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limited to single species. Here, we aimed to analyze 
how the expansion of urban and agricultural areas 
can affect exotic species richness (both neophytes 
and archaeophytes) at three spatial scales, namely 
regional (scale: 37.5 km2), landscape (scale: 7.1 km2) 
and local (scale: 100  m2). We considered the possi-
ble contribution of urban and agricultural areas both 
in terms of composition (i.e. habitat cover) and con-
figuration (i.e. shape complexity of patches). First, 
we found that increasing urbanization coupled with 
high shape complexity of urban elements were major 
drivers of both neophyte and archaeophyte invasions 
across heterogeneous landscapes. In particular, shape 
complexity seemed to be a key driver of plant inva-
sions at large spatial scale, whereas the type of recipi-
ent habitat and urban cover determined the exotic suc-
cess at the patch level. Second, archaeophytes were 
also affected by agriculture land use, i.e. agricultural 
patches shape complexity increased their spread at 
both regional and landscape scales. High shape com-
plexity of highly disturbed habitats is expected to 
increase the exchange surface that exotic plant use to 
spread their propagules across the landscape mosa-
ics. Our findings suggest that urban planning aimed at 
curbing urban fragmentation by both reducing shape 
complexity and diffuse urban sprawl might greatly 
improve the resistance of landscapes to biological 
invasions.
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Abstract  Exotic plant invasions are considered one 
of the major threats to biodiversity causing important 
impacts at the population, community, and ecosystem 
levels. Understanding the drivers of plant invasions 
across multiple spatial and temporal scales often 
requires a landscape approach. The effect of land-
scape composition on biological invasion has been 
extensively studied, whereas landscape configuration 
effects were seldom considered or the analyses were 
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Introduction

Exotic plant invasions are considered one of the 
major threats to biodiversity (Vilà et  al. 2010; Sim-
berloff et al. 2013; Vilà and Hulme 2017; Pyšek et al. 
2020) causing important impacts at the population, 
community and ecosystem levels (Vilà et  al. 2011; 
Boscutti et al. 2020; Pellegrini et al. 2021a). Under-
standing the drivers of plant invasions across multiple 
spatial and temporal scales often requires a landscape 
approach (Vilà and Ibáñez 2011). First, the role of 
landscape composition, i.e. proportion of landscape 
covered by different habitats, has received increasing 
attention, as human-impacted landscapes are expected 
to harbor a larger pool of exotic species and increase 
the likelihood of propagule dissemination to natural 
areas (Jauni and Hyvönen 2010; Basnou et al. 2015; 
Andersen et al. 2015; Pellegrini et al. 2021b). Anthro-
pogenic land-uses such as agricultural and urban 
habitats represent primary sources of alien plants by 
providing empty niches released from competition 
with natives (Lonsdale 1999; Davis et al. 2000; Vilà 
et  al. 2007; Polce et  al. 2011; Boscutti et  al. 2018). 
In particular, urban land use encompasses a large 
array of disturbed habitats (e.g. roadsides, gardens) 
that are usually highly invaded (Chytrý et  al. 2008; 
Lambdon et al. 2008; Aikio et al. 2012) and that can 
act as source of exotic plants that can spread into sur-
rounding habitats (Lippe and Kowarik 2008; Botham 
et  al. 2009; Säumel and Kowarik 2010; Kühn et  al. 
2017; Guo et al. 2019). While most of these studies 
have focused on landscape composition, the effects 
of landscape configuration of urban and agriculture 
areas have been seldom investigated empirically (but 
see Chen et al. 2017; O’Reilly-Nugent et al. 2016).

Landscape configuration effects have been mostly 
investigated to study plant invasions within natural 
fragmented habitats embedded in intensive matrices 
(Hastings et al. 2005). This body of research showed 
that small fragments usually have a higher density of 
exotic species than larger fragments (Guirado et  al. 
2006; Ohlemüller et  al. 2006), and that an increase 
in exotic plant density, richness and cover is often 
observed at the edge between natural habitats and 
more intensive land-uses such as urban or agricultural 
areas (Cilliers et al. 2008; Boscutti et al. 2018). These 
results suggest that increased patch shape complex-
ity is expected to promote the spread of exotic plants 
across human-impacted landscape mosaics (Yates 

et  al. 2004; Song et  al. 2005; Malavasi et  al. 2014). 
In particular, landscapes with large contagion, high 
shape complexity and high patch density are expected 
to promote exotic invasions by increasing the disper-
sal opportunities of exotics between urban areas and 
the surrounding habitats and the availability of dis-
turbed edges (Aikio et  al. 2012; Bar-Massada et  al. 
2014). Upscaling the effect of spatial configuration 
from the habitat level to the whole landscape is an 
urgent task to predict the effect of land-use changes 
on plant invasions across multiple spatial scales.

When evaluating the drivers of exotic plant inva-
sions, it is important to consider how these effects 
vary across spatial scales (Stohlgren et  al. 2006; 
Pauchard and Shea 2006; Foxcroft et al. 2009). Most 
of previous studies adopting a multi-scale approach 
has focused on the relationship between native and 
alien species richness (Campos et al. 2013), whereas 
only a few have tested for scale-dependence in the 
effect of abiotic drives of plant invasions (but see 
Cabra-Rivas et al. 2016). At broad spatial scales, cli-
mate, soil and habitat types are expected to be more 
influential in determining species distribution (Araújo 
et  al. 2005; Guisan et  al. 2006; Bailey et  al. 2017) 
while at finer scales, disturbance and biotic interac-
tions should become more important (Bartuszevige 
et al. 2006; Milbau et al. 2009).

In the European floras, the status of exotic plants 
is commonly further classified into two categories: 
archaeophytes (i.e. plants introduced before 1500) and 
neophytes (i.e. plants introduced after 1500). Archae-
ophytes and neophytes often exhibit consistent distri-
bution patterns, suggesting that similar mechanisms 
can be responsible for their spread (Chytrý et  al. 
2008). Nonetheless, archaeophytes are often ruderal 
or segetal species mainly linked to agricultural land 
uses (Chytrý et al. 2008; Sheppard and Brendel 2021; 
Zając et al. 2009), while neophytes are expected to be 
more related to urban areas. In this light, studying the 
response of these two groups to landscape composi-
tion and configuration might provide further insight 
into the invasion mechanisms.

In this study, we aim to analyze how the expan-
sion of urban and agricultural areas can affect exotic 
species richness (i.e. neophytes and archaeophytes) 
at three spatial scales, namely regional (scale: 
37.5  km2), landscape (scale: 7.1  km2) and local 
(scale: 100  m2). We considered the possible contri-
bution of urban and agriculture areas both in terms 
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of composition (i.e. habitat cover) and configuration 
(i.e. patch shape complexity) (Fig. 1). We hypothesize 
that increasing cover of urban areas and increasing 
shape complexity will increase invasion of exotic spe-
cies across the landscape by increasing colonization 
opportunities linked to disturbance and by facilitating 
dispersal of exotic plants across the interface where 
human settlements adjoin or intermix with other eco-
systems. We also expect that these effects should be 
stronger for neophytes than for the more agriculture-
dependent archaeophytes.

Materials and methods

Sampling design and data collection

The study area was located in the Friuli Venezia 
Giulia region in north-eastern Italy (45°44′56′′N, 
12°59′56′′E to 46°11′52′′N, 13°29′56′′E; Fig. 2). The 

area is characterized by an average annual tempera-
ture of 13 °C and an average annual rainfall between 
1100 and 1600  mm. The most frequent crops were 
maize, soybean, winter cereals (mostly barley and 
wheat) and grape. Several towns are located in the 
study area: Udine (ca. 100,000 inhabitants), Porde-
none (ca. 50,000), Cordenons (ca. 18,000) and 
Codroipo (ca. 16,000).

The diversity patterns of exotics (i.e. neo-
phyte = post-1500 immigrants; archaeophytes = pre-
1500 immigrants) in the study region (ca. 3,000 km2) 
was studied at three spatial scales: (i) regional (ii) 
landscape (iii) local habitat. First, the whole area 
was split into a regular grid of 83 cells, each of 3′ × 5′ 
(arcmin), corresponding to ca. 35.7 km2 (i.e. regional 
scale) (Fig.  2). Within each grid cell, exotic species 
distribution was extracted from an ongoing floristic 
inventory of the Friuli Venezia Giulia, which con-
tained over 290,000 records collected in the period 
1980–2017. Second, 15 circular landscapes (ca. 

Fig. 1   Representation 
of tested gradients of 
landscape composition 
(e.g. cover of urban areas) 
and configuration (e.g. 
shape complexity of urban 
elements) at regional scale, 
land use considered were: 
urban (dark grey), agricul-
tural (green) and semi-
natural (white)
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7.1  km2, radius = 1.5  km; i.e. landscape scale) were 
selected along gradients of urban cover and patch 
density after a preliminary analysis on existing land 
use maps (scale 1:25,000; IRDAT FVG, accessed 
March 2017). Urban cover and patch density were 
used as common proxies of land use intensification 
(Chaplin‐Kramer et al. 2011; Lizée et al. 2012; Mar-
tin et  al. 2016). For each landscape, a detailed land 
use map (scale 1:2000) was realized distinguishing 
agricultural (i.e. annual and perennial crops), urban 
and semi-natural habitat (i.e. forests hedgerows and 
meadows). In each landscape, 20 sampling points 
(10 × 10 m) were selected for a total of 300 (20 × 15) 
plots for flora survey at local and landscape scale. 
Within each landscape, the number of points per 
habitat type reflected the relative abundance of the 
habitat. The surveyed habitat included both agri-
cultural (i.e. annual crops, N = 122; perennial crops 
N = 55) and semi-natural habitats (forests, N = 71; 

hedgerows, N = 13; meadows, N = 28). The com-
plete list of sampled habitats and number of plots per 
landscape can be found in supplementary materials 
(Online Resource 1). Plots were randomly distributed 
within each landscape excluding landscape edges. 
At this scale, we did not sample urban habitats (e.g. 
parks, gardens, yards), as we wanted to test the habi-
tat and landscape invasibility of non-urban habitats. 
In summer 2017, all the plots were surveyed in the 
field recording all occurring vascular species. During 
the surveys, 11 plot were discarded due to accessibil-
ity issues.

Number of exotic species were calculated at the 
plot, landscape and regional scale by pooling species 
list at different spatial scales. Nomenclature followed 
the Italian check-list (Bartolucci et al. 2018; Galasso 
et al. 2018). Exotic status (i.e. neophyte and archaeo-
phyte) was classified according to the regional check-
lists (Poldini 2002; Buccheri et al. 2019).

(a)

(b)

(c)

(d)

Fig. 2   Study area (a) and sampling design at regional (b), landscape (c) and local (d) scale. Urban (dark grey), agricultural (green) 
and semi-natural land uses (white) are represented at each scale
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Landscape metrics

Landscape composition and configuration were 
assessed at all investigated scales in terms of land-use 
cover and patch shape complexity using (i) the official 
regional land use map, for the regional scale (scale 
1:25,000, IRDAT FVG, realized in 2017), and, (ii) the 
detailed land use maps realized for each of the 15 sur-
veyed landscapes, for the landscape and plot scales. 
Landscape composition was quantified as cover of 
urban land use in each cell grid (35.7 km2) and land-
scape (7.1  km2). At habitat level, urban cover was 
calculated in a buffer with a radius of 250 m around 
each plot, which has been already proved to be a 
sensitive scale when analyzing exotic plant spread 
in similar landscapes (Kumar et  al. 2006; Boscutti 
et al. 2018). Urban areas ranged between 1.9–57.3%, 
0.8–24.5% and 0.0–51.4% at the regional, landscape 
and plot scale, respectively. Arable land ranged 
between 26.8–92.4%, 46.4–97.9% and 0.3–100.0%; 
at regional, landscape and plot scale, respectively. 
The cover of urban areas and agricultural land was 
not highly correlated at the three scales of analysis 
(regional, r = − 0.45; landscape, r = − 0.21; plot scale, 
r = − 0.17).

Landscape configuration was assessed in terms of 
patch shape complexity by using the Area Weighted 
Mean Patch Fractal Dimension (AWMPFD) index 
(McGarigal and Marks 1995) for both urban and agri-
culture patches. The patch fractal dimension repre-
sents a comparison of the perimeter and area of each 
shape, similarly to the shape index, but testing the 
exponent of that relationship (Milne 1988). Fractal 
dimension is a measure of the complexity of shapes 
that gives more emphasis on the complexity of form 
while the common shape index stresses the elonga-
tion of patches. A fractal dimension greater than 1 for 
a 2-dimensional landscape mosaic indicates a depar-
ture from a Euclidean geometry (that is, an increase 
in patch shape complexity). AWMPFD approaches 1 
for shapes with very simple perimeters, such as cir-
cles or squares, and approaches 2 for shapes with 
highly convoluted, plane-filling perimeters, this index 
is weighted by patch area so that larger patches weigh 
more than smaller patches. In the study, AWMPFD 
will be referred as shape complexity. All the analy-
ses were performed using the Patch Analyst exten-
sion© for ArcGIS 10.0 (ESRI). Preliminarily, we 
also assessed other landscape configuration metrics, 

namely the total edge (TE), as the sum of the lengths 
(m) of all edge segments involving the corresponding 
patch type, and the Area-Weighted Mean Shape Index 
(AWMSI), an area-weighted index of shape complex-
ity (McGarigal and Marks 1995). All indices showed 
a high correlation with AWMPFD (r > 0.5) at all 
scales and were therefore excluded from the analyses 
(Online Resource 2).

Data analysis

To explore the effects of landscape composition (pro-
portion of urban and agriculture areas) and shape 
complexity at different spatial scales on exotic plant 
richness (i.e. neophytes and archaeophytes), Linear 
Models (LM) and Generalized Linear Models were 
run in R statistical environment (R Core Team 2020).

At the regional and landscape scale, we fitted a 
LM testing the effect of proportion of urban and agri-
culture areas and shape complexity on the species 
number of both neophytes and archaeophytes.

At the habitat scale, we fitted a generalized mixed-
effects model with a Poisson distribution testing 
proportion of urban and agricultural areas and habi-
tat type and their two-way interactions on the num-
ber of exotics (i.e. neophytes and archaeophytes) in 
the 10 × 10  m plot. Then, we simplified the models 
by removing one-by-one the non-significant interac-
tion terms (p > 0.05) using a manual backward selec-
tion procedure. We included landscape ID as ran-
dom factor to account for the spatial dependence in 
the design. The interaction between shape complex-
ity and habitat type was not tested at the plot scale, 
where the low number of patches did not allow a solid 
analysis of landscape configuration. Full models are 
shown in Online Resource 3.The model assumptions 
were checked using diagnostic plots of model residu-
als using the car and DhARMA packages in R. Due 
to the better residual diagnostics outcome, LMs were 
applied at regional and landscape scale even if spe-
cies richness measures were counts.

Results

An overall number of 336 neophyte and 217 archae-
ophyte species were observed (Online Resource 
4). At the regional scale, a mean of 61 (min = 15, 
max = 145) neophytes and 80 (min = 42, max = 158) 
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archaeophytes were found. At the landscape scale, 
we found an average of 14 (min = 7, max = 21) neo-
phyte and 19 (min = 11, max = 24) archaeophyte spe-
cies. At the local habitat (plot) scale, the mean num-
ber was 2 for both neophytes (min = 0, max = 9) and 
archaeophytes (min = 0, max = 10). Most of the neo-
phyte species were perennial (62.2%), out of these 
30.1% were woody species and 32.1% were grasses 
or forbs. Annual species represented the 37.8% of the 
neophyte flora. Archaeophytes were mostly annual 
plants (71.9%). Among perennial archaeophytes, 
woody species accounted for only 2.3%, while 25.8% 
were perennial grasses or forbs. The five top most 
frequent taxa at the regional scale were Erigeron 
annuus (L.) Pers., Veronica persica Poir., Robinia 

pseudoacacia L., Bidens frondosa L., Oxalis stricta 
L., for neophytes (occurrence in over the 90.0% of 
surveyed grid cells), and Anagallis arvensis L., Bellis 
perennis L., Cichorium intybus L., Digitaria sangui-
nalis (L.) Scop., Plantago lanceolata L. for archae-
ophytes (occurring in all the surveyed cells). At the 
local and landscape scale, the most frequent species 
were A. retroflexus, P. capillare, R. pseudoacacia and 
E. annuus, for neophytes (frequency > 15.0%), and A. 
arvensis L. Chenopodium album L. and Echinoch-
loa crus-galli (L.) P.P.Beauv among archaeophytes 
(frequency > 20%).

Our findings highlighted scale-dependent effects 
of landscape composition and patch shape complexity 
on exotic species richness (Table 1). At the regional 

Table 1   Results of the 
models testing the effects 
of urban and agriculture 
cover (%) and patch shape 
complexity (Area Weighted 
Mean Patch Fractal 
Dimension—AWMPFD) on 
neophyte and archaeophyte 
species richness at regional 
(a), landscape (b), and local 
(c) scale

At local scale, the 
interaction between 
patch shape complexity 
and habitat type was not 
considered

Fixed effects Estimate SE t value p

(a) Regional
 Neophytes
  Intercept  − 196.07 71.47  − 2.744 0.008
  Urban shape complexity 169.06 51.14 3.306 0.001
  Urban cover 123.50 23.30 5.299  < 0.001

 Archaeophytes
  Intercept  − 195.91 82.71  − 2.369 0.020
  Urban cover 128.25 19.82 6.472  < 0.001
  Agriculture shape complexity 188.30 61.03 3.085 0.003

(b) Landscape
 Neophytes
  Intercept  − 81.98 35.65  − 2.300 0.040
  Urban shape complexity 70.55 26.77 2.635 0.022
  Urban cover 0.221 16.78 0.013 0.989

 Archaeophytes
  Intercept  − 48.72 28.92  − 1.685 0.118
  Agriculture shape complexity 43.60 18.99 2.296 0.041
  Agriculture cover 14.52 8.96 1.621 0.131

(c) Local
 Neophytes
  Intercept 0.84 0.23 3.698  < 0.001
  Habitat type  − 0.69 0.11  − 6.466  < 0.001
  Urban cover 0.86 0.47 1.820 0.060
  Agriculture cover 0.09 0.25 0.360 0.719

 archaeophytes
  Intercept 0.65 0.24 2.739 0.006
  Habitat type  − 1.36 0.14  − 9.535  < 0.001
  Urban cover 1.55 0.56 2.786 0.005
  Agriculture cover 0.59 0.26 2.224 0.026
  Habitat type: urban cover 1.98 0.88 2.253 0.024
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scale (n = 83 grid cells), we found both urban cover 
and urban shape complexity to have a positive effect 
on the number of neophytes (Fig. 3a–b). The model 
explained 37.3% of the total variation. Archaeophyte 
species richness increased in areas with high urban 
cover and agriculture shape complexity (Fig.  3c–d). 
The model accounted for the 44.1% of the total varia-
tion. At the landscape scale (n = 15 landscapes), only 
shape complexity of urban and agriculture patches 
affected neophyte and archaeophyte species richness, 

showing a linear positive relationship (Fig.  4; neo-
phytes: R2 = 37.8%, archaeophytes: R2 = 19.7%). At 
the local scale (n = 289 plots), semi-natural habitats 
were less invaded than agricultural ones for both neo-
phyte and archaeophyte species (Fig. 5a–c). Neophyte 
species number increased in plots surrounded by high 
percentage of urban areas (Fig.  5b), irrespective of 
habitat type. Archaeophyte species number increased 
in plots surrounded by high percentage of both agri-
culture and urban areas (Fig.  5d–e). In particular, 

1.30 1.35 1.40 1.45 1.50

20

40

60

80

100

120

urban shape complexity (AWMPFD)

0.0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

120

urban cover (%)

ne
op

hy
te

 s
pe

ci
es

 n
um

be
r

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5

60

80

100

120

140

1.30 1.35 1.40

40

60

80

100

120

ar
ch

ae
op

hy
te

  s
pe

ci
es

 n
um

be
r

urban cover (%) agriculture shape complexity (AWMPFD)

(c)
(d)

Fig. 3   Relationships between neophyte species number, urban 
cover (a) and urban shape complexity (b), and archaeophyte 
species number, urban cover (c) and agriculture shape com-

plexity (c), at regional scale. Shape complexity is expressed as 
Area Weighted Mean Patch Fractal Dimension (AWMPFD). 
Shaded area is the 95% confidence interval
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urban cover showed a stronger effects on archaeo-
phytes invading semi-natural areas, when compared 
to agricultural ones (Fig. 5e).

Discussion

The contribution of landscape composition on biolog-
ical invasion has been extensively studied, whereas 
landscape configuration has been seldom consid-
ered (Vilà and Ibáñez 2011) or limited to single spe-
cies (Song et al. 2005; Montti et al. 2017). We found 

that increasing urbanization coupled with high shape 
complexity of urban elements were major drivers of 
neophyte invasions. In particular, shape complex-
ity seemed to be the most important abiotic driver 
of plant invasions at large spatial scale whereas the 
type of recipient habitat and urban cover determined 
the exotic success at scale of habitat patches. Moreo-
ver, we found that increasing shape complexity fur-
ther increased the spread of archaeophytes at both the 
regional and landscape scales.

At the regional scale, we found that both increas-
ing urban cover and patch shape complexity contrib-
uted to increase the number of exotic species. Urban 
areas are often over‐represented among the sites 
of first introduction due to high propagule pressure 
(Pyšek 1998; Chytrý et  al. 2008; Aikio et  al. 2012). 
Urban land use creates a mosaic of different human-
made habitats (e.g. roadsides, gardens) that are often 
highly invaded and that are expected to promote the 
spread of exotic species also to the surrounding habi-
tats (Lippe and Kowarik 2008; Lambdon et al. 2008; 
Botham et  al. 2009; Säumel and Kowarik 2010). A 
key role is played by roads that are often considered 
effective dispersal corridors (Arévalo et al. 2005; Fol-
lak et al. 2018; McDougall et al. 2018; Lázaro-Lobo 
and Ervin 2019). A high patch shape complexity in 
the landscape is generally associated with a low over-
all disturbance intensity but more diffused across the 
landscape matrix (Krummel et al. 1987; O’Neill et al. 
1988), which in rural landscapes has been proved 
to favor overall plant species richness (Moser et  al. 
2002).

This pattern was even stronger at the landscape 
scale where we only found that shape complexity of 
urban and agriculture areas affected the spread of 
neophyte and archaeophyte plants species, respec-
tively. This suggests a possible relationship between 
the success of spread and dispersal of exotic species 
and the configuration of the invasion foci (i.e. urban 
settlements for neophytes and arable land for archaeo-
phytes). So far, a few studies have related plant inva-
sion with landscape shape complexity and patch 
edge density (Bartuszevige et al. 2006; Kumar et al. 
2006). Indeed, the shape complexity of urban areas 
might have amplified the exchange surface between 
habitats that neophytes use to spread their propagule 
across the landscape mosaics. A low-density of urban 
land-cover is often characterized by fragmented 
and disturbed natural areas within a loose matrix of 
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gardening and housing areas (Gavier-Pizarro et  al. 
2010). This might produce a greater probability of 
exotic ornamental species to spread from gardens 
and urban areas into adjacent natural areas (Gavier-
Pizarro et  al. 2010; González-Moreno et  al. 2013). 
In the studied landscapes, small settlements (e.g. 
towns, villages), as well as suburbs of main urban 
centers, contributed to increase shape complexity. In 
contrast, large cities typically have a relatively small 
interface between urban and wildland ecosystems. 
Previous studies have indicated that the presence of 
numerous small towns scattered across the landscape 
have a greater chance of promoting invasions into 
natural areas than large cities (McLean et  al. 2017). 
Moreover, a more complex settlement might harbor 
a greater heterogeneity of urban habitats, sustaining 
a high variety of exotic species propagules. Suburbs, 
small towns, linear corridors (e.g. streets, highways) 
harbor vast areas of ornamental gardens, flower beds 
and flower borders, source of at least 75% of the 
global naturalized alien species (Kleunen et al. 2018). 
Invasions of natural areas have been already linked 
to the presence of garden flora of the surrounding 
urban dwellings (Marco et al. 2010; Guo et al. 2019). 
In addition, urban shape complexity is also linked to 
a higher development of road network, which often 
determines the invasion success of exotic species 
within semi-natural habitats (Hansen and Clevenger 
2005; Dainese et  al. 2017; Riitters et  al. 2018). In 
contrast to neophytes, the richness of archaeophytes 
at the landscape scale increased with high patch com-
plexity of agricultural areas. Other studies showed 
that archaeophytes are more linked to agricultural 
than to urban land use (Chytrý et al. 2008). Our find-
ings suggest that, at large spatial scale, increasing 
the exchange surface between arable land and semi-
natural habitats provide a greater chance for archaeo-
phytes to spread across the territory. Previous studies 
have showed archaeophytes to be particularly com-
mon in landscapes with small fields rather than in 
landscapes dominated by large fields (Baessler and 
Klotz 2006).

At the local scale, we found that agricultural 
habitats (i.e. annual and perennial crops) were more 
invaded than semi-natural habitats by both neophyte 
and archaeophyte species. In general, highly human-
impacted habitats are widely recognized for their high 
level of plant invasion (e.g. Aikio et al. 2012; Chytrý 
et  al. 2008; Lambdon et  al. 2008; Maskell, Bullock, 

Smart, Thompson, and Hulme 2006). At this scale 
also patch features might influence invasion (Mil-
bau et  al. 2009) and local variations in soil quality 
and vegetation structure might become pivotal in the 
invasion success (Ohlemüller et al. 2006; Vitti et al. 
2020). Our findings suggest that urban areas may be 
the main source of exotic plant invasion toward other 
habitats. Invasion by exotic species often begins in 
human-disturbed environments, where their prop-
agules are unintentionally introduced or where culti-
vated species frequently escape (Pyšek 1998; Hulme 
2005; Čeplová et al. 2017; Geppert et al. 2021). Other 
studies showed that semi-natural habitats are more 
prone to be invaded when included in a urban- rather 
than agricultural-dominated matrix (Cilliers et  al. 
2008) and that at the local scale the proximity to 
roads might be pivotal in the invasion process (Zee-
man et al. 2018). A consistent pattern was found for 
the two exotic groups when considering urban and 
habitat effects. In addition, archaeophytes were also 
favored by high agriculture cover in the surround-
ing of the plot (Preston et  al. 2004). Our findings 
would suggest that arable land might be concurrently 
a source and a sink of archaeophyte plants (Hulme 
2005), as it also emerged in studies on the effects of 
anthropic disturbance in agricultural landscapes (Bos-
cutti et al. 2018).

Conclusions

Clarifying the mechanisms through which exotic 
species spread across the landscape might inform 
an effective management/planning aimed at curb-
ing biological invasions. Our study elucidated how 
plant invasion was affected by alterations of land-
scape composition and configuration. We showed that 
urbanization was a major driver of plant invasions 
showing that its shape complexity of urban areas was 
fundamental in the process. In particular, landscape 
shape complexity seemed to be a facilitator of plant 
dispersal and spread at the landscape scale whereas 
the habitat characteristics and landscape composi-
tion determine the exotic success at the local scale. 
Such evidence suggests that urban planning should 
consider reducing urban fragmentation to reduce 
the exchange surface between anthropogenic and 
natural habitats. These results allow to gain a better 
understanding of the way landscape composition and 
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configuration contribute in modifying plant invasions, 
providing far reaching consequences in invasion ecol-
ogy and landscape planning.
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