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ABSTRACT. In this paper we consider the first eigenvalue A1 (Q2) of the Grushin
operator Ag := Ag, + |z1|?*Az, with Dirichlet boundary conditions on a
bounded domain © of R% = Ré1+d2 We prove that A1(92) admits a unique
minimizer in the class of domains with prescribed finite volume which are the
cartesian product of a set in R and a set in R%2, and that the minimizer is
the product of two balls QF C R4 and Q; C R42. Moreover, we provide a
lower bound for |Q7| and for A1(Q7 x Q3). Finally, we consider the limiting
problem as s tends to 0 and to +oo.
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1. INTRODUCTION

We consider the Grushin operator Ag in R? defined by

Ag = Ay, + |21 As, 5> 0,
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where d € N, d >2,di,dy €N, d =di +da, 1 € R", 5 € R®. Here z; and z9
denote the first d; and last do components of € R? and A, denotes the standard
Laplacian with respect to z;, i = 1, 2.

As one can immediately realize, Aq is not uniformly elliptic since it degenerates
to Ay, on the z-axis. In addition, if s € N, it can be written as

k
Ag=> X}
=1

where £ € N and {X;};=1,. % is a family of smooth vector ficlds satisfying the
Hoérmander condition, i.e. {X;};=1, . generates a Lie algebra of maximum rank at
any point (see Hormander [23]). However in general (i.e. for s € N) the Hérmander
condition fails to hold since the generating vector fields are not smooth.

The operator Ag has been independently introduced by Baouendi [I] and
Grushin [20, 2I]. Later on, it has been generalized and further studied by sev-
eral authors under different points of view. Here we mention, without the sake of
completeness, Franchi and Lanconelli [I5], [16] [I7] for the Holder regularity of weak
solutions and for the embedding of the associated Sobolev spaces, Garofalo and
Shen [19] for Carleman estimates and unique continuation results, D’Ambrosio
[9] for Hardy inequalities, Thuy and Tri [3I] and Kogoj and Lanconelli [24] for
semilinear problems. Finally we mention Chen and Chen [], Chen, Chen, Duan
and Xu [5], Chen, Chen and Li [6] and Chen and Luo [7] for asymptotic bounds
for eigenvalues.

It is well known that the spectrum of the problem

{Agu = A\u in Q,

1.1
(1) u=20 on 01},

in a bounded domain (i.e. a connected open set) Q of R? is made of eigenvalues
of finite multiplicity that can be arranged in a divergent sequence:

0<M(Q) < < N(Q) < S oo

In the present paper we are interested in moving some steps toward the under-
standing of the minimization problem of the first eigenvalue A (£2) among domains
? with prescribed finite volume. Since the seminal works of Faber [I3] and Krahn
[25], it is known that the ball minimizes the first eigenvalue of the Dirichlet Lapla-
cian among all the domains with a fixed volume (see also Henrot [22] for a mono-
graph on optimization problems for eigenvalues of elliptic operators). The same
problem for degenerate operators is far from being understood and, to the best of
our knowledge, no conclusive results for the optimization of Grushin eigenvalues
are available in the literature, not even for the minimization of the first eigenvalue.
In particular, an optimal shape for the first eigenvalue is not even conjectured, nei-
ther in the simplest case d = 2, s = 1, and in general it is not an euclidean ball
(see Section

It is worth mentioning that in [27] the authors showed that, when s € N, the
symmetric functions of the eigenvalues {\,}nen depend real analytically upon
suitable perturbations of the domain and proved an explicit Hadamard-type for-
mula for their shape differential. This formula is then used to characterize critical
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domains under isovolumetric perturbations via an overdetermined problem, which
for the first eigenvalue A\; with normalized eigenfunction u; consists of finding the
domains such that the following problem is satisfied:

—Agul = )\1U1 in Q,
(1.2) up =0 on 012,
Vuy - (Vay, |21]°vs,) = const. on 0f.

Here above, v = (vy,, vs,) denotes the outer unit normal field to Q. To the best
of our knowledge, the understanding of this kind of overdetermined problems for
degenerate operators is at the moment limited and thus no information on critical
domains can be extracted from them.

Our point of view in order to give a first and partial answer to the problem of
minimizing the first Grushin eigenvalue is to consider the case in which 2 is the
cartesian product of two bounded domains Q7 C R%, Qo C R%. Thatis for V > 0
fixed, we set

AV) = {lenz 1 Qp CRY,Qy C R, Qy,Q, bounded domains, |Q1]Qs] = v},

and we consider the minimization problem

1.3 in A\ (Q).
(1.3) lin 1(Q)

By separation of variables, problem decouples into two problems. The first
one is a problem for the standard Laplacian in R% and the second one for the
Schrédinger operator with potential p|xp|?* in R% | where p is the coupling con-
stant. Our main result shows that problem admits a unique minimizer which
is the product of two balls 2} and €3 in R% and R, respectively (see Theorem
3.10). The main tool of the uniqueness proof relies on a differential inequality
involving the second derivative of the first Schrodinger eigenvalue with respect to
the coupling constant (see Proposition . As a further result, we provide some
information on the localization of this unique minimum by proving a lower bound
for |Q25], which in turn implies a lower bound for A;(Qf x Q%) (see Propositions
and . Then, we study the asymptotic behavior of the problem when
s — 0 and s — +oo and we deduce that our lower bounds are sharp in these
limits. Finally, we provide some numerical computations in the planar case, that
is for d; = dy = 1. We first numerically solve the minimization problem for some
value of s > 0 and then we also compute the first eigenvalue in the case of balls in
R? and we compare it with the first eigenvalue on rectangles.

The paper is organized as follows: Section |2 contains some preliminaries on the
eigenvalue problem for the Grushin operator A¢g. In Section [3| we prove our main
results on the minimization problem on cartesian product domains. In particular
we prove that the minimization problem for the first Grushin eigenvalue admits a
unique minimum, we provide some information on the localization of this minimum
proving a lower bound, and we study the behavior of the problem when s — 0 and
s — +o0. Finally, in Section [4] we present the numerical computations.
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2. PRELIMINARIES ON THE EIGENVALUE PROBLEM

Let Q be a bounded domain in R?. We retain the standard notation for
the Lebesgue space L?(Q) of real-valued square integrable functions. We de-
note by HL(Q) the space of functions in L?(Q2) such that V,,u € (L?(Q))% and
|21]*Vz,u € (L2(Q))%. The space HA(Q) is a Hilbert space with the following
scalar product:

(U, 0)g2 = (U, V)2 + (VU Vg, 0)2 + (|21]° Vi, [21]°Ve,v)e Yu,v € Hé;(Q)

Here (-, -)2 denotes the standard scalar product in L?(£2). Moreover, if u € H} ()
we set

(2.1) Veu = (Vi u, |21*Va,u)

and we refer to Vgu as the Grushin gradient of u. We denote by Hg ,(Q) the
closure of C2°(Q) in HL (). Analogs of the Rellich-Kondrachov embedding the-
orem and of the Poincaré inequality hold in H(lm(ﬂ). That is, the following
theorems hold (for a proof we refer to Franchi and Serapioni [I8, Thm. 4.6] and
to D’Ambrosio [9, Thm. 3.7], respectively).

Theorem 2.1 (Rellich-Kondrachov). Let Q be a bounded domain in R?. Then
the space He o(Q) is compactly embedded in L*(52).

Theorem 2.2 (Poincaré inequality). Let 2 be a bounded domain in R. Then
there exists C > 0 such that

lullr2) < ClIVeull(rz@pye  Yu € Hg o(€).

We consider the eigenvalue problem for the Grushin operator with Dirichlet
boundary conditions:

(2.2) {Agu = A\u in Q,

u=20 on 0f),

in the unknowns A (the eigenvalue) and u (the eigenfunction). Problem (2.2) is
understood in the weak sense as follows:

(2.3) / Vau-Vagudr = )\/ wv dx Yo € H&O(Q)
Q Q

in the unknowns A € R and u € H} (). By Theor Theorem and

by a standard procedure in spectral theory, problem (2.3) can be recast as an
eigenvalue problem for a compact self-adjoint operator in L?(2). In particular,
the eigenvalues of equation have finite multiplicity and can be represented
by means of a divergent sequence:

Moreover, by the min-max principle (see Davies [10], §4.5]), the following varia-

tional characterization holds:

Vaul? dz
Aj(©)= min max M
BECHL (@) uel [ u?dx
dimE—=; “#0

Vj e N.
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We note that by Monticelli and Payne [29, Thm. 6.4] there exists a non-negative
eigenfunction u; corresponding to the first eigenvalue A1 (£2). In addition, A\; () is
known to be simple if s € N and € is connected and non-characteristic (see Chen
and Chen [4, Prop. A.2]) or if Q\ {1 = 0} is connected (see Monticelli and Payne
[29, Thm. 6.4]).

3. THE EIGENVALUE PROBLEM IN CARTESIAN PRODUCT DOMAINS

Here we consider the eigenvalue problem for the Dirichlet Grushin operator (2.2))
in cartesian product domains, so that it is possible to proceed by separation of
variables. Let ©; C R%, Qy C R% be two bounded domains and let © = Qq x Qs.
We claim that the solutions u of problem ([2.2)) can be written as

U(Il,zg) = f(xl)g(xg) (l‘l,Ig) € Q1 x Q.

In this case, becomes
—9(x2) Ay, f(@1) = 21 ]* f(21) Asyg(a2) = Af (1) g(w2) (21, 22) € 1 x (o,
which is equivalent to
g(@2) (—Ag, f(z1) = Af(21)) = [a1[** f(21)Agyg(w2)  (w1,22) € Q1 X Q.

Separating the equations and imposing the boundary conditions we get that for
some p > 0 one has

(3.1) —Agy9 =g in g,
g=20 on 08q,
and
(32) 7A$1f + :u’|x1|28f = )‘f in Qla
f=0 on 0.

The eigenvalue problem is then splitted into two coupled eigenvalue problems,
one for the Laplacian and the other for the Schrédinger operator with potential
plx1]?. As it is well-known, problem (3.1)) admits a sequence of eigenvalues

0 < p1(Q2) < p2(Q2) < - < py(Q) <--- S oo,

with corresponding eigenfunctions {g;}jen orthonormal in L?(€2;), whereas prob-
lem (3.2, for each fixed p > 0, admits a sequence of eigenvalues

0< El(:uvgl) < EZ(MQl) <. < Ej(:u791) < /l +o00,
with eigenfunctions {f}'} jen orthonormal in L?(2;). We note that by the min-max
principle, the first eigenvalue E(u, 1) of problem (3.2) is given by
Vo, fI? + plxe[?5 f2 dx
Ei(p, ) = min le' ] 2#‘ =7 1.
feHA(Q)\{0} Jo, 2 dz
Here above, and throughout the paper, Hg () denotes the closure of C2°({))

1
with respect to the norm (|| f[|3 + [|[Va, fII3)? of H'(4). Therefore, a family
of eigenvalues is given by {E; (uk(Qg),Ql)}j)keN with associated eigenfunctions
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hr (Q2) }
{g/cf ; Jren
a complete system in L?(Q; x ), and then

{An () nen = { B (1 (Q2), ) Y pen

. The claim is proved since we observe that {gkffk(ﬂz)} e is
J,ke

and

Jo, Ve, fI2 4 pa (2) |1 25 f2 day
3.3) A(Q) = By (11 (Q2), Q1) = . ,
(3.3) A() 1 (11 (Q2), 1) feHér?é?)\{O} Jo 17 day

Remark 3.1. Since the first eigenvalue of the Dirichlet Laplacian —A,, on 22 and
the first eigenvalue of the Dirichlet Schrodinger operator —A,, + ulx1]? on O
are well-known to be simple, it is immediately seen that in the case of a cartesian
product domain Q = Q; x €, ; € R% and Qy C R, the first eigenvalue \; (Q) is
simple without requiring any additional assumption. However, as already pointed
out, the simplicity of the first Grushin eigenvalue it is known to hold without
requiring €) to be a cartesian product domain under some additional assumptions
(see Monticelli and Payne [29, Thm. 6.4], Chen and Chen [, Prop. A.2]).

3.1. Existence of a minimum. We now start to consider the minimization prob-
lem for the first eigenvalue in cartesian product domains with a prescribed volume.
That is we fix V' > 0 and we consider the minimization problem

3.4 in A (Q
(3.4) ol 1(92),

where

A(V) = {Ql x Qi Q; TR, Qy C R, Qy, Qs bounded domains, 121]|Q2] = V}.

Remark 3.2. As it is well-known, if one removes a zero capacity set from either
Q1 or s, the eigenvalues of problems and remain the same. Thus here
in this paper we do not allow this kind of irregularity in the domains and when
speaking of uniqueness of minimizers we always mean uniqueness up to sets of zero
capacity (see also Henrot [22], §3.2]).

Remark 3.3. Instead of considering the minimization problem ([3.4)), one can for
instance consider the more simple problem of minimizing A;(Q2) in the class of
cartesian products with each product domain having prescribed volume, that is in

B(Vi,Va) = {91 X QO CRY.Q, C R Q). Q) bounded domains,
|| = Vi, || = Vz}

for some V;,V, > 0. Since the ball in R%* with volume V3, which we denote by
By (V43), is the unique minimizer of the first eigenvalue of the Dirichlet Laplacian
among all the domains with volume V, (up to translation), it minimizes p;(€s).
Accordingly, in order to minimize A1(Q) for Q@ = Q; x Qy € B(V;, V3), we must
have

QQ = BQ(VQ)
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Also, by Benguria, Linde and Loewe [2, Thm. 3.7 and Thm 4.2] the ball B;(V;)
in R% centered at zero with volume V; is the unique minimizer of the first eigen-
value of the Schroedinger operator with potential p;(€2)|x|?*. Thus, the unique
minimum of A;(Q) in B(Vy, V4) is attained by

Q = B1(V1) x By(Va),

up to a translation of By(V3). As one could expect, the minimization problem in
B(V1, V) is trivial and not general enough to capture the anisotropic nature of the
problem.

We then return to the minimization problem (3.4]). Let = Q; x Qo € A(V).
We set

Q.‘H

Q=75 Q; j=12

so that
Q=1 j=1,2

Let B; be the ball in R% centered at zero with |B1| = 1 and By a ball in R% with
|B2| = 1. Then

~ _ 2 ~ _ 2 2 _2 2
p1(Q2) = p1(Q2)[Q2| ™% = py (Q2) V"% [ QT2 > py (B2) V'™ 32 Q] %
By equality (3.3) we have

A1(€2)
) fQI |V, fI?dzy + p1(Q2) le 21| 2 day
= inf 5
FEHE(Q1)\{0} Jo, f?dan
~ Vz 2d.%' B T 2s de
_ inf ‘erﬁ le | 12f| 1 +N1(Q2)V7%\Ql|%+% le | 1|2f 1
FEHY(@)\{0} Ja, 2 dz Jo, F2dz
N Vz de . 2s de
>t o Ja, | 12f| LBV B Ja, | 1\2f 1
FEH(@)\{0} Ja, f? dx Ja, 12 d
_ Vz 2d . [~ 2s zd
= || inf ‘fﬂl | 12f| = +pn (Bo)V s | F B Jo, I zf =
rerg@oy \ Jq, f2dr Ja, 12 dxy

2 _2 l_}rl_’_ﬁ ~
= || By (ja (B)V Q| 0y)
> |0 B, (ul(Bz)V’%|Ql|%+%+%f,Bl) ,

The previous inequality gives a lower bound for the first Grushin eigenvalue in
the case of cartesian product domains. We note that the lower bound is attained
if and only if Q is the product of two balls, the first one being centered at zero.
Thus, in order to minimize the first eigenvalue A1(Q2) for Q € A(V) we need to
find, if exists, the volume |©2;| which minimizes the quantity

7 H By (u (Bo)V e | By )
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In other words, we need to find the minimizing ¢ € (0, +00) of the function
_2 -2 ,2 4.2 12
(3.5) t™ N E (/,Ll(Bg)V dp gy T Ty ,Bl) .
For the sake of simplicity and clarity in the computations, by using the substitution
(3.6) o=0o(t) = (Bo)V Ttd T E >0,

we transform the minimization problem for A (£2) into studying the minimizers of
d.

(3.7) F(0) = o TF09%G By (0,B;) o € (0,+00).

We are able to prove the following concerning the existence of a minimum for F'.

Proposition 3.4. The function F' admits a minimum in (0, +00).

Proof. Since the first Schrodinger eigenvalue E (o, By) is simple for all o € (0, +00),
by classical analytic perturbation theory (see Rellich [32] and Nagy [30]) it can
be easily seen that F is an analytic function of o € (0, +00), and then in particu-
lar it is smooth. A more up do date formulation of abstract perturbation results
can be found for example in Lamberti and Lanza de Cristoforis [26] Thm. 2.27].
Moreover, we claim that

1) liIno’~>0Jr F(U) = 00,

i) limg—s 400 F(0) = +00.
Statements i), ii) would immediately imply the validity of the lemma. Statement i)
holds because E; (o, B1) converges to the first eigenvalue of the Dirichlet Laplacian
in By, which is strictly positive, when o tends to zero.

Next, we consider statement ii). Let f, be an eigenfunction corresponding to

E; (0, By). We still denote by f, its extension by zero in R%. We note that

(3.8) Ei (o, By) :/ |Vx1fg\2da:1+a/ |z1]%% f2 day
Bl Bl
:/ Ve, fol? day +U/ lz1]%% £2 day
R41 Rd1
2 E1 (0’, ]Rdl)

— 0T By (1L,R%).
We have denoted by FE; (a, Rdl) the first eigenvalue of the Schrédinger operator
—A,, +o]z1)?* in R%. The inequality in (3.8)) holds because also E; (U, Rdl) can
be variationally characterized as
Vi, fI? + olx1]?® f2 dx
(3.9) E (o, Rdl) = min Jer [V ]| 5 1|7/ da
feH}®RM)\{0} Jpar [2dan

and H}(Q) C H}(R%). Moreover, the last equality in (3.8) follows by a simple
rescaling argument. Accordingly

____da o da 1 d
F(o) = o @F00®% By (0, By) > o @ir0iod T 15 By (1,R™)

Since J ) J
- 2 - = ! >0
di+(1+s)de 14+4s (di+({1+s)da)(1+5)
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statement ii) holds. O

By the previous discussion and by Proposition we deduce that the first
Grushin eigenvalue admits at least a minimum in the class of cartesian product
domains. Namely, we have the following.

Proposition 3.5. Let V > 0. There exists Q* = Qf x Q5 € A(V) such that
A1(2%) < A (9Q) Ve AV).
Moreover, 0f C R, Q5 C R are two balls, the first one being centered in zero.

Our next step is to show that such a minimum is unique (up to translation of
5). To this aim, we need to develop some preliminary results.

3.2. The Schrodinger eigenvalue problem in the ball. In this section we
prove a differential inequality involving the second derivative of the first Schrodinger
eigenvalue of in a ball with respect to the coupling constant .

Let R > 0, u > 0. For the sake of brevity we set

El (M, R) = El (,LL, B(07 R))’

where F; (u, B(0, R)) is the first eigenvalue of problem (3.2) in B(0,R) = {z; €
R% : |z1] < R}. By using spherical coordinates, since the first eigenfunction is
radial, problem (3.2)) for E4(p, R) can be written as

(3.10) —v" — —dlr_lv’ + ur?sv = Ey(u, R)v on (0, R),
v(R) =0.
Let v be the unique non-negative solution of ([3.10]) normalized in L? ((07 R),r% _1dr).

Remark 3.6. As already noted in the proof of Proposition since E1(u, R) is
simple, classical analytic perturbation theory implies that F;(u, R) and its cor-
responding eigenfunction v depend analytically upon g > 0. Accordingly, the
computations performed in this section involving the derivatives of E;(u, R) and
v with respect to p are justified.

As a first step, we need some integral identities.

Lemma 3.7. Let R > 0, p > 0. Let v be the unique non-negative solution of
(3.10) normalized in L2((0,R),7°d1_1dr).

R R
(3.11) / (') 2rh = dr + u/ r2th=ly? gy = By (u, R),
0 0
R Rdl R
(3.12) / W) rh=tdr — ——(v)3(R) = s,u/ r2stdi=1y2 gy
0 2 0
R
(3.13) Ei(u, R) := a%El (1, R) = / p2etdi=1y2 gy,
0

Proof. In order to prove (3.11) it suffices to multiply the equation (3.10) by 7% ~tv
and integrate by parts. The identity (3.12)) follows by multiplying (3.10)) by r?v’,

integrating by parts and using (3.11)). Finally, equality (3.13) follows by classical
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abstract results in perturbation theory (see, e.g., Lamberti and Lanza de Cristo-
foris [26, Theorem 2.30]) or, with the notation of quantum mechanics, by the
Hellmann—Feynman Theorem (see Feynman [14]). O

By using the identities (3.11)), (3.12) and (3.13)) of the previous proposition, we
can recover the following differential identity for E;(u, R):

R% .
(3.14) Ev(p, R) = == (')*(R) = p(1+ ) Ea (p, R).
We set
o= 2 En( R)~—a—2E( R)
Ca 8/.t ’ 1M Ca 8,&2 1K, .
Then by taking the derivative of (3.14) with respect to u we get
(3.15) — R"v(R)¥'(R) = sE1 (11, R) + pu(1 + 8)Eq (1, R).

Our aim is to understand the sign of the right hand side of the previous equality,
and we have the following.

Proposition 3.8. Let R >0, u > 0. Then
sEy(u, R) + p(1+ 8)Ey (1, R) > 0.

Proof. Let v be the unique non-negative solution of problem ([3.10) normalized in
Lz(((), R), rdl*ldr). We note that, since v is positive and v(R) = 0, then

V(R) <0,  #(R)=0.

Moreover, by taking the p-derivative of the normalization condition, we deduce

that
R
/ r Lo dr =0
0

and accordingly ¥ changes sign at least once. We will show that ¢ changes sign
only once in (0, R), and that ¢'(R) > 0. Differentiating (3.10]) with respect to p
we obtain

dy—1 .
(3.16) —1" — 171'/ + pr?*o 4+ r*v = By (u, R)v + E1(u, )0 in (0, R).

By equations (3.10]) and (3.16)) one gets that
(rdl_l(i/v — qbv'))/ = (rQS_dl_l — E1(u, R)rdl_l) v>  in (0, R),
that is
P =1 (il — ) = / (1~ Ba(u. ) 1 (1) de in (0, B)
0
We set

n(r) ::/ (t25 - El(u,R)) th=l2(t)ydt Vr € [0, R].
0

As one can immediately realize, 7(0) = n(R) = 0. Moreover, since t4~102(t) is

non-negative for ¢ € (0, R) and (t?* — Ey(u, R)) is strictly increasing for ¢ € (0, R)

and negative at ¢ = 0, then n has exactly one critical point and

n(r) <0 vr € (0, R).
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This implies that 2 is strictly decreasing in (0, R) since
0\’ dv—v o 0. R)
- = 1n
v ’[]2 ) )

and accordingly © can change sign only once and ©'(R) > 0. We have then proved
that

—RM/'(R)V'(R) > 0,
and the statement follows by equality (3.15]). O

3.3. Uniqueness of the minimum. We are now ready to prove the uniqueness
of the minimum of problem ([3.4) by means of the following.

Proposition 3.9. The function F defined in (3.7) has a unique minimum in
(0, 400).
Proof. We take the derivative of F. Let ¢ > 0, then

F'(o) Tl I dz E1 (0, B1) + 0B (0, By)
- dl +( 1 y D1 1 y D1 .

1+ S)dg

By Proposition m, I’ has at least a zero, i.e. a critical point of F'. Accordingly,
let ¢* > 0 be a critical point of F'. Computing the second derivative of F in ¢*
one gets
F//(G_*)

= (o) TFEREG !

do ) . B
-—F—F—F (", B E,(c*,B *Ey(0*,B
( e ”)

_ (o) mFOEm !

dl * S . * * T *
((d1+(1+s)d2)(1+s)El (0 B+ B (0n By o7 B (o ’B”)'

By identity (3.13) on the p-derivative of Ej(u, R), we have that
El (J*,Bl) > 0.

Moreover, by Proposition [3.8

1j_SE1 (0%, B1) + 0" Ey (0%, By) > 0.
Thus
F"(c*) > 0.
Since F' is smooth in (0,+00) and all its critical points have positive second de-
rivative, then F' has only one critical point which is a minimum. O

By Proposition [3.5| and Proposition we can immediately deduce that the
first Grushin eigenvalue admits a unique minimum.
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Theorem 3.10. Let V > 0. There exists a unique set Q* = Qf x Q5 in A(V) (up
to translations in R ) such that

A1(2%) < A (Q) VQ e A(V).
Moreover, Q; C R4, Q5 C R% are two balls, the first one being centered in zero.

3.4. Localizing the minimum. In this section we obtain some information on
the localization of the minimum we proved to be unique in the last section. Let
B be the ball in R% centered in zero with |B;| = 1 and By a ball in R% with
|B2| = 1. Moreover, we denote by 74 the volume of the d—dimensional unit ball,
that is

iR

i
ri+¢)
Let o > 0 and let f, be an eigenfunction corresponding to F; (o, By) normalized
in L2(B;). We write more explicitly F'(c). Since

d

B @B = [ Pes2dn,
ag B

Td ‘=

then
F'(o)
(=

dy + (1 + s)ds
_ ( d

dy 4 2 2s p2
— g 4+0+s)dy (/ Vi, fol®dr + 0’/ x p dx )
dl (1 S)dg B, ‘ 1f | ! B1 | 1‘ f '

d
i
B1

42 4 do / 2 d1 + sdo / 25 42
_ di+(1+s)d S S \V4 A d oAl one s d )
o @ 2 dy + (14 s)ds ( B Ve, fol” dry & o 5, |z1|** f5 dxy

Let 0* > 0 be the unique minimum point of F, then F’'(¢*) = 0. That is

d d
(3.17) / Vo, fore - %a*/ |22 f2. dy = 0.
Bl 2 B1
We note that

d d
o TFOOG LB (0, By) — ¢ BiFGOn / |21 |2 £2 dx1>

1

2 dl‘l

/ Vo fou P > pa (B fonl2 ) = 11 (B),

1

being 111 (B1) be the first Dirichlet Laplacian eigenvalue on the ball B; C R%, and

—2s _2s
[ s e < o, B g :
By

2 _ 1
L2(By) = Tay s

a1
where we have used the fact that |z1] < ledl for all 1 € By. Thus

di +sdy s dy+sdy -3
/ |V foul? dy — %U / |1|** f2. dzy > pn (Br) — %led o
B4 2 B4 2
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Since for all o € (0, 4+00) such that

one has
o >0,

In other words, recalling the substitution (3.6)), we have proved the following lower
bound.

Proposition 3.11. Let V > 0. Let QF CR%, Q5 CR% be the two balls given by
Theorem [310. Then

dydy

2 dy pp(By),,2 )\ 2@t

318 Q* > dli Vd .
( ) | 1|_ (le d1+5d2M1(B2) 2

By the lower bound (3.18]) of the previous proposition it is also possible to
provide a lower bound on minge 4(vy A1(£2).

Proposition 3.12. Let V > 0. Let Qf C R%4, Qf C R% be the two balls given by
Theorem [310. Then
(3.19)

A7 x 3)

da u1(31)><s+1><df+1<1+m2>
dy + sdy pu1(B2) '

Proof. Let o* be the unique minimizer of F. By the inequality (see (3.8)):

2s
> i1 (By) 1V mEOE By (1, RN (Toldl1

Ey(0*,By) > (0")"TEy(1,R") Vo> 0.
Then, recalling the substitutions made in (3.5)), (3.6, (3.7) and using the lower

bound (3.18)), we have that the lower bound (3.19) holds and the statement is
proved. (Il

3.5. Limits as s — 07 and s — 4o0o. In this section we study the behavior of
the minimization problem when the parameter s tends either to 0 or to +co. We
use the notation introduced in Section In particular, B; denotes the ball in
R4 centered in zero with |B;| = 1 and By a ball in R% with |By| = 1. Let V > 0.
It will be convenient to introduce a new variable &, defined as follows.
G=5(t) = (Bo)tt T BV T W > 0.
Then, if o is the variable defined in (3.6]), we have
o(t) = (s vt > 0.

The introduction of the variable & is motivated by the fact that, in this section,
we will need to keep the dependence of the coupling constant o explicit on s, since
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we are studying the behavior of the first eigenvalue when s tends to 0 or to +oco.
We then set

(3.20) Gt) =t T B (5@)%,31) Vvt >0

where we recall that for u > 0, F1(u, ;1) denotes the first eigenvalue of problem
(3-2) set in Q3 C R¥. We recall that, as noted in Section (see in particular
(3.5)), the unique minimal point of G4 represents the volume of the ball in R% of
the minimal set. We now start to consider here the limit as s — 0.

Proposition 3.13. Let G be the function defined in (3.20)). Let

Q“m

Go(t) i=t 1 (1 (By) + (1)) =t~ & puy (By) + t 8 V™ 8 py (By) Wt > 0.

Then
lim Gs(t) = Go(t) Vvt > 0.

s—0t+

Proof. We start by noting that for all f € Hg(Bi1), ||fllz2s,) = 1, and o €
(0, +00):

2s

(3.21) / Vo, f? day —|—cr/ |z1|?5 f2 day < / |V, fI? doy —|—07'd_1d1.
B By B

Then, taking the minimum over f € Hg(Bi1) with ||f|z2(p,) = 1 to both sides of
(3.21), we immediately obtain
2s

(3.22) Ey(0, B1) < pa(By) + o7y, ™.

On the other hand, if f, is the unique (up to sign) eigenfunction associated with
E; (0, By) satisfying || fo|lz2(5,) = 1, then if B(0,¢) is the ball in R% centered at

zero and of radius € € (0, Td_ll/dl)

(3.23)

El(O',Bl) :/ |Vz1fg|2dx1 +O’/ ‘$1|25fg dl‘l

B By

> / Ve, fol? day + 0528/ f2dxy
B1\B(0,¢) B1\B(0,¢)

|vz f|2 day
2\/ fgd.’tl ~ min fBl\B(Ovs) ; 0_525
B1\B(0,¢) feHé(?;BB(O,E)) fB\B(O,a)f dxy

—(@E+o) [ fram,
B1\B(0,¢)
where H} (B \ B(0,¢)) denotes the closure of C>°(B;) in H'(B; \ B(0,¢)), and
fi1 () is the first eigenvalue of the Laplacian in B\ B(0, €) with Dirichlet boundary
conditions on B; and Neumann boundary conditions on dB(0, ¢). It is well-known
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that fi1(e) — p1(B1) as e — 07 (see, e.g., Lanza de Cristoforis [28] and references
therein). Moreover

(3.24) 1= fs dxi = / fg dxq —|—/ fg dx1.
B, B1\B(0,¢) B(0,¢)

If dy > 2, we know from the Hoélder inequality and the Sobolev inequality in the
supercritical case (see, e.g. Evans [12] §5.6.3, Thm. 6 (i)]) and from (3.22) that

_2s
/ f2dzy < C||V folZ2(p,) < C*Er(0, By) < Ce? (ul(Bl) + md;h) .
B(0,e)

Moreover, if d; = 1, the subcritical Sobolev inequality (see, e.g. Evans [12] §5.6.3,
Thm. 6 (ii)]) and (3.22) imply that

_2s
A( )fg dr; < CE—IHVng%z(Bl) < CeEy(0,B1) < Ce (Nl(Bl) +UTd1d1> .
0,e

Finally, if d; = 2, exploiting the critical Sobolev inequality (see Burenkov [3], §4.7,
Thm. 15]) together again with (3.22)),

/ o 1201 S LA 8DV oo
B(0,e
< Cez(l + | log(e)|) E1 (o, B1)
< Ce*(1 + |log(e)]) <,u1(B1) + O'Td_ldl> .

See also Colbois and Provenzano [8, Appendix B] where the above inequalities are
derived with all the details. In all the cases, the constant C' depends only on d; (in
general it depends on the domain, which in this case is By). Thus, by the above
inequalities, and by and one has that for all o € (0, 4+00), s € (0, +00)

and € € (O,Til/dl)

Ei(0,B1) > (jiu(e) + 0e>) <1 — Cule) <m(31) + argff)) ,

for some continuous function w : (0, T(;ll/dl) — (0, +00) such that

li =0.
S, w(e

—1/dy

Therefore, for all ¢ € (0, +00), s € (0,+00) and € € (0,7,,"'™") we have
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and, for all ¢ € (0,7, /")

liminf G, (t) > i (ﬂl(s) + &(t)) (1 — Cuwl(e) (1 (By) + &(t))) vt > 0.
and then
liminf G4(t) > Go(t) vt > 0.

s—0t

We have then proved that
lim Gs(t) = Go(t) vt > 0.

O

and accordingly the statement follows.

Remark 3.14. Clearly p(B1)+6 is the first eigenvalue of problem (3.2)) with =&
when we set s = 0. We easily see that G(t) is optimized when

didg

. d2ﬂ1(31)>2d a
3.25 tT = ——= Va
(3.25) <d1M1(B2)
and, accordingly,
_2.d d1M1(32)) *
3.26 G t* = V d — B - “7 .
(3.26) o(t) =V () ()

The optimum given by , is the expected one, since as s — 0T the
problem converges to the Dirichlet problem for the classical Laplacian in cartesian
product domains. Note that the limit as s — 07 of the lower bound on the
optimal ¢ minimizing G(t) for any s (i.e., the optimal |Q2]|) computed in Proposi-
tion [3.11] equals the t* minimizing Gg. Therefore the lower bound in Proposition
is sharp in the limit s — 0.

Next, we pass to consider the limit as s — +o00. We first need a preliminary
result on the asymptotic behavior of the first eigenvalue

Ey(s) := E1(1,R%)

of Schrédinger operator —A,, + |z1]?* on R4 as s — +o0o. Next Lemma is
probably known but we include a detailed proof for the sake of completeness.

Lemma 3.15. Let B(0,1) C R% be the ball of radius one and centered at the
origin. Let p1(B(0,1)) be the first eigenvalue of the Dirichlet Laplacian on B(0,1).
Then

(3.27) Jim Ey(s) = (B(0,1)) = 74, " pa(Br)

Proof. In order to prove (3.27) we provide sharp lower and upper bounds. We
begin with the upper bound. Let h € (0,1). Let uy, be the first L?-normalized
eigenfunction of the Dirichlet Laplacian on B(0,1 — h). We shall still denote by
up, the extension by zero of uj, to R%. Clearly, the eigenvalue corresponding to uy

: u(B(0,1))
a—npg
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From the min-max principle (see (3.9)), we have that

1 (B(0,1))

aohp ta-mT

(3.28)  Ei(s) < / IV un|? + |21 25U} doy <
B(0,1—h)

for all s > 0. Then

- p1(B(0,1)
N (O

Since h € (0,1) is arbitrary we also deduce that
limsup Eq(s) < p1(B(0,1)).

s——+oo

Note that by letting h — 0 in (3.28)), we also obtain that
Ey(s) < m(B(0,1)) +1

for all s > 0.
Now we pass to consider the lower bound. Let s > 0. Let f, denote an L>-
normalized eigenfunction corresponding to Ej(s). Then for all h € (0,1)

(1+ By / f2dey < / (2125 £2 dry
R4\ B(0,1+h) R4\ B(0,1+h)

< Ex(s)
< (B(0,1)) + 1,

and then
i (B0,1) + 1

f2duy < ==,

/th\B(o,Hh) (1+h)2

which in turn implies that f; — 0 in L?(R% \ B(0,1 + h)) for all h € (0,1). Next
we take h,h/ € R with 0 < h/ <h <1 and p € C(R%) be such that

0 < P < 13 supp p - B(Ov 1+ h)v P|B(0,14+h’) = 1.

By the min-max principle for the first eigenvalue of the Dirichlet Laplacian in
B(0,1 + h) with test function pfs and integrating by parts we have

A0 2 BO.Y) [ P < [ Vo - [ A fde
R%1 R41

R
By the eigenvalue equation —A,, fs = E1(s)fs — |71|* fs we can deduce that

(1+ 1) (B0, 1)) / P f7 ey < / Vo, 2 £2 diy
Ré1 B(0,1+h)\B(0,1+h")

+El(8)/ P> f2 dwy —/ 1|2 % f2 day
R41 Rd1

< Vo, p|? f2 day

/13(0,1+h)\B(0,1+h’)
+E1(5)/ PP f2 das.
R41

Since clearly

- fan< [ Fran<y,
R4\ B(0,1+h’) R
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then

(14 7) 2 (B(0,1)) < Ex(s) + / Vo p[2f2 dry
B(0,1+h)\B(0,1+h")

)2 (B0.1) [ P22 day,
R41\B(0,1+h")
Since p? and |V, p|? are uniformly bounded, then both JB0 11 m\BETI |V, 0|2 f2 dxy
and [y \ 5T 0 f2dz; converges to zero as s — +oo. That is we proved the

>~ 77
1slm inf El(S) (1 h)2

lower bound

which implies
liminf Fy(s) > p1(B(0,1)),

s§— 400
since h € (0,1) is arbitrary. The first equality of (3.28) is proved. The second
equality follows simply by rescaling. ([

Proposition 3.16. Let G be the function defined in (3.20). Let

LABI)a te (OVTd1)7
td1

Goo(t) :=
( ) u1(1231) . te [Td1,+00).

dy
Ta

Then
lim G(t) = Goo(t) vt > 0.

s——+o0

Proof. We need to distinguish two cases: ¢t < 74, and ¢t > 74,.
Assume first that ¢t < 74,. We have immediately from the min-max principle
that for all 0 > 0
Eq(0,B1) = pa(B1),

and in particular
hmj&nf E1 (O'7 Bl) Z H1 (Bl)
S—+00

Moreover, for any f € Hj(By) with || f|r25,) =1

1 2s
[ Westano) [ @hnran < [ 9P (i) s,

Taking the minimum over all f € Hg(B1) with || f||2(p,) = 1 we obtain

2s
s [ ——
(3.29) E (&(t)tﬁﬁ,Bl) < m(B) + (tdlfdldl) &(1).
Since t < 74, we have that

lim sup F; (5(t)t‘%,31) < p1(By).
s—4o00
We have proved that
lim E1 (&(t)t?ﬁ,B1> = [Ll(Bl),

s——+oo



THE FIRST GRUSHIN EIGENVALUE ON CARTESIAN PRODUCT DOMAINS 19

and therefore, by recalling the definition ([3.20)), we have

B
lim Gy(1) = P18
s——+00 tar

Next we pass to consider the case t > 74,. Let L > t be fixed. We denote
by w1 (B (O,Lfi)) the first eigenvalue of the Dirichlet Laplacian on the ball

B (0, Liﬁ) C R% centered in zero and of radius Liﬁ. Note that the volume of

2
B (O,Lfﬁ) is T% < 1. In particular p (B (QLii)) = (%) o w1 (B1). From
1

the inclusion Hg (B (O, Liﬁ)> C H}(B1) (where we understand that any u €
H} (B (O,Lfﬁ ) is extended by zero to Bj), and from analogous computation
J

of those in ([3.29)), we obtain

Then, for all L > ¢,

25 L\%
lim sup E; (&(t)tdl ,Bl> < () pa(B1),
s——+oo Td,
and therefore .
25 t o\ %
lim sup E4 (5(75)”1731) < () pa(B1),
s—400 Td,
which in turn implies
B
limsup G4(t) < Ml(ll).
s—+00 dy
Td,

In order to prove a lower bound we can proceed as follows. We simply note that,

by (3.8)), for all o € (0, +00),
Ey(0,B1) > E1(0,RM) = 051 By (1,R%).

Now, since (o(£))™1 = (§(t)) ¥ ¢tHCT0 | then lim,yqo0(0(t)) ™1 = t1. More-

over, by Lemma |3.15

B
lim Ej(1,R%) = miBy)
s——+00 day
Ta,
Thus, we immediately deduce that
B
liminf G4(t) > H1(2 )
s—+4o00 a1
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This implies, along with the upper bound, that for ¢ > 74,,

B
lm Gt = 1B
s—+00 dy
T4,
Thus the statement is proved. ([l

Remark 3.17. Note that in the limiting case s — 400, we have a continuum of
optimal ¢, namely all ¢ > 74, minimize G (t). We also note that lower bound
on the optimal ¢ provided for any s in Proposition goes to 74, as s — 400,
therefore, also in this sense, that lower bound is sharp.

4. SOME NUMERICAL COMPUTATIONS

In this last section we present some numerical computations in the planar case,
that is in the case dy = ds = 1. First, we consider the minimization problem of
the first eigenvalue in the class of cartesian product domains (i.e. rectangles of
R?). Then we also numerically compute the first eigenvalue in the case the domain
is a ball in R? and we make some comparisons with the case of rectangles. For
simplicity we also set V' = 1, but by a simple scaling argument one can also deduce
similar results for the general case V> 0. Note that in this case

_2 71'2
Tdy = 2, /,Ll(Bl)T a1 = Z ~ 2.467

The numerical scheme to solve the two decoupled one dimensional problems has
been implemented in Phyton with the help of Gabriele Santin (FBK-ICT).

The figures below show the plot of G(¢t) and the numerical computation of its
minimum for some values of s. We recall that the function G,(t), defined in (3.20),
equals A\ (Q1 x Q3) when Q; € R4, Qy C R?% are two balls, the first one being
centered in zero and with |[Q1]|Q2| = 1, |21] = ¢t. The unique minimum point ¢*
of G4(t) represents then the volume of QF, where Qf and Q3 are the balls which
realizes the minimum for the first eigenvalue (see Theorem .

The first figure corresponds to the limiting case s — 07. As expected the
minimum is attained at ¢ = 1, which means, with the notation of Theorem [3.10]
|Q2%] = || = 1. Indeed, for the standard Laplacian in two dimension the minimum
over the class of cartesian product domains is attained by a square. The other
figures show the numerical computation of the minimum for s = 0.5, s =1, s = 2,
s =3, and s = 150.

‘We note that the numerical computations agree with the lower bounds of Propo-
sitions and [3.12] Moreover, they also agree with the asymptotic behavior as
s — 400 computed in Proposition since G(t) tends to flatten to the value

2 .
7 for t > 74, = 2 when s increases.
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50
— Goso
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30 1
20
10
| | | | | 0 | = ! !
0 1 2 3 4 1 2 3 4
t t
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We conclude by comparing the eigenvalues on rectangles in R? with those of
the disk with the same area, centered at the origin.
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20

10_- /\1(B(0,TT_1/2),S)

1 s s s 1 s s s 1 s s s 1 s s s 1

0 20 40 60 80 100 °

A1 (B(0,771/2)) as a function of s.

When s = 0, clearly the disk of unit area (i.e., radius 7—'/2) has lower first
eigenvalue than any rectangle of the same area (Faber-Krahn inequality). In fact,
for s=0

AM(B0,77Y2)) ~ 1817 and A (€ x Q) ~ 19.74
Already when s = 0.5, we have
M(B0,77Y2)) 21045 and A\ (Q} x Q) ~ 8.88
and, when s = 1, we have
M(B0,77Y2)) ~ 890 and A (2 x QF) ~5.78

We also note that, as s — +00

while

The numerics suggest that there exists some sy < % such that the disk of unit area
is no more the minimizer among all domains of the same area, and we always find
a rectangle doing better.

We have also computed the first eigenvalue on the disk of radius 1 and of radius
2 as functions of s.
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20

A1(B(0,1712),s)

— A1(B(0,1),8)

10+ — /\1 (B(O!Z)rs)
T e
i 4
5 L
_____ ik
b= 4
N
n n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n 1 s
0 10 20 30 40 50

A (B(0,71/2)), \1(B(0,1)) and A\ (B(0,2)) as a function of s.

We note that, as s — 400, the first eigenvalue of the disks of radius 1 and
2
2 seems to behave like 7, exactly as A1 (Q1 x Qo) with [Q;] > 2 (which means,
lenght of the side parallel to the z1-axis greater than 2).

We note that %2 is exactly the first Dirichlet eigenvalue of an interval of length
3

2. On the other hand, the value 7, the expected limit of the first eigenvalue of
the disk of area 1 as s — 400, is the first Dirichlet eigenvalue of an interval of
length 27—1/2.

It looks like that the behavior of the first eigenvalue of a domain, as s — 400, is
determined by the length of the longest segment parallel to the z1-axis contained
in QN {|z1] < 1}, which is 2 in the case of B(0,1), B(0,2) and of any rectangle
Q1 x Qg with || > 2, and is 27~ /2 for B(0,7~/?). We will consider these issues
from an analytical point of view in future works. At any rate, we are left with the
following

Question. Does A1(2) — A1((0,L)) as s — 400, where L is the lenght of the
longest segment parallel to the z1-axis contained in QN {|z1| < 1}, and A\;((0, L))
is the first Dirichlet eigenvalue on (0, L)?
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