward more realistic and 
acceptable ATFM solutions. We here suggest comput-
ing the Pareto efficient solution that minimizes the total 
delay because the proposed approach is intended for 
the ATFM function and the ATFM authority more gen-
erally, for example, Eurocontrol’s Network Manager. 
This solution aims at initiating and facilitating the 
ATFM decision-making process, provided that it may 
conclude with different agreed tactical flight plans 
(TFPs) (i.e., trajectories), which is often the case.

To overcome the lack of information on trajectory 
options and related preferences, we use machine learn-
ing tools to mine this information from historical data. 
These tools, combined with a mathematical program-
ming model that assigns a trajectory and a possible 
ground delay to each flight and optimally resolves 
demand-capacity imbalances, provide a coherent and 
innovative method to solve the ATFM problem. The 
proposed approach has been tested on instances 
extracted from the Eurocontrol data repository and pro-
vides a large real example of artificial intelligence and 
optimization in the air traffic domain. Indeed, with 
more than 32,000 flights considered, we solved the larg-
est instances of the ATFM problem available in the 
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literature. These instances also enjoy the distinguishing 
feature that both the air traffic demand and the air traffic 
system, that is, the network of en route sectors and air-
ports and corresponding capacities, are based on real 
data, which is unique in the ATFM literature, at least at 
this level of size. To increase the level of fidelity of the 
proposed solutions, we accurately model airspace 
capacity restrictions as implemented in practice.

In summary, the main contributions of the paper are 
(i) the development of an architecture that combines 
both machine learning and optimization methods to 
compute realistic and viable ATFM solutions, (ii) the 
development of a mathematical model to facilitate the 
ATFM planning process that incorporates preferences 
and a realistic representation of capacity constraints, (iii) 
the design of effective algorithms to solve the mathe-
matical model for real size instances, and (iv) the experi-
mentation of the proposed approach on large real daily 
instances of the problem, highlighting the computa-
tional challenges as well as the potential benefits of the 
proposed approach.

The remainder of the paper is organized as follows. 
Section 2 reviews the relevant literature on the problem 
herein addressed. Section 3 presents the overall architec-
ture and the details of the methodological approach, 
including the machine learning models for the extrapo-
lation of trajectories and trajectory preferences and the 
mathematical formulation of the trajectory-based 
ATFM. The computational approach to solve the pro-
posed model for large-size instances of the problem is 
discussed in Section 4. Section 5 is devoted to computa-
tional experiments. It describes in detail the realistic 
daily instances extracted from Eurocontrol data reposi-
tory, the results, and the analysis of solutions. Finally, 
Section 6 concludes the paper.

2. Literature Review
In the last four decades, the ATFM domain has continu-
ously attracted the interest of the research community 
with the scope of finding effective and efficient ways to 
resolve imbalances between air traffic demand and air 
system capacity. The early focus of research activities 
was on airports’ congestion. This effort led to a better 
understanding and improvement of ground delay pro-
grams as an effective tool to control and manage the 
temporary excess of air traffic demand at airports; see 
Vossen, Hoffman, and Mukherjee (2012) for a detailed 
survey on the topic. In more recent years, the scope of 
ATFM initiatives, and consequently of mathematical 
models and algorithms, enlarged to resolve en route 
congestion as well. For this class of models, as 
highlighted by Lulli and Odoni (2007), the optimal 
ATFM strategies can be complex and occasionally coun-
terintuitive because of the simultaneous presence of air-
ports and en route sectors’ capacity constraints. This 

explains the clear need for holistic approaches to the 
ATFM problem, which is indeed ubiquitous in the most 
recent ATFM models and/or formulations. The class of 
models that are relevant to the research and the method-
ological approach proposed in this paper are the 
so-called Lagrangian models, that is, models that repro-
duce the full trajectory of each flight.

To the best of our knowledge, one of the first attempts 
to consider both airports and en route sectors’ capacities 
in a deterministic trajectory-based setting was proposed 
by Lindsay, Boyd, and Burlingame (1993). The authors 
formulated a zero-one integer programming model for 
assigning ground and airborne holding delays to single 
flights in the presence of both airport and airspace 
capacity constraints. Bertsimas and Stock Patterson 
(1998) provided a formulation of a similar model. The 
main feature of the proposed formulation is its tight-
ness. Indeed, several of the constraints define facets of 
the polyhedron of solutions. As a result of the good 
mathematical structure, the Bertsimas-Stock formula-
tion enables the fast computation of optimal solutions. 
In a second paper, Bertsimas and Stock Patterson (2000) 
developed a dynamic, multicommodity, integer network- 
flow model to include rerouting as a control option. 
However, the proposed approach did not prove to be 
very effective in solving large instances of the problem, 
an issue that was addressed by Bertsimas, Lulli, and 
Odoni (2011). This model includes most of the ATFM 
control options while preserving the good mathemati-
cal structure of Bertsimas and Stock Patterson (1998). 
The main innovative feature of the model is the formu-
lation of “rerouting decisions” in a very compact way. 
The authors were able to solve large instances of the 
problem with more than 6,500 flights. Agustı̀n et al. 
(2012) developed a model for ATFM using the same 
concept of rerouting as Bertsimas, Lulli, and Odoni 
(2011).

A different modeling approach is the “trajectory” for-
mulation first proposed in the ATFM context by Rich-
ard, Constans, and Fondacci (2011). Given the large 
number of variables of these formulations, they are usu-
ally solved by means of a column generation approach. 
Balakrishnan and Chandran (2014) designed an algo-
rithm for this class of formulations that is computation-
ally very efficient with good scalability properties. The 
algorithm solved national airspace (NAS)–wide numer-
ical examples with up to 17,500 flights in short computa-
tional times. Somewhat of a similar nature is the model 
proposed by Sherali, Smith, and Trani (2002), which 
also assigns flights to trajectories. In this case, the set of 
feasible 4D trajectories is explicitly given as input of the 
model. To the best of our knowledge, this was the first 
model to consider trajectories in 4D, which is crucial for 
TBO operations. Indeed, all other models listed above 
describe the flights’ trajectories in a two-dimensional 
geographical space, meaning that no flight-level 
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information is attached to the trajectories. More recently, 
Dal Sasso et al. (2018, 2019) explicitly modeled flight- 
level information in a compact formulation. The authors 
highlighted some of the challenges in modeling 4D tra-
jectories in terms of producing acceptable solutions for 
airspace users. These two papers do also represent the 
first attempt to explicitly include preferences in a realis-
tic setting of the ATFM domain. To overcome the issue 
of information sharing, the authors developed a multi-
objective binary integer programming model with the 
ambition of highlighting the trade-offs involved with 
the identified primitives of airspace users’ preferences, 
that is, delay, flight level, and route charges.

3. Architecture and Methodology
The architecture depicted in Figure 1 supports our 
vision of how to compute viable ATFM solutions. The 
architecture consists of two main components. The first 
one, which is executed daily to compute ATFM solu-
tions, has its core module in the “mathematical 
optimization” block. This module assigns a trajectory, 
chosen in a given set of options, and a departure time 
slot to each flight by solving a mathematical program. 
More specifically, the solution maximizes a measure of 
the overall airspace users’ preference, given a threshold 
on the total delay; that is, it is Pareto efficient. As input, 
the model receives airspace capacity and traffic demand 
data that also include requested trajectories. The 
requested trajectories are submitted by airspace users at 
the beginning of the ATFM decision-making process; as 
such, they are to be considered the preferred ones for 

the specific daily conditions of the air traffic system. In 
addition, the model assumes that a set of trajectory 
options is available for each flight, each with an associ-
ated preference score.

Due to a lack of explicit information, we adopt 
machine learning methods to mine trajectory options 
and related airspace users’ preference scores from his-
torical data on requested trajectories. This is the 
“Trajectories and preferences extrapolation” component 
of the architecture, which is composed of two main 
modules, “Trajectory models’ extrapolation” and 
“Preferences’ extrapolation.” The former has two func-
tionalities. The first one is to detect trajectory models, 
that is, “typical” trajectories flown between any origin- 
destination pair. The second functionality is to identify 
trajectories that are not consistently flown, that is, out-
liers, corresponding to peculiar trajectories that are 
markedly different from any other trajectory in the data 
set. This can be thought of as trajectories determined by 
unusual factors (peculiar weather conditions, strikes, 
airspace closures. etc.) and, hence, not likely to be 
accepted by airspace users in typical situations. The 
remaining trajectories form the trajectory options that 
feed into the “Mathematical optimization” module. Tra-
jectory models are also relevant to learn the preference 
scores computed by the “Preferences’ extrapolation” 
module. It computes a measure of the association 
between the flight features and the trajectories of each 
model. We remark that preferences refer to models, 
rather than individual trajectories, because trajectories 
that follow distinct models are well differentiated from 
each other and represent airspace users’ choices. Besides 

Figure 1. (Color online) Architecture of the Proposed Approach 
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representing one of the trajectory options, the daily 
requested trajectory may be used to update the learned 
preferences, which is the role of the “preference update” 
module. Borrowing basic concepts of statistics, this 
module outputs the new distribution of preference 
scores, which is a mixture distribution whose weights 
should be decided by the relevant stakeholders in a 
deployment phase. In addition to this functionality, it 
may also detect conditions to trigger the extrapolation 
modules in case daily requested trajectories or prefer-
ences significantly differ from the learned ones during a 
relevant period of time.

We would also like to highlight that the machine 
learning modules for trajectories and preferences 
extrapolation are trained on the data set of initially 
requested trajectories, which are not impacted by the 
provisional trajectories, output by the optimization 
module, or any negotiation and/or control action, thus 
protecting against the performative effect of the learning 
procedures. Finally, one may wonder whether the pro-
posed decision process offers opportunities for gaming 
the system. To game the system, an option we may think 
of would be to modify the set of alternatives or corre-
sponding preference scores. Given the amount of data 
used by the machine learning methods for preference 
extrapolation, influencing the process in a significant 
manner would require the consistent submission of 
gaming information, that is, trajectory requests, for 
many flights and many days. These trajectory requests 
would be likely assigned by the daily optimization pro-
cess that aims at maximizing the total preference score 
under airspace capacity constraints. This leads us to 
suppose that defining a winning strategy to influence 
the system would be rather complicated and likely not 
appealing to airlines. However, gaming remains an 
issue that requires deep investigation and, in this case, 
the design of corrective actions that are critical for 
deployment scenarios.

In the following, we will propose an implementation 
of the “Trajectory and preference extrapolation” compo-
nent in Sections 3.1 and 3.2, and the “Mathematical 
optimization” module in Section 3.3.

3.1. Trajectory Models’ Extrapolation and 
Classification

The objective of the “Trajectory models’ extrapolation” 
module is the identification of trajectory models that 
can be also interpreted as a discretization of the choice 
space in view of preference extrapolation. The proposed 
methodology stems from the availability of consoli-
dated historical data on tactical flight plans. Ideally, we 
consider a data set of the requested trajectories, which 
represent the airspace users’ preferred routes for the 
flights operated during a period of reference. Although, 
to the best of our knowledge, this information is pres-
ently not available in aviation data repositories, it may 

be easily integrated in the future. In what follows, we 
refer to the Eurocontrol demand data repository 
(DDR2), which will be used in our experiments. As a 
proxy of the requested trajectory, in this work, we con-
sider the tactical flight plan, that is, the last filed flight 
plan before the application of any operational regula-
tion. We recall that, because of possible changes pro-
duced by the ATFM collaborative decision-making 
process at the pretactical stage, the TFP may differ from 
the first requested flight plan. Nevertheless, it is the best 
approximation available in DDR2 of the airspace user’s 
choice and preference at the tactical level, which is rele-
vant to the ATFM problem herein addressed. Each flight 
plan (trajectory) is described as a sequence of either 
waypoints (fixes) or sector entering points. For each 
data point in the sequence, the following information is 
available: latitude, longitude, flight level, and time of 
the day. Given a pair (i, j) of origin and destination air-
ports, we extract a consistent set of trajectories by Algo-
rithm 1.

Algorithm 1 (Trajectory Extrapolation)
Input: origin airport i, destination airport j, filed TFPs.
Output: set of trajectory options between i and j 
and related clustering. 
1: EXTRACT FILED TFPS between i and j in terms of 

waypoints.
2: RESAMPLE TRAJECTORIES from differently many way-

points to a same number of equidistant 4D points.
3: TRIM TRAJECTORIES to remove takeoff and approach 

sample points.
4: APPLY A CLUSTERING PROCEDURE to compute clusters 

of trajectories and detect outliers.
5: REMOVE OUTLIERS to obtain clustered trajectories 

between i and j.

The core of the procedure is a density-based cluster-
ing that groups similar trajectories according to their 
pairwise distance in a given metric space. The method is 
inspired by the one proposed by Gariel, Srivastava, and 
Feron (2011) and adopted by, for example, Liu et al. 
(2021). With respect to Gariel, Srivastava, and Feron 
(2011), the novelty of the proposed clustering algorithm 
is the combined use of min-max scaling and cosine dis-
tance as a hyperparameter of DBSCAN, which allows 
us to skip the intermediate step of dimensionality reduc-
tion through principal-component analysis. This choice 
was inspired by Lee, Han, and Whang (2007), where the 
authors use a three-component distance function (per-
pendicular, parallel, and angle distance) between trajec-
tory segments. The cosine similarity conveniently 
captures those three distances in a single metric by vir-
tue of both trajectory resampling and scaling.

Algorithm 1 starts by extracting all the filed TFPs 
related to flights between airports i and j operated in a 
relevant time interval, for example, a season. Trajecto-
ries are extracted in terms of waypoints, and they are 
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made of sequences of different lengths. We resample 
trajectories from many different waypoints to the same 
number, n, of 4D points, where n is twice the length of 
the longest sequence extracted between i and j (step 2). 
This simplifies the computation of pairwise distances 
between trajectories, which are needed by the clustering 
procedure shown later. Each sample point consists of 
longitude, latitude, flight level, and elapsed time from 
departure; latitude and longitude are computed in such 
a way that consecutive sample points are equidistant in 
the latitude-longitude plane, whereas flight level and 
elapsed time are obtained by linear interpolation. After 
resampling, each trajectory is described by a vector in 
R4n. Min-max scaling is used to map each of the 4n fea-
tures of a trajectory onto the interval [0, 1]. To remove 
segments related to takeoff and approach maneuvers 
that are less relevant at the pretactical stage, we trim off 
trajectory head and tail, approximated in our experi-
ments by the initial 10% and final 20% resampled 
points. This rule provided clusters that, overall, are not 
affected by initial and final segments; however, in gen-
eral, a more accurate trimming procedure could be set-
tled to avoid training the clustering algorithm with 
features that can be attributed to the shape of the depar-
ture and approach phases. Step 4 clusters trajectories 
using DBSCAN with the cosine distance metric, which 
is defined as

1�
P4n

i�1 xi yi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4n

i�1 x2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4n

i�1 y2
i

q , 

for any two trajectories x, y ∈ R4n. Finally, we discard 
outliers to determine the set of consistent trajectory 
options for flights between airport i and airport j.

DBSCAN creates clusters through the so-called core 
points, which are defined as points that have at least 
minPoints neighbors in a 4n-hypersphere of radius 
ε. Clearly, DBSCAN results depend on the values of ε�
and minPoints. In this work, we follow the indica-
tions of Schubert et al. (2017) to choose minPoints, 
and we use the procedure detailed therein to automat-
ically set ε. In particular, the recommendation is to 
increase the value of minPoints in case data are 
noisy or contain many duplicates. This is the case of 
origin-destination pairs like Rome-Paris or Rome- 
London, and even more of short-haul pairs like 
Amsterdam-London or Frankfurt-London. For other 
pairs, we prefer a smaller value of minPoints, close 
to the default value of five. In our experience, such a 
hyperparameter selection strategy yielded satisfac-
tory results. However, those should only be consid-
ered as starting values for the interested practitioner 
to refit the model. Alternatively, hyperparameter 
selection could be automated in a cross-validated 
fashion by optimizing for a (custom) metric of choice, 

for example, related to intracluster variance (Zheng 
2015).

As an illustrative example, Figure 2 reports the clus-
ters obtained for the trajectories between Rome and 
London from June to September 2016 extracted from 
DDR2. For each cluster, trajectories are represented by 
their latitude-longitude projection and vertical time pro-
file. Each trajectory is plotted with a strong transparency 
so as to highlight where the density is higher. This 
example shows that clusters are typically well defined 
and able to capture shared 4D features. This indeed 
reflects waypoint-based navigation and the inherent 
discrete nature of the airspace users’ choices among typ-
ical trajectories (trajectory models). Although any clus-
tering algorithm may serve the purpose, there are a few 
a priori arguments to prefer a density-based approach 
such as DBSCAN for our application.

First, DBSCAN is coherent with the concept of typical 
trajectories and trajectory models herein defined. In-
deed, it uses the notion of core point to cluster together a 
relevant number of trajectories that lie sufficiently close 
to it, which well captures the interpretation of trajectory 
models as typical trajectories in a frequentist sense. Sec-
ond, it has also the advantage of not requiring an a priori 
knowledge of the number of clusters but works with 
hyperparameters that can be directly associated with 
the trajectory models we aim to define, thus helping the 
expert validation of the clustering results. Third, it offers 
built-in outlier detection, which is relevant to the func-
tionalities of the “Trajectory models’ extrapolation” 
module.

We should observe that the case of not clearly sepa-
rated trajectories would be challenging for any cluster-
ing algorithm. In this case, the identification of typical 
trajectories and outliers should be supported by or bet-
ter operated on different criteria, for example, domain 
knowledge or direct query to airlines. However, we 
remark that this occurrence contrasts with observations 
and with the common understanding of waypoint- 
based navigation.

3.2. Flight Classification and Preference 
Extrapolation

Toward preference-aware ATFM, we need a measure of 
the preference that an airspace user assigns to a trajec-
tory extracted by Algorithm 1. We assume that this pref-
erence depends on the flight features and the trajectory 
model; hence, on the cluster to which the trajectory 
belongs. Learning flight preferences can be thus 
reduced to learning how the features of a flight are 
related to the cluster of the trajectory (trajectory model) 
it flies.

To this end, we developed a soft classification model, 
which is able to assign a score to each cluster returned 
by Algorithm 1, based on the flight features. This is the 
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first step of Algorithm 2, which we propose for prefer-
ence extrapolation.

Algorithm 2 (Computation of Flights’ Preferences)
Input: origin and destination airports, flights with 
features and cluster of the filed TFP.
Output: preference of each flight for each trajectory 
option. 
1: TRAIN A RANDOM FOREST CLASSIFIER that predicts the 

cluster of the filed TFP, based on the flight features.
2: for each flight do
3: PROCESS the flight and let each tree in the ran-

dom forest estimate the associations to all of 
the clusters.

4: COMPUTE THE PREFERENCE SCORES of the flight by 
averaging over individual-tree associations.

5: end for

In particular, we train a random forest classifier on 
the following flight data: day of the week, week number 
(for seasonal effects), anonymized airline code, airline 
type (legacy/low cost), and aircraft model. All variables 
are considered categorical and binarized by one-hot 
encoding. We recall that a random forest classifier is an 
ensemble of binary trees. An example of a binary tree 
for the Rome-London pair is shown in Figure 3. Notice 
that, for the sake of readability, the variables weekday 
and week number are, in this illustration, considered 
numeric instead of categorical.

The internal nodes of each tree represent a Boolean 
condition on a predictive variable, whereas its leaves 
measure the association to each cluster as the proportion 
of samples of that cluster falling into the same leaf. For 
example, with reference to Figure 3, the association of a 
flight binned into the first leaf on the left to clusters 0, 1, 

Figure 2. (Color online) Trajectory Options Extracted from Rome to London 

Notes. We plot only the portion used to train DBSCAN. (a) Clustered trajectories in the latitude-longitude plane. (b) Clustered trajectories in the 
time-altitude plane.

De Giovanni, Lancia, and Lulli: ATFM with Trajectory Preferences 
546 Transportation Science, 2024, vol. 58, no. 2, pp. 540–556, © 2024 INFORMS 



4, and 5 is, respectively, 0.75, 0.22, 0.01, and 0.02 (0 for 
the remaining clusters). In a random forest, each tree is 
fit on a subset of the predictive features and a subset of 
the training instances (sampled with replacement). Each 
constituent of the ensemble processes a flight and deter-
mines associations with each cluster. Besides predicting 
the cluster of the flight based on their maximum value, 
associations are used in our study to estimate prefer-
ences. For each cluster, the preference score of a flight is 
computed as the average association over the trees in 
the ensemble (step 4).

Table 1 shows the performance of the classifier on the 
task of predicting the cluster of the trajectory flown 
between some origin-destination pairs. In addition to 
the number of trajectories, outliers, and clusters, we 
report the weighted average of F1 score, precision, and 
recall, computed using a nested cross-validation scheme 
with a 10-fold stratified split (see, e.g., Zheng 2015). The 
average of each metric is computed over 10 runs, and 
we also report the resulting standard error of the mean 
(SEM). The average performance of the random forest is 
typically good, showing that, for most of the flights, the 
approach is capable of mapping, to a satisfactory extent, 
flight characteristics to airlines’ preferences. We remark 
that good average performances do not exclude cases, 
in particular, the ones involving small clusters (less- 

frequently-flown trajectory models), with poor adher-
ence of the predicted scores to actual airlines’ choice 
behavior. Therefore, the presented metrics allow us to 
make no claim that the presented classifier generally 
yields a good model of user preferences. They just sug-
gest that the model likely captures some important 
aspects of airline preferences, possibly their baseline 
characterization, at least during the summer period, 
which is the data set used in our experiments. However, 
additional work is needed to investigate all relevant pre-
dictors and ensure that the model performs in a robust 
and reliable manner, even in commonly complex sce-
narios, like degraded weather or disrupted traffic condi-
tions. This is an issue of paramount importance in real 
implementation scenarios.

3.3. An Integer Linear Programming Model for 
Trajectory Selection

Once the set of eligible 4D trajectories is retrieved, the 
goal of our approach is to solve the ATFM problem by a 
mathematical model that assigns one trajectory to each 
flight, together with a possible ground delay to meet 
capacity restrictions. Other tactical control options, for 
example, flight-level capping, are directly embedded 
in the trajectories, whereas we do not model control 

Figure 3. One Tree-Classifier Component of the Random Forest from Rome to London 

samples = 521
 0 | 1 | 2 | 3 | 4 | 5

.75| .22| .00| .00| .01| .02

samples = 281
 0 | 1 | 2 | 3 | 4 | 5

.51| .33| .02| .02| .12| .00

samples = 478
 0 | 1 | 2 | 3 | 4 | 5

.30| .67| .00| .00| .03| .00

samples = 31
 0 | 1 | 2 | 3 | 4 | 5

.15| .00| .50| .08| .13| .14

samples = 393
 0 | 1 | 2 | 3 | 4 | 5
.16| .05| .00| .00| .68| .11

samples = 52
 0 | 1 | 2 | 3 | 4 | 5

.00| .02| .00| .19| .00| .79

samples = 206
 0 | 1 | 2 | 3 | 4 | 5

.00| .09| .01| .00| .86| .04

samples = 45
 0 | 1 | 2 | 3 | 4 | 5

.00| .02| .00| .24| .01| .73

airline type no low-cost

samples = 802

week day 1.5

samples = 509

week day 3.5

samples = 445

airline type no low-cost

samples = 251

airline code not 0

samples = 1311

week number 31.5

samples = 696

airline code not 3

samples = 2007

Table 1. Cross-Validated Prediction Performance of the Random Forest Classifier

Origin-destination
Number of trajectories 

(number of outliers) Number of clusters F1 score (SEM) Precision (SEM) Recall (SEM)

Amsterdam-London 4,184 (131) 4 0.87 (0.007) 0.88 (0.006) 0.86 (0.008)
Frankfurt-Athens 338 (22) 3 0.96 (0.010) 0.96 (0.011) 0.96 (0.009)
Istanbul-Frankfurt 1,112 (159) 5 0.89 (0.009) 0.90 (0.010) 0.89 (0.008)
London-Athens 979 (51) 6 0.90 (0.007) 0.90 (0.007) 0.89 (0.008)
London-Frankfurt 2,096 (142) 8 0.86 (0.007) 0.87 (0.007) 0.86 (0.008)
London-Istanbul 1,431 (102) 4 0.76 (0.013) 0.77 (0.013) 0.76 (0.013)
Madrid-London 2,418 (157) 4 0.95 (0.004) 0.95 (0.004) 0.95 (0.004)
Rome-Barcelona 1,071 (69) 3 0.82 (0.014) 0.82 (0.015) 0.82 (0.013)
Rome-London 2,168 (161) 6 0.80 (0.006) 0.81 (0.006) 0.81 (0.006)
Rome-Paris 1,810 (155) 7 0.96 (0.004) 0.96 (0.004) 0.97 (0.003)

Note. SEM, standard error of the mean.
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options of a more operational nature, such as miles in 
trail and vectoring. Indeed, these options are not consid-
ered in the pretactical phase. In view of these modeling 
assumptions, the model captures delays because of fly-
ing longer paths and ground holding but does not cap-
ture airborne holding delays because of air traffic 
control actions.

The problem we are addressing is biobjective in 
nature. There is a trade-off between the total preference 
score and the total delay assigned, as evidenced in Sec-
tion 5.2. In this work, our aim is to compute the efficient 
solution to the problem that either minimizes the total 
delay or bounds the total delay to a given threshold set 
by the network manager in agreement with the relevant 
stakeholders.

Finally, to improve the degree of “realism” of the 
model, we also provide an accurate representation of 
airspace capacities as detailed in the sequel.

3.3.1. Airspace Capacities. All elements of the air traf-
fic system, that is, airports and en route sectors, have 
limited capacity, which is an indirect measure of the 
maximum workload of an air traffic controller. Capacity 
is the maximum number of operations that can be safely 
executed within the airspace element in a given interval 
of time. For the sake of accuracy, different definitions of 
the en route sector capacity are used in Europe and the 
United States. In Europe, the en route sector capacity 
limits the number of flights entering the sector in a given 
time interval (throughput), whereas in the United 
States, it limits the number of flights simultaneously in 
the sector (instant capacity). In what follows and with-
out loss of generality, we adopt the European definition, 
as we are going to apply our approach to instances of 
the European air traffic system. Capacities often change 
over time, as they are affected by several factors, includ-
ing weather forecast and airspace configuration. More-
over, en route sectors may have several values of the 
capacity at any point in time, each referring to a specific 
time interval. For instance, considering the illustrative 
example depicted in Figure 4, the sector has two values 
of capacity, one for a one-hour time interval (solid line) 
and the second for a 15-minute time interval (dashed 
line). At 10:00 a.m., the one-hour capacity is 40, meaning 
that in the one-hour interval starting at 10:00 a.m., at 
most, 40 flights are allowed to enter the sector. The same 
is true for any one-hour time interval starting between 
10:00 and 10:40 (excluded), when the hourly capacity 
takes the value of 60. At 10 a.m. and until 10:30 
(excluded), the 15-minute capacity is 20, meaning that in 
any 15-minute time interval starting between 10:00 and 
10:30 a.m. (excluded), at most, 20 flights are allowed to 
enter the sector. This second value of the capacity, in a 
shorter interval of time, has the functionality of smooth-
ing out the sector air traffic demand. Overall, these 
capacity constraints provide more flexibility to the 

system with respect to the usual modeling approach 
adopted in the literature, which normally limits the 
number of operations at any (discretized) period of 
time. This more realistic capacity representation allows 
for periods of (moderate) peak of air traffic demand as 
long as these periods are preceded and/or followed by 
periods of low air traffic demand. As a by-product, this 
representation of the capacity may result in less conser-
vative ATFM solutions, that is, a reduced use of con-
trol actions.

3.3.2. Integer Programming Formulation. To describe 
the trajectory-based model for ATFM, we introduce the 
following notation.

Sets. 
• T: set of discrete time periods [t, t+ 1) dividing the 

time horizon;
• S: set of air traffic system elements, that is, airports 

and en route sectors;
• F: set of flights;
• Pf : set of 4D trajectories for flight f ∈ F (computed 

by Algorithm 1);
• Pf (s): subset of 4D trajectories of Pf crossing ele-

ment s ∈ S;
• It, h � {t, t+ 1, : : : , t+ h� 1}: subset of h(≥ 1) contig-

uous time periods starting at t ∈ T;
• Bf : set of ground delays that can be assigned to 

flight f ∈ F;
• Hs, t: set of capacity limits for element s ∈ S at time 

period t ∈ T. h ∈Hs, t is the duration of the capacity limit 
in number of discrete time periods.

Parameters 
• Gf

p: preference of flight f ∈ F for trajectory p ∈ P(f )
(computed by Algorithm 2);
• D f

pd: total delay suffered by flight f ∈ F flying tra-
jectory p ∈ P(f ) with ground delay d ∈ B(f ). The value 
of this parameter is computed by Df

pd �max(0, STDf +

Figure 4. (Color online) Sector Capacity Profiles and 
Restrictions 
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d+Ep� STAf ), where STDf (STAf) is the scheduled 
time of departure (arrival) of flight f ∈ F, and Ep is the 
duration (in time periods) of trajectory p ∈ P(f ).
• R: delay budget;
• Ch

s (t): capacity of sector s ∈ S at time period t ∈ T 
for a h-period time interval;
• τf

s, p: time period of entrance of flight f ∈ F in sector 
s ∈ S along trajectory p ∈ P(f ) if leaving on time.

Decision Variables. 

y f
pd �

1, if flight f ∈ F flies trajectory p ∈ P(f )
with ground delay d ∈ Bf ,

0, otherwise:

8
<

:

Formulation. 

IP-pref : max
X

f∈F

X

p∈Pf

X

d∈Bf

Gf
p · y

f
pd (1) 

X

p∈Pf

X

d∈Bf

yf
pd � 1 ∀ f ∈ F (2) 

X

f∈F, p∈Pf (s)

X

d∈Bf :(τf
s, p+d)∈It, h

yf
pd ≤ Ch

s (t)

∀s ∈ S, t ∈ T, h ∈ Hs, t

(3) 
X

f∈F

X

p∈Pf

X

d∈Bf

Df
pd · y

f
pd ≤ R (4) 

yf
pd ∈ {0,1} ∀f ∈ F,p∈Pf ,d∈Bf :

(5) 

Constraints (2) impose that each flight flies one trajec-
tory, with possibly a ground delay assigned in depar-
ture. Constraints (3) formulate the capacity limits used 
in practice. Notice that the special case Hs, t � {1} imple-
ments the U.S. definition of instant capacity. Finally, 
Constraint (4) imposes an upper bound on the total 
delay assigned.

If we are interested in computing the minimum delay 
efficient solution, then the delay budget will be set to the 
value computed by solving the following problem:

IP-delay : min
X

f∈F

X

p∈Pf

X

d∈Bf

Df
pd · y

f
pd : (2), (3), (5)

8
<

:

9
=

;
: (6) 

4. Solution Techniques
Our ambition is to solve realistic daily instances of the 
ATFM problem. However, the number of trajectories 
extracted by Algorithm 1 is extremely large, in the order 
of 6 million. If these trajectories were inserted into the 
model, they would lead to very large-scale instances of 
the problem, with the number of variables largely 
exceeding 100 million, which is not practicable. To 

address this issue, we first propose to reduce the num-
ber of trajectories feeding into the mathematical model; 
see Section 4.1. Second, we design a customized optimi-
zation approach to solve large-scale instances of the 
problem. Indeed, even after reducing the number of tra-
jectories, the daily ATFM instances are still prohibited 
for any solver and standard computer: a preliminary 
computational experience showed that a state-of-the-art 
solver is not able to compute the optimal solution for 
any of our benchmark instances because of computer’s 
memory limits that halted the solution process. More-
over, in several cases, the solver is not even able to com-
pute a feasible solution after hours of computation, thus 
highlighting the need for a customized optimization 
technique. To overcome this computational challenge, 
in Section 4.2, we present a delayed column insertion 
approach to solve the linear relaxation (LR). In addition 
to providing a dual bound of optimal integer solutions, 
this approach also provides a subset of variables to 
restrict the formulation to a convenient size.

4.1. Reducing the Model Size by 
Clustering Techniques

In the mathematical formulation of Section 3.3, trajecto-
ries are implicitly modeled in the time-sector space by 
binary vectors A(p) ∈ {0, 1} |S | · |T | . The component of 
vector A(p) corresponding to pair (s, t) ∈ S × T is equal 
to one if trajectory p intersects sector s after t time peri-
ods from departure and zero otherwise. Because of the 
discretization of time (time periods) and 3D space (air-
space sectors), some trajectories with similar but differ-
ent 4D geometry may have the same representation in 
the time-sector space of the model. Therefore, from the 
optimization point of view, we can include only one of 
these trajectories in the model without affecting the set 
of feasible solutions and the objective function value. 
Indeed, these trajectories very likely belong to the same 
preference cluster, so they also have the same preference 
score. In case of different preference scores of two trajec-
tories, a case that we did not observe in our computa-
tional experience, the trajectory with the highest score 
should be included in the model, as this one would be 
assigned to the flight. These observations justify the fol-
lowing remark.

Remark 1. The reduced model of IP-pref (IP-delay), 
obtained after discarding trajectories that are equivalent 
in the time-sector space, is equivalent to the original one.

To further reduce the number of variables, we 
define groups of similar trajectories in the time-sector 
representation, and we select one representative tra-
jectory for each group. To this end, we again use 
clustering techniques. We underline that this cluster-
ing step is independent from the one presented in 
Section 3.1 for trajectory model extrapolation, as it 
serves to a different purpose and works on a different 
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representation of the trajectories, precisely in the time- 
sector space.

As far as the purpose of this clustering, the goal is 
to guarantee that trajectories in the same cluster are 
similar to each other in order to have similar time- 
sector representation. It is not relevant here to get 
well-differentiated trajectories among different clus-
ters, as instead, it was the case of trajectory model 
extrapolation. Moreover, we are keen to accept a large 
number of clusters per origin-destination pair. The 
number can be set a priori to balance the size of the 
mathematical model and the time needed to solve it, 
taking the available computational resources into 
account. In view of these observations, we apply k- 
means clustering to the set of trajectories (in the time- 
sector representation) with a fairly large value of k. 
We remark that since k-means minimizes a measure 
of intracluster distance and due to the expected rela-
tively small size of each cluster, trajectories in the 
same group will have very similar time-sector repre-
sentation, and hence, they are substitutes for one 
another from the model formulation perspective. In 
particular, the shortest (in duration) trajectory of each 
cluster is chosen as a representative. In case of multi-
ple trajectories with the same minimum duration, we 
select the closest one to the cluster center. Because the 
value of k is significantly larger than the number of 
preference clusters output by Algorithm 1, we 
observed that the trajectories of the same k-means 
cluster have equal preference scores.

From now on, IP-pref and IP-delay refer to the corre-
sponding reduced-size models.

4.2. A Dynamic Column Insertion Approach
To solve the problem, we use the optimization approach 
sketched in Algorithm 3. The algorithm is composed of 
three main steps: (i) computation of an initial solution of 
IP-pref or IP-delay by a fast greedy procedure, (ii) solu-
tion of the linear relaxation by delayed column inser-
tion, and (iii) calculation of the integer optimal solution 
of the formulation restricted to the subset of variables 
of the last restricted linear problem (RLP) solved in 
step (ii).

Algorithm 3 (Dynamic Column Insertion for Trajectory- 
Based ATFM)

Input: model IP (IP-pref or IP-delay), parameters α�
(aging) and β�(new columns).
Output: a feasible solution to IP and related opti-
mality gap. 
1: Compute an initial solution to IP
2: Define model RLP as the linear relaxation of IP 

restricted to variables taking value one in the ini-
tial solution

3: repeat
4: solve RLP

5: compute the reduced costs of the IP variables
6: add to RLP the β�variables with smallest neg-

ative reduced cost
7: remove from RLP variables that did not take 

part in the optimal basis during the last α�
iterations

8: until no negative reduced-cost variable exists
9: solve the final RLP to integrality

4.2.1. Initial Constructive Heuristic. An initial solution 
of IP-pref or IP-delay is computed by a constructive heu-
ristic that iteratively assigns a trajectory and, possibly, a 
ground delay to one flight at a time. Flights are sorted 
by scheduled time of departure, which may be consid-
ered as a proxy of the FSFS policy adopted by CASA. In 
case of delay minimization, to each flight f, we assign 
the (p, d) ∈ P(f ) × Bf pair that satisfies Capacity Con-
straints (3) and corresponds to the highest preference 
score and lowest delay in lexicographic order. This pri-
ority is intended to privilege most preferred trajectories 
in the initial solution before starting delay minimization. 
In case of a tie, the pair that gives the larger average per-
cent residual sector capacity is selected. For preference 
maximization, the first two selection criteria, that is, 
preference and delay, are swapped in view of the total 
delay budget. Because of the imposed upper limit on 
the maximum delay that can be assigned to any flight, 
the greedy procedure may not be able to assign a (p, d) 
pair to all flights without violating some capacity con-
straints. Therefore, one or more flights may remain 
unassigned and have to be fixed by the following steps 
of Algorithm 3.

4.2.2. Solving the Linear Relaxation by Delayed Col-
umn Insertion. To solve the linear relaxation of the 
problem, we use a delayed column insertion algorithm. 
The procedure iteratively solves a restricted linear pro-
gram (RLP) with a subset of all the possible variables yf

pd 
(i.e., flight-trajectory-delay columns). The RLP is initial-
ized with the subset of variables y selected (i.e., set to 
one) by the initial greedy procedure and with possibly 
dummy variables, which are used to restore RLP feasi-
bility in case of unassigned flights. At each iteration, the 
dual information of the RLP is used to search for nega-
tive reduced cost variables to be conveniently added to 
the formulation (step 5). However, we impose a limit on 
the number of variables (parameter β) entering the RLP 
at each iteration (step 6). This allows us to balance the 
number of iterations (convergence speed of the algo-
rithm) and the computational effort required at each 
iteration because of the increasing size of the RLP. To 
restrain the rapid growth of RLPs, we also discard vari-
ables of the RLP that are not likely to take a positive 
value in the next optimal solution because they have 
been out of basis in the last α�iterations, where α�is the 
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aging parameter (step 7). By tuning these parameters, 
we guarantee a fast execution of the algorithm.

The column insertion algorithm stops as soon as no 
negative reduced-cost variable exists, meaning that the 
solution to the current RLP is also optimal for the linear 
relaxation of the original nonrestricted model, either IP- 
pref or IP-delay.

4.2.3. Computing the Integer Solution. To compute a 
feasible integer solution, we solve the RLP with integral-
ity constraints on decision variables back in place. The 
restricted integer linear program (RILP) obtained is via-
ble for standard solvers. Indeed, by properly calibrating 
parameters α�and β�of the delayed column insertion 
algorithm, we obtain final RLPs of practicable size. This 
method can be regarded as a rounding scheme with the 
guarantee of providing the best solution within the 
space of “rounded” solutions. It is important to observe 
that random rounding schemes similar, for instance, to 
the one proposed in Balakrishnan and Chandran (2014) 
are not very effective for the specific problem herein 
considered. Indeed, they rarely provide a feasible solu-
tion because of the lack of cancellation decisions in 
our model.

We remark that the quality of the integer solution 
generated by the final step of Algorithm 3 can be 
assessed by comparing it to the bound provided by the 
optimal solution of the linear relaxation of IP-pref or IP- 
delay, as computed by the column insertion steps 2–8.

5. Computational Experience
In this section, we present the computational experience 
with the data-driven approaches of Sections 3 and 4 on a 
set of real numerical examples drawn from operational 
data sets. We used the Eurocontrol demand data reposi-
tory to extract data and feed both the predictive and the 
prescriptive analytic components of our approach. 
DDR2 contains all relevant information for the descrip-
tion of the ECAC area’s air traffic system as well as his-
torical data of the air traffic demand in the region. The 
ECAC area’s air traffic system is the second largest in 
the world per number of flight operations annually. It 
extends over Caucasia, Turkey, and all the European 
countries except for Belarus and Russia. More specifi-
cally, DDR2 stores data on en route sectors (650 on aver-
age) with the related activation times and capacities, 
functional air blocks (aggregations of en route sectors), 
military areas, and airports. It also provides data for 
flight identification (call sign, arrival/departure airports 
and times, aircraft type, etc.) and related flight plans, 
that is, 4D trajectories for each flight.

The examples considered herein include air traffic 
movements (either departures or arrivals) from 916 air-
ports across all the 44 member states of ECAC.

5.1. ATFM Instances
We consider 10 instances of the ATFM problem, each 
representing a whole day of operations in the ECAC 
area. The selected days correspond to the 10 busiest 
days, that is, with the largest number of flights, during 
the summer of 2016. To avoid any air traffic demand 
pattern and/or bias, we selected at least one instance for 
each day of the week. All the instances include more 
than 30,000 flights, with the only exception of Saturday 
August 28, 2016, which had “only” 28,508 flights. Three 
of the instances (Fridays) exceed the 32,000 flights. 
Given the size of the instances, with thousands of 
origin-destination pairs and the ensuing need of an 
extremely large data set for the accurate prediction of 
preferences and trajectories, we partitioned all the 
flights into the three following categories: 
• Category A, which includes all the flights whose 

airports of departure and arrival are both in the top 20 
busiest airport sites, that is, with the largest number of 
movements, of the ECAC area on the considered day. 
The involved airport sites are London, Paris, Amster-
dam, Istanbul, Frankfurt, Madrid, Barcelona, Palma de 
Mallorca, Rome, Berlin, Milan, Copenhagen, Munich, 
Düsseldorf, Zurich, Brussels, Stockholm, Athens, Dub-
lin, Manchester, and Vienna;
• Category B, which includes all the flights whose 

trajectories are entirely within the ECAC airspace and 
are not included in category A;
• Category C, which includes all the remaining 

flights, that is, flights directed to or coming from an air-
port outside the ECAC area. This category also contains 
flights that only fly over the ECAC area.

For each flight in category A, Algorithm 1 and the 
procedure described in Section 4.1 provide a set of alter-
native trajectories to fly from the airport of departure to 
the destination. Because the number of feasible trajecto-
ries drawn from the DDR2 database for a given flight f is 
extremely large (often in the order of thousands), the 
maximum number of trajectory options (parameter k of 
the clustering procedure described in Section 4.1) is set 
to 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
|P(f ) |

p
. For flights in category B, we adopt the same 

procedure with k � 4, whereas one trajectory per flight is 
given to flights in category C. This classification of the 
flights, though dictated by practical considerations of 
the solution approach herein proposed, is also moti-
vated by operational considerations. Indeed, many of 
the flights in category B are short-haul flights, feeding 
hubs in hub-and-spoke operations. For this class of 
flights, not many alternative trajectories are recorded. 
Table 2 summarizes the main features of each instance. 
In the first four columns, we report the date of the 
instance, the total number of flights included in the 
instance ( |F |), and the number of flights in category 
A ( |FA |) and in category B ( |FB |), respectively. Columns 
5, 6, and 7 display the total number of alternative trajec-
tories ( |P |) and the average number of alternative 
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trajectories per flight in category A (PA) and category B 
(PB), respectively. Finally, the last column displays the 
number of binary decision variables of the (reduced- 
size) mathematical model, which also depends on the 
maximum allowed ground delay, which we set to 
120minutes for all the flights.

The time period of discretization is a crucial element 
in providing accurate solutions to the ATFM problem. 
The smaller the discretization time period, the higher 
the accuracy of solutions. However, this comes at higher 
computational costs. In this work, we used a five- 
minute discretization period. A finer discretization 
period would provide a level of detail that is usually 
captured in the tactical/operational phase and not the 
planning one. Indeed, very accurate plans can be jeopar-
dized by the inherent uncertainty affecting air traffic 
operations.

5.2. Results
We implemented the models and the proposed solution 
techniques in C++ using CPLEX C-API. We used 
CPLEX 12.9 as optimization engine and ran the tests on 
a workstation equipped with an Intel Xeon E-2176G 
processor with 6 cores at 3.7 GHz and 16 GB RAM.

Given the nature of the proposed approach, the first 
phase of the computational experience has been dedi-
cated to tuning parameters α�and β�of Algorithm 3, as 
they affect the rate of convergence of the delayed col-
umn insertion algorithm to the optimal solution of the 
relaxed problem. In the computational experience here 
reported, we limit the number of new variables entering 
the RLP to β�� 1,500, with the aging parameter, α, set to 
two. In addition to guaranteeing a fast convergence, 
these settings also calibrate the size of the final RLP, 
which is relevant for solving its integer version, that is, 
the restricted integer linear problem, by standard sol-
vers. On this subject, we also observe that solvers’ rou-
tines for cut generation may be ineffective, thus making 
it more difficult to close the gap without relying on 
extensive branching. Therefore, we set a 1% optimality 
gap and a one-hour time limit to solve the RILP.

To evidence the flexibility of the proposed approach, 
we here report the computational performance in solving 

both the minimization of the total delay (model IP-delay) 
and the maximization of the total preference score (IP- 
pref). Indeed, both problems have to be solved to compute 
any efficient solution to the problem, including the one 
minimizing the total delay, unless information on the 
magnitude of the two objectives’ value is available. For 
each instance of the problem, we give statistics to com-
pute the optimal solution of both the linear relaxation— 
with the delayed column insertion algorithm—and the 
RILP. For the delayed column insertion algorithm, we 
report the computational time (Time) in seconds, the opti-
mal value of the linear relaxation problem (zLR), and the 
number of iterations (Iter.s). For the RILP, we report the 
number of variables (#var.s) of the mathematical pro-
gram, the solver’s computational time (Time) in seconds, 
the value of the optimal solution (z∗), and the percentage 
gap (GAP) between z∗ and the linear relaxation lower 
bound (zLR). Finally, we also report the total time (Total 
Time) in minutes to solve the instance.

5.2.1. Minimization of the Total Delay. Table 3 sum-
marizes the results on IP-delay. The computational time to 
solve the linear relaxation is rather short. The average 
and the median are 798.5 and 632.5 seconds respectively, 
and only a few dozen iterations are needed to converge 
to the optimal solution. The resolution of the RILP is also 
very fast. The average (median) of the computational 
times is 51.6 (12.5) seconds, with only two instances, 
namely, August 27 and August 28, exceeding one minute. 
The optimality gap is also very small, with an average 
value of 0.36%. It certifies that we are able to compute a 
solution that is very close to the optimal solution of IP- 
delay for all the instances, with a gap that is consistently 
lower than 1%. But even more importantly, we are able to 
compute the optimal solution for all the benchmark 
instances in, at most, 39.7 minutes, which is acceptable 
from the practical point of view. The average of the total 
computational times is only 14.2 minutes despite the rela-
tively long computational time of the August 27 instance.

5.2.2. Maximization of the Total Preference Score. Table 4
summarizes the results on model IP-pref to compute the 
efficient solution for a total delay budget—Constraint 

Table 2. Instances

Day |F | |FA | |FB | |P | PA PB #var.s

Friday 07/08/16 31,825 3,823 21,227 148,897 17.7 3.8 4,379,775
Friday 08/26/16 32,007 3,540 21,595 143,466 17.2 3.8 4,158,875
Saturday 08/27/16 28,508 3,113 18,490 125,515 17.4 3.9 3,726,950
Sunday 08/28/16 30,090 3,347 19,605 132,416 17.0 3.9 3,921,525
Monday 08/29/16 31,287 3,692 20,807 145,019 17.6 3.9 4,183,425
Tuesday 08/30/16 30,990 3,692 20,491 143,887 17.6 3.8 4,170,200
Wednesday 08/31/16 31,282 3,760 20,701 145,954 17.7 3.8 4,300,300
Thursday 09/01/16 31,489 3,871 20,704 147,275 17.6 3.8 4,358,825
Friday 09/02/16 32,128 3,821 21,503 149,795 17.6 3.8 4,325,025
Friday 09/09/16 32,053 3,932 21,489 151,384 17.6 3.8 4,391,375
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(4) of the model’s formulation—set to 110% of the mini-
mum delay. Also for this problem, we are able to com-
pute optimal solutions for all the benchmark instances. 
The optimality gap of the RILP solution is 0.45% on 
average and never exceeds 1%. However, we observe a 
moderate deterioration of the computational times with 
respect to the delay minimization experience. The aver-
age and the median of the computational times are 39.3 
and 21.9 minutes respectively. The longer computa-
tional times have to be ascribed to the resolution of the 
linear relaxation. In fact, solving the RILP is consistently 
fast, with only one instance slightly exceeding one 
minute of computation, that is, 75 seconds. On the other 
hand, the running time of the delayed column insertion 
is relatively long. The average (median) value over the 
set of benchmark instances is 2,320 (1,595) seconds. The 
longer computational times are because of a larger num-
ber of iterations as well as of longer time per iteration. 
Indeed, the RLP’s size grows faster than its correspond-
ing problem in the case of total delay minimization, thus 
requiring a higher computational effort and time to be 
solved. However, it is also important to highlight that 
computational times are, by and large, consistent with 
the potential use of the model in practice. There are only 
two instances, that is, August 27 and August 28, that 

require more than one hour of computation to be 
solved. As mentioned earlier, almost all of this time is 
used to solve the linear relaxation of the problem. The 
improvement of the RLP’s objective function between 
two consecutive iterations of the delayed column inser-
tion algorithm tends to vanish, thus requiring a rela-
tively large number of iterations to converge to the 
optimal solution, as highlighted in Figure 5. Figure 5
plots the RLP objective value as a percentage difference 
from the optimal one during the execution of the 
delayed column insertion algorithm for the August 27 
instance. The running time of the algorithm is on the x 
axis. After 2,000 seconds (about 30 minutes), we observe 
that the RLP’s solution is already quite good, with a gap 
from the optimal value well below 2%. This behavior 
justifies the use of time limits on the delayed column 
insertion algorithm without compromising much on the 
quality of the final solution. In Table 5, we summarize 
the values of the RLP’s solution (zLR) and the corre-
sponding integer solution (zIP) using different time lim-
its. The table also shows the accuracy of the RLP’s 
solution (GAPLP) and the optimality gap of the solution 
of the corresponding RILP (GAPIP), together with the 
total (delayed column insertion and integer linear pro-
gramming solver) running time (Time) in minutes. For 

Table 3. Computational Performances for the Minimization of the Total Delay

Instance

LR RILP

Total time (minutes)Time (seconds) zLR Iter.s #var.s Time (seconds) z∗ GAP

07/08/2016 785 5,771.1 51 44,723 7 5,785 0.24 13.20
08/26/2016 615 5,926.1 48 44,375 11 5,929 0.05 10.43
08/27/2016 2,033 7,485.4 79 41,643 350 7,558 0.97 39.72
08/28/2016 1,148 6,293.6 51 42,153 66 6,315 0.34 20.23
08/29/2016 685 6,293.0 47 44,446 13 6,309 0.25 11.63
08/30/2016 642 5,125.8 43 45,024 25 5,137 0.22 11.12
08/31/2016 549 6,045.0 49 43,788 16 6,075 0.50 9.42
09/01/2016 623 5,843.2 52 45,031 12 5,847 0.07 10.58
09/02/2016 403 5,883.5 47 43,824 4 5,891 0.13 6.78
09/09/2016 499 5,678.2 47 44,970 12 5,727 0.86 8.52
Average 798 52 0.36 14.16

Table 4. Computational Performances for the Maximization of the Total Preference Score

Instance

LR RILP

Total time (minutes)Time (seconds) zLR Iter.s #var.s Time (seconds) z∗ GAP

07/08/2016 2,052 24,458.3 71 83,710 48 24,437.0 0.09 35.0
08/26/2016 1,104 24,524.1 66 83,845 20 24,393.5 0.53 18.7
08/27/2016 9,472 21,341.8 116 70,550 75 21,135.9 0.96 159.1
08/28/2016 3,731 22,795.9 65 75,968 31 22,608.1 0.82 62.7
08/29/2016 1,406 23,926.8 79 85,860 48 23,916.1 0.04 24.2
08/30/2016 1,442 23,619.9 65 83,845 54 23,584.9 0.15 24.9
08/31/2016 1,157 23,989.9 75 83,474 22 23,827.9 0.68 19.7
09/01/2016 1,064 24,294.9 67 85,273 21 24,153.7 0.58 18.1
09/02/2016 909 24,615.2 75 87,511 23 24,478.5 0.56 15.5
09/09/2016 866 24,310.1 74 87,315 31 24,294.1 0.07 15.0
Average 2,320 37 0.45 39.29
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the August 27 instance, with a time limit of 2,000 seconds, 
we compute a feasible integer solution whose optimality 
gap is only 1.84%, which is reasonable for the use in prac-
tice. Moreover, this solution is not even 1% worse than 
the best integer solution computed with no time limit. 
Even better results are obtained for the August 28 
instance, where the optimality gap after 2,000 seconds is 
1.30%, which is not even 0.5% larger than the optimality 
gap without any time limit.

The following remark summarizes the key contribu-
tion of the results described.

Remark 2. The proposed approach computes solu-
tions of the ATFM problem that are optimal or very 
close to the optimum for all the instances we tested. 
Computational times are short and consistent with the 
potential use of the method in practice.

5.2.3. Analysis of Solutions and the Delay-Preference 
Trade-Off. In this last section, we highlight the trade-off 
between the total delay and the total preference score. 
Figure 6(a) displays an approximation of the Pareto 
frontier, that is, the set of efficient solutions, of the Sep-
tember 2 instance, obtained considering the linear relax-
ation of the problem. We report delays on the abscissa 
and the preference scores on the ordinate. More specifi-
cally, each axis displays the percentage increment with 

respect to the efficient solution’s value that minimizes 
the total delay. In Figure 6(b), the bar chart represents 
the “inefficiency” value of the optimal solutions of prob-
lem IP-delay. The inefficiency value is the percentage dif-
ference of the total preference score of the delay 
minimizing optimal solution and the corresponding 
efficient solution. As highlighted by the bar chart, none 
of the delay-minimizing optimal solutions is Pareto effi-
cient. The average inefficiency value is 4.88%, with a 
peak of almost 7% for the August 27 instance. Indeed, a 
5% increase of the preference score has the practical 
implication that at least 1,500 flights—a very conserva-
tive estimate—can fly a trajectory with a higher prefer-
ence. The inefficiency value can be much larger than the 
ones observed, as it is possible to compute delay mini-
mizing solutions with an inefficiency value greater than 
50% for all the benchmark instances. This demonstrates 
the importance of computing efficient solutions for the 
ATFM problem, as these solutions can be more likely to 
be accepted by the stakeholders, thus facilitating the 
achievement of a consensus within the decision- 
making process.

We would like to conclude this section by highlight-
ing the potential benefits of the approach herein pro-
posed. The bar chart of Figure 7 displays the percentage 
delay savings (on the y axis) of the optimal solution with 
respect to the solution proposed by the constructive 
heuristic described in Section 4.2.1, which is a proxy of 
the approach currently deployed in practice. Even 
neglecting a few unassigned flights in the heuristic 
approach, we achieve a delay reduction of almost 67% 
on average, with a peak of delay saving equal to 71% for 
the August 28 instance, which is impressive. However, 
the reader should not be surprised with these results, as 
the FSFS rule frequently leads to suboptimal solutions. 
Indeed, even ad hoc decisions do already provide a sig-
nificant improvement with respect to the CASA algo-
rithm solution, as evidenced in Ruiz, Kadour, and 
Choroba (2019).

6. Conclusions
In this paper, we have presented a data-driven optimi-
zation approach for ATFM trajectory-based operations 
that makes three significant contributions. First, it 
provides an accurate representation of an air traffic 

Figure 5. (Color online) Convergence to Optimal Solution of 
the Delayed Column Insertion Algorithm for the August 27 
Instance 
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Table 5. Integer Feasible Solutions with Varying Time Limits for the August 27 and 28 Instances

Time limit

August 27 August 28

zLR GAPLP zIP Time GAPIP zLR GAPLP zIP Time GAPIP

2,000 21,022.3 1.50 20,948.9 37.5 1.84 22,719.5 0.34 22,499.1 36.9 1.30
2,500 21,104.4 1.11 21,031.3 44.8 1.46 22,750.2 0.20 22,542.2 42.6 1.11
3,000 21,160.3 0.85 20,980.3 53.0 1.69 22,781.3 0.06 22,568.7 51.4 1.00
3,400 21,181.9 0.75 20,971.5 59.4 1.74 22,793.4 0.01 22,588.5 58.6 0.91
No limit 21,341.8 0.00 21,135.9 159.1 0.96 22,795.9 0.00 226,08.1 62.7 0.82
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system’s operations by using historically requested 4D 
trajectories as well as a refined modeling of an airspace 
system’s capacity constraints. Second, it proposes a 
machine learning approach to assess airspace users’ pre-
ferences, thus overcoming some of the barriers that 
have been experienced in practice. The third and, from 
the practical viewpoint, most important, contribution of 
the model is that it is computationally viable, even for 
daily instances of the problem with up to 32,000 flights.

The computational experiments suggest that ATFM 
problems of a size comparable to the entire network of 
en route sectors and airports in the European air traffic 

system can be solved to near optimality within 
reasonable—for the applications context—computation 
times. Indeed, running times of the order of 30 minutes 
are consistent with the time constants associated with 
the current decision cycles at the Eurocontrol’s Network 
Manager, the authority that coordinates ATFM for the 
entire European airspace. Moreover, the computational 
experiments suggest a potential for substantial reduc-
tion of total delay with respect to the algorithm cur-
rently deployed for managing air traffic flows. They 
also show the importance of considering preferences 
because significant differences can be observed in terms 

Figure 6. (Color online) On the Delay-Preference Score Trade-Off 
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Figure 7. (Color online) Delay Saving Obtained by the Proposed Approach 
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of total preference score between equivalent solutions 
from the delay minimization standpoint. By computing 
Pareto efficient solutions, we expect to have a smaller 
number of iterations between the Network Manager 
and airspace users and a faster and fine-tuned resolu-
tion of demand-capacity imbalances.

To progress toward a deployment phase, further anal-
yses and investigations are needed. For instance, there is 
a need of (i) better understanding the interaction of the 
approach herein presented with other ATFM initiatives, 
for example, the user-driven prioritization process, (ii) 
analyzing the possibility of gaming the system, and (iii) 
enriching the user’ preferences model with additional 
predictors that ensure more robust and reliable predic-
tions in all the possible deployment scenarios.

Given that the proposed methodology is aligned with 
the philosophy and principles of recently introduced 
ATFM initiatives such as, for example, Eurocontrol’s 
flight efficiency initiative, we are optimistic about feed-
ing the proposed approach into industrial research 
activities and addressing all the relevant issues. Our 
long-term ambition is to enable a derivative version of 
this model to become one of the basic network manage-
ment decision support tools of the future air traffic man-
agement system.
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