
Citation: Liang, Z.; Gabrieli, F.; Pol,

A.; Brezzi, L. Automated

Photogrammetric Tool for Landslide

Recognition and Volume Calculation

Using Time-Lapse Imagery. Remote

Sens. 2024, 16, 3233. https://doi.org/

10.3390/rs16173233

Academic Editors: Fabio Tosti,

Andrea Benedetto and Deodato

Tapete

Received: 3 July 2024

Revised: 23 August 2024

Accepted: 27 August 2024

Published: 31 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automated Photogrammetric Tool for Landslide Recognition and
Volume Calculation Using Time-Lapse Imagery
Zhipeng Liang 1, Fabio Gabrieli 2, Antonio Pol 3 and Lorenzo Brezzi 2,*

1 Department of Infrastructure, Second Xiangya Hospital, Central South University, Changsha 410011, China;
zpliang@csu.edu.cn

2 Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Ognissanti 39,
35129 Padova, Italy; fabio.gabrieli@unipd.it

3 IATE, University of Montpellier, INRAE, Institut Agro, 2 Place Pierre Viala, 34060 Montpellier, France;
antonio.pol@inrae.fr

* Correspondence: lorenzo.brezzi@unipd.it; Tel.: +39-049-8277992

Abstract: Digital photogrammetry has attracted widespread attention in the field of geotechnical
and geological surveys due to its low-cost, ease of use, and contactless mode. In this work, with
the purpose of studying the progressive block surficial detachments of a landslide, we developed
a monitoring system based on fixed multi-view time-lapse cameras. Thanks to a newly developed
photogrammetric algorithm based on the comparison of photo sequences through a structural
similarity metric and the computation of the disparity map of two convergent views, we can quickly
detect the occurrence of collapse events, determine their location, and calculate the collapse volume.
With the field data obtained at the Perarolo landslide site (Belluno Province, Italy), we conducted
preliminary tests of the effectiveness of the algorithm and its accuracy in the volume calculation. The
method of quickly and automatically obtaining the collapse information proposed in this paper can
extend the potential of landslide monitoring systems based on videos or photo sequence and it will
be of great significance for further research on the link between the frequency of collapse events and
the driving factors.

Keywords: smart monitoring; collapse detection; time-lapse images; photogrammetry; structural
similarity index measure (SSIM); similarity map (SM); image processing

1. Introduction

In recent decades, digital photogrammetry has emerged as a powerful and cost-
effective method for the 3D reconstruction of objects and surfaces across various scientific
and engineering disciplines. Its advantages, including ease of use and the ability to mount
cameras on drones, have led to its expanding application in engineering geology. This tech-
nology offers an affordable and efficient survey and monitoring solution compared to other
terrestrial approaches like laser scanning and radar interferometry. Most photogrammetric
applications in this field focus on the morphological 3D reconstruction of slope surfaces
and rock masses [1–3]. More recently, its use has been extended to landslide displacement
monitoring [4–6], but, to the authors’ knowledge, there are still few applications specifically
focused on sudden collapse events. In the mining sector, technologies using calibrated fixed
camera systems to monitor rock faces and quantify detached block volumes through point
cloud comparison have been successfully tested [7]. Despite their success, these systems
are not yet fully automatable. They typically rely on volume difference calculations and are
prone to false positives when determining actual block detachment. Additionally, they may
not be suitable for more complex surfaces such as landslides, where ongoing movement,
vegetation growth, and weather events can significantly alter the image color contents.
The occurrence of sudden collapses and local surface sliding on nearly vertical slopes may
represent the precursor signals of landslide reactivation but is rarely taken into account
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due to the difficulty of detecting and quantifying these events with currently available
technologies. These events are crucial for understanding landslide behavior, assessing
stability conditions, and forecasting potential evolution.

Conventional techniques, such as topographic surveys, generally fail to capture these
events due to excessive deformations associated with collapses and the disruption of optical
targets. Moreover, these methods often provide sparse spatial information, limited to the
locations of optical prisms. Radar interferometry, while effective for detecting gradual
movements, is inadequate for capturing large sudden displacements due to loss of signal
coherence. Similarly, laser scanner surveys can estimate missing volumes but face chal-
lenges in long-term monitoring. In this context, time-lapse close-range photogrammetry
offers a viable alternative. It allows for the prolonged observation of landslides, automati-
cally obtaining detailed optical and spatial information from images. By comparing and
analyzing image sequences from multiple cameras through appropriate image processing
algorithms, local slip events and collapsed areas can be quickly identified.

The volume of collapsed material can be estimated based on the relative positions of
the cameras. These data can then be used to hypothesize correlations between detachment
events and driving factors such as rainfall and piezometric levels. Given the importance of
automatic detection and susceptibility mapping for understanding landslide characteristics
and risk assessment, numerous intelligent methods based on image analysis have been
proposed [8–10]. Lei et al. [11] proposed an end-to-end change detection algorithm using
a symmetric, fully convolutional network. Lv et al. [12] introduced a landslide detection
method based on multiscale segmentation and the object-based majority voting of im-
ages. Convolutional neural network-based methods have been widely adopted in this
field [10,13,14]. Additionally, Lu et al. [15] presented an object-oriented change detection
method for rapid landslide mapping. While these algorithms can detect landslides over
large areas using aerial or satellite images, they typically operate at low temporal resolution
and often fail to detect detachments on nearly vertical slopes. In contrast, our approach
focuses on terrestrial photo sequences at high spatial and medium-high temporal resolu-
tion. Terrestrial photos offer the advantage of adjustable spatial resolution (e.g., by using
different lenses or changing the camera distance) and temporal resolution.

Among image comparison algorithms suitable for multitemporal sequences, simple
pixel-based methods (e.g., RMSE, PSNR) are effective in controlled environments [16].
However, these methods perform poorly with natural slopes, where factors such as local
erosion and variations in lighting and environmental conditions can significantly impact
the images. Similarly, feature-based algorithms (e.g., SIFT [17], SURF [18,19]), which are
commonly used for convergent image matching and the 3D reconstruction of landslide
slopes, are also less effective for fixed-frame time-lapse imagery. While deep learning
algorithms have the potential to be more robust, they are not applicable in this case due to
the absence of a sufficiently large dataset of supporting images.

In this paper, we introduce a novel algorithm that automatically analyzes and pro-
cesses sequences of terrestrial images from multiple cameras by searching for areas where
differences are evident in terms of luminance, contrast, and texture. Utilizing the structural
similarity index measure (SSIM) algorithm [20] and a series of convolution filters, our
program identifies collapse events and determines the collapsed areas. The stereo configu-
ration of the cameras enables the calculation of the 3D shape and volume of the detached
mass [7,21,22]. This stereo-camera system has been prototyped and tested in the field at
the Perarolo landslide site (Belluno Province, Italy), where spontaneous slope collapses
frequently occur. The system, comprising three cameras and a large spotlight, was installed
on the opposite side of the valley. Nearly a year of daily and nightly photo sequences were
analyzed. Additionally, three large-scale slope stabilization operations using blasting and
excavators at the same site were employed to evaluate the effectiveness of the collapse
detection method and the accuracy of volume estimation, which was compared to laser
scanner surveys.
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2. Methods
2.1. Architecture of the Algorithm

Our program is designed to work with fixed multi-view cameras to perform image
acquisition, collapse detection, and the calculation of collapsed areas and volumes in a
fully automatic and continuous manner, without any third-party intervention or manual
operation. As shown in Figure 1, the process consists of two main phases, the collapse
recognition on the image plane through image comparison at different time steps, and
the identification and calculation of the collapsed area and volume. Before initiating the
collapse recognition phase, wooded and grassy areas, if present, must be excluded from
the analysis. The color and texture of these areas can change continuously due to wind and
seasonal vegetation growth, hindering accurate comparison between successive images.
This operation can be performed using a deep learning mask [23]. It should be noted that
this limitation naturally restricts the method’s applicability in fully vegetated areas.
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The second pre-processing step involves filtering out areas covered by shadows, which
could introduce collapse artifacts, particularly due to changes in the sun position over
time [24]. A detailed analysis of this aspect will be provided in Section 2.3.

The core of the algorithm uses the structural similarity index measure (SSIM) to
compare pairs of images in sequence, generating a structural similarity map at each time
interval [20,25]. To reduce noise caused by natural small variations in color intensity,
brightness, and contrast, image convolution filters were applied to the similarity map. We
employed a cascade of Gaussian and median convolution filters with different patch sizes
for this purpose [26]. Based on the statistics of pixel values in the final structural similarity
map, potential collapse areas can be identified, and a unique structural similarity index
is obtained. This index is used to determine whether a collapse occurred between the
images taken at times t(i) and t(i + 1). When the structural similarity index exceeds a certain
threshold, the program signals the presence of a collapse and automatically initiates the
calculation of the collapsed volume using images from a second camera. This second phase
of the process involves comparing two point-clouds generated from the 3D reconstruction
of the slope before and after the collapse. The details of this phase will be discussed in
Section 2.4.
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2.2. Structural Similarity Algorithm Approach

Among image comparison algorithms, the simplest and most reliable ones for this
work seem to be those that compare, even locally (i.e., pixel by pixel or patch by patch), some
of the key image components such as brightness, contrast, and texture. More advanced
algorithms, such as those based on feature matching and commonly used to account for
possible rotations or other spatial transformations of objects or cameras (e.g., SIFT [17],
SURF [18,19]), are in fact to be considered overly complex with fixed-frame images such
as those in this paper. Other semantic-type algorithms that exploit convolutional neural
networks are also to be considered over-refined and prone to over-fitting when changes are
expected in only small portions of the images [27]. Indeed, note how the latter require a
sufficiently large training set of images, whereas in this case, collapse events are generally
few and site-dependent (i.e., the training set of images of one landslide cannot be easily
used to refine the model of another type of landslide).

The structural similarity index measure (SSIM) algorithm is commonly used for assess-
ing image quality and evaluating the performance of image compression algorithms and
systems [28,29]. It measures the level of degradation of the image relative to a reference
one, and although it is one of the most widely used metrics for defining loss functions
during the training of (convolutional) neural networks [30,31], to the authors’ knowledge,
it has never been used for this type of application.

In this study, we propose using SSIM as a local measure of structural changes to detect
collapses in a sequence of images taken from a fixed camera oriented towards the slope.
The SSIM calculates the structural similarity index (SSI) for each pixel in the image and
generates a structural similarity map (SSM) by comparing a target photo with a reference
photo [25,32]. The SSI is derived from the variation in the following three components
between the two images or portions of images x and y: the luminance term, the contrast
term, and the structural term, according to the following metric:

SSI(x, y) = [l(x, y)]α·[c(x, y)]β·[s(x, y)]γ (1)

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3)

s(x, y) =
σxy + C3

σxσy + C3
(4)

and µx,µy, σx,σy and σxy are the local means, standard deviations, and cross-covariances
for images x and y. The parameters α, β, and γ are the exponents for the luminance, contrast,
and structural terms, respectively. Their value is usually set to one [33,34], and was kept as
such in this work to give equal weight to the three visual perception components. C1, C2,
and C3 are the small regularization constants for luminance, contrast, and texture and are
used to avoid instability in image regions where the local mean or standard deviation is
close to zero (i.e., denominator close to zero). In this case, their value was set to 1 × 10−4.

The structural similarity map (SSM) is a grayscale map (values ranging from 0 to
1) with the same dimensions as the target image in SSIM. It consists of the SSI values
for each pixel in the target image. Figure 2 illustrates an example of an SSM applied to
two consecutive images of a landslide taken at different time steps, where the darker pixels
indicate the smallest similarity values, representing areas with a higher probability of
erosion or collapse, while the lighter pixels indicate areas with high SSI values, signifying
minimal structural and color changes. At first glance, it is evident that the vegetated parts
are classified as dark areas, which could lead to erroneous collapse detection. Additionally,
due to the complex and changing environmental conditions of the landslide scene, factors
such as brightness variation and shadows—primarily caused by clouds, fog, and sun
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position—can significantly affect the structural and chromatic information of the image.
This can result in artifacts in the assessment of collapse areas. Therefore, it was deemed
necessary to investigate the impact of these variables on the calculation of the SSI in detail,
using sets of images where no collapse events occurred.
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2.2.1. Effect of Shadows

Shadow is well known as one of the main sources of error in the analysis of time-lapse
aerial and satellite images, and its detection remains a challenging task [24,33–35]. The
following two types of shadows may affect the images: cast shadows, produced by sunlight
being blocked by asperities of the slope, which are regular and have a fairly constant period-
icity, and shadows produced by clouds, which are generally less sharp and unpredictable.
Essentially, there are property-based and model-based methods for identifying and ex-
tracting the shadows cast on the ground from digital images [34,35]. The first category of
methods uses information about colors and textures in the images for shadow segmentation
and can be applied to most shadows. The second category uses external models based on
timing, latitude, longitude, and digital elevation models to estimate the sun’s position and
forecast shadow casting. The latter approach is suitable for analyzing zenithal images and
is particularly effective if elevation information can be integrated [36]. In our application,
we will employ the first type of shadow detection methods.

To evaluate the influence of shadows cast by the sun on the SSI, we selected a study
case involving five sunny days from 27 July 2020 to 31 July 2020, choosing consecutive
hourly images taken from 11:00 a.m. to 5:00 p.m. For these five sets of images, we computed
the SSI using the 3:00 p.m. shot as the reference image. In each group of images, the shadow
cast on the slope gradually decreases from 11:00 a.m. to 3:00 p.m., with the images taken at
4:00 p.m. and 5:00 p.m. having almost no shadows, as shown in Figure 3.

As shown in Figure 4, the SSI is very high and changes little when the reference image
is compared with images with less shadow cast (∆t = −1, +1, +2 h), while it significantly
decreases and changes greatly when the reference image is compared with images with
strong shadows. We also found in Figure 4 that as the shadow in the images gradually
decreases (∆t = −4, −3, −2, −1 h), the difference between the SSIM results with and
without the shadow filter decreases significantly. Moreover, the results of the five groups of
tests maintained the same trend. The overall trend and the standard deviation shown in
Figure 4 suggest that shadows have a significant impact on SSIM.



Remote Sens. 2024, 16, 3233 6 of 20Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. Example set of images used for the shadow test. Consecutive hourly images taken from 
11:00 a.m. to 5:00 p.m. on sunny days from 27 July 2020 to 31 July 2020. The shadow cast on the slope 
gradually decreases from 11:00 a.m. to 3:00 p.m., with minimal shadows in the images at 4:00 p.m. 
and 5:00 p.m. The image with red borders is the reference one. 

As shown in Figure 4, the SSI is very high and changes little when the reference image 
is compared with images with less shadow cast (Δt = −1, +1, +2 h), while it significantly 
decreases and changes greatly when the reference image is compared with images with 
strong shadows. We also found in Figure 4 that as the shadow in the images gradually 
decreases (Δt = −4, −3, −2, −1 h), the difference between the SSIM results with and without 
the shadow filter decreases significantly. Moreover, the results of the five groups of tests 
maintained the same trend. The overall trend and the standard deviation shown in Figure 
4 suggest that shadows have a significant impact on SSIM. 

 
Figure 4. Influence of shadow cast on the structural similarity index (SSI). The SSI values for images 
with varying degrees of shadow cast compared to a reference image taken at 3:00 p.m. The differ-
ence (∆t) indicates the time difference from the reference image. 

2.2.2. Effect of Illuminance 
To evaluate the effect of illuminance on the structural similarity metric, we conducted 

five groups of image sequence comparison tests using photos with different illuminance 
levels. Vegetation and shadow filters were applied in these tests. Each group of tests com-
prised consecutive night images and day images taken within the same time interval. 
From 23 February 2021 to 28 February 2021, we selected four night-images (taken at 11:00 
p.m., 1:00 a.m., 3:00 a.m., 5:00 a.m.) and four day-images (taken at 11:00 a.m., 1:00 p.m., 
3:00 p.m., 5:00 p.m.) as test images to compare with the reference image (taken at 8:00 a.m.) 
in each group. Figure 5 shows an example set of images used in one of these tests. The SSI 

Figure 3. Example set of images used for the shadow test. Consecutive hourly images taken from
11:00 a.m. to 5:00 p.m. on sunny days from 27 July 2020 to 31 July 2020. The shadow cast on the slope
gradually decreases from 11:00 a.m. to 3:00 p.m., with minimal shadows in the images at 4:00 p.m.
and 5:00 p.m. The image with red borders is the reference one.
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Figure 4. Influence of shadow cast on the structural similarity index (SSI). The SSI values for images
with varying degrees of shadow cast compared to a reference image taken at 3:00 p.m. The difference
(∆t) indicates the time difference from the reference image.

2.2.2. Effect of Illuminance

To evaluate the effect of illuminance on the structural similarity metric, we conducted
five groups of image sequence comparison tests using photos with different illuminance
levels. Vegetation and shadow filters were applied in these tests. Each group of tests com-
prised consecutive night images and day images taken within the same time interval. From
23 February 2021 to 28 February 2021, we selected four night-images (taken at 11:00 p.m.,
1:00 a.m., 3:00 a.m., 5:00 a.m.) and four day-images (taken at 11:00 a.m., 1:00 p.m., 3:00 p.m.,
5:00 p.m.) as test images to compare with the reference image (taken at 8:00 a.m.) in each
group. Figure 5 shows an example set of images used in one of these tests. The SSI between
the target image and the reference image is illustrated in Figure 6a. It can be observed
that the SSI changes little when the reference image is compared with the night images
(t = 11:00 p.m., 1:00 a.m., 03:00 a.m., 05:00 a.m.). This is due to the artificial illuminance
provided by the spotlight, which ensures a constant level of brightness. Shadows cast are
fixed and limited within the region of interest, since the illuminator is close to the cameras
and directed almost along the same line-of-sight. On the other hand, the varying illumi-
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nance of the day images (t = 11:00 a.m., 13:00 a.m., 15:00 a.m., 17:00 a.m.) has a significant
effect on SSI due to the substantial changes in sunlight intensity and direction, as discussed
earlier. Moreover, the results of the five groups of tests consistently showed the same trend.
It is worth mentioning that the reference images of Group 5 have different illuminance
levels compared to the reference images of the other groups (see Figure 6b), resulting in a
significantly lower SSI for Group 5 compared to the others.
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2.3. Image Filters

Several filters are used in our program to enhance the accuracy of the collapse detection
phase from images. These filters can be broadly categorized into the following two groups:
image pre-processing filters and noise filters applied directly to the structural similarity
map (SSM). The image pre-processing filters include a vegetation filter and a shadow filter.
The vegetation filter removes areas covered by vegetation, which were visually identified
and sampled from a set of pre-learning images. These sampled areas were used to create a
deep learning mask [37]. Similarly, the shadow filter removes areas covered by shadows,
which were also visually identified and sampled from a set of pre-learning images. These
sampled areas were used to create a color mask. These filters are applied before comparing
two images to prevent false-positive identification of collapsed areas due to movement of
vegetation and changes in shadows.

The filters applied to the SSM include various image convolution filters, which smooth
the noise generated by SSIM to avoid detection of small spots with low SSI and to consol-
idate detected collapsed areas. In this case, we used multiple median filters with kernel
sizes of 23 × 23 and 7 × 7 pixels to preserve edges of the SSM [38–40], threshold filters [41],
and Gaussian filters with a 19 × 19 kernel and standard deviation of 3 [42,43] for final
smoothing. Figure 7 illustrates the specific roles of these filters in image comparison by
showing the evolution of the SSM at each step.
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2.4. Calculation of Collapsed Volumes
2.4.1. The 3D Surface Reconstruction and Disparity Calculation

Once a collapse is detected, the program automatically calculates the collapsed volume.
The first step in this phase involves the 3D reconstruction of the slope surface before and
after the collapse using fixed calibrated cameras that enable a stereoscopic view of the
scene [44–46]. Each camera must be calibrated with a series of shots taken from different
angles to calculate the intrinsic parameters, including the focal length distortion parameters
as well as the extrinsic parameters, which include the position and orientation of each
image [47]. The extrinsic parameters require the system to be geolocalized. This is achieved
using fixed points and colored balls specially positioned on the landslide, whose exact
positions are determined through a GPS survey [48]. The final image used for calibration is
taken from the camera’s operational position to obtain its accurate pose.

For the reconstruction of the scene based on only two images, the principles of
stereophotogrammetry were used. Given the large area to be monitored and its distance
from the cameras, a larger baseline with two slightly converging lines of sight was chosen.
Using the intrinsic and extrinsic parameters of the two cameras, the stereo parameters can
be derived [49,50]. This includes the intrinsic parameters of the individual cameras and a
roto-translation matrix that allows conversion from the reference system of the left camera
to the reference system of the right camera. This matrix provides the relative position
between the two cameras.

The second step is to obtain the undistorted and rectified images from the left and right
cameras using the stereo camera parameters and considering an epipolar geometry [51–53].
To ensure the stereo images are well-aligned and the 3D reconstruction is as accurate as
possible, it is necessary to correct for any image oscillations. This correction is achieved by
aligning fixed points in the scene using the calibration image as a reference.

The third and final step involves calculating the disparity value of each pixel in the
rectified image to obtain the disparity map, which contains the depth information of each
pixel in space. Using the disparity map and stereo camera parameters [54–56], the 3D
position of each point is calculated, resulting in the 3D point cloud.

2.4.2. Point Cloud Comparison and Volume Calculation

After the 3D reconstruction, the next step is to combine the information of the collapse
area obtained with SSIM and the point cloud of the entire landslide. As described in
the workflow of Figure 8, the first step involves using a median filter with a 10-by-10
kernel to remove the noise generated in the 3D reconstruction stage. To determine the
collapse volume, we compute the difference between the point clouds before and after the
collapse and apply a filter with a 0.5 m threshold. Subsequently, a median filter with a
21-by-21 kernel is used to remove any remaining noise. Finally, we search for continuous
areas in the binary map and use the largest area as the approximate collapsed area.

Next, we dilate the boundary of the approximate collapsed area and fill the invalid
points within the collapsed area on the depth information map (disparity map or Z-axis
coordinate map), as illustrated in Figures 9 and 10. We then compare the point clouds again
to determine the exact collapsed area and its pixel coordinates. This step is crucial because
invalid points in the disparity map can cause some real collapsed areas to go unrecognized;
hence, identifying the lost real collapsed areas near the boundaries is essential. Figure 10
shows an example from the Perarolo landslide site.

Based on the pixel coordinates of the collapsed area on the rectified image, we can
identify the points on the surface of the collapsed area. As shown in Figure 11, by using all
the point clouds on the surface of the collapsed area before and after the collapse, we can
create the alpha shape representing the collapsed bodies and easily estimate the collapsed
volumes [57–59]. This approach also allows us to visualize the spatial shape of the collapsed
bodies and calculate their 3D coordinates.
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3. Case Study and Results
3.1. Perarolo Landslide Site

The Perarolo landslide, also known as the Sant’Andrea landslide, is located in the
Cadore area of the Belluno province in northeastern Italy. This area is one of the most
geohazard-prone regions in the southern Alpine mountains. The coordinates of the land-
slide are 46◦23′44′′N and 12◦21′23′′E close to the Alpi Carniche. The landslide is part
of an older landslide on the southern flank of Mount Zucco, covering approximately
72,000 square meters and extending from an elevation of 490 to 580 m above sea level.

As shown in Figure 12, the active portion of the landslide is near the left bank of the
Boite River. A village is on the right bank along the river, with its central area located
downstream relative to the landslide. Additionally, about 100 m southeast from the bottom
of the landslide, there is a road (SP42) that ascends the gentle slope on the southeast side
of the landslide. This road features a bend adjacent to the northeast corner of the upper
part of the landslide. In the 1980s, a small railway line ran along the upper section of the
landslide. However, when landslide activity was detected, the railway was relocated to
a tunnel inside the mountain. Furthermore, the Piave River flows southwest on the east
side of the landslide body, intersecting with the Boite River approximately 150 m southeast
of the landslide’s base. Behind the village, there is a hillside with a height comparable
to that of the landslide, where the cameras used for visual monitoring in this study were
installed. As shown in Figure 13, the camera system consists of three Canon EOS 1300D
cameras (Manufacturer: Canon Inc., Taiwan. Italian distributor: Canon Italia S.p.A., Milan,
Italy), each mounted in a covered iron box and equipped with remote connection and a
solar charging panel. Moreover, a searchlight is also present for night photo acquisition.
Near the photographic monitoring system, a terrestrial interferometric radar was later
installed to measure slope displacements along the line of sight. To further enhance
redundancy and, consequently, the robustness of the monitoring system, a topographic
system was also present on-site, continuously collecting position measurements of reflectors
specifically installed on the landslide body. Over the years, the landslide has exhibited
intermittent activity, with significant accelerations that have sometimes caused collapses of
the uppermost material, typically followed by periods of temporary return to an apparent
stable condition [60–63].
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Figure 13. (a) Searchlight for night photos; (b) view of one of the three photographic system used for
monitoring the Perarolo landslide; (c) detailed view of the hardware components of the system for
the automatic acquisition and transmission of the time-lapse images.

3.2. Image-Based Collapse Detection at the Perarolo Landslide Site

To confirm the capability of our photogrammetric tool based on SSIM to detect col-
lapses, we conducted a test using an image sequence acquired at the Perarolo landslide
site from July 2020 to July 2021. One image was taken per day, except during the winter
months when the slope was partially or totally covered by snow, and interferometric data
and total station data were unavailable. The trend in SSI between the images on day i and
i + 1 is shown in Figure 14, where sudden changes above the threshold indicate the occur-
rence of a collapse, in four different periods (from 8 July 2020 to 30 September 2020; from
1 October 2020 to 1 December 2020; from 15 February 2021 to 30 April 2021; from 30 April
2021 to 19 July 2021.). We defined that when the SSI is lower than 0.9998, a collapse has
occurred between the two images. This threshold is calculated based on the minimum area
of detached mass that we aim to detect, depending on the ground pixel size. Considering
the camera resolution, the distance from the slope surface, and the mean angle between
the line of sight and surface normal, an SSI lower than 0.9998 corresponds to a collapsed
area larger than about 7 m². As shown in Figure 14, the program detected 13 distinct
collapse events during the monitoring period. These events are consistent with on-site
observations and the sudden acceleration of displacements obtained from ground-based
radar interferometry and the topographic system. It should be noted, however, that these
latter monitoring systems, although they can effectively measure the phases preceding
the detachment, are generally unable to capture large displacements due to the loss of
spatio-temporal coherence of the signal [64] or the excessive instability of the optical targets.
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Figure 14. The trend in SSI between consecutive daily images over the monitoring period shows
that values below the threshold (red dots) indicate a collapse event, while those above the threshold
(blue dots) indicate no collapse. (a) From 9 July 2020 to 30 September 2020; (b) from 1 October 2020 to
1 December 2020; (c) from 16 February 2021 to 30 April 2021; (d) from 1 May 2021 to 19 July 2021.

The first nine events correspond to small natural collapses, as shown in Figure 15b.
The comparison between Figure 15a and b allows the identification of changes in the slope’s
condition before and after the event of 28 February 2021. Figure 15c–e illustrate other
significant collapses that occurred in the Perarolo landslide area during June–July 2021.
As mentioned earlier, a major natural collapse happened on 9 June 2021; the algorithm
detected this extreme condition, assigning an SSI of 0.9135 (Figure 15b). Subsequently, on
25 June 2021, an artificial collapse was induced by explosives to restore the safety condition
of the slope (SSI = 0.9449, Figure 15c). Finally, in July, anthropic activities were carried out,
where a bulldozer reshaped the toe of the landslide. These operations were also correctly
detected by the algorithm, with SSIs of 0.9936 and 0.9941 for July 13 and 14, respectively
(Figure 15d,e).

For all the cases, the program identified the location of the collapsed area on the
original images, as shown in Figure 16. We can assess its accuracy by comparing the
original images obtained before and after the events. Since image availability may not be
ensured on some days due to bad weather conditions or other technical reasons, we tested
the accuracy of our method by comparing pairs of images taken at different time intervals
and computing the SSI, essentially estimating a temporal correlation function. For this
purpose, we used a daily sequence of 25 images before a collapse event and 25 images after
the collapse, from 6 August 2020 to 24 September 2020, to calculate the SSI between images
on day i and i + ∆t. As shown in Figure 16, among the possible pairs of images, they can be
categorized according to the ∆t, and grouped into the following two categories: pairs of
images crossing the collapse event (shown in red in Figure 17 and called “with collapse”),
and pairs not crossing the event (shown in black and called “without collapse”).
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Figure 15. Images of the major collapse events recorded on the main landslide scarp. (a) Slope
condition on 9 June 2021; (b) after the major natural collapse on 9 June 2021 (SSI = 0.9135); (c) after
the artificial collapse induced by explosives on 25 June 2021 to restore slope safety (SSI = 0.9449);
(d) after the anthropic activity on 13 July 2021, where a bulldozer reshaped the toe of the landslide
(SSI = 0.9936; (e) during the continuation of anthropic activity on 14 July 2021 (SSI = 0.9941).
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the accuracy of the photogrammetric tool by comparing images (c) before and (d) after the events.

With boxplots using whiskers at 1.5 times the interquartile range, we found that the
median of the “with collapse” group fluctuates little with the change in ∆t, and there are
very few outliers, as shown in Figure 18a. It was found that almost all the SSI values in
the “with collapse” group were lower than the threshold value, indicating that the lack of
images for several days after a collapse does not affect its detection. On the other hand, in
the boxplot of image pairs “without collapse” (Figure 18b), we can see that there are cases
where the first quartile (Q1) is below the threshold when ∆t ≥ 14 days. When ∆t = 20 days,
the median is also below the threshold. This means that the time interval between the two
consecutive images should be less than 14 days to ensure a 75% probability of detection.
When the interval is 20 days, this probability drops to 50%.
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Figure 17. Test to verify the accuracy of our program at different time lags. Using 50 consecutive
images taken from 6 August 2020 to 24 September 2020, a collapse event occurred between 30 August
2020 and 31 August 2020. The red connectors identify the pairs of images in which a collapse is
detected, while the black ones represent the pairs of images without collapse.
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time lags (∆t) for image pairs with (a) and without (b) collapse events. The central blue box of the
plot represents the interquartile range (IQR), the blue line identifies the median (Q2) and the whiskers
extend to 1.5 times the interquartile range (IQR). Outliers are also shown in red.

3.3. Volume Calculation in Perarolo Landslide Site

Our photogrammetric tool automatically calculates the collapse volume for each
detected event. Table 1 illustrates the volumes of collapse events occurring after 9 April
2021, calculated using our photogrammetric tool. To assess the accuracy of this approach,
we conducted a couple of laser scanner surveys before and after each of the collapses on
9 June 2021 and 25 June 2021. From the relative point clouds, we measured the collapse
volumes using CloudCompare software (version 2.11.0, https://www.cloudcompare.org)
(see Figure 19), evaluating the distance in vertical direction between the slope surfaces
before and after each event. We compared them with the results of our photogrammetric
approach, obtaining that the relative errors were found to be 6.6% and 3.1%, respectively.

https://www.cloudcompare.org
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Table 1. Volume of some collapse events detected after 9 April 2021 calculated by our photogrammet-
ric tool.

Date Type of Collapse Volume (m3) SSI

09/04/2021 Natural 353.2 0.9971
09/06/2021 Natural 8558.7 0.9135
25/06/2021 Explosive 2739.6 0.9449
13/07/2021 Anthropic activity 217.9 0.9936
14/07/2021 Anthropic activity 457.9 0.9941
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Figure 19. Comparison of collapse volume measured using laser scanner and our photogrammetric
algorithms during the collapse event on (a) 9 June 2021 and (b) 25 June 2021, using CloudCompare
software. The contour plots indicate the vertical distance, in z-direction, between the slope surfaces
before and after each collapse.

4. Discussion

The results of the case study at the landslide site demonstrate the capability of our
photogrammetric tool in rapid collapse detection and volume calculation. This small-scale
time-lapse photogrammetric tool allows for the quick collection of collapse information
for landslides that continue to collapse, which is crucial for understanding landslide
characteristics, back-analysis of collapse causes, and further research toward developing
a collapse prediction tool. The fully automatic, non-contact, and low-cost features of this
technology make it easily acceptable and suitable for widespread adoption.

However, the results from the tests over multiple days in Section 3.2 have shown that
using the current threshold of 0.9998, comparing two images with an interval of more than
14 days may cause the program to fail. It is important to understand the maximum allow-
able interval between two consecutive images for reliable program operation, especially
when natural environmental factors such as fog can prevent image acquisition. In this case,
we found that the probability of program failure is 50% when the interval is 20 days. For
other probabilities (75% or 90%), we plan to conduct tests with longer image sequences
that include a collapse event in the middle, as soon as suitable data become available in
the future. To further improve the accuracy of collapse detection, it is necessary to study
the SSIM specifically for geotechnical materials and utilize machine learning algorithms to
identify the most suitable image sequences. These efforts are currently ongoing.
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5. Conclusions

In this paper, a new automatic photogrammetric tool is presented, designed for rapid
collapse detection and calculation of the collapsed volume of a landslide slope. The
identification of the collapsed areas is fully automated and achieved through the structural
similarity comparison of consecutive image sequences. We investigated the impact of
natural environmental factors at the landslide site on the classic image structural similarity
algorithm (SSIM) and developed multiple filters within the tool to eliminate noise and
optimize detection accuracy. After that, the algorithm for automatic calculation of collapsed
volume relies on 3D reconstruction and point cloud comparison using several previously
calibrated fixed cameras.

By analyzing image sequences taken over one year at the Perarolo landslide site,
along with laser scanner surveys, we validated the tool’s effectiveness under the following
various conditions: day and night images; images captured at different time intervals; and
the effect of vegetation and shadows. This on-site application allowed some of the potential
and limitations to be identified concerning this method:

• Full Automation. The collapse event detection algorithm based on the structural
similarity metric, once calibrated, allows for reducing the need for human interaction
and mitigating false positives that could arise from merely comparing 3D surfaces.
This also makes it possible to potentially perform real-time detection by comparing
images at very short time intervals.

• Spatial accuracy and precision. The proposed algorithm has the advantage of process-
ing the entire image area while excluding shaded and vegetated areas. The minimum
identifiable collapsed volume has been estimated for our test site but in most cases, it is
not easily controllable and is certainly higher than what can be obtained by comparing
laser scanner point clouds. It depends on a multitude of factors related to the collapse
detection process and the 3D reconstruction process. Among the most important
are factors related to the instantaneous field of view (i.e., camera resolution, sensor
size, focal length), factors related to the geometry of the subject being framed and
the 3D reconstruction process (i.e., distance from the camera, angle between the local
plane normal and the line of sight, baseline between cameras), and factors related
to the image analysis process (e.g., the type and size of the filters’ kernel applied).
Further details on the quantification of errors introduced by this method can be found
in [6,65]. Further insights may result from the extensive use of this technique on
different landslide surfaces.

• Low-Cost and Long-Term. Digital cameras have significantly lower costs compared to
laser scanner systems or interferometry. Moreover, their maintenance or replacement
is easier, making the system potentially suitable for long-term monitoring.

In general, the optimal operating conditions for this method are those where the
cameras can be positioned frontally to the area under investigation, sufficiently close to
it to maximize resolution, with a line of sight almost normal to the slope surface. The
best landslide surface is also a bare, non-vegetated surface with irregular texture (i.e., not
a monochromatic surface), not exposed to direct sunlight (to minimize shaded areas, at
least during certain hours of the day), and not too susceptible to shallow erosion (to avoid
false positives). Heavy rain, snow, clouds, and fog can naturally compromise the method’s
applicability, although a preliminary selection of the most suitable images could be made
using deep learning algorithms.

Further analysis is needed to refine this tool and gain more precise insights into the
dynamics of the Perarolo landslide, as well as other landslide sites monitored with camera-
based systems. Specifically, the ongoing work includes studying the SSIM specific to
geotechnical materials and applying machine learning algorithms to enhance the selection
of the most suitable image sequences [63]. For the further and improved development of this
methodology, it will be particularly strategic to evaluate its performance across different
types of landslides and varying environmental conditions. For instance, rainfall that
frequently precedes collapse events can significantly alter the color and texture of landslide
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surfaces, depending on the material type, potentially leading to false positives during
the collapse detection phase. Specific filters and algorithms will need to be developed to
address the various scenarios that may arise, potentially utilizing artificial intelligence for
both identifying the scenarios and selecting the appropriate resolution strategies.
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