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Abstract1

Starting from the model in Koch and Vargiolu (SIAM J Control Optim 59(4): 3068–2

3095, 2019), we test the real impact of current renewable installed power in the3

electricity price in Italy, and assess how much the renewable installation strategy4

which was put in place in Italy deviated from the optimal one obtained from the5

model in the period 2012–2018. To do so, we consider the Ornstein–Uhlenbeck (O–6

U) process, including an exogenous increasing process influencing the mean-reverting7

term, which is interpreted as the current renewable installed power. We estimate the 18

parameters of this model by using real data of electricity prices and energy production9

from photovoltaic and wind power plants from the six main Italian price zones. We10

obtain that the model fits well the North, Central North and Sardinia zones: among11

these zones, the North is impacted by photovoltaic production, Sardinia by wind and12

the Central North does not present significant price impact. Then, we implement the13

solution of the singular optimal control problem of installing renewable power plants,14

in order to maximize the profit of selling the produced energy in the market net of15

installation costs. We extend the results of Koch and Vargiolu (SIAM J Control Optim16

59(4): 3068–3095, 2019) to the case when no impact on power price is presented and17

to the case when N players can produce electricity by installing renewable power18

plants. To this extent, we analyze both the concepts of Pareto optima and of Nash19

equilibria. For this latter, we present a verification theorem in the 2-player case and20

an explicit characterization of a Nash equilibrium in the no-impact case. We are thus21

able to describe the optimal strategy and compare it with the real installation strategy22

that was put in place in Italy.23
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1 Introduction27

The paper (Koch and Vargiolu 2019) describes the irreversible installation problem of28

photovoltaic panels for an infinitely lived profit maximizing power-producing com-29

pany, willing to maximize the profits from selling electricity in the market. The power30

price model used in that paper assumes that the company is a large market player, so31

its installation has a negative impact on power price. More in detail, the power price32

is assumed to follow an additive mean-reverting process (so that power price could33

possibly be negative, as it happens in reality), where the long-term mean decreases as34

the cumulative installation increases. The resulting optimal strategy is to install the35

minimal capacity so that the power price is always lower than a given nonlinear func-36

tion of the capacity, which is characterized by solving an ordinary differential equation37

deriving from a free-boundary problem. The aim of this paper is to validate empiri-38

cally that model, extending it also to wind power plants’ installation, by using time39

series of the main Italian zonal prices and power production, and to assess how much40

the renewable installation strategy in Italy deviated from the optimal one obtained by41

Koch and Vargiolu (2019) in the period 2012–2018. In doing so, we also extend the42

theoretical results of Koch and Vargiolu (2019) to the (easier) case when the amount43

of installed renewable capacity has no impact on power prices, and to the case when44

several power producers are present in the market: in doing so, we investigate and45

compare Pareto optima and Nash equilibria in this situation.46

It is common in literature to model electricity prices via a mean-reverting behavior,47

and to include (jump) terms representing the seasonal fluctuations and daily spikes,48

cf. Borovkova and Schmeck (2017), Cartea and Figueroa (2005), Geman and Ron-49

coroni (2006), Weron et al. (2004) among others. Here, in analogy with Koch and50

Vargiolu (2019), we do not represent the spikes and seasonal fluctuations with the51

following argument: the installation time of solar panels or wind turbines usually52

takes several days or weeks, which makes the power producers indifferent of daily or53

weekly spikes. Also, the high lifespan of renewable power plants and the underlying54

infinite time horizon setting allow us to neglect the seasonal patterns. We therefore55

assume that the electricity’s fundamental price has solely a mean-reverting behav-56

ior, and evolves according to an Ornstein–Uhlenbeck (O–U) process1. We are also57

neglecting the stochastic and seasonal effects of renewable power production. In fact,58

photovoltaic production has obvious seasonal patterns (solar panels do not produce59

power during the night and produce less in winter than in summer), and both solar60

and wind power plants are subject to the randomness affecting weather conditions.61

However, since here we are interested to a long-term optimal behavior, we interpret the62

average electricity produced in a generic unit of time as proportional to the installed63

1 We allow for negative prices by modeling the electricity price via an Ornstein–Uhlenbeck process. Indeed,
negative electricity prices can be observed in some markets, for example in Germany, cf. NY TIMES (2017).
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Optimal installation of renewable electricity sources…

power. All of this can be mathematically justified if we interpret our fundamental price64

to be, for example, a weekly average price as, e.g., in Bosco et al. (2010), Fontini et al.65

(2020), Gianfreda et al. (2016), who used this representation exactly to get rid of daily66

and weekly seasonalities.67

In order to represent price impact of renewables in power prices, which is more68

and more observed in several national power markets, we follow the common stream69

in literature (also in analogy with Koch and Vargiolu 2019) and represent renewable70

capacity installation as a nondecreasing process, thus resulting in a singular control71

problem. This is also analogous to other papers modeling price impact: for example,72

in problems of optimal execution, Becherer et al. (2017) and Becherer et al. (2018)73

take into account a multiplicative and transient price impact, whereas (Guo and Zervos74

2015) consider an exponential parametrization in a geometric Brownian motion setting75

allowing for a permanent price impact. Also, a price impact model has been studied76

by Al Motairi and Zervos (2017), motivated by an irreversible capital accumulation77

problem with permanent price impact, and by Ferrari and Koch (2019), in which78

the authors consider an extraction problem with Ornstein–Uhlenbeck dynamics and79

transient price impact. In all of the aforementioned papers on price impact models80

dealing with singular stochastic controls (Al Motairi and Zervos 2017; Becherer et al.81

2017, 2018; Ferrari and Koch 2019; Guo and Zervos 2015), the agents’ actions can lead82

to an immediate jump in the underlying price process, whereas in our setting, it cannot.83

Our model is instead analogous to Cartea et al. (2019), Cartea et al. (2019), which show84

how to incorporate a market impact due to cross-border trading in electricity markets,85

and to Rowińska et al. (2018), which models the price impact of wind electricity86

production on power prices. In these latter models, price impact is localized on the87

drift of the power price.88

In order to validate our model, we use a dataset of weekly Italian prices, together89

with photovoltaic and wind power production, of the six main Italian price zones90

(North, Central North, Central South, South, Sicily and Sardinia), covering the period91

2012–2018. In principle, both photovoltaic and wind power production could have an92

impact on power prices, so we start by estimating parameters of an ARX model where93

both photovoltaic and wind power production are present as exogenous variables:94

the parameters of this discrete time model will then be transformed in parameters95

for the continuous time O–U model by standard techniques, see, e.g., Brigo et al.96

(2008). Unfortunately, for three price zones we find out that our O–U model, even after97

correcting for price impacts, produces nonindependent residuals. This is an obvious98

indication that the O–U model is too simple for these zones, and one should instead99

use more sophisticated models, like CARMA ones (see, e.g., Benth et al. 2008): we100

leave this part for future research. For the remaining three zones, we find out that,101

for each zone, at most one of the two renewable sources has an impact: in particular,102

power price in the North is only impacted by photovoltaic production, and in Sardinia103

only by wind production, while in Central North is not impacted by any of them. Thus,104

we are able to model the optimal installation problem for North and Sardinia using the105

theory existing in Koch and Vargiolu (2019). Instead, for the installation problem in106

Central North, we must solve an instance of the problem with no price impact: this can107

be derived as a particular case of the results in Koch and Vargiolu (2019), and results108

in a much more elementary formulation than the general case in Koch and Vargiolu109
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(2019). More in detail, we obtain that the function of the capacity which should be110

hit by the power price in order to make additional installation is in this case equal111

to a constant, obtained by solving a nonlinear equation. The corresponding optimal112

strategy should thus be to not install anything until the price threshold is hit, and then113

to install the maximum possible capacity.114

The second aim of our paper is to check the effective installation strategy, in the115

different price zones, against the optimal one obtained theoretically. In doing so, we116

must take into account the fact that the Italian market is liberalized since about two117

decades, thus there is not a single producer which can impact prices by him/herself, but118

rather prices are impacted by the cumulative installation of all the power producers in119

the market. We thus extend our model by formulating it for N players who can install,120

in the different price zones, the corresponding impacting renewable power source,121

monotonically and independently of each other: the resulting power price will be122

impacted by the sum of all these installations, while each producer will be rewarded by123

a payoff corresponding to their installation. The resulting N -player nonzero-sum game124

can be solved with different approaches. A formulation requiring a Nash equilibrium125

would result in a system of N variational inequalities with N + 1 variables (see, e.g.,126

De Angelis and Ferrari 2018 and references therein), which would be quite difficult127

to treat analytically. We choose instead to seek for Pareto optima first. One easy way128

to achieve this is to assume, in analogy with Chiarolla et al. (2013), the existence129

of a “social planner” which maximizes the sum of all the N players’ payoffs, under130

the constraint that the sum of their installed capacity cannot be greater than a given131

threshold (which obviously represents the physical finite capacity of a territory to132

support power plants of a given type). We prove that, in our framework, this produces133

Pareto optima. More in detail, by summing together all the N players’ installations in134

the social planner problem, one obtains the same problem of a single producer, which135

has a unique solution that represents the optimal cumulative installation of all the136

combined producers. Though with this approach it is not possible to distinguish the137

single optimal installations of each producer, we can assess how much the effective138

cumulative installation strategy which was carried out in Italy during the dataset’s139

period differs from the optimal one which we obtained theoretically. To give an idea140

of what we instead would get when searching for Nash equilibria, we present the case141

N = 2 and formulate a verification theorem that the value functions of each player142

should satisfy. Here, we want to point out a difference which arises in our problem143

with respect to the current stream of literature. In fact, in stochastic singular games144

the usual framework is that a player can act only when the other ones are idle, see,145

e.g., Cont et al. (2020), De Angelis and Ferrari (2018), Guo et al. (2020), Guo and146

Xu (2019). Here instead, we take explicitly into consideration the possibility that both147

players act (i.e., install) simultaneously. This possibility will be confirmed in Section148

5.3, where (in the case with no market impact) we present a Nash equilibrium where149

both players install simultaneously. Another peculiarity is that this equilibrium induces150

the players to install before than when they would have done under a Pareto optimum.151

This is the converse phenomenon of what observed, e.g., in Cont et al. (2020), where152

instead players following a Nash equilibrium act later than players following a Pareto153

optimum.154
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The paper is organized as follows. Section 2 presents the continuous time model155

used to characterize the evolution of the electricity price influenced by the current156

installed power and presents the procedure for parameter estimation. In Sect. 3, the157

model is estimated using real Italian data and the pertinent statistical tests are applied158

for the validation of the model. Section 4 presents the setup for the singular control159

problem and its analytical solution, in both the cases with impact and with no impact,160

for a single producer. Section 5 extends these results to the case when N players can161

install renewable capacity and derives corresponding Pareto optima in Sect. 5.1, while162

Sects. 5.2 and 5.3 are devoted to Nash equilibria and the comparison between the two163

approaches. Section 6 compares the analytical optimal installation strategy obtained164

in Sect. 4 with the real installation strategy applied in Italy. Finally, Sect. 7 presents165

our conclusions.166

2 Themodel167

We start by presenting the model introduced in Koch and Vargiolu (2019), which we168

here extend to more than one renewable electricity source.169

We assume that the fundamental electricity price Sx (s), in the absence of increments170

on the level of renewable installed power, evolves accordingly to an Ornstein–171

Uhlenbeck (O–U) process172

{

dSx (s) = κ (ζ − Sx (s)) ds + σdW (s)s > 0

Sx (0) = x,
(1)173

for some constants κ, σ, x > 0 and ζ ∈ R, where (W (s))s≥0 is a standard Brownian174

motion defined on a filtered probability space (�,F , P), more rigorous definition and175

detailed assumptions will be given in the next section.176

We represent the increment on the current installed power level with the sum of177

increasing processes Y
yi

i , where yi is the initial installed power and the index i stands178

for the renewable power source type, which in our case are sun and wind. We relate179

Y
y1
1 with solar energy and Y

y2
2 with wind energy. We assume that the increment in the180

current renewable installed power affects the electricity price by reducing the mean181

level instantaneously at time s by
∑2

i=1 β i Y
yi

i (s) for some β i > 0 (Koch and Vargiolu182

2019), with i ∈ {1, 2}. Therefore, the spot price Sx,I (s) evolves according to183

{

dSx,I (s) = κ(ζ −
∑

i=1,2 β i Y
yi

i (s) − Sx,I (s))ds + σdW (s)s > 0

Sx,I (0) = x .
(2)184

The explicit solution of (2) between two times τ and t , with 0 ≤ τ < t is given by185

Sx,I (t) = eκ(τ−t)Sx,I (τ ) + κ

∫ t

τ

eκ(s−t)

⎛

⎝ζ −
∑

i=1,2

β i Y
yi

i (s)

⎞

⎠ ds186

123

SPI Journal: 10203 Article No.: 0365 TYPESET DISK LE CP Disp.:2021/11/6 Pages: 31 Layout: Small-Ex

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

A. Awerkin, T. Vargiolu

+
∫ t

τ

eκ(s−t)σdW (s) (3)187

= eκ(τ−t)Sx,I (τ ) + ζ(1 − eκ(τ−t)) − κ

∫ t

τ

eκ(s−t)
∑

i=1,2

β i Y
yi

i (s)ds188

+
∫ t

τ

eκ(s−t)σdW (s). (4)189

The discrete time version of (4), on a time grid 0 = t0 < t1 < . . ., with constant time190

step �t = tn+1 − tn results in the ARX(1) model191

X(tn+1) = a + bX(tn) +
∑

i=1,2

ui Z i (tn) + δǫ(tn). (5)192

where X(t0), X(t1), X(t2), . . . and Z i (t0), Z i (t1), Z i (t2), . . . are the observation193

on the time grid, of process Sx,I and Y
yi

i , respectively. The random variables194

(ǫ(tn))n={0,...,N } ∼ N (0, 1) are iid and the coefficients a, b, u1, u2 and δ are related195

with κ , ζ , β1, β2 and σ by196

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a = ζ(1 − e−κ�t )

b = e−κ�t

u1 = −β1(1 − e−κ�t )

u2 = −β2(1 − e−κ�t )

δ = σ
√

1−e−2κ�t√
2κ

. (6)197

The estimation of the discrete time parameters a, b, δ and ui , i = 1, 2 can be obtained198

from ordinary least squares, which gives maximum likelihood estimators. Then, the199

continuous time parameters κ , ζ , σ and β i with i = 1, 2 can be estimated by solving200

Eq. (6) (Brigo et al. 2008).201

3 Parameter estimation for Italian zonal prices202

In this section, we estimate the parameters of the model in Eq. (5) using real Italian203

data of energy price and current installed power.204

3.1 The dataset205

We have data from six main price zones of Italy, which are North, Central North, Cen-206

tral South, South, Sicily and Sardinia. For every zone, we have weekly measurements207

of average energy price in e/MWh, together with photovoltaic and wind energy pro-208

duction in MWh. The time series goes from 07/05/2012 to 25/06/2018, week 19/2012209

to 26/2018, corresponding to N = 321 observations. The time series of current pho-210

tovoltaic and wind installed power is instead available with a much lower frequency211
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Table 1 The data used for parameter estimation of Eq. (5)

Variable type Nomenclature Description

Time step observation t1, . . . , tN Weeks when the quantities are
observed, N = 321

Response variable X(t0), . . . , X(tN ) Electricity price in e/MWh relative
to an Italian price zone

Explanatory variable Z1(t0), . . . , Z1(tN ) Current installed photovoltaic power
in MW, estimated as Z1(ti ) =
max(E1(t0), . . . , E1(ti )),
i ∈ {1, . . . , N }, where E1(ti ) is the
sum of the produced energy on the
six zones at the observation time ti

Z2(t0), . . . , Z2(tN ) Current installed wind power in MW,
estimated as Z2(ti ) =
max{E2(t0), . . . , E2(ti )},
i ∈ {1, . . . , N }, where E1(ti ) is the
sum of the produced energy on the
six zones at the observation time ti

(i.e., year by year). In order to obtain a time series consistent with the weekly gran-212

ularity of price and production, we estimate the installed power to be proportional to213

the running maximum of the photovoltaic and wind energy production of whole Italy,214

respectively. Summarizing, we use for estimation of the model in Eq. (5), for every215

particular zone, the data summarized in Table 1.216

3.2 Results217

Using ordinary least squares considering the data described above and then setting218

�t = ti+1 − ti = 1
52 for all i = 0, . . . , 320, we obtain, by Eq. (6), the continuous219

time parameters for the O–U model with an exogenous impact in the mean-reverting220

term, for every zone. Table 2 shows the estimation results by zone.221

In Table 2, under each parameter we observe the value of every estimator and its222

respective standard error. Moreover, for each price zone, we include the results of the223

Box–Pierce test to check the independence of the residuals. This test rejects the inde-224

pendence hypothesis for p values less than 0.05. According to the results in Table 2,225

the Central South, South and Sicily zones present correlation in the residuals, there-226

fore the proposed O–U model for electricity price is not the right choice. On the other227

hand the North, Central North and Sardinia zones have independent residuals implying228

that the model is able to explain the behavior of the electricity price. Regarding the229

parameters significance for this latter three zones, only the North and Sardinia zones230

present price impact: in the North, there is only photovoltaic impact while in Sardinia231

only wind impact. We re-estimate the parameters considering only the zones which232

pass the Box–Pierce test and with only the significant price impact parameters. Table 3233

summarizes the obtained results.234
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4 The optimal installation problem235

In this section, we give the general setup and description for the singular control236

problem of optimally increasing the current installed power in order to maximize the237

profit of selling the produced energy in the market net of the installation cost. This238

problem is completely described and solved in Koch and Vargiolu (2019) when β > 0.239

However, the case when β = 0 can be obtained using the same procedure, which we240

describe in this section. Also, we include a brief description and practical results of241

the case when β > 0 for completeness of the paper.242

4.1 General setup and description of the problem243

Let (�,F , (Ft )t≥0, P) be a complete filtered probability space where a one-244

dimensional Brownian motion W is defined and (Ft )t≥0 is the natural filtration245

generated by W , augmented by the P-null sets.246

As we have already seen, only one type of energy influences the energy price in247

each price zone: either photovoltaic or wind, but not both simultaneously, therefore in248

the sequel we use the model in Eq. (2) with only one single process influencing the249

mean-reverting term of the price dynamics. Therefore, we assume that the spot price250

Sx,I (s) evolves according to251

{

dSx,I (s) = κ(ζ − βY y(s) − Sx,I (s))ds + σdW (s)s > 0

Sx,I (0) = x .
(7)252

where the stochastic process Y = (Y y(s))s≥0, with initial condition y ∈ [0, θ ], rep-253

resents the current renewable installed power of a company, which can be increased254

irreversibly by installing more renewable energy generation devices, starting from an255

initial installed power y ≥ 0, until a maximum θ . This strategy is described by the256

control process I = (I (s))s≥0 and takes values on the set I[0,∞) of admissible257

strategies, defined by258

I[0,∞) � {I : [0,∞) × �259

→ [0,∞) : I is (Ft )t≥0 − adapted, t → I (t) is increasing, cadlag,260

with I (0−) = 0 ≤ I (t) ≤ θ − y,∀t ≥ 0}.261

Hence, the process Y y is written as262

Y y(t) = y + I (t). (8)263

As we already said, the aim of the company is to maximize the expected profits from264

selling the produced energy in the market, net of the total expected cost of installing265

a generation device, which for an admissible strategy I is described by the following266

utility functional267
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J (x, y, I ) = E

[∫ ∞

0
e−ρτ Sx,I (τ )aY y(τ )dτ −

∫ ∞

0
ce−ρτ d I (τ )

]

, (9)268

where ρ > 0 is a discount factor, c is the installation cost of 1 MW of technology, a > 0269

is the conversion factor of the installed device’s rated power to the effective produced270

power per time unit and Sx (s) is the electricity price, with x as initial condition. The271

objective of the company is to maximize the functional in Eq. (9) by finding an optimal272

strategy Î ∈ I[0,∞) such that273

V (x, y) = J (x, y, Î ) = sup
I∈I[0,∞)

J (x, y, I ). (10)274

4.2 The optimal solution whenˇ ≥ 0275

To make the paper self-contained, we present in this section the systematic procedure to276

construct the optimal solution and characterize the value function (10). All the results277

presented here are proved in Koch and Vargiolu (2019). We add some comments on278

the no-impact case β = 0 which is not explicitly treated in Koch and Vargiolu (2019),279

but it can be derived as particular case.280

Recall that the electricity price evolves accordingly to the O–U process in Eq. (2).281

Notice that, for a noninstallation strategy I (s) ≡ 0 ∀s ≥ 0, we have282

J (x, y, 0) = E

[∫ ∞

0
e−ρs Sx (s)ayds

]

283

= axy

ρ + κ
+ aζκ y

ρ(ρ + κ)
− aκβ y2

ρ(ρ + κ)
=: R(x, y). (11)284

The possible strategies that the company can follows at time zero are: do not install285

during a time period �t and earn money selling the energy already installed, or imme-286

diately install more power. The first strategy carries one equation which is obtained287

applying the dynamic programming principle and the second one carries an equation288

obtained by perturbing the value function (10) in the control. As a result we arrive to289

a variational inequality that the candidate value function w should satisfy, which is290

max

{

Lw(x, y) − ρw(x, y) + axy,
∂w

∂ y
− c

}

= 0, (12)291

with boundary condition w(x, θ) = R(x, θ) and the differential operator L defined292

as293

Lyu(x, y) = κ ((ζ − β y) − x)
∂u(x, y)

∂x
+ σ 2

2

∂2u(x, y)

∂x2 . (13)294
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Equation (12) defines two regions: a waiting region W and an installation region I,295

given by296

W =
{

(x, y) ∈ R × [0, θ) : Lw(x, y) − ρw(x, y) + axy = 0,
∂w

∂ y
− c < 0

}

,297

(14)298

I =
{

(x, y) ∈ R × [0, θ) : Lw(x, y) − ρw(x, y) + axy ≤ 0,
∂w

∂ y
− c = 0

}

.299

(15)300

which define when it is optimal to install more power or not.301

It is proved in (Koch and Vargiolu 2019, Theorem 3.2) that the solution of (12)302

with linear growth identifies with the value function V .303

Additionally, it is proved that these two regions are separated by the strictly increas-304

ing function F : [0, θ ] → R (Koch and Vargiolu 2019, Corollary 4.5), called the free305

boundary. Therefore, W and I can be written as306

W = {(x, y) ∈ R × [0, θ) : x < F(y)}, (16)307

I = {(x, y) ∈ R × [0, θ) : x ≥ F(y)}. (17)308

Now we can describe the optimal strategy using (16) and (17). When the current309

electricity price Sx (t) is sufficiently low, such that Sx (t) < F(Y y(t)), then the opti-310

mal choice is to not increment the installed power until the electricity price crosses311

F(Y y(t)), passing to the installation region, where the optimal choice is to increase312

the installed power in order to maintain the pair price-power (Sx (t), Y y(t)) not below313

of the free boundary. Once Sx (t) ≥ F(θ) the optimal choice is restricted to increased314

immediately the installed power level up to the maximum θ . We explain again this315

strategy in Sect. 6 observing the numerical solutions and graphics obtained for the316

Italian case.317

Setting F̂(y) = F(y) + β y, the free boundary is characterized by the ordinary318

differential equation (Koch and Vargiolu 2019, Proposition 4.4 and Corollary 4.5)319

⎧

⎪

⎨

⎪

⎩

F̂
′
(y) = β × N (y, F̂(y))

D(y, F̂(y))
, y ∈ [0, θ)

F̂(θ) = x̂ .

(18)320

where321

N (y, z) =
(

ψ(z)ψ
′′
(z) − ψ

′
(z)2

)

(

ρ + 2κ

ρ
ψ

′
(z)322

+
(

(ρ + κ)
(

c − R̂(z, y)
)

ψ
′′
(z) + ψ

′
(z)
))

,323

D(y, x) = ψ(x)
(

(ρ + κ)(c − R̂(x, y))
(

ψ
′
(x)ψ

′′′
(x) − ψ

′′
(x)2

)

324

+ψ(x)ψ
′′′
(x) − ψ

′
(x)ψ

′′
(x)
)

325
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and the function ψ is the strictly increasing and positive fundamental solution of the326

homogeneous equation Lw(x, y) − ρw(x, y) = 0 [see in (Ferrari and Koch 2019,327

Lemma 4.3) or in (Koch and Vargiolu 2019, Lemma A.1)], given by328

ψ(x) = 1

Ŵ(
ρ
κ
)

∫ ∞

0
t

ρ
κ
−1e

− t2
2 −

(

x−ζ
σ

√
2κ
)

t
dt (19)329

and330

R̂(x, y) = aζκ + aρx − aβ(ρ + 2κ)y

ρ(ρ + κ)
. (20)331

On the other hand, the boundary condition x̂ in (18) is the unique solution of332

ψ ′(x)(c − R̂(x, θ)) + (ρ + κ)−1ψ(x) = 0. (21)333

Remark 4.1 The solution x̂ is such that x̂ ∈
(

c̄, c̄ + ψ(c̄)

ψ
′
(c̄)

)

, with c̄ = c(ρ + κ) −334

ζκ−β(ρ+2κ)θ
ρ

(Koch and Vargiolu 2019, Lemma 4.2).335

4.3 The caseˇ = 0336

When there is not impact, i.e., β = 0, we have F̂(y) ≡ F(y), then from (18) every337

y ∈ [0, θ), F
′
(y) ≡ 0, hence the free boundary is a constant with value F(y) = x̂ ,338

with x̂ the same solution of (21), considering β = 0 in the function R̂(x, y) defined339

in (20). Notice that in this case R̂ does not depend on y.340

The candidate value function is given by341

w(x, y) =
{

A(y)ψ(x) + R(x, y) , if (x, y) ∈ W ∪ ({θ} × (−∞, x̂))

R(x, θ) − c(θ − y) , if (x, y) ∈ I ∪ ({θ} × (x̂,∞))
, (22)342

with R(x, y) defined in Eq. (11), ψ(x) given by Eq. (19) and A(y) given by343

A(y) = θ − y

(ρ + κ)ψ
′
(x̂)

. (23)344

The optimal control is written as (see Koch and Vargiolu 2019, Theorem 4.8)345

Î (t) =
{

0, t ∈ [0, τ )

θ − y, t ≥ τ
, (24)346

with τ = inf{t ≥ 0, X(t) ≥ x̂}.347
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5 Amarket with N producers348

As mentioned in the Introduction, Italy has a liberalized market, thus there is not a349

single producer which can impact prices by him/herself as is assumed in Sect. 4. Con-350

versely, prices are impacted by the cumulative installation of all the power producers351

which are present in the market. For this reason, we now consider a market with N352

producers, indexed by i = 1, . . . , N . The cumulative irreversible installation strategy353

of the producer i up to time s, denoted by Ii (s), is an adapted, nondecreasing, cadlag354

process, such that Ii (0) = 0. We assume that the aggregated installation of the N firms355

is allowed to increase until a total maximum constant power θ , that is,356

N
∑

i=1

(yi + Ii (s)) ≤ θP-a.s., s ∈ [0,∞), (25)357

where yi is the initial installed power for the firm i and indicate by ȳ = (y1, . . . , yN )358

the vector of the initial conditions. We denote by IN the set of admissible strategies359

of all the players360

IN � { Ī : [0,∞) × � → [0,∞)N , nondecreasing, left continuous adapted process361

with Ii (0) = 0, P-a.s.,
N
∑

i=1

(yi + Ii (s)) ≤ θ}.362

and notice that each player is constrained, in its strategy, by the installation strategies363

of the other players.364

5.1 Pareto optima365

We now consider the cooperative situation of a social planner, where the problem366

consists of finding an efficient installation strategy Î ∈ IN which maximizes the367

aggregate expected profit, net of investment cost (Chiarolla et al. 2013). While in368

many liberalized markets there is not a single being which can impose a given strategy369

to all the players, this is equivalent to solving a cooperative game with the maximum370

possible coalition containing all the players.371

The social planner problem, therefore is expressed as372

VS P = sup
Ī∈IN

JS P ( Ī ), (26)373

where374

JS P ( Ī ) =
N
∑

i=1

Ji (Ii ) (27)375

and for i = 1, 2, . . . , N ,376

Ji (x, ȳ, Ī ) = E

[∫ ∞

0
e−ρτ Sx,ȳ, Ī (s)(τ )a(yi + Ii (τ ))dτ − c

∫ ∞

0
e−ρτ d Ii (τ )

]

,377

(28)378
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where ρ, a and c are the same defined in (9). The process Sx,ȳ, Ī (s) is the electricity379

price affected by the sum of the installations of all the agents which, in analogy with380

the one-player case, we assume to follow an O–U process with an exogenous mean-381

reverting term, whose dynamics is given by382

{

dSx,ȳ, Ī (s) = κ(ζ − β
∑N

i=1 (yi + Ii (s)) − Sx,ȳ, Ī (s))ds + σdW (s)s > 0,

Sx,ȳ, Ī (0) = x .
(29)383

Call now ν(t) =
∑N

i=1 Ii (t) and γ =
∑N

i=1 yi : then, by substituting on the social384

planner functional (27), we get385

JS P ( Ī ) =
N
∑

i=1

E

[∫ ∞

0
e−ρτ Sx,ȳ, Ī (τ )a(yi + Ii (τ ))dτ − c

∫ ∞

0
e−ρτ d Ii (τ )

]

386

(30)387

= E

[

∫ ∞

0
e−ρτ Sx,ȳ, Ī (τ )a

(

N
∑

i=1

yi +
N
∑

i=1

Ii (τ )

)

dτ388

−c

∫ ∞

0
e−ρτ d

(

N
∑

i=1

Ii (τ )

)]

(31)389

= E

[∫ ∞

0
e−ρτ Sx,ȳ, Ī (τ )a(γ + ν(τ))dτ − c

∫ ∞

0
e−ρτ dν(τ)

]

. (32)390

Observe that we have the same optimal control problem as in the single company case391

(Sect. 4), therefore we can guess that the optimal solution for the social planner will392

be equal to that for the single company. The aggregate optimal strategy for the N393

producer of a given region results to be Pareto optimal (see Lemma 5.1).394

Lemma 5.1 If Î ∈ arg max JS P (I ), then Î is Pareto optimal.395

Proof Suppose Î ∈ arg max JS P ( Ī ) and assume Î is not Pareto optimal, then there396

exist I ∗ such that,397

Ji (I ∗
i ) ≥ Ji ( Îi ),∀i ∈ {1, . . . , N } (33)398

where at least one inequality is strict. Then,399

N
∑

i=1

Ji (I ∗
i ) >

N
∑

i=1

Ji ( Îi ), (34)400

contradicting the fact that Î is maximizing. ⊓⊔401

As already said in the Introduction, with this approach it is not possible to distinguish402

the single optimal installations of each producer, as we can only characterize the403
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cumulative installation ν(t) =
∑N

i=1 Ii (t), while the single components Ii (t) remain to404

be determined. However, our declared aim is about the effective cumulative installation405

strategy which was carried out in Italy during the time period covered by the dataset.406

Thus, in the next section we compare this with the optimal one which we obtained407

theoretically.408

In the next subsections, instead, we compare these Pareto optima, obtained by409

assuming that players would cooperate to achieve the maximum cumulative payoff,410

with Nash equilibria, which instead assume that players compete actively to individ-411

ually maximize their own payoff.412

5.2 Nash equilibria in the case N = 2413

The Pareto optima found previously for the social planner problem assume a collabo-414

ration between players: nevertheless, it could be also possible to have competition in415

the market between the players, therefore it makes sense to study the noncooperative416

case and search for Nash equilibria. In particular, we solve the case with two players417

and we compare both results.418

The formulation for the competitive game with two players states as follows: the419

electricity price evolves according to (29) and every player aims to maximize its own420

utility (28). In this case, in analogy with Guo et al. (2020), we will look for a subset421

of the admissible strategies I2, which we describe next.422

Definition 5.2 (Markovian strategy and admissible control set) A strategy I (t) ∈ I423

is called Markovian if I (t) = I (S(t), Y 1(t−), Y 2(t−)) for all t ≥ 0, where I is a424

deterministic function of the states immediately before time t . We define the admissible425

set of Markovian strategies as follows426

IM
2 := {I1, I2 ∈ I2 | (I1, I2) are Markovian strategies} ⊂ I2.427

Definition 5.3 (Markovian Nash equilibrium) We say that Ī ∗ = (I ∗
1 , I ∗

2 ) ∈ IM
2 is428

a Markovian Nash equilibrium if and only if for every x ∈ R and ȳ = (y1, y2) ∈429

[0, θ ] × [0, θ ], we have430

|Ji (x, ȳ, Ī ∗)| < ∞, i = 1, 2431

and432

{

J1(x, ȳ, I ∗
1 , I ∗

2 ) ≥ J1(x, ȳ, I1, I ∗
2 ) for any I1, such that (I1, I ∗

2 ) ∈ I2,

J2(x, ȳ, I ∗
1 , I ∗

2 ) ≥ J2(x, ȳ, I ∗
1 , I2) for any I2, such that (I ∗

1 , I2) ∈ I2.
(35)433

The value function corresponding to the Nash equilibrium for each player i is434

defined as435

Vi (x, ȳ) := J (x, ȳ, Ī ∗). (36)436
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For each player, we also define the waiting and installation regions, for Markovian437

Nash equilibria, defined as follows (Guo et al. 2020).438

Definition 5.4 (Installation and waiting regions) The installation region of player i439

is defined as the set of points Ii ⊆ R × [0, θ ]2 such that d I ∗
i (t) �= 0 if and only if440

(X(t), Y1(t−), Y2(t−)) ∈ Ii , and its waiting region as Wi = I
c
i .441

We derive the Hamilton–Jacobi–Bellman equation following this heuristic argu-442

ment: by the Markovian structure it is enough to observe the case at time t = 0. For443

agent i , it can decide to do not increase the current level of installed power and also444

player j , i.e., the strategy is Ī = Ī 0 ≡ (0, 0) and both continue optimally. In this case,445

the control problem reduces to the single player case and we have446

Vi (x, ȳ) ≥ E

[∫ �t

0
e−ρsaSx,ȳ, Ī 0

(s)yi ds + e−ρ�t Vi (Sx,ȳ, Ī 0
(�t), ȳ)

]

,447

leading to448

Lȳ Vi (x, ȳ) − ρVi (x, ȳ) + axyi ≤ 0, (37)449

with Lȳ the differential operator defined by450

Lȳu(x, ȳ) = σ
∂2u(x, ȳ)

∂x2 + κ

(

ζ − x − β

2
∑

i=1

yi

)

∂u(x, ȳ)

∂x
. (38)451

Conversely, player i can decide to increase its level by ǫ while player j does not452

increase its level, then both continue optimally , which is associated with453

Vi (x, ȳ) ≥ Vi (x, ȳ + eiǫ) − cǫ, (39)454

where ei is the canonical vector in the direction i . Dividing by ǫ and ǫ ↓ 0, we get455

0 ≥ ∂Vi (x, ȳ)

∂ yi

− c. (40)456

Let us assume instead that player i decides to not increase its level while player j457

increases its level. By definition of Nash equilibrium, player i is not expected to suffer458

a loss, therefore459

Vi (x, ȳ) ≥ Vi (x, ȳ + e jǫ), (41)460

where e j is the canonical vector in the direction j . Dividing the above expression by461

ǫ and letting ǫ ↓ 0, we obtain462

∂Vi (x, ȳ)

∂ y j

≤ 0. (42)463
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Finally, if instead both players decide to increase their level by ǫ and continue opti-464

mally, this is associated with465

Vi (x, ȳ) ≥ Vi (x, ȳ + (1, 1)ǫ) − cǫ, (43)466

dividing by ǫ and ǫ ↓ 0, we get467

0 ≥ ∂Vi (x, ȳ)

∂ yi

+ ∂Vi (x, ȳ)

∂ y j

− c. (44)468

The above arguments suggest that the value function of player i = 1, 2, Vi (x, ȳ)469

should be identified with a solution of the following variational inequality470

⎧

⎨

⎩

max
{

Lȳwi (x, ȳ) − ρwi (x, ȳ) + axyi ,
∂wi (x,ȳ)

∂ yi
− c

}

= 0, (x, ȳ) ∈ W j

max
{

∂wi

∂ y j
,
∑2

k=1
∂wi (x,ȳ)

∂ yk
− c

}

= 0, (x, ȳ) ∈ I j

(45)471

with i �= j and with the boundary condition wi (x, ȳ) = Ri (x, ȳ) whenever
∑2

i=1 yi =472

θ , where473

Ri (x, ȳ) := Ji (x, ȳ, Ī 0) = E

[∫ ∞

0
e−ρsaSx,ȳ, Ī 0

(s)yi ds

]

474

= axyi

ρ + κ
+ aζκ yi

ρ(ρ + κ)
− aκβ yi

∑2
i=1 yi

ρ(ρ + κ)
.475

Remark 5.5 We point out that, in stochastic singular games, the usual framework is476

that a player can act only when the other ones are idle, i.e., Ii ∩ I j = ∅ for all i �= j ,477

see, e.g., Cont et al. (2020), De Angelis and Ferrari (2018), Guo et al. (2020), Guo478

and Xu (2019). Here instead, the variational inequality (45), and the argument before479

it, takes explicitly into consideration the possibility that both players act (i.e., install)480

simultaneously. This possibility will be confirmed in Sect. 5.3, where the presented481

Nash equilibrium will even have both players acting and waiting simultaneously, i.e.,482

Ii = I j .483

Now we establish a verification theorem for the value function.484

Theorem 5.6 (Verification theorem) For any i = 1, 2, suppose Ī ∗ ∈ IM
2 , the corre-485

sponding wi (·) = J (·; Ī ∗) satisfies the following:486

(i) wi ∈ C0(R × [0, θ ]2) ∩ C2,1,1(W j ), with j �= i ;487

(ii) wi satisfies the growth condition488

|wi (x, y1, y2)| ≤ K (1 + |x |); (46)489

(iii) wi satisfies Eq. (45), with i �= j , with the boundary condition wi (x, ȳ) =490

Ri (x, ȳ), whenever
∑2

i=1 yi = θ ;491
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then Ī ∗ is a Nash equilibrium with value function wi for each player i = 1, 2.492

Remark 5.7 Differently from the one-player case, where the value function is required493

to be of class C2 (or at least smooth enough for the Ito formula to be applied) in the494

whole domain, here each candidate value function wi is required to be smooth only495

in the continuation region W j of the other player as, under a Nash equilibrium, the496

state will not exit from there. In fact, player j will not deviate from I ∗
j , thus making I j497

inaccessible: for this reason, player i will be allowed to change its controls only in W j .498

This is analogous with other results on singular control games based on variational499

inequalities, see, e.g., De Angelis and Ferrari (2018), Guo et al. (2020), Guo and Xu500

(2019)501

Proof Let (x, ȳ) ∈ R × [0, θ)2 be given and fixed, and (Ii , I ∗
j ) = Ī ∈ IM

2 . Denote502

by �I i (s) = Ii (s) − Ii (s−) and I c
i the continuous part of the strategy I . Define503

τR,N := τR ∧ N , where τR = inf{s > 0 : Sx,ȳ /∈ (−R, R)}. Applying the Ito formula504

to e−ρτR,N wi (Sx,ȳ(τR,N ), Yi (τR,N ), Y ∗
j (τR,N )), we have505

e−ρτR,N wi (Sx,ȳ, Ī (τR,N ), Yi (τR,N ), Y ∗
j (τR,N )) − wi (x, yi , y j ) (47)506

=
∫ τR,N

0

(

−ρe−ρswi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))+e−ρs

L
ȳwi (Sx,ȳ, Ī (s), Yi (s), Y ∗

j (s))
)

ds507

(48)508

+
∫ τR,N

0
σ

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂x
dW (s)509

+
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ yi

d I c
i (s)510

+
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ y j

d I ∗c
j (s)511

+
∑

0≤s≤τR,N

e−ρs
[

wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s)) − wi (Sx,ȳ, Ī (s), Yi (s−), Y ∗

j (s−))
]

.512

(49)513

Set �Yk(s) = Yk(s) − Yk(s−), k = 1, 2 and notice that514

wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s)) − wi (Sx,ȳ, Ī (s), Yi (s−), Y ∗

j (s−))515

=
∫ 1

0

⎡

⎣

∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗
j (u))

∂ yi

�Yi (u)516

+
∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗

j (u))

∂ y j

�Y j (u)

⎤

⎦ du.517

Considering the above expression, taking expectation in (49), observing that the pro-518

cess519
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⎛

⎝

∫ τ

0
σ

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂x
dW (s)

⎞

⎠

τ≥0

520

is a martingale and using assumptions (i i), we have521

wi (x, yi , y j ) + KE

[

e−ρτR,N

(

1 + |Sx,ȳ, Ī (τ )|
)]

≥522

= E

[∫ τR,N

0

(

ρe−ρswi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))523

−e−ρsLȳwi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

)

ds524

−
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ yi

d I c
i (s)525

−
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ(s), Yi (s), Y ∗
j (s))

∂ y j

d I ∗c
j (s)526

−
∑

0≤s≤τR,N

e−ρs

∫ 1

0

⎡

⎣

∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗
j (u))

∂ yi

�Yi (u)527

+
∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗

j (u))

∂ y j

�Y j (u)

⎤

⎦ du

⎤

⎦ .528

529

Using the variational equation of assumption (iii), we get530

wi (x, yi , y j ) + KE

[

e−ρτR,N

(

1 + |Sx,ȳ, Ī (τ )|
)]

531

≥ E

[∫ τR,N

0
e−ρsaSx,ȳ, Ī (s)Yi (s)ds532

−
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ yi

d I c
i (s)533

−
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ y j

d I ∗c
j (s)534

−
∑

0≤s≤τR,N

e−ρs

∫ 1

0

⎡

⎣

∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗
j (u))

∂ yi

�Yi (u)535

+
∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗

j (u))

∂ y j

�Y j (u)

⎤

⎦ du

⎤

⎦

536

≥ E

[∫ τR,N

0
e−ρsaSx,ȳ, Ī (s)Yi (s)ds537
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−
∫ τR,N

0
e−ρs

∂wi (Sx,ȳ, Ī (s), Yi (s), Y ∗
j (s))

∂ yi

d I c
i (s)538

−
∑

0≤s≤τR,N

e−ρs

∫ 1

0

⎡

⎣

∂wi (Sx,ȳ, Ī (u), Yi (u), Y ∗
j (u))

∂ yi

�Yi (u)

⎤

⎦ d

⎤

⎦

539

≥ E

[∫ τR,N

0
e−ρsaSx,ȳ, Ī (s)Yi (s)ds − c

∫ τR,N

0
e−ρsd Ii (s)

]

.540

We can apply the dominated convergence theorem in the last expression since (see541

proof Koch and Vargiolu 2019, Theorem 3.2) for the computations of the following542

estimates)543

E

[∫ τ

0
e−ρsaSx,ȳ, Ī (s)Yi (s)ds − c

∫ τ

0
e−ρsd Ii (s)

]

544

≤ θ

∫ ∞

0
e−ρs

(

|Sx,ȳ,, Ī 0
(s)| + κβθs

)

ds + cθ545

and546

E

[

e−ρτR,N

(

1 + |Sx,ȳ, Ī (τR,N )|
)]

≤ C1E
[

e−ρτR,N (1 + τR,N )
]

547

+C3E
[

e−ρτR,N
]1/2

(1 + x2). (50)548

Letting N ↑ ∞ and R ↑ ∞, we get549

J (x, ȳ, Ii , I ∗
j ) ≤ wi (x, ȳ),550

for all Ii such that (Ii , I ∗
j ) ∈ IM

2 , therefore Ī ∗ is a Markovian Nash equilibrium.551

⊓⊔552

5.3 The caseˇ = 0: comparison between Pareto optimum and Nash equilibrium553

While a complete characterization of Nash equilibria in the general case appears to be554

technically very challenging and is beyond the scope of this article, here we analyze the555

case without price impact, i.e., with β = 0. Inspired by the one-player optimal control556

and by the N -players Pareto optima, we search for a Nash equilibrium Ī ∗ where the557

players, which have initial installation equal to (Y1(0), Y2(0)) = (y1, y2), wait until558

the price surpasses a boundary x∗ to be determined, and then they make together a559

cumulative installation which completely saturates the total capacity θ . Following the560

arguments of the previous subsection, we assume that they share equally this additional561

installation.562

More in detail, we define563

τ ∗ := inf{t ≥ 0 | S(t) ≥ x∗} (51)564
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and describe the Nash equilibrium Ī ∗ as565

Ī ∗(t) := 1

2
(θ − y1 − y2)(1, 1)1t≥τ∗ (52)566

Obviously, in this case I1 = I2 = (x∗,+∞) × [0, θ ]2. For each player i = 1, 2, the567

value function which corresponds to this strategy can be computed as follows:568

wi (x, ȳ) = E

[

∫ τ∗

0
ae−ρs Sx,ȳ(s)yi ds569

+
∫ ∞

τ∗
ae−ρs Sx,ȳ(s)

(

yi + θ − yi − y j

2

)

ds − ce−ρτ∗
(θ − yi − y j )

2

]

570

= Ri (x, ȳ) + 1

2
E

[

e−ρτ∗
∫ ∞

0
ae−ρs Sx,ȳ(τ ∗ + s)

(

θ − yi − y j

)

571

ds − ce−ρτ∗
(θ − yi − y j )

]

572

= Ri (x, ȳ) + 1

2
E

[

e−ρτ∗
Ri (Sx,ȳ(τ ∗), θ − yi − y j , y j )573

−ce−ρτ∗
(θ − yi − y j )

]

574

where in the last equality we use the strong Markov property for the process S. Now,575

if x < x∗, then τ ∗ > 0 and E[e−ρτ∗ ] = ψ(x)
ψ(x∗) , with ψ as in Equation (19) (Borodin576

and Salminen 2002, Chapter 7.2), and577

wi (x, ȳ) = Ri (x, ȳ) + 1

2
E

[

e−ρτ∗] (
Ri (x∗, θ − yi − y j , y j ) − c(θ − yi − y j )

)

578

= Ri (x, ȳ) + ψ(x)

2ψ(x∗)

(

Ri (x∗, θ − yi − y j , y j ) − c(θ − yi − y j )
)

,579

Instead, when x ≥ x∗, then τ ∗ ≡ 0 and580

wi (x, ȳ) = Ri (x, ȳ) + 1

2

(

Ri (x, θ − yi − y j , y j ) − c(θ − yi − y j )
)

581

Therefore, for a given level x∗, the value function for the strategy (52) is given by582

wi (x, ȳ) =
{

Ri (x, ȳ) + ψ(x)
2ψ(x∗)

(

R(x∗, θ − yi − y j ) − c(θ − yi − y j )
)

, x < x∗

Ri (x, ȳ) + 1
2

(

R(x, θ − yi − y j ) − c(θ − yi − y j )
)

, x∗ ≥ x
583

(53)584

If we let x∗ := x̂ as the solution of Eq. (21), then the corresponding strategy is one585

of the Pareto optima found in Lemma 5.1. However, if we plug the candidate value586

functions of Eq. (53) into the variational inequality (45), it turns out that this choice587
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does not give a Nash equilibrium. Instead, a Nash equilibrium is achieved when we588

let589

x∗ := c̄ = c(ρ + κ)

a
− ξκ

ρ
. (54)590

Proposition 5.8 If x∗ = c̄ defined in Eq. (54), then the strategy (52) is a Nash equi-591

librium and the value function for player i = 1, 2 is given by (53).592

Proof The function wi ∈ C0(R × [0, θ ]2) ∩ C2,1,1(W j ) by direct computations and593

it has linear growth by (Koch and Vargiolu 2019, Theorem 3.2, Lemma 4.6). Let us594

check that it satisfies the variational inequality (45). First of all, the boundary condition595

wi (x, yi , y j ) = R(x, yi +y j ) whenever yi +y j = θ is fulfilled by direct computations.596

Then, for player i = 1, 2, in order to verify the variational inequality (45), we597

distinguish two cases.598

Case 1: For player i , (x, ȳ) ∈ W j . In this case, we also have (x, ȳ) ∈ Wi and599

x < x∗ = c̄. We expect wi satisfies Lȳwi − ρwi + axyi = 0: in fact,600

Lȳwi (x, ȳ) − ρwi (x, ȳ) + axyi = Lȳ(Ri (x, ȳ)601

+ ψ(x)

2ψ(x∗)
(R(x∗, yi + y j ) − c(θ − yi − y j )))602

−ρ(Ri (x, ȳ) + ψ(x)

2ψ(x∗)
(R(x∗, yi + y j )603

−c(θ − yi − y j ))) + axyi604

=
(

Lȳ − ρ
)

Ri (x, ȳ) + axyi605

= aκ(ζ − x)yi

ρ + κ
− ρaxyi

ρ + κ
− aζκ yi

ρ + κ
+ axyi = 0.606

Also, when x < c̄ we should have ∂wi

∂ yi
− c ≤ 0, and in fact607

∂wi (x, yi , y j )

∂ yi

− c = a

ρ + κ

(

x + ξκ

ρ

)

+ ψ(x)

2ψ(x∗)

(

− a

ρ + κ

(

x∗ + ξκ

ρ

)

+ c

)

− c608

≤
(

a

ρ + κ

(

x + ξκ

ρ

)

− c

)(

1 − ψ(x)

2ψ(x∗)

)

=609

= a

ρ + κ
(x − c̄)

(

1 − ψ(x)

2ψ(x∗)

)

< 0610

as ψ is strictly increasing.611

Case 2: For player i , when (x, ȳ) ∈ I j then also (x, ȳ) ∈ Ii . We expect
∂wi (x,yi ,y j )

∂ yi
+612

∂wi (x,yi ,y j )

∂ y j
− c = 0: in fact,613

∑

k=i, j

∂wi (x, yi , y j )

∂ yk

− c = ∂(Ri (x, yi , y j ) − R(x, θ − yi − y j )/2)

∂ yi

+ c

2
614
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+∂(Ri (x, yi , y j ) − R(x, θ − yi − y j )/2)

∂ y j

+ c

2
− c615

= ax

(ρ + κ)
+ aζκ

ρ(ρ + κ)
− ax

(ρ + κ)
− aζκ

ρ(ρ + κ)
= 0.616

On the other hand, when x ≥ c̄ we also expect that
∂wi (x,yi ,y j )

∂ y j
≤ 0: in fact,617

∂wi (x, yi , y j )

∂ y j

= 1

2

(

− ax

ρ + κ
− aζκ

ρ(ρ + κ)
+ c

)

= a

2(ρ + κ)
(c̄ − x) ≤ 0.618

⊓⊔619

Remark 5.9 Since, after Remark 4.1, we have c̄ < x̂ , this means that the search for620

a Nash equilibrium induces the agents to perform an earlier installation with respect621

to the cooperative behavior of the Pareto optimum seen in the previous section. This622

phenomenon is the converse of the one observed in Cont et al. (2020), where instead623

the Nash equilibrium’s action regions are contained in the Pareto optima’s ones, i.e.,624

agents wait more under the Nash equilibrium than under the Pareto optimum. By625

continuity, we expect a similar behavior also for the case β > 0, at least for low values626

of β: in other words, also in the case when price impact is present, competitive Nash627

equilibria will induce players to install earlier than when they would install under a628

cooperative Pareto optimum. We reserve to investigate this topic furtherly in future629

research.630

6 Numerical verification631

In this section, we solve numerically Eq. (18), using the parameters’ values estimated632

in Sect. 3 for the North, Central North and Sardinia zones.633

Following the spirit of Sect. 5.1, we treat the pool of producers in each zone as634

a coalition maximizing the cumulative payoff and thus realizing a Pareto optimum.635

We choose not to report results about Nash equilibria, as the analysis in Sects. 5.2636

and 5.3 contains only partial results; however, after Remark 5.9, we expect that a free637

boundary relative to a Nash equilibrium would always be located on the left of the638

Pareto optimum, which instead we explicitly describe below.639

Recall from Table 3 that the price impact in the North zone is due to photovoltaic640

power production, while in Sardinia is due to wind power production. Both are cases641

when the parameter impact is β > 0, which we describe in Section 4.1.2. On the other642

hand, Central North has not price impact from power production (at least from these643

two renewable sources), so here we are in the case β = 0 described in Section 4.1.1.644

The parameters c and a presented in (9) should be selected according to the type of645

renewable energy which has an impact on the corresponding price zone. In the case646

of photovoltaic power, we consider a yearly average of the installation cost of 1 MW647

of the prices available in the market, see, e.g., Schirru (2021). On the other hand, for648

the wind power installation cost we consider the invested money on an offshore wind649

park that is being installed in Sardinia (Media Duemila 2020). In both cases, we adjust650
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Table 4 Parameter values used for the North, Central North and Sardinia zones

Zone Parameters’ values
κ ζ β σ c a θ ρ

North 6.7 124.7 0.0091 47.7 290000 1400 6500 0.1

Central North 5.6029 50.2381 0 58.9796 290000 1400 6500 0.1

Sardinia 13.213 115.1565 0.0091 68.2889 1944400 7508 5700 0.1

for the presence of government incentives for renewable energy installation (usually651

under the form of tax benefits), therefore we consider around a 40% and a 60% of the652

real investment cost c of photovoltaic and wind power, respectively, for our numerical653

simulation. The parameter a is the effective power produced during a representative654

year: as we consider a yearly scale for simulation, the parameter a will convert our655

weekly data of produced power into yearly effective produced power. Additionally,656

the a value depends on the type of produced power. This information is available,657

e.g., in (Edoli et al. 2016, Chapter 4). The parameter ρ is the discount factor for the658

electricity market and is the same in the three cases: no impact, photovoltaic and wind659

power impact. The parameter θ is the effective power that can be produced considering660

the real installed power of the respective type of energy. In the case of the estimated661

parameters κ , ζ , β and σ , we choose a value from the 95% confidence interval, based662

on better heuristic numerical performance simulation criteria.663

We summarize in Table 4 the parameters considered for the numerical simulations.664

For the Central North case, we consider the cost of photovoltaic installation, because665

it is the main renewable energy produced in this zone.666

6.1 North667

We solved the ordinary differential equation (18) using the data in Table 4 for the668

North, using the backward Euler scheme with step h = 0.5 and initial condition669

F̂(θ) = 976.4 e/MWh, which was obtained by solving Eq. (21) with the bisection670

method considering as initial points the extremes of the interval on Remark 4.1. The671

graph of the solution for the free boundary F(y) = x is presented in Fig. 1a, with a672

detail on realized power prices in Fig. 1b.673

In Fig. 1a, the point at zero installation level corresponds to F(0) = 64.9 e/MWh.674

The red irregular line corresponds to the realized trajectory t → (X(t), Y (t)), i.e., to675

the values of electricity price vs effective photovoltaic installed power in the North:676

from it we can see that, at the beginning of the observation period (2012), the installed677

power2 was already around 3600 MW. Instead, the blue smooth line corresponds678

to the computed free boundary F(y) = x , which expresses the optimal installation679

strategy in the following sense: when the electricity price Sx (t) is lower than F(Y (t)),680

i.e., when we are in the waiting region (see (16)), no installation should be done and681

2 Recall that Y is really just an estimation of the installed power, which is officially given with yearly
granularity; moreover, Y is expressed in units of rated power, i.e., in production equivalent to a power plant
always producing the power Y .
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(a) (b)

Fig. 1 (a) Simulated free boundary and real data for the North. (b) Detail of free boundary and real data
for the North

it is necessary to wait until the price Sx (t) crosses F(Y (t)) to optimally increase682

the installed power level. When the electricity price Sx (t) is between F(0) and F(θ),683

enough power should be installed to move the pair price-installation in the up-direction684

until reaching the free boundary F . In the extreme case when Sx (t) ≥ F(θ), the energy685

producer should install instantaneously the maximum allowed power θ . In Fig. 1b,686

we can observe the strategy followed in the North zone: the installation level from687

3500 MW until 4500 MW was approximately optimal, in the sense that the pair688

price-installed power was around the free boundary F , with possibly some missed689

gain opportunities when, between 4300 and 4500 MW, the price was deep into the690

installation region; nevertheless, the rise in renewable installation from 4500 MW to691

4800 MW was at the end done with a power price which resulted lower than what692

should be the optimal one. At around 4800 MW, there was an optimal no installation693

procedure until the price entered again the installation region: again, the consequent694

installation strategy was executed with some delay, resulting in a nonoptimal strategy.695

At the end of the installation (around 5200 MW), we can see that the pair price-696

installed power moved again deep into the installation region: we should then expect697

an increment in installation.698

6.2 Central North699

In this case, we do not have price impact, hence the constant free boundary F(y) ≡ x̄700

was obtained solving Eq. (21). As before, we used the bisection method considering701

as initial points the extremes of the interval described in Remark 4.1. The obtained702

value is F(y) = x̄ = 29.3205 e/MWh.703

In Fig. 2a, the vertical blue line corresponds to the constant free boundary704

x̄ = 29.3205 e/MWh, while the red irregular line with the realized values of price-705

installation action that was put in place in the Central North zone. In this case, the706

optimal strategy is described as follows: for electricity prices less than x̄ , no incre-707

ments on the installation level should be done. Conversely, when the electricity price708

is grater or equal to x̄ the producer should increment the installation level up to the709
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(a) (b)

Fig. 2 (a) Simulated free boundary and real data for Central North. (b) Detail of free boundary and real
data for Central North

(a) (b)

Fig. 3 (a) Simulated free boundary and real data for Sardinia. (b) Detail free boundary and real data for
Sardinia

maximum level allowed for photovoltaic power (here we posed θ = 6500 MW). As710

we can clearly see in Fig. 2a, the electricity price has always been greater than x̄711

in the observation period; however, the increments on the installation level was not712

high enough to arrive to the maximum level θ = 6500 MW, therefore the performed713

installation was not optimal.714

6.3 Sardinia715

As in the North case, we solved the differential equation (18) using the data in Table 4716

for Sardinia, using the backward Euler scheme with step h = 0.2 and initial condition717

F̂(θ) = 1453.3 e/MWh, which was obtained by solving Eq. (21) using the bisection718

method and considering as initial points the extremes of the interval in Remark 4.1.719

The graph of the solution for the free boundary F(y) = x is presented in Fig. 3a.720

In Fig. 3a, the point at zero installation level corresponds to F(0) = 61.5199721

e/MWh. The red irregular line corresponds with the realized values of electricity722
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price vs effective wind installed power in Sardinia, from which we can see that the723

installed wind power at the beginning of the observation period was already around724

600 MW. The blue smooth line corresponds to the simulated free boundary F(y) = x ,725

which expresses the optimal installation strategy as was already explained for the726

North case. In Fig. 3b, we can observe the strategy followed in the Sardinia zone: until727

the level 1600 MW the power price was very deeply into the installation region, but the728

installation increments were not high enough to be optimal. Optimality came between729

the levels 1600 MW and 2400 MW, where the performed strategy was to effectively730

maintain the pair price-installed power around the free boundary F . However, the731

subsequent increments were not optimal, in the sense that the installed power was often732

increased in periods where the electricity price was too low, and in other situations733

the power price entered deeply in the installation region without the installed capacity734

following that trend, or rather doing it with some delay.735

6.4 Discussion736

We must start by saying that we did not expect optimality in the installation strategy. In737

fact, firstly this strategy has been carried out by very diverse market operators, includ-738

ing hundreds of thousands of private citizens mounting photovoltaic panels on the roof739

of their houses, thus not necessarily by rational agents which solved the procedure740

shown in Sects. 4 and 5. Moreover, we must also say that renewable power plants like741

photovoltaic panels or wind turbines often meet irrational resistances by municipal-742

ities, especially when performed at an industrial level: more in detail, photovoltaic743

farms are perceived to “steal land” from agriculture (see, e.g., Dias et al. 2019), while744

high wind turbines are generically perceived as “ugly” (together with many other per-745

ceived drawbacks, see the exhaustive monography Chapman and Crichton 2017 on746

this).2 747

Despite all these possible adverse effects we saw that, in the North and Sardinia748

price zones, part of the realized trajectory of power price and installed capacity was749

very near to the optimal free boundary, while in other periods the installation was750

put in place in moments when power price was not the optimal one—possibly, the751

installation was planned when the power price was high and deep into the installation752

region (time periods like this have been described both in the North as in Sardinia, see753

Sects. 6.1 and 6.3) but the installation was delayed by adverse effects like, e.g., the754

ones described above. Summarizing, in these two regions the final installation level755

resulting at the end of the observation period (2018) seems consistent with the price756

levels reached during the period.757

It is instead difficult to reach such a conclusion in the Central North region: in fact,758

in that case the realized trajectory of power price and installed capacity was always759

deeply into the installation region, as the power price was always above the constant760

free boundary F(y) = x̄ which resulted in this case: the optimal strategy should then761

have been to install immediately the maximum possible capacity. We did observe a762

rise in installed renewable power during the period, which was obviously not optimal763

in the execution time (which spanned several years), given the peculiar nature of the764

free boundary. However, in analogy to what already said for the North and Sardinia765
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price zones, it is possible that the performed installation, which at the end took place766

during the observation period, has been planned in advance but delayed by the same767

adverse effects cited above.768

7 Conclusions769

We apply to real modeling and simulation the model presented in Koch and Vargiolu770

(2019), which assumes that the electricity price evolves accordingly to an O–U process771

and that it is affected by renewable power installation on the mean-reverting term. The772

original model considers one big company that influences the electricity price with773

its activities. To be more realistic, we also study the case when N producers have774

an impact on electricity price by their aggregate installation. To solve this N -player775

game, we use a “social planner” approach as in Chiarolla et al. (2013) and maximize776

the aggregate utility of the N producers: this approach produces Pareto optima, and777

brings the problem back to the one-producer case. We also present an analysis which778

shows that, if we instead search for noncooperative Nash equilibria, we would obtain779

strategies where producer install earlier than when they would under a Pareto optimum.780

Using real data from the six main Italian price zones, we found that, under an O–U781

model with an exogenous influence on the mean-reverting term, there exists significant782

price impact of renewable power production in the North and Sardinia zones. Also,783

we found that for the Central North price there is not renewable production impact on784

power price, which is well described by an O–U model without exogenous term.785

Once we solve numerically the ordinary differential equation for the free boundary786

or trigger frontier, which describes when it is optimal to increment the installed power,787

we compare it with the real installation strategy that was put in place in the North,788

Central North and Sardinia zones. We found that for the North the installation was789

optimal until the 4500 MW level, while in Sardinia the installation was optimal between790

1600 MW and 2400 MW level. On the other hand, the capacity expansion in Central791

North was executed but not in an optimal way, and the increment on the installation792

level should possibly be higher than what it was. We also present a discussion on this,793

stating some possible reasons why the installation has not been fully optimal.794
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