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Abstract

This study introduces the generalised normal distribution hidden Markov model (GND-HMM)

with constrained and unconstrained parameters, where a first-order Markov chain governs

the draws of the states from the mixture components. The proposed model is applied to

the daily electricity price returns of the electricity market in northern Italy to detect the tur-

moil periods that occurred during the years 2020-2023. The turmoil periods detected by

the GND-HMM model highlight important aggregate events such as the Covid-19 pandemic

and the Russia-Ukranian conflict. Furthermore, our study aims to examine the relationship

between the identified turmoil periods and the time series of CO2 emissions in the northern

Italian electricity market.
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1 Introduction

Due to the rise in geopolitical uncertainties around the world, there have been significant fluctua-

tions in electricity prices throughout Europe [1]. In electricity markets, price volatility, especially

when detected in specific market zones, might be heavily influenced by the infrastructures and

the energy mix of the area. Therefore, periods of high volatility in the electricity market can

result in changes in the generation of electricity at the margin. For example, during periods of

high demand or supply disruptions, there may be a greater dependence on certain types of power

plants (such as coal or oil plants) that emit higher levels of CO2 compared to cleaner sources such

as natural gas or renewables [2]. Analysing turmoil periods in the energy market is crucial to

predict its future changes and might be relevant to understand its implications in terms of CO2

emissions.

In this paper, we introduce the generalised normal distribution hidden Markov model (GND-

HMM) with constrained and unconstrained parameters, applying it to the Italian electricity mar-

ket and, in particular, to the day ahead market for the northern part of Italy. We want to start

analysing the day ahead market even if it is less exposed to sudden changes in production, but

further analysis on balancing markets will be carried out in future research.
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After this brief introductory section, we turn to Section 2 where the GND-HMM is introduced.

The results are presented in Section 3. Finally, some conclusions are provided in Section 4.

2 Data and Methodology

The study is carried out considering the daily electricity prices of the day-ahead market of north-

ern Italy (MGPNorth). Most electricity transactions occur within the MGP, where prices and de-

mand for the following day are established through simultaneous auctions every hour. Data on

daily electricity prices are collected from Gestore Mercati Energetici (GME) for the period from

January 1, 2020 to January 31, 2024 [3]. The daily returns are computed as follows

rt = log

�

Pt

Pt−1

�

= log(Pt)− log(Pt−1), (1)

where rt denotes the log return on electricity price a time t, Pt is the electricity price at time t,

while Pt−1 is the electricity price at time t − 1.

A random variable X t is said to have a K-component finite mixture of generalized normal

distributions (MGND) if its density is given by

f (x t |π1, ...πK ,θ1, ...,θK) =
K
∑

k=1

πk fk(x t |θk), (2)

where 0< πk < 1, k = 1, ..., K ,
∑K

k=1πk = 1 are the mixture weights, and fk(x t |θk), k = 1, ..., K ,

are the component densities taken to be generalized normal distributions (GND),

fk(x t |θk) = fk(x t |µk,σk,νk) =
νk

2σkΓ (1 / νk)
exp

�

−
�

�

�

�

x t −µk

σk

�

�

�

�

νk�

(3)

where Γ (1 / νk) =
∫∞

0 t1/νk−1 exp−t d t, µk is the k-th location parameter (µk ∈ R), σk is the

k-th scale parameter (σk > 0), and νk is the k-th shape parameter (νk > 0). Figure 1 shows the

k-th probability density function (Eq. 3) for µk = 1, σk = 1. The shape parameter νk controls

both the peakedness and the tail weights. If νk = 1 the GND reduces to the Laplace distribution

and if νk = 2 it coincides with the normal distribution. It is observed that 1 < νk < 2 produces

an “intermediate distribution” between the normal distribution and the Laplace distribution. As

limit cases, for ν→∞ the distribution tends to a uniform distribution, while for ν→ 0 it will

be impulsive [4].
Modelling the return density using the MGND model (Eq. 2) is advantageous for two main

reasons. First, it is a flexible tool capable of capturing the skewness and excess kurtosis of daily

returns [4]. Secondly, from a theoretical perspective, the existence of various mixture compo-

nents can be attributed to several market states (or regimes). Usually, financial markets are

characterised by two market periods: stable and tumultuous. The latter are caused by aggregate

events like economic and geopolitical shifts. Since the mixture components could be different

with respect to their variances, a daily return belongs to the stability period if it belongs to the

mixture component with the lowest variance. Similarly, a daily return belongs to the turmoil

period if it belongs to the mixture component with the highest variance [5].
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Figure 1: The k-th probability density function for µk = 0 and σk = 1.

However, as already identified by Mandelbrot 1963, daily returns exhibit volatility clustering,

showing small fluctuations during stable periods and large fluctuations during turmoil periods

[6, 7]. In statistical terms, this means heteroskedasticity, i.e., non-constant variance over time.

Independent mixture models, such as the MGND model, cannot fully capture heteroskedasticity,

since they do not account for temporal dependence [8].
Therefore, it is necessary to define the stochastic process that determines the market states

(or regimes), which involves changes in the mixture weights πk for k = 1, ..., K . The mixture

mechanism should be set in a way that emphasises the probability of choosing the same mixture

component at time t+1 as the one selected at time t. In such situations, Markov chains become

essential. A sequence of discrete random variables {St : t ∈ N} is a Markov chain if for all t ∈ N
the Markov property is satisfied Pr(St+1|St , ...,S1) = Pr(St+1|St). The future state St+1 depends

only on its current state St and not on the state sequence that preceded it [9]. A Markov chain is

represented by important quantities called transition probabilities γi j(t) = Pr(Sc+t = j|Sc = i).
An homogeneous (γi j(t) = γi j for all t) Markov chain with K states can be defined by a K × K

transition probability matrix (t.p.m.)

Γ =







γ11 . . . γ1K
...

. . .
...

γK1 . . . γKK






, with γi j ∈ [0, 1] for all i j and

K
∑

k=1

γi j = 1. (4)

A Markov chain with t.p.m. Γ have stationary distribution π = (π1, ...,πK)′ if πΓ = π and

π1′ = 1. The vector π is subject to
∑K

k=1πk = 1 with πk > 0. Each element πk represents the

probability that the chain is in state k when the chain is in a state described by π. The MGND
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model (Eq. 2) together with the Markov chain (Eq. 4) gives the GND-HMM.

In addition, to obtain more parsimonious models, constraints are imposed on the location,

scale, and shape parameters: µk = µ, σk = σ, νk = ν, for k = 1, ..., K . With K = 2, taking into

account all possible combinations of these constraints would result in a family of eight models.

Parameter estimation is performed with the direct optimisation method proposed by Zucchini et

al. [9]. The likelihood function of the GND-HMM is given by

LT = Pr
�

X(T) = x(T)
�

= πP (x1)ΓP (x2) . . . ΓP (xT )1
′, (5)

where X(T ) ≡ (X1, X2, ..., XT ), π is the initial distribution of S1 and P (x) is the K × K diagonal

matrix with diagonal element equal to fk(x t |µk,σk,νk), the k-th state-dependent distribution.

3 Results

Daily returns on MGPNorth are not normally distributed as they present negative skewness (-

0.9826) and excess kurtosis (24.1607). Table 1 shows the two-state GND-HMM estimates with

and without constraints for the daily returns on MGPNorth. The Bayesian information criterion

(BIC) is used to select the best model and compare the goodness of fit. According to the BIC

the GNDHMM-CCU is the best model. Figure 2 panel a shows the estimated marginal distri-

bution with the two-state GND-HMM-CCU. It can be seen that the stable component (dotted

line) describes the central and intermediate values of the data, while the turmoil component

(dashed line) describes the more extreme tail behaviours. The stable component is predominant

compared to the turmoil component (π̂1 > π̂2). The shape parameter of the turmoil component

(ν̂2 = 0.8034) is lower than the shape parameter of the stable component (ν̂1 = 1.5675). Specifi-

cally, the turmoil component has heavier tails than a Laplace distribution. Figure 2 panel b shows

the decoded turmoil periods using the Viterbi algorithm [10]. Turmoil periods are highlighted

in yellow.

4 Final remarks

This study introduces GND-hidden Markov models with unconstrained and constrained parame-

ters, where a first-order Markov chain governs the draws of the states of the mixture components.

The proposed model is applied to the daily electricity price returns of the electricity market in

northern Italy (MGPNorth) to detect recent turmoil periods. The turbulent periods detected in

Figure 2 panel b highlight important aggregate events such as the outbreak of the Covid-19

pandemic and the Russia-Ukranian conflict.

Future research will focus on finding out whether the presence of turbolences in the zonal

market corresponds to a higher use of pollutant energy sources or vice versa if they represent

higher penetration of renewables. In this sense, we want to analyse the trade-off between market

stability and the level of emissions. Future extensions will take into account data from all the

Italian geographical zones for the MGP market and, later, on the national balancing market.
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Figure 2: Estimated marginal distribution in panel (a) and turmoil periods (coloured yellow)

decoded through the Viterbi algorithm in panel (b).

Table 1: Estimated two-state GND-HMM models for daily returns on MGPNorth.

GND-HMM

θ UUU CUU UCU UUC CCU CUC UCC CCC

π1 0.7360 0.7364 0.7293 0.7729 0.7292 0.7740 0.9987 0.5000

µ1 0.0022 0.0016 0.0019 0.0021 0.0012 0.0017 0.0011 0.0011

σ1 0.0882 0.0884 0.096 0.0833 0.0962 0.0835 0.0739 0.0707

ν1 1.4942 1.4958 1.5648 1.3517 1.5675 1.3538 0.9327 0.9001

π2 0.2640 0.2636 0.2707 0.2271 0.2708 0.2260 0.0013 0.5000

µ2 -0.0042 0.0016 0.0000 -0.0048 0.0012 0.0017 0.9674 0.0011

σ2 0.1827 0.1827 0.0960 0.2301 0.0962 0.2310 0.0739 0.0707

ν2 1.1531 1.1522 0.8028 1.3517 0.8034 1.3538 0.9327 0.9001

γ11 0.9591 0.9592 0.9670 0.9627 0.9671 0.9629 0.9987 0.8000

γ22 0.9591 0.9592 0.9670 0.9627 0.9671 0.9629 0.9987 0.8000

log L(θ̂ ) 1254.39 1254.22 1247.10 1252.03 1246.93 1251.88 1190.42 1184.86

BIC -2443 -2449.97 -2435.73 -2445.60 -2452.60 -2442.70 -2329.68 -2325.87
Notes. In bold the best model according to the BIC.
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