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Abstract
The anticipative information refers to some information about future events that may be dis-
closed in advance. This information may regard, for example, financial assets and their future
trends. In our paper, we assume the existence of some anticipative information in a market
whose risky asset dynamics evolve according to a Brownian motion and a Poisson process.
Using Malliavin calculus and filtration enlargement techniques, we derive the information
drift of the mentioned processes and, both in the pure jump case and in the mixed one, we
compute the additional expected logarithmic utility. Many examples are shown, where the
anticipative information is related to some conditions that the constituent processes or their
running maximum may verify, in particular, we show new examples considering Bernoulli
random variables.

Keywords Optimal portfolio · Malliavin calculus · Clark–Ocone formula · Insider
information · Value of the information

Mathematics Subject Classification 91G10 · 60H7 · 93E12

1 Introduction

In this paper we focus on the study of the presence of some anticipative information in a
market composed of a bank bond and a risky asset, the latter one driven by a Brownianmotion
W = (Wt , 0 ≤ t ≤ T ) and a compensated Poisson process Ñ = (Nt −

∫ t
0 λsds, 0 ≤ t ≤ T )

with positive intensity process λ = (λt , 0 ≤ t ≤ T ). In the optimal portfolio problem, a
non-informed agent is looking for maximizing her expected logarithmic gains at the end of a
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trading period T > 0, while playing with the natural information flow F := {Ft }0≤t≤T with
Ft := σ(Ws, Ns : 0 ≤ s ≤ t). She will be referred to as the F-agent. In addition, we assume
that there exists an agent who is informed about a random variable G ∈ FT containing some
anticipative information about the path of W and/or N . The anticipative filtration will be the
initial enlargement G := F ∨ σ(G) and the agent playing with it will be referred to as the
G-agent.

Filtration enlargement is a stochastic calculus technique that allowsmodeling the incorpo-
ration of additional non-adapted information. It has multiple applications, including insider
trading or, more general, asymmetric information. We refer to the Bibliographic Notes in
Chapter VI of Protter (2005) for a detailed overview on this subject. In the seminal paper
Amendinger et al. (1998), it is shown that if the dynamics of the risky asset do not include
the discontinuous part N , then the additional gain under logarithmic utility is given by the
entropy of the random variable G when it is purely atomic. After that, much progress has
been made in the analysis of the additional information in the Brownian case, see Grorud
and Pontier (1998) and Amendinger et al. (2003) for the main references. The research on
the Poisson process in the initial enlargement framework started with Ankirchner (2008)
in which the existence of a compensator is analyzed. Although the entropy is considered,
the additional gain of an informed G-agent in the optimal portfolio problem has not been
studied. In Di Nunno et al. (2006), a similar framework is studied, however they mainly
focused on enlargements that disclose the exact value of the terminal driving processes and
their objective is to compute the optimal portfolio without discussing the additional expected
logarithmic utility.

Our main motivation is to get an expression for the investor’s additional gains in a market
whose risky asset dynamics depend also on a Poisson process, in the same spirit of the analysis
done in Theorem 4.1 of Amendinger et al. (1998). This is achieved in Theorem 3.11 for the
pure jump case and in Theorem 4.6 for themixed Brownian–Poissonmarket. Another novelty
of our paper is in the kind of examples that we choose to model the additional information.
We consider both G = τ ∧ T , being τ the time of the first jump of N , and G = 1{b1≤NT ≤b2},
for some constants b1, b2 ∈ N. We work also with G = 1{a1≤WT ≤a2}×{b1≤NT ≤b2}, where the
G-agent knows if the pair (WT , NT ) falls within a certain rectangle or not. However, as the
main example we consider G = 1{a1≤MT ≤a2}×{b1≤JT ≤b2} being MT := sup0≤s≤T Ws and
JT := sup0≤s≤T Ñs in which the G-agent knows whether the running maximum processes
will be in a certain region or not. Finally, we present an example in which the process λ is
truly related with W , λt = 1 + 1{WT ≥0}, ∀ t ≤ T .

For themajority of our computations,we useMalliavin calculus techniques,we suggest Di
Nunno et al. (2009) or Nualart (2006) for a general overview on this variational calculus.
Malliavin Calculus was applied to the optimal portfolio problem in Ocone and Karatzas
(1991) via Clark–Ocone formula. With respect to the enlargement of filtration theory, we
highlight Imkeller et al. (2001) for a methodology to compute the information drift in initial
enlargements and Brownian setting. In particular, some Malliavin regularity assumptions
on the conditional densities are assumed in order to drop the so-called Jacod hypothesis. In
addition, Corcuera et al. (2004) analyzed the case in which the information is becomingmore
precise via progressive enlargements. Nualart and Vives (1990) applied for the first time the
Malliavin approach to the Poisson process while Mensi and Privault (2003) mimicked the
Malliavin methodology of Imkeller et al. (2001) for the Poisson process in the context of
initial enlargement of filtrations. Finally Wright et al. (2018) weakened some assumptions
of the latter paper by assuming the Malliavin derivative were in L2(dt × dP). Nowadays,
the optimal portfolio problem with non-continuous assets is still an active topic of research,

123



Annals of Operations Research (2024) 336:1289–1314 1291

for example in Chau et al. (2018), they analyse additional gains generated by an initial
enlargement via super-hedging, or Bellalah et al. (2020), that deals with an example related
to the Covid-19 crisis. See also Colaneri et al. (2021), where the value of the market price of
risk is compared under different information flows.

The paper is organised as follows. In Sect. 2 we describe the framework and we introduce
the notation. In Sect. 3 we consider the purely jumpmarket and we get the explicit expression
of the compensator of the Poisson process for FN

T -measurable random variables. The main
examples of this section are about the time of the first jump of N and the terminal value
of the Poisson process, that is, G = 1{NT ∈B} being B an interval. In Sect. 3.1, we state
Theorem 3.11 in which we get a nice expression for the additional gain of an agent who
plays with an initial enlarged filtration. In Sect. 4 we work in a Brownian–Poisson market,
in which the additional expected logarithmic utility is computed in Corollary 4.7. The main
examples considered in this subsection are G = 1{WT ∈A}×{NT ∈B} and G = 1{MT ∈A}×{JT ∈B}
for A, B some given intervals. In Sect. 5 we construct a model where the Poisson intensity
λ is an anticipative function of W .

2 Model and notation

Let (�,FT , P,F) be a filtered probability space, where the filtration F := {Ft }0≤t≤T is
assumed to be complete and right-continuous. We assume that the agent is going to invest in
a market composed by two assets in a finite horizon time T > 0. The first one is a risk-less
bond D = (Dt , 0 ≤ t ≤ T ) and the second one is a risky stock S = (St , 0 ≤ t ≤ T ). The
dynamics of both are given by the following SDEs,

dDt

Dt
= ρt dt, D0 = 1 (1a)

dSt
St−

= μt dt + σt dWt + θt d Ñt , S0 = s0 > 0, (1b)

where W = (Wt , 0 ≤ t ≤ T ) is a Brownian motion and N = (Nt , 0 ≤ t ≤ T ) is a Poisson
process with strictly positive intensity λ = (λt , 0 ≤ t ≤ T ), while the compensated version
of the Poisson process is defined as Ñt := Nt − ∫ t

0 λsds with
∫ T
0 λsds < +∞, dP-a.s.

We assume that W and N are independent and, to ensure that S = (St , 0 ≤ t ≤ T ) is
well-defined,

− 1 < θt , dt × dP − a.s. (2)

The measurability of λ will be specified in each section. The natural filtration F =
{Ft }0≤t≤T is generated by the Brownian motion and the Poisson process, and it is augmented
by the zero P-measure sets, N :

Ft := σ(Ws, Ns : 0 ≤ s ≤ t) ∨ N .

Weuse the notationFW := {FW
t }0≤t≤T andFN := {FN

t }0≤t≤T to refer to the natural filtration
of W and N , respectively. About the market coefficients, in (1a) and (1b) we assume that
they are F-predictable processes that satisfy the following integrability condition

E
[∫ T

0

(|ρs | + |μs | + σ 2
s + θ2s

)
ds

]

< +∞. (3)

By E and V we refer to the expectation and the variance operators of a given random variable
under the measure P . Given a σ -algebraF , by E[·|F] and V [·|F] we denote the conditional
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expectation and the conditional variance. We introduce the filtration H, that will be the
filtration used to define the allowed strategies, and that depending on the agent will coincide
with the filtrations F and G. We define L2(�,HT , dt × dP,H), or simply L2(dt × dP)

when the reference filtration is clear, as the space of all H-adapted processes X such that∫ T
0 E

[
X2
s

]
ds < +∞.

Using the previous set-up, it is assumed that an agent can control her portfolio by a self-
financing process π = (πt , 0 ≤ t ≤ T ), with the aim to maximize her expected logarithmic
gains at the finite horizon time. It represents the fraction of themonetary unit amount invested
in the risky asset. We denote by Xπ = (Xπ

t , 0 ≤ t ≤ T ) a positive process to model the
wealth of the portfolio of the investor under the strategy π . The dynamics of the wealth
process are given by the following SDE, for 0 ≤ t ≤ T ,

dXπ
t

Xπ
t−

= (1 − πt )
dDt

Dt
+ πt

dSt
St−

, Xπ
0 = x0 > 0, (4)

and by using the evolution of both assets given in (1) we get

dXπ
t

Xπ
t−

= (1 − πt )ρt dt + πt

(
μt dt + σt dWt + θt d Ñt

)
, Xπ

0 = x0,

where the SDE iswell-defined on the probability space (�,FT , P,F). Before giving a proper
definition of the set of processes π that we consider, we look for the natural conditions they
should satisfy. Applying the Itô formula to the dynamics of the risky asset given by (1b), we
get an explicit solution as follows,

ln
St
s0

=
∫ t

0

(

μs − 1

2
σ 2
s + λs(ln(1 + θs) − θs)

)

ds +
∫ t

0
σsdWs +

∫ t

0
ln(1 + θs)d Ñs .

If we apply the Itô formula to the wealth process we get,

ln
Xπ
t

x0
=
∫ t

0

(

ρs + πs(μs − ρs) − 1

2
π2
s σ 2

s + λs(ln(1 + πsθs) − πsθs)

)

ds

+
∫ t

0
πsσsdWs +

∫ t

0
ln(1 + πsθs)d Ñs (5)

provided that these integrals are well-defined. To ensure this, we assume the following inte-
grability condition,

E
[∫ T

0

(|πs ||μs − ρs | + π2
s σ 2

s + π2
s θ2s

)
ds

]

< +∞. (6)

In order to guarantee that Xπ is well-defined, we impose that

1 + πtθt > 0, dt × dP − a.s. (7)

Now, we can properly define the optimization problem as the supremum of the expected
logarithmic gains of the agent’s wealth at the finite horizon time T .

V
H

T := sup
π∈A(H)

E
[
ln Xπ

T |Xπ
0 = x0

]
, H ⊇ F. (8)

Finally we give the definition of the set A(H) made of all admissible strategies for the
H-agent, that is the one playing with information flow H ⊇ F.
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Definition 2.1 In the financial market (1a)–(1b), we define the set of admissible strategies
A(H) as the set of portfolio processes π predictable with respect to the filtration H which
satisfy the conditions (6) and (7).

Definition 2.2 The additional expected logarithmic utility of a filtrationH ⊇ F is given by

	V
H

T = V
H

T − V
F

T ,

where the quantities on the right-hand side are defined in (8).

In the following statement we summarize the results about the optimal portfolios in markets
with Brownian noise, Poisson noise or both. It can be found in Corollary 17 of Di Nunno
et al. (2006).

Proposition 2.3 The optimal strategy π∗ for the problem (8) with the information flow F

satisfies

μt − ρt − σ 2
t π∗

t − λ
θ2t π∗

t

1 + π∗
t θt

= 0. (9)

In particular, if we have that σt > 0 and θt = 0 dt × dP-a.s., then we recover the classic
Merton problem with the optimal strategy satisfying the relation

π∗
t = μt − ρt

σ 2
t

. (10)

Finally, if we have that σt = 0, θt �= 0 and dt × dP-a.s., then the optimal strategy is given
by

π∗
t = μt − ρt

λθ2t − θt (μt − ρt )
. (11)

Let G ∈ FT be a real valued random variable modeling some additional information. We
introduce the filtrationG := {Gt }0≤t≤T under which the privileged information is accessible
since the beginning time t = 0, that is

Gt =
⋂

s>t

(Fs ∨ σ(G)) , (12)

Wedenotewith PG the distribution ofG, i.e., PG(·) = P(G ∈ ·) onσ(G) and by PG(·|F) =
P(G ∈ ·|F) the corresponding conditional probability with respect to a given σ -algebra F .
The crucial point is to ensure that any F-semimartingale is also a G-semimartingale, that
is known in the literature as the (H′) hypothesis, see Jeulin and Yor (1978). An approach
widely used in the literature to achieve this is known as the Jacod hypothesis and assumes
that the conditional distributions PG(·|Ft ) is absolutely continuous with respect to PG for
t ∈ [0, T ) a.s. In Theorem 2.5 of Jacod (1985) it is proven that the Jacod hypothesis implies
the (H’) hypothesis. However, this assumption sometimes results too restrictive. Therefore,
we use the following proposition valid in the framework of Poisson process to compute the
information drift under weaker assumptions. We refer to Proposition 3 in Mensi and Privault
(2003) for a proof, for a similar result in the Brownian motion framework see Theorem 2.1 in
Imkeller et al. (2001). We present a slightly different statement adapted to finite deterministic
time T .
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Proposition 2.4 LetG ∈ FN
T , considerG = F

N∨σ(G)and Pt (ω, dg) := P
(
G ∈ dg|FN

t

)
(ω),

with 0 ≤ t ≤ T , denote a version of the conditional law of G given FN
t and assume it has

the following representation Pt (·, dg) = P0(·, dg) + ∫ t
0 φs(·, dg)d Ñs , 0 ≤ t ≤ T ,

and there exists a measurable h such that φs(·, dg) = hs(·, g)Ps(·, dg),0 ≤ s < T , then
Ñ· − ∫ ·

0 hs(·,G)ds is a G-local martingale, with G = F
N ∨ σ(G).

The process h(·,G) is usually called the information drift and it plays a crucial role in our
computations.

To conclude this section, we state the Clark–Ocone formula valid for the case the intensity
λ is a deterministic process. The operators Dt and Dt,1 refer to theMalliavin derivative in the
Brownian and Poisson cases respectively and we consider their generalizations to L2(P). We
refer to Theorem 13.28 in Di Nunno et al. (2009) for the details and a general background.

Proposition 2.5 Let λ be a deterministic process and G ∈ L2(P) be an FT -measurable
random variable, then the following representation holds,

G = E[G] +
∫ T

0
E[DtG|Ft ]dWt +

∫ T

0
E[Dt,1G|Ft ]d Ñt . (13)

3 Initial enlargements in a pure Poissonmarket

In this section, we deal with a market in which the source of the noise of the risky asset
is only the Poisson process, i.e., we assume that σt = 0, dt × dP-a.s. and the intensity
process λ is deterministic. Using the predictable representation property (PRP) enjoyed by
the compensated Poisson process, we know that for everyFN

T -measurable real valued random
variable G ∈ L2(P), there exists an F

N -predictable process ϕ ∈ L2(dt × dP) such that

G = E[G] +
∫ T

0
ϕsd Ñs, (14)

usually called the non-anticipative derivative of G, see Di Nunno (2007). Let B ∈ B(R) be
a subset in the Borel σ -algebra on R and consider the following PRP,

1{G∈B} = PG(B) +
∫ T

0
ϕs(B)d Ñs, (15)

where by the predictable process ϕ(B) = (ϕt (B) : 0 ≤ t ≤ T ) we denote the unique one
within the Hilbert space L2(dt × dP) that satisfies (15) for a fixed B.

In the next lemmawe prove thatϕ(·) is a vectormeasure, we refer toDiestel andUhl (1977)
for a general background on the vector measure theory. We make the following assumption,
for more details we refer to Definition 4 of Diestel and Uhl (1977).

Assumption 3.1 The vector measure ϕ is of bounded variation.

Remark 3.2 Assumption 3.1 is trivially satisfied for a bounded discrete random variable as
the variation of the vector measure ϕ is bounded above by a constant times the number of
values assumed by the random variable.

In the following lemmawe state theRadon-Nikodymderivative for theHilbert valued random
measure ϕ.

123



Annals of Operations Research (2024) 336:1289–1314 1295

Lemma 3.3 The set function B −→ ϕ(B), with B ∈ B(R), is a countably additive L2(dt ×
dP)-valued vector measure and there exists a set of processes ψ = (ψg, g ∈ Supp(G))

such that ψg = (ψ
g
t , 0 ≤ t ≤ T ) ∈ L1(PG) satisfying

ϕt (B) =
∫

B
ψ

g
t P

G(dg), B ⊂ R.

Proof Let {Bi }∞i=1 ⊂ B(R) be a disjoint sequence of subsets satisfying B = ∪∞
i=1Bi . Then

1{G∈B} = ∑∞
i=1 1{G∈Bi } P-a.s. in L2(dP) (see Example 3 in Diestel and Uhl (1977)). Then,

using the PRP we get

1{G∈B} =
∞∑

i=1

1{G∈Bi } = P(G ∈ B) +
∞∑

i=1

∫ T

0
ϕt (Bi )d Ñt =

∫ T

0

∞∑

i=1

ϕt (Bi )d Ñt ,

In the second equality we applied the σ -additivity of the probability measure P while in
the third one, thanks to ϕ(B) ∈ L2(dt × dP) for any B ∈ B(R), we used the stochastic
Fubini theorem, see Lemma A.1.1 in Mandrekar and Rüdiger (2015). By the uniqueness
of the representation we deduce that ϕ(B) = ∑∞

i=1 ϕ(Bi ) and we conclude that ϕ is a
L2(dt × dP)-vector measure. As ϕ � PG on σ(G), the last claim of the lemma follows by
Proposition 2.1 of Kakihara (2011). ��

Therefore, Lemma 3.3 guarantees that there exists a set of processesψg = (ψ
g
t , 0 ≤ t ≤ T )

with g ∈ Supp(G) such that the PRP given in (15) can be written as follows

1{G∈B} = PG(B) +
∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs . (16)

In particular, by assuming measurability on ψ in all variables, the following representation

1{G∈dg} = PG(dg) +
∫ T

0
ψ

g
s d Ñs PG(dg) (17)

holds true, where Fubini’s theorem has been applied. When G is purely atomic, the PRP (17)
reduces to

1{G=g} = P(G = g) +
∫ T

0
ψ

g
s d Ñs P(G = g). (18)

The following result provides the information drift in terms of the process ψ .

Lemma 3.4 Let G ∈ L2(P) be an FN
T -measurable random variable satisfying Assump-

tion 3.1, then the process γ G = (γ G
t , 0 ≤ t < T ) defined as

γ
g
t := ψ

g
t P

G(dg)

PG(dg|FN
t )

, g ∈ Supp(G) (19)

satisfies that Ñ· − ∫ ·
0 λsγ

G
s ds is a G-local martingale, provided it is well-defined. γ G is

referred to as the information drift.
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Proof Once we got (16), we proceed similarly to Proposition 2.4 but in the case of λ deter-
ministic. Let A ∈ Fs and B ∈ σ(G), then

E[1A1{G∈B}(Ñt − Ñs)] = E
[

1A

(

PG(B) +
∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs

)

(Ñt − Ñs)

]

= E
[

1A

∫ t

s

∫

B
ψ

g
u P

G(dg)dNu

]

= E
[

1A

∫ t

s

∫

B
λuγ

g
u PG(dg|Fu)du

]

= E
[

1A

∫ t

s
E[λuγ G

u 1{G∈B}|Fu]du
]

= E
[

1A1{G∈B}
∫ t

s
λuγ

G
u du

]

.

As the computation holds true for any A ∈ Fs, B ∈ σ(G) we conclude that

E[Ñt − Ñs |Gs] = E
[∫ t

s
λuγ

G
u du|Gs

]

and the result holds true. ��
In order to assure that the optimal strategy inG is well defined, in the sense of equation (7),

we are going to assume some conditions on the information drift γ G . In particular,

γ G
s > −1, dt × dP − a.s. (20)

A condition similar to (20) appears in Section 4.1 of Grorud (2000) where they study
Poisson processes in enlarged filtrations.

Corollary 3.5 If Supp(G) = {0, 1, . . . , n}, then

γ
g
t = ϕ

g
t
1{G=g} − E[1{G=g}|Ft ]

V [1{G=g}|Ft ] , ϕ
g
t = ψ

g
t P(G = g), g ∈ Supp(G).

In addition, if Supp(G) = {0, 1}, then

γ G
t = (−1)G+1ϕt

G − E[G|FN
t ]

V [G|FN
t ] . (21)

Proof The former statement comes directly from (19) while for the latter we use the fact
that G = 1{G=1} and, by the uniqueness of the representation, we conclude that ϕ = ϕ1 and
ϕ1 = −ϕ0, where by ϕ0 and ϕ1 we refer to the non-anticipative derivative of 1{G=0} and
1{G=1} respectively. Using that

E[G|FN
t ] = P(G = 1|FN

t ), V [G|FN
t ] = P(G = 1|FN

t )(1 − P(G = 1|FN
t )),

the result follows by applying (14) and (18). ��
Remark 3.6 Note that if Supp(G) = {0, 1} we can express

γ
g
t = (−1)g ϕt

P(G = 0|FN
t ) − g

, g ∈ {0, 1}, (22)

where ϕ is the non-anticipative derivative of the Bernoulli random variable G.

By using the Clark–Ocone formula we can deduce that ϕt = E[Dt,1G|FN
t ] dt × dP −

a.s., which allows to compute some interesting examples. Following Solé et al. (2007), we
introduce the following operator

�t,1G := G(ω(t,1)) − G(ω), (23)
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being ω(t,1) the modification of the trajectory ω by adding a new jump of size 1 at time t .
In Proposition 5.4 of Solé et al. (2007) it is proved that if �t,1G ∈ L2(dt × dP), then this
operator coincides with the usual Malliavin derivative, in the case of the Poisson process we
have that �t,1G = Dt,1G dt × dP − a.s.

In the next example, we apply Lemma 3.4 to an enlargement with a continuous random
variable. In particular, we consider that the informed agent knows when the Poisson process
jumps for the first time. Ernst and Rogers (2020, Problem 2) solved a similar problem via
the HJB equation.

Example 3.7 We consider the random time τ = inf{t≥ 0 : Nt = 1} which represents the
time of the first jump of the point process N and we define G = τ ∧ T . In this example, we
study the enlargement of filtration G ⊃ F induced by G and we compute the information
drift given by Lemma 3.4 via the PRP (17). We fix g ∈ [0, T ] and consider the following
Clark–Ocone formula

1{G≤g} = P(G ∈ dg) +
∫ T

0
E[Dt,11{G≤g}|Ft ]d Ñt .

Wecompute the integrand E[Dt,11{G≤g}|Ft ]byusing theoperator� for any (t, g) ∈ [0, T ]2,
defined in (23). Note that, when g < t , the perturbation is not modifying the indicator so
�t,11{G≤g} = 0. When g ≥ t , only on the set {τ(ω) > g} the operator is not null. In general,
it holds the following equation

�t,11{G≤g} = 1{t≤g}1{τ>g}.

Since the Clark–Ocone formula is linear, a limiting argument implies that

Dt,11{G∈dg} = −1{t<g}1{τ∈dg} + 1{t∈dg}1{τ>g}.

By (19), the information drift is

γ
g
t = −1{t<g}

P(τ ∈ dg|FN
t )

P(G ∈ dg|FN
t )

+ 1{t∈dg}
P(τ > g|FN

t )

P(G ∈ dg|FN
t )

, g ∈ [0, T ], (24)

where the first component considers the additional information before the jump and second
one the information at the time of the jump. Note that, by the first term appearing in (24), we
conclude that γ G

t does not satisfy assumption (20) as with positive probability γ G
t = −1.

This is a clear evidence that there is a strong arbitrage in this enlargement. In general, this is
an indication that the anticipative information may generate arbitrage opportunities.

Example 3.8 Let G = 1{NT ∈B} with B = [b1, b2], and b1, b2 ∈ N, b2 > b1 > 0. We
consider the initial enlargementG ⊃ F.We compute the processϕ as follows,�t,11{NT ∈B} =
1{NT +1∈B} − 1{NT ∈B}, which obviously satisfies the integrability condition and therefore

Dt,11{NT ∈B} = 1{NT =b1−1} − 1{NT =b2},

and computing the conditional expectation we obtain the Clark–Ocone formula

ϕt = E
[
Dt,11{NT ∈B}|FN

t

]
= P

(
NT = b1 − 1|FN

t

)
− P

(
NT = b2|FN

t

)

and the following PRP holds,

1{NT ∈B} = P(NT ∈ B) −
∫ T

0

(
P
(
NT = b2|FN

t

)
− P

(
NT = b1 − 1|FN

t

))
d Ñt , (25)
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giving the following formula for compensator

γ G
t = (−1)G

P
(
NT = b1 − 1|FN

t

)− P
(
NT = b2|FN

t

)

P(NT ∈ Bc|FN
t ) − G

. (26)

A direct computation shows that γ 1
t > −1, while for the case of G = 0, some simulations

are applied. In the particular case of λ = T = 1, the computation is direct.
As λ is deterministic, we can compute the probabilities as follows

P(Nt − Ns = n|FN
s ) = e−�(s,t) (�(s, t))n

n! , �(s, t) :=
∫ t

s
λudu, n ∈ N,

and the PRP simplifies to

1{NT ∈B} = P(NT ∈ B) −
∫ T

0
e−�(t,T )

(
(�(t, T ))b2−Nt

(b2 − Nt )! 1{Nt≤b2}

− (�(t, T ))b1−Nt−1

(b1 − Nt − 1)! 1{Nt<b1}
)

d Ñt

and the information drift is

γ G
t = (−1)Ge−�(t,T )

(�(t,T ))b1−Nt−1

(b1−Nt−1)! 1{Nt<b1} − (�(t,T ))b2−Nt

(b2−Nt )! 1{Nt≤b2}
P(NT ∈ Bc|FN

t ) − G
.

Note that, in the simplest case of time-homogeneous Poisson process with constant intensity
λ > 0, we have �(t, T ) = λ(T − t).

3.1 Additional expected logarithmic utility

Throughout this subsection, to assure that VF

T < ∞, we assume that the market coefficients
satisfy the following relation

0 < λt − μt − ρt

θt
, dt × dP − a.s. (27)

Working in the filtration F, if we take expectation in (5), then

E
[

ln
Xπ
T

x0

]

= E
[∫ T

0
ρs + πs(μs − ρs) + λs(ln(1 + πsθs) − πsθs) ds

]

,

with π ∈ A(F). Using that the maximum is attained in the strategy given by (11), the solution
of the optimal control problem is

V
F

T =
∫ T

0
E
[

ρs − μs − ρs

θs
+ λs ln

(
λs

λs − (μs − ρs)/θs

)]

ds, (28)

and by using (27) all the terms are well-defined. If π ∈ A(G), the Itô integral with respect
to Ñ is not necessary well-defined, but by Lemma 3.4 we can still use it by taking advantage
of the G-semimartingale decomposition. We define the process

N̂t := Ñt −
∫ t

0
λsγ

G
s ds , 0 ≤ t ≤ T ,
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which is aG-local martingale by Lemma 3.4. Then the dynamics of the wealth process satisfy
the following SDE,

dXπ
t

Xπ
t−

=
(
(1 − πt )ρt + πtμt + πtθtλtγ

G
t

)
dt + πtθt d N̂t , X0 = x0, (29)

and we have the following explicit solution

ln
Xπ
t

x0
=
∫ t

0

(
ρs + πs(μs − ρs) + λs(1 + γ G

s ) ln(1 + πsθs) − λsπsθs

)
ds

+
∫ t

0
ln(1 + πsθs)d N̂s .

As it is argued inAmendinger et al. (1998), by using the integrability condition of ln(1+πtθt ),
the stochastic integral satisfies

E
[∫ T

0
ln(1 + πsθs)d N̂s

]

= 0.

In addition, for any FN -predictable β = (βt , 0 ≤ t ≤ T ),

0 = E
[∫ t

0
βsd Ñs −

∫ t

0
βsd N̂s

]

= E
[∫ t

0
βsλsγ

G
s ds

]

(30)

provided that E
[∫ t

0 |βs |λsds
]

< +∞. Then,

E
[

ln
Xπ
T

x0

]

=
∫ T

0
E
[
ρs + πs(μs − ρs) + λs(1 + γ G

s ) ln(1 + πsθs) − λsπsθs

]
ds. (31)

In the next proposition we compute the optimal strategy for a G-agent.

Proposition 3.9 Let G ∈ L2(P) be an FN
T -measurable random variable satisfying Assump-

tion 3.1 with information drift γ G verifying (20) and assume σt = 0, θt �= 0 dt × dP a.s.
Then, the optimal portfolio πG solving the problem (8) with information flow G is given by

πG
t = μt − ρt

λtθ
2
t − θt (μt − ρt )

+ λtγ
G
t

λtθt − (μt − ρt )
. (32)

Proof We refer to the “Appendix A” for the details of the proof. ��
Remark 3.10 Note that the strategy (32) satisfies the admissibility condition (7) thanks to the
assumptions (20) and (27). In particular,

1 + πG
t θt = 1 + μt − ρt

λtθt − (μt − ρt )
+ λtθtγ

G
t

λtθt − (μt − ρt )

= λtθt (1 + γ G
t )

λtθt − (μt − ρt )
= λt (1 + γ G

t )

λt − (μt − ρt )/θt
> 0 dt × dP − a.s. (33)

The next theorem is one of the main results as it gives the difference of the expected gains
under logarithmic utility in a pure jump market of the additional information G ∈ FN

T .

Theorem 3.11 Let G ⊃ F be the initial enlargement with G ∈ L2(P) an FN
T -measurable

random variable satisfying Assumption 3.1 with information drift γ G verifying (20), then

	V
G

T =
∫ T

0
E
[
λs(1 + γ G

s ) ln
(
λs(1 + γ G

s )
)

− λs ln λs

]
ds ≥ 0. (34)

Proof We refer to the “Appendix A” for the details of the proof. ��
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4 Mixed Brownian–Poissonmarket

We extend the results of Sect. 3 to the case of Brownian–Poisson market, i.e., the dynamics
of the risky asset are driven by a Brownian motion and a compensated Poisson process and
the market coefficients satisfy σt , θt �= 0 dt × dP-a.s. We also maintain the assumption that
λ is deterministic in this section. Using the Clark–Ocone formula stated in (13), we can apply
the same representation formula for every FT -measurable random variable G ∈ L2(P),

G = E[G] +
∫ T

0
φsdWs +

∫ T

0
ϕsd Ñs,

where the processes φ and ϕ are related to theMalliavin derivative. Let B ∈ B(R) be a subset
and we consider the following PRP

1{G∈B} = PG(B) +
∫ T

0
φs(B)dWs +

∫ T

0
ϕs(B)d Ñs, (35)

given in Theorem 13.28 of Di Nunno et al. (2009). As before, we shall make the following
assumptions.

Assumption 4.1 The vector measures φ, ϕ are of bounded variation.

If we reason as in Remark 3.2, we can prove that the previous Assumption 4.1 is satisfied for
discrete random variables.

We fix g in the support of G, by reasoning as in the beginning of Sect. 3, see Lemma 3.3,
we conclude that there exist two F-adapted processes ζ g, ψg with g ∈ Supp(G) such that
the following PRP

1{G∈B} = PG(B) +
∫ T

0

∫

B
ζ
g
s PG(dg)dWs +

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs .

Provided the measurability of ζ and ψ in all variables, we can write the following represen-
tation

1{G∈dg} = PG(dg) +
∫ T

0
ζ
g
s dWs PG(dg) +

∫ T

0
ψ

g
s d Ñs PG(dg), (36)

with φ
g
t = ζ

g
t P(G = g) and ϕ

g
t = ψ

g
t P(G = g) in (36). when G is purely atomic. Note

that, by using our standing assumptions, we have achieved a representation usually assumed
in the literature, see Proposition 4 of Wright et al. (2018) for the Poisson case.

Lemma 4.2 Let G ∈ L2(P) be an FT -measurable random variable satisfying the Assump-
tion 4.1, then the processes αG and γ G defined as

α
g
t := ζ

g
t PG(dg)

PG(dg|Ft )
, γ

g
t := ψ

g
t P

G(dg)

PG(dg|Ft )
, 0 ≤ t < T , (37)

satisfy that W· − ∫ ·
0 αG

s ds and Ñ· − ∫ ·
0 λsγ

G
s ds are G-local martingales, provided they are

well-defined.
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Proof Taking into account that [W , Ñ ]Ft = 0, the proof of the following lemma follows from
the same lines as the proof of Lemma 3.4. Let A ∈ Fs and B ∈ σ(G), then

E[1A1{G∈B}(Ñt − Ñs)]

= E
[

1A

(

PG(B) +
∫ T

0

∫

B
ζ
g
s PG(dg)dWs +

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs

)

(Ñt − Ñs)

]

= E
[

1A

∫ t

s

∫

B
ψ

g
u P

G(dg)dNu

]

= E
[

1A

∫ t

s

∫

B
λuγ

g
u PG(dg|Fu)du

]

= E
[

1A1{G∈B}
∫ t

s
λuγ

G
u du

]

,

and the result follows true by mimicking the computation for the Brownian motion W . ��

As in the previous section, we keep assuming
γ G
s > −1 dt × dP-a.s.

in order to maintain that the stochastic G-intensity λ(1 + γ G) is positive.

Corollary 4.3 If Supp(G) = {0, 1, . . . , n}, then

α
g
t = φ

g
t
1{G=g} − E[1{G=g}|Ft ]

V [1{G=g}|Ft ] , γ
g
t = ϕ

g
t
1{G=g} − E[1{G=g}|Ft ]

V [1{G=g}|Ft ] ,

where we consider φ
g
t = ζ

g
t P(G = g) and ϕ

g
t = ψ

g
t P(G = g) with g ∈ Supp(G). In

addition, if Supp(G) = {0, 1}, then

αG
t = (−1)G+1φt

G − E[G|Ft ]
V [G|Ft ] , γ G

t = (−1)G+1ϕt
G − E[G|Ft ]

V [G|Ft ] . (38)

When we consider a G-agent playing with π ∈ A(G), the Itô integral fails for both the
Brownian motion and the Poisson process. Using Lemma 4.2 we can define the following
G-local martingales

Ŵt := Wt −
∫ t

0
αG
s ds, N̂t := Ñt −

∫ t

0
λsγ

G
s ds, 0 ≤ t ≤ T . (39)

The dynamics of the wealth process satisfy the following SDE,

dXπ
t

Xπ
t−

=
(
(1 − πt )ρt + πtμt + πtσtα

G
t + πtθtλtγ

G
t

)
dt + πtσt dŴt + πtθt d N̂t . (40)

To short the notation, we define the following terms

dGs := μs − ρs + αG
s σs − λsθs, cGs := λs(1 + γ G

s ),

ds := μs − ρs − λsθs, cs := λs .

Finally, using the integrability conditions, we can compute the expectation of the stochastic
integrals and we get,

E
[

ln
Xπ
T

x0

]

=
∫ T

0
E
[
ρs + πsd

G
s − 1

2
π2
s σ 2

s + cGs ln(1 + πsθs) − λsπsθs

]
ds.
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Proposition 4.4 The optimal strategy of the problem (8) with G ∈ L2(P) being an FT -
measurable random variable satisfying Assumption 4.1 such that the information drift γ G

verifies (20), information flow G and both Brownian and Poisson noises is given by,

πs = 1

2

(
dGs
σ 2
s

− 1

θs

)

+ sgn(θs)
1

2

√(
dGs
σ 2
s

+ 1

θs

)2

+ 4
cGs
σ 2
s

, 0 ≤ s ≤ T . (41)

Proof We refer to the “Appendix A” for the details of the proof. ��

Remark 4.5 If we denote by πW
s := (μs − ρs + αG

s σs)/σ
2
s the optimal strategy for the only

Brownian market with additional information then we can write the general strategy for the
Poisson-Brownian mixed market as

πs = 1

2

(

πW
s − λs

θs

σ 2
s

− 1

θs

)

+ sgn(θs)
1

2

√(

πW
s − λs

θs

σ 2
s

+ 1

θs

)2

+ 4λs
1 + γ G

s

σ 2
s

.

The expected logarithmic gains under G are computed in the following theorem.

Theorem 4.6 LetG ⊃ F be the initial enlargementwith G ∈ L2(P) being anFT -measurable
random variable satisfying Assumption 4.1 such that the information drift γ G verifies (20),
then

V
G

T =
∫ T

0
E
[
1

2

(
dGs
σs

)2

+ 1

2

dGs
σs

sgn(θs)

√(
dGs
σs

+ σs

θs

)2

+ 4cGs − 1

2

ds
θs

+ cGs ln cGs

+ λs ln

(

2
θ2s

σ 2
s

)

− cGs ln

⎛

⎝

√(
dGs θs

σ 2
s

+ 1

)2

+ 4
θ2s

σ 2
s
cGs −

(
dGs θs

σ 2
s

+ 1

)
⎞

⎠
]

ds. (42)

Proof We refer to the “Appendix A” for the details of the proof. ��

Corollary 4.7 Under the set-up of Theorem 4.6,

	V
G

T =
∫ T

0
E
[
1

2

(
αG
s

)2 + cGs ln cGs − λs ln λs + f Gs − fs + hs − hGs

]

ds (43)

where we define the following terms,

f (G)
s := 1

2

(
d(G)
s

σs

)

sgn(θs)

√√
√
√
(
d(G)
s

σs
+ σs

θs

)2

+ 4c(G)
s

h(G)
s := c(G)

s ln

⎛

⎜
⎝

√√
√
√
(
d(G)
s θs

σ 2
s

+ 1

)2

+ 4
θ2s

σ 2
s
c(G)
s −

(
d(G)
s θs

σ 2
s

+ 1

)
⎞

⎟
⎠ .

Remark 4.8 Corollary 4.7 can be seen as a generalization of the additional expected logarith-
mic utility in Amendinger et al. (1998) for the case of market with jumps. If we assume that
the information is only related to the Brownian motion, i.e., γ G = 0, the additional gains
can be easily computed. For the sake of simplicity, we also choose the market coefficients as
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ρ = μ, λ = σ = 1 and θs ∈ {−a, a}, for any a ∈ (0, 1), and we obtain

V
G

T − V
F

T =
∫ T

0
E

⎡

⎣1

2

(
αG
s

)2 + a

2

√(

1 − 1

a

)2

+ 4

+1

2

(
αG
s θs − a2

a

)√(
αG
s θs − a2

a
+ 1

θs

)2

+ 4 + ln 2a2

− ln

(√(
αG
s θs + 1 − a2

)2 + 4a2 − αG
s θs − 1 + a2

)]

ds. (44)

Accordingly, the additional expected logarithmic utility in the mixed-market when the infor-
mation is only related to the Poisson process, i.e. αG = 0, is

V
G

T − V
F

T =
∫ T

0
E

⎡

⎣(1 + γ G
s ) ln

(
1 + γ G

s

)
+ a

2

√(

1 − 1

a

)2

+ 4

−a

2

√(

−a + 1

θs

)2

+ 4(1 + γ G
s ) + ln 2a2

−(1 + γ G
s ) ln

(√(
1 + a2

)2 + 4a2γ G
s − 1 + a2

)]

ds, (45)

under the same simplification of the market coefficients.

Example 4.9 Let A = (−∞, a] and B = (−∞, b] be two half-bounded intervals. We define
the Bernoulli random variable as the following product indicator,

G = 1{WT ≤a}×{NT ≤b} = 1{WT ≤a}1{NT ≤b}.

According to León et al. (2002), thanks to the independence of the Brownian motion and
the Poisson process, the Malliavin derivatives in each direction can be easily computed as
follows,

DtG = 1{NT ≤b}Dt1{WT ≤a}, Dt,1G = 1{WT ≤a}Dt,11{NT ≤b}

so the conditional expectations are calculated as follows,

E [DtG|Ft ] = E
[
1{NT ≤b}Dt1{WT ≤a}|Ft

] = −E
[
1{NT ≤b}δa(WT )|Ft

]
,

where we refer to Section 5 of Bermin (2002) for the generalized Malliavin derivative of
the indicator function and the definition of the Dirac delta δa(·). In order to compute the
conditional expectation, we consider the following conditional distribution function,

F(x, y) := P(WT ≤ x, NT ≤ y|Ft ) =
∫ x

−∞

y∑

k=0

fWT |Wt (u)pNT |Nt (k)du,
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where fWT |Wt (u) denotes the density function of (WT |Wt ) and pNT |Nt (k) the probability
function of (NT |Nt ). Both of them are well-known, then,

E [DtG|Ft ] = −
∫ ∞

−∞

∞∑

k=0

fWT |Wt (u)pNT |Nt (k)1{k∈B}δa(u)du

= − fWT |Wt (a)

b∑

k=0

pNT |Nt (k)

= −
exp

(
− (a−Wt )

2

2(T−t)

)

√
2π(T − t)

b−Nt∑

k=0

e−�(t,T ) (�(t, T ))k

k! 1{Nt≤b}.

With respect to the Poisson component, we compute the conditional expectation of Dt,1G as
follows,

E
[
Dt,1G|Ft

] = E
[
1{WT ≤a}Dt,11{NT ≤b}|Ft

] = −E
[
1{WT ≤a}1{NT =b}|Ft

]

= −E
[
1{WT ≤a}×{NT =b}|Ft

] = −P (WT ≤ a, NT = b|Ft )

= −
⎛

⎝
∫ a

−∞

exp
(
− (x−Wt )

2

2(T−t)

)

√
2π(T − t)

dx

⎞

⎠
(

e−�(t,T ) (�(t, T ))b−Nt

(b − Nt )! 1{Nt≤b}
)

wherewe have used our Example 3.8, with b1 = 0, b2 = b, in order to compute theMalliavin
derivative. Then, the processes αG and γ G appearing in (38) are determined. Finally, we
deduce the PRP via Clark–Ocone formula,

1{WT ≤a}×{NT ≤b} = P(WT ≤ a)P(NT ≤ b)

−
∫ T

0

⎛

⎝
exp

(
− (a−Wt )

2

2(T−t)

)

√
2π(T − t)

⎞

⎠

(b−Nt∑

k=0

e−�(t,T ) (�(t, T ))k

k!

)

dWt

−
∫ T

0

⎛

⎝
∫ a−Wt

−∞

exp
(
− (x−a+Wt )

2

2(T−t)

)

√
2π(T − t)

dx

⎞

⎠
(

e−�(t,T ) (�(t, T ))b−Nt

(b − Nt )! 1{Nt≤b}
)

d Ñt .

Example 4.10 Let’s define

Ms,t := sup
s≤u≤t

Wu, Js,t := sup
s≤u≤t

Ñu, (46)

and Mt := M0,t and Jt := J0,t . To short the notation, we define the intervals A := (a1, a2]
and B = (b1, b2]. We consider the following example

G = 1{MT ∈A}×{JT ∈B} = 1{MT ∈A}1{JT ∈B} (47)

and we proceed as before.

DtG = 1{JT ∈B}Dt1{MT ∈A} = 1{JT ∈B}Dt
(
1{MT ≤a2} − 1{MT ≤a1}

)

= 1{JT ∈B}1{Mt≤Mt,T }
(−δa2(MT ) + δa1(MT )

)
,
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we refer to Bermin (2002) for a detailed explanation of theMalliavin derivative of the running
maximum MT . Thanks to the independence, we restrict our analysis to the following term

E
[
Dt1{MT ∈A}|Ft

] = E
[
1{Mt≤Mt,T }

(−δa2(Mt,T ) + δa1(Mt,T )
) |Ft

]

=
∫ +∞

0
1{Mt≤m}

(−δa2(m) + δa1(m)
)
f Mt (m)dm

= 1{Mt≤a1} f Mt (a1) − 1{Mt≤a2} f Mt (a2), (48)

being f Mt the density of the random variable Mt,T given Ft , which is equivalent to consider
the variable MT−t in the domain (Wt ,+∞), i.e.,

f Mt (m) = 2e− (m−Wt )
2

2(T−t)√
2π(T − t)

, m ≥ Wt .

On the other hand we compute the conditional expectation of the remained Poisson term,

E
[
1{JT ∈B}|Ft

] = P (JT ∈ B|Ft ) = P
(
max{Jt , Jt,T } ∈ B|Ft

)

= P
(
Jt + (Jt,T − Jt )

+ ∈ B|Ft
)

= P
(
(JT−t − bt )

+ ∈ (b1 − j, b2 − j]) | j=Jt ,

where bt := j − Ñt and using that Jt,T − Ñt is independent of Ft . We aim to compute

E
[
1{JT ∈B}|Ft

] = P
(
(JT−t − bt )

+ > b1 − j
) | j=Jt

− P
(
(JT−t − bt )

+ > b2 − j
) | j=Jt . (49)

Each one of the probabilities can be computed as

P
(
(JT−t − bt )

+ > b1 − j
) | j=Jt = 1{b1−Jt<0} + 1{b1−Jt≥0}FN

T−t (b1 − Ñt )

= 1 + 1{b1−Jt≥0}
(
FN
T−t (b1 − Ñt ) − 1

)

P
(
(JT−t − bt )

+ > b2 − j
) | j=Jt = 1{b2−Jt<0} + 1{b2−Jt≥0}FN

T−t (b2 − Ñt )

= 1 + 1{b2−Jt≥0}
(
FN
T−t (b2 − Ñt ) − 1

)

where the survival function is defined as FN
T−t (x) = P(JT−t > x) for every x ≥ 0. See

Kuznetsov (2010) for an explicit computation of the distribution of the running supremum.
In terms of the distribution function FN , (49) can be simplified as follows,

E
[
1{JT ∈B}|Ft

] = 1{b1−Jt≥0}
(
FN
T−t (b1 − Ñt ) − 1

)

− 1{b2−Jt≥0}
(
FN
T−t (b2 − Ñt ) − 1

)

= 1{b2−Jt≥0}FN
T−t (b2 − Ñt ) − 1{b1−Jt≥0}FN

T−t (b1 − Ñt ). (50)

Then, taking into account (48) and (50) the process αG is fully determined by (38). We
proceed in the same way in order to compute E[Dt,1G|Ft ]. Using the operator � given in
(23), we can compute the following Malliavin derivative

Dt,11{JT ∈B} = 1{max {Jt ,1+Jt,T }∈B} − 1{JT ∈B}
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where the second term has been calculated in (50). For the first one we have

E[1{max {Jt ,1+Jt,T }∈B}|Ft ] = P(max {Jt , 1 + Jt,T } ∈ B|Ft )

= 1{b2−Jt≥0}FN
T−t (b2 − Ñt − 1)

− 1{b1−Jt≥0}FN
T−t (b1 − Ñt − 1)

where we have omitted some steps as they were similar to ones shown before. Finally

E
[
1{MT ∈A}|Ft

] = 1{a2−Mt≥0}FW
T−t (a2 − Wt ) − 1{a1−Mt≥0}FW

T−t (a1 − Wt ), (51)

where in this case FW
t (y) = 2(1 − �(y/

√
t)) and again the process γ G is determined by

(38).

5 Stochastic intensity in Brownian–Poissonmarket

In this section, we assume that Ñ is an inhomogeneous Poisson process with stochastic
intensity. We introduce Fλ

t := σ(λs, s ≤ t) and we assume that Fλ
T ⊂ FT . We will look

at examples where Fλ
T ⊂ FW

T , allowing some dependence of λ with respect to W , however
more general cases may be considered, we prefer not to include them for easy of presentation.
In particular, following Section 8.4.2 of Jeanblanc et al. (2009), we assume that

E
[∫ T

0
φsdNs

]

= E
[∫ T

0
φsλsds

]

,

being φ any F ∨ F
λ-adapted process and Ñ· = N· − ∫ ·

0 λsds is an F ∨ F
λ-martingale. The

standing assumption of the section is that G satisfies the following representation for any
B ∈ σ(G).

Assumption 5.1

1{G∈B} = PG(B|Fλ
T ) +

∫ T

0

∫

B
ζ
g
s PG(dg)dWs +

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs, (52)

and there exist some F ∨ Fλ
T -adapted processes ᾱλ and γ̄ λ such that W· − ∫ ·

0 ᾱλ
s ds and

Ñ· − ∫ ·
0 γ̄ λ

s ds are F ∨ Fλ
T -martingales, provided ζ and ψ are as usual measurable in all

variables.

From the Assumption 5.1 we conclude that with α̂λ
t := E[ᾱλ

t |Ft ∨ Fλ
t ], 0 ≤ t ≤ T , the

process W· − ∫ ·
0 α̂λ

s ds is an F ∨ F
λ-martingale.

Next proposition gives the equivalent of Lemma 4.2 for the case of λ not adapted to the
Poisson filtration. Note that additional terms appear in the information drifts induced by the
unpredictability of λ.

Proposition 5.2 Let G ∈ L2(P) be an FT -measurable random variable satisfying Assump-
tion 5.1 and suppose that F ∨ F

λ ⊂ G holds. Then, for any (t, g) ∈ [0, T ) × Supp(G), we
define

α
g
t := ζ

g
t PG(dg)

PG(dg|Ft )
, α̃λ

t := ᾱλ
t P

G(dg|Fλ
T )

PG(dg|Ft ∨ Fλ
T )

,

γ
g
t := ψ

g
t P

G(dg)

PG(dg|Ft )
, γ̃ λ

t := γ̄ λ
t PG(dg|Fλ

T )

PG(dg|Ft ∨ Fλ
T )

, γ̂
g
t := ζ

g
t α̂λ

t P
G(dg)

PG(dg|Ft ∨ Fλ
t )

,
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such that the processes

W· −
∫ ·

0

(
αG
s + α̃λ

s

)
ds,

N· −
∫ ·

0

(

λv + γ̃ λ
v + λvγ

G
v − λvE

[∫ T

v

γ̂ G
u du|Gv

])

dv

areG-local martingales, provided the integrands, i.e. the information drifts, are well-defined.

Proof We refer to the “Appendix A” for the details of the proof. ��
Example 5.3 We consider a stochastic intensity given by

λt = 1 + 1{WT ≥0}, 0 ≤ t ≤ T .

We introduce G = 1{WT ≥0} and note that Fλ
t = Fλ

T = σ(G), for any 0 ≤ t ≤ T and
we conclude that α̂λ = ᾱλ = α̃λ and γ̃ λ = γ̄ = 0. Let’s define the initial enlargement
G = F ∨ σ(G). Then the representation (5.1) is reduced to

G = E[G|Fλ
T ]

so we conclude that ζ g = ψg = 0 and then γ G = γ̂ G = αG = 0. We use the well-known
PRP

1{WT ≥0} = P(WT ≥ 0) +
∫ T

0

1√
2π(T − t)

exp

(

− W 2
t

2(T − t)

)

dWt ,

from which we conclude, see Proposition 4.7 in D’Auria and Salmerón (2020) for details,
that

α̃λ
t = (−1)λ√

2π(T − t)
exp

(

− W 2
t

2(T − t)

)

, λ ∈ {1, 2},

and the information drifts appearing in Proposition 5.2 are determined. By concatenating the
information drifts, the technique can be easily generalized to the case when

λt = 1 + 1{Wtk ≥Wtk−1 }, tk−1 ≤ t ≤ tk, k ∈ 1, . . . , n,

Gk = 1{Wtk ≥Wtk−1 } and the enlargement G = F ∨ σ(G1, . . . ,Gn).

Conclusion

In this paper we show how to incorporate anticipative information in a filtration generated
by a Brownian motion and a Poisson process. We compute the compensators in a general
framework of additional information (see Lemma 4.2), and then we focus on the purely
atomic case to consider more explicit examples (see Corollary 4.3). In particular, we study
the case in which aG-agent knows if the final pair of random variables (WT , NT ) are within
a certain rectangular region, as well as the case that considers a similar type of information
about the pair of running maximums (MT , JT ), see Examples 4.9 and 4.10. We also study
the case when λ is not F-adapted in Sect. 5 and give an example when it is an anticipative
function of W , see Example 5.3.

When the dynamics of the risky asset are driven by the Poisson process only, we give the
exact value of the additional information in terms of an entropy similar to the corresponding
continuous case, see Theorem 3.11. Finally, we extend that formula for the mixed case in
Theorem 4.6 and Corollary 4.7.
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Appendix A

Proof of Proposition 3.9 We proceed by maximizing point-wise the expression given by (31).
After defining the integrand

I (π) := ρs + π(μs − ρs) + λs(1 + γ G
s ) ln(1 + πθs) − λsπθs

we look for each ω ∈ �, the strategy πG
s that solves for each time s ∈ [0, T ] the equation

0 = I ′(πG
s ). Therefore

0 = μs − ρs + λs(1 + γ G
s )θs

1 + πG
s θs

− λsθs

and solving for πG
s the result holds true since I ′′(πG

s ) < 0. ��

Proof of Theorem 3.11 By (31) we have

V
G

T =
∫ T

0
E
[
ρs + πG

s (μs − ρs) + λs(1 + γ G
s ) ln(1 + πG

s θs) − λsπ
G
s θs

]
ds, (53)

being πG the process defined in the Proposition 3.9. We compute the following terms

πG
s (μs − ρs − λsθs) = −λsγ

G
s − μs − ρs

θs

ln
(
1 + πG

s θs

)
= ln

(
λs(1 + γ G

s )

λs − (μs − ρs)/θs

)

.
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By substituting them in (53) we have the following expression,

V
G

T =
∫ T

0
E
[

ρs − λsγ
G
s − μs − ρs

θs
+ λs(1 + γ G

s ) ln

(
λs(1 + γ G

s )

λs − (μs − ρs)/θs

)]

ds

Finally, we compute the difference as follows

V
G

T − V
F

T =
∫ T

0
E
[

−λsγ
G
s + λs(1 + γ G

s ) ln

(
λs(1 + γ G

s )

λs − (μs − ρs)/θs

)

−λs ln

(
λs

λs − (μs − ρs)/θs

)]

ds

=
∫ T

0
E
[
−λsγ

G
s + λs(1 + γ G

s ) ln
(
1 + γ G

s

)]
ds ≥ 0

where we have applied (30) in order to simplify the expression as follows
∫ T

0
E
[

γ G
s ln

(
λs

λs − (μs − ρs)/θs

)]

ds = 0.

It can be checked that the function h(x, y) = −xy+x(1+y) ln(1+y) is positive when x > 0
and y > −1 and we get the non-negativity of the additional gains. Finally by adding and
subtracting the term λs(1+γ G

s ) ln λs and by applying (30) to the term−λsγ
G
s and λsγ

G
s ln λs

we get the result. ��
Proof of Proposition 4.4 We proceed by maximizing point-wise. We define

I (π) := ρs + πdGs − 1

2
π2σ 2

s + cGs ln(1 + πθs)

and we consider the first order condition 0 = I ′(π) as follows,

0 = dGs − πσ 2
s + cGs

θs

1 + πθs
. (54)

Then we derive the next equation,

0 = (
σ 2
s θs
)
π2 +

(
σ 2
s − θsd

G
s

)
π −

(
dGs + θsc

G
s

)

with the following solutions,

π± = θsdGs − σ 2
s ±

√(
θsdGs − σ 2

s

)2 + 4σ 2
s θs

(
dGs + θscGs

)

2σ 2
s θs

= 1

2

(
dGs
σ 2
s

− 1

θs

)

± sgn(θs)

2

√(
dGs
σ 2
s

+ 1

θs

)2

+ 4
cGs
σ 2
s

,

where in the last step we have used arithmetic computations. It can be verified that I ′′(0) < 0
and the pair of strategies π± are maximum if and only if they are admissible. Then we need
to check if the condition 1 + π±θs > 0 is satisfied. We rewrite the pair as follows,

1 + π±θs = 1

2

(
dGs θs

σ 2
s

+ 1

)

± 1

2

√(
dGs θs

σ 2
s

+ 1

)2

+ 4θ2s
cGs
σ 2
s

(55)

and we deduce that the unique optimal solution is π+ = (π+
t , 0 ≤ t ≤ T ),

then the result holds with the fact that I ′′(π+) < 0. ��
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Proof of Theorem 4.6 We recall the notation of dGs and cGs in the previous computation. Using
(54),

V
G

T =
∫ T

0
E
[
ρs + πsd

G
s − π2

s σ 2
s

2
+ cGs ln(1 + πsθs)

]
ds

=
∫ T

0
E
[
ρs + π2

s σ 2
s

2
− cGs

(
πsθs

1 + πsθs
+ ln

(
1

1 + πsθs

))]
ds

=
∫ T

0
E
[
ρs + π2

s σ 2
s

2
− cGs + cGs

(
1

1 + πsθs
− ln

(
1

1 + πsθs

))]
ds

Note that, using (55)

(πsσs)
2 = 1

2

(
dGs
σs

)2

+ 1

2

(
σs

θs

)2

+ cGs

+ 1

2

(
dGs
σs

− σs

θs

)

sgn(θs)

√(
dGs
σs

+ σs

θs

)2

+ 4cGs

cGs
1 + πsθs

= cGs
2

√(
dGs θs

σ 2
s

+ 1
)2 + 4 θ2s

σ 2
s
cGs −

(
dGs θs

σ 2
s

+ 1
)

θ2s
σ 2
s
cGs

= σ 2
s

2θ2s

⎛

⎝

√(
dGs θs

σ 2
s

+ 1

)2

+ 4
θ2s

σ 2
s
cGs −

(
dGs θs

σ 2
s

+ 1

)
⎞

⎠

= σs

2θs

⎛

⎝sgn(θs)

√(
dGs
σs

+ σs

θs

)2

+ 4cGs −
(
dGs
σs

+ σs

θs

)
⎞

⎠

−cGs ln

(
1

1 + πsθs

)

= cGs ln cGs + cGs ln

(

2
θ2s

σ 2
s

)

− cGs ln

⎛

⎝

√(
dGs θs

σ 2
s

+ 1

)2

+ 4
θ2s

σ 2
s
cGs −

(
dGs θs

σ 2
s

+ 1

)
⎞

⎠

By rearranging all the terms we get

V
G

T =
∫ T

0
E
[
1

2

(
dGs
σs

)2

+ 1

2

dGs
σs

sgn(θs)

√(
dGs
σs

+ σs

θs

)2

+ 4cGs − dGs
2θs

+ cGs ln cGs

+ cGs ln

(

2
θ2s

σ 2
s

)

− cGs ln

⎛

⎝

√(
dGs θs

σ 2
s

+ 1

)2

+ 4
θ2s

σ 2
s
cGs −

(
dGs θs

σ 2
s

+ 1

)
⎞

⎠
]

ds,

and by simplifying the terms − dGs
2θs

and cGs ln

(

2
θ2s

σ 2
s

)

because of (30), the result follows

true. ��
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Proof of Proposition 5.2 Let A ∈ Fs and B ∈ σ(G), then by (35) we have

E[1A1{G∈B}(Ñt − Ñs)]

= E
[

1A

(

PG(B|Fλ
T ) +

∫ T

0

∫

B
ζ
g
s PG(dg)dWs +

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs

)

(Ñt − Ñs)

]

.

For the first term we have

E
[
1APG(B|Fλ

T )(Ñt − Ñs)
]

= E
[
1APG(B|Fλ

T )E[(Ñt − Ñs)|Fs ∨ Fλ
T ]
]

= E
[

1A PG(B|Fλ
T )E[

∫ t

s
γ̄ λ
u du|Fs ∨ Fλ

T ]
]

= E
[

1A PG(B|Fλ
T )

∫ t

s
γ̄ λ
u du

]

= E
[

1A

∫ t

s

∫

B
γ̄ λ
u PG(dg|Fλ

T ) du

]

= E
[

1A

∫ t

s

∫

B
γ̃ λ
u PG(dg|Fu ∨ Fλ

T ) du

]

= E
[

1A

∫ t

s
E[1{G∈B}γ̃ λ

u |Fu ∨ Fλ
T ] du

]

= E
[

1A1{G∈B}
∫ t

s
γ̃ λ
u du

]

.

With respect to the second term we use the fact that Ŵ· := W· − ∫ ·
0 α̂G

u ds is a F ∨ F
λ-

martingale, then

E
[

1A

∫ T

0

∫

B
ζ
g
s PG(dg)dWs(Ñt − Ñs)

]

= E
[

1A

(∫ T

0

∫

B
ζ
g
u PG(dg)dŴu +

∫ T

0

∫

B
ζ
g
u PG(dg)̂αλ

udu

)

(Ñt − Ñs)

]

= E
[

1A

∫ T

0

∫

B
ζ
g
u PG(dg)̂αλ

udu (Ñt − Ñs)

]

,

where in the second equality we applied the Itô isometry for F ∨ F
λ-martingales. The latter

integral in [0, T ] is going to be split in [0, s], [s, t] and [t, T ]. To short the notation we
introduce the F-adapted process Y B

u := ∫
B ζ

g
u PG(dg), u ∈ [0, T ]. For the first interval we

have,

E
[

1A

∫ s

0
Y B
u α̂λ

udu (Ñt − Ñs)

]

= E
[∫ t

s
1A

∫ s

0
Y B
u α̂λ

udu d Ñv

]

= 0,

where we used that Ñ is a F ∨ F
λ martingale and it is the expectation of a well-define Itô

integral. For the interval [t, T ],

E
[

1A

∫ T

t
Y B
u α̂λ

udu (Ñt − Ñs)

]

= −E
[

1A

∫ t

s

∫ T

t
λvY

B
u α̂λ

u dudv

]

= −E
[

1A

∫ t

s

(∫ T

v

−
∫ t

v

)

λvY
B
u α̂λ

u dudv

]

(56)
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and we continue with the first integral.

E
[

1A

∫ t

s

∫ T

v

λvY
B
u α̂λ

u dudv

]

= E
[

1A

∫ t

s

∫ T

v

λv

∫

B
γ̂
g
u PG(dg|Fu,Fλ

u ) dudv

]

= E
[

1A

∫ t

s

∫ T

v

λvE[1{G∈B}γ̂ G
u |Fu,Fλ

u ] dudv

]

= E
[

1A1{G∈B}
∫ t

s

∫ T

v

λvγ̂
G
u dudv

]

.

Next we prove that the interval [s, t] simplifies with the second integral in (56). Indeed,

E
[

1A

∫ t

s
Y B
u α̂λ

udu (Ñt − Ñs)

]

= E
[

1A

∫ t

s

(∫ v

s
Y B
u α̂λ

udu +
∫ t

v

Y B
u α̂λ

udu

)

d Ñv

]

= E
[

1A

∫ t

s

∫ t

v

Y B
u α̂λ

udud Ñv

]

= E
[

1A

∫ t

s
(Ñu − Ñs)Y

B
u α̂λ

u du

]

= −E
[

1A

∫ t

s

∫ u

s
λvdvY B

u α̂λ
u du

]

= −E
[

1A

∫ t

s

∫ t

v

λvY
B
u α̂λ

u dudv

]

, (57)

where we used that Nu − Ns , s ≤ u, is F-adapted and for any F-adapted process X =
(Xt , 0 ≤ t ≤ T ) we have

0 = E
[∫ T

0
Xu dŴu −

∫ T

0
Xu dWu

]

= E
[∫ T

0
Xu α̂

λ
u du

]

.

We consider now

E
[

1A

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs(Ñt − Ñs)

]

= E
[

1A

∫ t

s

∫

B
ψ

g
u P

G(dg)dNu

]

= E
[

1A

∫ t

s

∫

B
λuγ

g
u PG(dg|Fu)du

]

= E
[

1A1{G∈B}
∫ t

s
λuγ

G
u du

]

,

where in the first equality we used the Itô isometry and the fact that [Ñ·]F∨Fλ = N·, in the
second onewe applied the definition of γ G while in the third onewe used the properties of the
conditional expectation operator. By putting together all the terms and taking Gt -conditional
expectation, we conclude that

N· −
∫ ·

0

(

λv + γ̃ λ
v + λvγ

G
v − λvE

[∫ T

v

γ̂ G
u du|Gv

])

dv

is a G-local martingale. To finish the proof, we sketch the computation in order to calculate
the information drift of W .

E[1A1{G∈B}(Wt − Ws)]

= E
[

1A

(

PG(B|Fλ
T ) +

∫ T

0

∫

B
ζ
g
s PG(dg)dWs +

∫ T

0

∫

B
ψ

g
s P

G(dg)d Ñs

)

(Wt − Ws)

]

.

For the case of the two first terms we have

E
[
1APG(B|Fλ

T )(Wt − Ws)
]

= E
[

1APG(B|Fλ
T )

∫ t

s
ᾱλ
udu

]

= E
[

1A1{G∈B}
∫ t

s
α̃λ
udu

]

,

E
[

1A

∫ T

0

∫

B
ζ
g
s PG(dg)dWs(Wt − Ws)

]

= E
[

1A1{G∈B}
∫ t

s
αG
u du

]

.
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By defining Z B
u := ∫

B ψ
g
s PG(dg), we proceed entirely as in the Poisson case.We omit some

details that can be consulted in the first part of the proof.

E
[

1A

∫ T

0
Z B

v d Ñv(Wt − Ws)

]

= E
[

1A

∫ T

0
Z B

v d Ñv

(

Ŵt − Ŵs +
∫ t

s
α̂λ
udu

)]

= E
[

1A

∫ T

0
Z B

v d Ñv

∫ t

s
α̂λ
udu

]

= E
[

1A

(∫ s

0
+
∫ t

s

)

Z B
v d Ñv

∫ t

s
α̂λ
udu

]

.

For the first integral we have

E
[

1A

∫ s

0
Z B

v d Ñv

∫ t

s
α̂λ
udu

]

= −E
[

1A

∫ t

s

(∫ u

0
−
∫ u

s

)

Z B
v λvα̂

λ
u dvdu

]

.

As in the Poisson case, the second integral is simplified with the [s, t] interval. So we deal
with the first one,

E
[

1A

∫ t

s

∫ u

0
Z B

v λvα̂
λ
u dvdu

]

= E
[

1A

∫ t

s

∫ u

0
E[1{G∈B}λvγ

G
v |Fv ]̂αλ

u dvdu

]

= 0.

So we conclude that the process

W· −
∫ ·

0

(
α̃λ

v + αG
v

)
dv

is a G-martingale and the result holds true. ��
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