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Abstract

This work studies the problem of LQG control when the link between the sensor and the controller relies on a Wi-Fi network.
Unfortunately, the communication on a wireless medium is sensitive to noise in the transmission band, which is characterized
by the Signal-to-Noise Ratio (SNR). Wi-Fi allows to switch among different bit-rates in real-time thus permitting to trade-
off lower loss probabilities for larger latency or vice-versa to achieve better closed-loop performance. To exploit this feature,
under a constant SNR scenario, we propose a cross-layer approach where the bit-rate is optimally selected based on a control
performance metric (i.e. minimum LQG cost) and a model-based controller is used to compensate for the packet losses. Under
time-varying SNR, we additionally propose a (sub-optimal) on-line rate adaptation strategy and we guarantee the closed-loop
stability under some mild conditions. Numerical comparisons with emulation-based approaches using TrueTime, a realistic
Matlab-based Wi-Fi simulator, are included to show the benefits of the adaptive approach under time-varying SNR scenarios.
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1 Introduction

Motivated by the flexibility required by multi-agent or
distributed systems, as well as the reduction of instal-
lation and maintenance costs, wireless Networked Con-
trol Systems (NCSs) have attracted the interest of the
control community in the past two decades. As surveyed
in e.g [26], many ad-hoc algorithms and strategies have
been proposed to overcome the stochastic delays and
random packet loss typically affecting wireless NCSs. As
for the communication protocol, from an industrial per-
spective, wireless standards such as WirelessHART [11]
and ISA100.11a [14] have been specifically designed for
control applications aiming to enforce deterministic de-
lays, while minimizing both the packet loss probability
and the energy consumption of the devices. The available
data-rate is nevertheless very low, i.e. 250 kbit/s over a
time-slotted channel with a minimum time slot duration
of 10ms. Due to such low data-rate and communication
overheads, they do not allow sampling periods smaller
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than approximately 50ms [27]. In order to control sys-
tems with higher control rate, but also to share the net-
work among several systems, the required higher data-
rates can be provided by the IEEE 802.11 standards,
usually known as Wi-Fi. Under very good channel con-
ditions, rates up to 150Mbit/s (excluding multiple spa-
tial streams) are provided by IEEE 802.11n standard,
and more recent releases allow even higher rates. Moti-
vated by this attractive feature, a preliminary attempt
to investigate the use of Wi-Fi for industrial automation
application is provided in [35], where the effects of differ-
ent parameters such as retransmission number and back-
off delay are examined in terms of losses and latencies,
while [37] proposes the custom RT-WiFi protocol to en-
hance the timing performance by changing the medium
access mechanism. On the other hand, the main draw-
back of Wi-Fi is that, as well as other wireless standards,
the channel can be affected by external disturbances and
suffer from interference from other networks operating
on the same band. How much the external disturbance
level, quantified by the Signal-to-Noise Ratio (SNR), af-
fects the communication is related to the adopted mod-
ulation. Indeed, higher data-rates exploit noise-sensitive
high-order modulations, hence allowing to send the same
amount of data in a smaller period at the price of a
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greater number of corrupted (i.e. lost) packets. On the
other hand, lower data-rates ensure lower loss probabil-
ities in bad channel conditions thanks to their robust
modulations. Wi-Fi standard allows to choose the data-
rate in real-time but which rate should be chosen is not
obvious since it depends on the desired applications and
whether these are time-critical or not. The first possi-
ble approach, adopted by most off-the-shelf devices, pre-
scribes to choose the data-rate in view of the overall
throughput of the network at the cost of unpredictable
and possibly long delays. In this sense, well-known algo-
rithms are the Automatic Rate Fallback [15], the Adap-
tive Automatic Rate Fallback [17], and the SNR-based
Receiver Based Auto Rate [13]. An exhaustive overview
is presented in [3]. However, they are not suitable for
control and safety-critical applications, where the lack
of information for a certain period can be dangerous and
it is generally deprecated. This has motivated rate selec-
tion algorithms tailored for control applications, and also
in this particular case different approaches exist. First,
there exist algorithms that choose the data-rate accord-
ing to a communication metric that is supposed to affect
the control. In industrial scenario, a good example is the
Minstrel algorithm [38], that prescribes to follow a se-
quence of data-rates from a set of four chosen according
to the throughput and the estimated packet loss proba-
bility. The authors of [36] propose two algorithms, which
increase and decrease the data-rate after a series of suc-
cessful or failed transmissions, while always retransmit-
ting at the lowest data-rate. The work [34] proposes to
find a sequence of data-rates in order to minimize the
residual packet loss probability based on the current esti-
mated SNR. However, all these algorithms admit multi-
ple retransmissions of the same measurement that, while
decreasing the loss probability, entail the transmission
of already outdated information. In the same line, an-
other example is [7], where authors investigate how to
change on-line the sampling rate (which often coincides
with the transmission packet-rate) as a function of the
round-trip delay. A second field of research (see [22] and
the reference therein) has handled the minimum bit-rate
required to stabilize a system. Finally, instead of consid-
ering a communication metric that affects the control or
only the closed-loop stability, the third approach directly
addresses the performance of the control. The result-
ing design is said to be cross-layer, since the data-rate,
that is a communication parameter, is selected based on
control performance. An approach along this line is pro-
posed for IEEE 802.15.4 standard (which is at the core
of Zigbee and WirelessHART) in [24], that studies how
to choose the sampling rate and other communication
parameters based on aspects of the control. In [29], the
authors discuss optimal sampling rate strategies from
a control perspective in a multi-hop sensor network. In
our specific case, we devise an algorithm that selects the
data-rate according to the LQG cost.

An important aspect of our work is the adoption of a
update rate of the control input higher than the rate

at which the output is communicated. This type of sys-
tems, usually named dual-rate or multi-rate systems,
have been studied since the 50s and several contribu-
tions have appeared since then: for example, parame-
ter identification and the output estimation are treated
in [21][10], the LQG problem is addressed in [18], while
[20] studies modeling imperfections. Recent works e.g.
[12] have applied multi-rate control systems to NCSs for
their ability of decreasing the traffic load on the network.
In our framework, the multi-rate configuration allows us
to compute the optimal estimator/controller also with
time-varying output sampling rate, while this is not pos-
sible with time-varying control rates.

The main contribution of this work is the simultaneous
optimization of the control policy and transmission rate
in a LQG framework. We assume that the packet loss
and the delay are a function of the SNR level and of the
transmission rate. First, under a constant SNR scenario,
we find the joint optimal rate and LQG controller as a
function of the SNR level. We find an explicit (tight) up-
per bound of the optimal LQG cost and and we show the
optimal loss probability for each SNR level. Then, we
consider a more challenging scenario with a time-varying
SNR, in which the joint optimization of the rate and
the controller gain is computationally infeasible, and we
propose to select the rate on a packet basis as if the cur-
rent SNR would be constant. A preliminary version of
this approach has been presented in [28], but this strat-
egy was only numerically evaluated on a linear system.
Here, we move forward: under the proposed (possibly
sub-optimal) dynamic rate selection strategy, we show
that the optimal LQG controller can still be computed
in closed form. Moreover, we devise novel mathematical
tools and determine sufficient conditions to prove stabil-
ity for this dynamic multi-rate scenario with lossy com-
munication. In fact, the time-varying nature of the SNR
requires us to find bounds on the estimator error covari-
ance that hold true simultaneously for possibly different
values of the SNR, which is quite challenging in the pres-
ence of packet loss. Finally, we show the benefits of this
approach with respect to alternative control strategies
referred to as emulation-based [23][9], using a realistic
Wi-Fi environment based on the TrueTime simulator [6].

The paper is organized as follows: in Sec. 2 we introduce
our main assumptions, the network and the plant mod-
els; Sec. 3 shows the solution of the estimation problem
and the jointly optimal rate and optimal control problem
under constant SNR, while Sec. 4 outlines our rate se-
lection algorithm; in Sec. 5 we address the time-varying
SNR case and we prove the stability in this general case.
The paper ends with simulations and the conclusions.

2 Problem formulation

The following two definitions are widely used in the rest
of the paper.
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Fig. 1. Control instants and transmission instants with R1

(above) and R3 (below). When sent, a packet can arrive
on time (A), be outdated and discarded (B), or lost (C).
Out-of-order delivers are detected (D). A measure is used to
update the estimate and the control input as soon as possible:
e.g. after 3T (E) or after T (F). Transmitter and receiver are
assumed to be synchronized, and packets are time-stamped.

Definition 1 The control rate Rctr is the inverse of
the sampling period to which the system is discretized.
It corresponds to the rate at which the input and the
estimate are updated. The transmission rate Rtx is the
inverse of the period between two consecutive transmitted
measurements. It corresponds to the rate at which the
output is sampled and communicated.

We consider the set of periods Ti i ∈ {1, 2, . . . ,M},
which represent both the sampling periods and the pe-
riods between two transmissions. For sake of simplic-
ity, we assume that Ti = i ·T1. The smallest period is
simply indicated by T , so the set of given periods is
{T, 2T, . . . ,MT}. From the relation Ri = 1/Ti, it is pos-
sible to derive the set of rates Ri i ∈ {1, 2, . . . ,M}; it
holds that Ri = R1/i. The transmission period and the
control period can be the same (top panel in Fig. 1), but
in general the former is a multiple of the latter if the
bit-rate is reduced (bottom panel in Fig. 1).

To avoid confusion it is important to remark that
transmission rates in this work are defined in terms of
packets/s and should not be confused with data-rates
which are in bits/s. Although they are not exactly pro-
portional, we associate different transmission rates to
different data-rates in such a way that a higher trans-
mission rate is associated to a higher data-rate, and a
lower transmission rate to a lower data-rate.

2.1 Communication

We consider to connect the sensor and the estimator
through a Wi-Fi network. Our work does not employ
a detailed network model, but it relies on a simplified
formulation whose main assumptions are introduced in
the following.

Assumption 2 Each packet is delivered within the fol-
lowing transmission instant with a certain packet arrival

probability λ which depends on the transmission rate and
on the SNR level:

λ(Rtx, SNR). (1)

The transmission delay for successfully delivered packets
is assumed to be uniformly distributed across the trans-
mission period. Additionally, assume that receiver and
transmitter are synchronized, and that packets are time-
stamped.

The previous assumption requires that the arrival prob-
ability is only a function of the SNR and of the transmis-
sion rate. In the context of NCSs, similar ideas have been
previously proposed based on the Gilber-Elliot model
or Markov chains, for example, to represent the relation
between the quality of the channel and arrival probabil-
ity. A more sophisticated framework have been consid-
ered in [25], where also network parameters are taken
into account. In this work, based on known communi-
cation principles [33], we consider that for a given Rtx,
the function λ(Rtx, SNR) is monotonically non decreas-
ing with respect to the SNR. On the other hand, for a
given SNR level, a lower transmission rate Rtx achieves
higher arrival probability λ because the associated data-
rate adopts a more robust modulation. Accordingly, we
refer to the packet loss probability 1 − λ as the proba-
bility with which the packet does not arrive before the
following transmission instant. In that case, the packet
is discarded. Uniform delays across the transmission pe-
riod are assumed for sake of simplicity, but the subse-
quent analysis can be easily generalized to any other de-
lay distribution. Out-of-order and outdated packets are
detected since receiver and transmitter are synchronized
and packets are time-stamped. An illustrative scheme
is reported in Fig. 1. Note that the period between two
consecutive transmission instants, and hence the allowed
delay, is different for each transmission rate.

Curves of packet loss probability vs SNR can be inferred
analytically or empirically, see for example [36] [16], and
depend on the number of retransmissions, the payload,
and the traffic load, i.e. on the particular application. In
this work we consider that packets have a fixed length,
we disable retransmissions, and we consider load con-
dition such to have the curves shown in Fig. 2, derived
from [36] for IEEE 802.11g. Nevertheless, our theoret-
ical procedure can be applied regardless to the specific
curve, i.e. for different network configurations and for
different IEEE 802.11 or other standards that allow the
selection of the transmission rate in real-time.

2.2 System dynamics

Consider the stochastic continuous-time linear system:{
dx(t) = Acx(t)dt+Bcu(t)dt+ dw(t)

y(t) = Ccx(t)
(2)
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Fig. 2. Curves of loss probability vs SNR.

where x(t)∈Rn, y(t)∈Rp, u(t)∈Rm, and w(t)∈Rn is a
Wiener process such that w(t+ τ)−w(t) ∼ N (0, Qcτ),
Qc ≥ 0, where N () indicates a Gaussian distribution.

Consider to control the system with a NCS. The con-
troller and the estimator are implemented on the same
device. At each transmission instant, the sensor trans-
mits a packet containing the current output to the esti-
mator through a Wi-Fi network, while, at each sampling
instant, the controller updates and transmits the input
to the actuator through an ideal link. This configuration
corresponds to the very common situation in which the
controller and the actuator are co-located. The sensor,
the estimator, the controller, and the actuator need to be
synchronized and the packets have to be time-stamped
as stated in Assumption 2. The scheme is reported in
Fig. 3.

To deal with this set-up, we consider piecewise constant
inputs within a sampling period Ti i ∈ {1, 2, . . . ,M}, i.e.
u(t) = uk, t ∈ [kTi, (k+1)Ti). Under this scenario, the
continuous system (2) can be discretized following [19]
as: {

xk+1 = Aixk +Biuk + wk

yk = Cixk + vk

where xk := x(kTi), yk := y(kTi), wk ∼ N (0, Q(Ti)),
vk ∼ N (0, R) with R > 0, and Ai=A(Ti), Bi=B(Ti),
Ci=Cc where:

A(τ)=eAcτ; B(τ)=

∫ τ

0

eActBcdt; Q(τ)=

∫ τ

0

eActQce
A′

ctdt.

We assume that the process noise wk is independent
of the measurement noise vk. The measurement noise
covariance matrix R is assumed to be independent of
the sampling period. We finally assume that the initial
state is a Gaussian random vector with mean x̂0 and
covariance matrix P0. Define the measurement model at

the estimator as:

ykh = γk
hyh = γk

h(Cixh + vh)

where the arrival process γk
h ∈ {0, 1} indicates if the

measurement yh sampled at time hTi has been present
at the estimator location at time kTi > hTi. In the fol-
lowing, to simplify the notation, if i = 1 we omit it, so:
A := A1, B := B1, C := C1, and Q := Q1.

2.3 LQG cost

Consider the following quadratic cost measure:

JM (u(t)) = E

[
1

M

∫ M

0

(
x′(t)Wcx(t)

+ u′(t)Ucu(t)
)
dt

∣∣∣∣u(t), t ∈ [0,M ]

]
withWc ≥ 0 and Uc > 0. Under the assumption of piece-
wise constant inputs over T , similarly to [8], the previous
integral can be converted into the following sum:

JK(uk)=c+E

[
1

K

K−1∑
k=0

x′
kWxk+2x′

kNuk+u′
kUuk

∣∣∣∣∣{uk}K−1
k=0

]

where JM (u(t)) = JK(uk) with K := M
T and

W =
1

T

∫ T

0

A′(τ)WcA(τ)dτ N=
1

T

∫ T

0

A′(τ)WcB(τ)dτ

U= Uc+
1

T

∫ T

0

B′(τ)WcB(τ)dτ c =
1

T

∫ T

0

tr(Q(τ)Wc))dτ.

In the following sections, we will need the operator:

gTi

λ (X) := AiXA′
i+Qi−λAiXC ′

i(CiXC ′
i+R)−1CiXA′

i

with Ti the sampling period of the system.We also define
the critical arrival probability λi similarly to [32]:

λi = arg inf
{
λ : ∃X ≥ 0 s.t. gTi

λ (X) = X
}
.

3 LQG control under constant SNR

In this section, we introduce the LQG control in a sce-
nario where the control rate is fixed to the highest rate,
i.e. Rctr = R1, while the transmission rate Rtx is fixed
but is chosen in the set Rtx ∈ {R1,

R1

2 , . . . , R1

M }, with
outputs randomly lost according to an i.i.d. process with
arrival probability λ defined in (1). The resulting con-
trol strategy is therefore named Single-Rate Controller
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Fig. 3. Control and rate selection architecture

(SRC). This choice arises from the different nature of
the two links: while an high control rate is supported by
the ideal link between the controller and the actuator,
a high transmission rate requires good channel condi-
tions in the wireless connection between the sensor and
the controller. We further assume that the SNR is con-
stant, from which it follows that the arrival probability
depends only on Rtx according to (1).

Consider u(t) = uk, t ∈ [kT, (k+1)T ), where T = 1/R1.
We define the information set Ik, that is the information
available at the controller/estimator at time instant k:

Ik =
{
{ykh}k−1

h=0, {γ
k
h}k−1

h=0, {uh}k−1
h=0

}
.

Note that at time instant k the measurement yk is not
available, since we assume a non-zero transmission delay
to send it over the network (see Fig. 1). The information
set implicitly depends on the SNR and on Rtx since the
arrival process is highly affected by them. We define the
following variables:

x̂k
t|t−1 := E[xt | Ik]

P k
t|t−1 := E[(xt − x̂k

t|t−1)(xt − x̂k
t|t−1)

′ | Ik].

Since initial state, process noise, and measurement noise
are independent and Gaussian, x̂k

t|t−1 is the optimal es-

timator given Ik [1], and the matrix P k
t|t−1 denotes the

corresponding estimation error covariance matrix. With
delayed packets, the optimal estimator can be found fol-
lowing [30]:

x̂k
t|t−1=Ax̂k

t−1|t−2+But−1+γk
t−1K

k
t−1(y

k
t−1− Cx̂k

t−1|t−2) (3)

Kk
t−1 = AP k

t−1|t−2C
′(CP k

t−1|t−2C
′ +R)−1 (4)

P k
t|t−1 = AP k

t−1|t−2A
′ +Q− γk

t−1K
k
t−1CP k

t−1|t−2A
′ (5)

for each t in [0, k]. The optimal estimator is time-varying
and depends on the particular realization of the packet
arrival process γk

t−1, which in turn depends on Rtx. The

estimate is updated according to an open-loop estima-
tion if γk

t−1 = 0 and to a Kalman (closed-loop) update

if γk
t−1 = 1. In our framework we have assumed that a

measurement arrives within the following transmission
instant or it never arrives. Since the period between two
consecutive transmissions contains Rctr/Rtx sampling
periods, a measurement can arrive with a delay up to
Rctr/Rtx control periods. This requires to store the es-
timate and the error covariance of the previous trans-
mission instant and at each step to repeat the estimate
procedure from that instant to the current instant. This
allows to improve the performance of the estimation in
the interval between two transmission instants: instead
of using the previous transmitted output at the following
transmission instant, it can be used on the intermediate
instants, if it is available (see bottom panel of Fig. 1).

Now consider the following finite-horizon optimization
problem:

J∗
K({γk

t }) :=argmin
{uk}K−1

k=0

JK(uk), s.t. uk=fk(Ik) (6)

where we made explicit that the optimal cost depends on
the specific packet arrival sequence {γk

t }. The following
theorem solves this problem.

Theorem 3 Consider the continuous system (2) with
control rate Rctr = R1. Consider the finite-horizon LQG
problem (6). Then, the optimal solution is given by:

J∗
K({γk

t }) = c+
1

K

(
x̂′
0S0x̂0 + tr(S0P0)+

+

K−1∑
k=0

tr(Sk+1Q)+tr
(
(A′Sk+1A+W−Sk)P

k
k|k−1

))
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with

uk = Lkx̂
k
k|k−1

Lk = −(U +B′Sk+1B)−1(B′Sk+1A+N ′)

Sk = A′Sk+1A+W − (A′Sk+1B +N)Lk SK = 0

while the optimal estimator is given in (3)-(5).

The proof of the previous theorem is omitted since it fol-
lows from a straightforward readjustment of the proof
of Lemma 5.1 in [31] by including the cross cost term
N in the cost. In this way it is possible to show that
the separation principle holds and the optimal estima-
tor can be solved separately. Moreover since the optimal
control gains Lk are independent of the transmission ar-
rival sequence {γk

t }, then it means that they are inde-
pendent of the specific transmission rate Rtx and of the
SNR, thus can be computed off-line. This is a specific
feature of the SRC approach. In fact, if the control rate
would be chosen to be equal to the transmission rate, i.e.
Rctr = Rtx, then the control gains Lk would be different
for different rates. While under the constant SNR sce-
nario this is not critical since stability can still be guar-
anteed, in the time-varying scenario where transmission
rate is changed on-line, this would require the switch-
ing of control gains thus leading to a possible unstable
switching dynamics.

4 Optimal rate for constant SNR

Since the error covariance depends on the arrival process
that is not known in advance, we consider the expected
value of the cost with respect to the arrival process. We
focus our attention on the infinite-horizon LQGproblem.
Under standard stabilizability of the pair (A,B) and de-

tectability of the pair (A,
√
W ), with

√
W ′

√
W = W ,

then limk→∞ Sk = S∞ exists, the control gain Lk con-
verges to:

L∞ = −(U +B′S∞B)−1(B′S∞A+N ′) (7)

and the cost evaluated on the optimal input is:

J∗
∞(Rtx, SNR) := lim

K→∞
supE

[
J∗
K({γk

t })
]
= c+tr(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0

tr
(
(A′S∞A− S∞+W )E[P k

k|k−1]
)
(8)

To find the optimal rate, we have to compute J∗
∞ on

each Rtx for the given SNR. Unfortunately, this is not
possible because limk→∞ E[P k

k|k−1] can not be computed

in closed-form [32]. We therefore propose to consider
computable upper bounds for it, which in turns allow us
to compute upper bounds of the cost J∗

∞(Rtx, SNR) for
each transmission rate Rtx = Ri and SNR.

First, we consider the scenario Rtx = Rctr = R1 and
P[γk

k−1=1]=λ(R1, SNR).As stated in [32], it holds that:

lim
k→∞

E[P k
k|k−1] ≤ P

where P exists if λ(R1, SNR) > λ1 and it can be found
from:

P = gTλ(R1,SNR)(P ).

Then we can bound the optimal LQG cost as:

J∗
∞(R1, SNR) ≤ J

∗
∞(R1, SNR)

J
∗
∞(R1, SNR)=c+ tr(S∞Q) + tr

(
(A′S∞A+W−S∞)P

)

The analysis becomes more involved when Rtx = Ri =
iR1 with i > 1. In this case it is not possible to find
a single upper bound E[P k

k|k−1] ≤ P for all k, but it is

more meaningful to look for periodic upper bounds. In
fact, measurements are transmitted only every i inter-
vals, and therefore we expect to find an i-periodic se-
quence of bounds. More specifically, we will show that

it is possible to find a set of i matrices {P i

j}i−1
j=0 such

that limh→∞ E[P ih+j
ih+j|ih+j−1] ≤ P

i

j . We will also show

that P
i

0 can be computed as the fixed point of a Riccati-
like operator that depends on the period Ti = iT and

λ(Ri, SNR), while P
i

j can be computed from P
i

0 apply-
ing a suitable operator. This is summarized in the fol-
lowing theorem:

Theorem 4 If λ(Ri, SNR) > λi, then the optimal LQG
cost can be upper-bounded by

J
∗
∞(Ri,SNR)=c+tr(S∞Q)+

1

i
tr
(
(A′S∞A+W−S∞)

i−1∑
j=0

P
i

j

)

where

P
i

0 = giTλ(Ri, SNR)(P
i

0)

P
i

j = gjTj
i λ(Ri, SNR)

(P
i

0), j = 1, . . . , i− 1

PROOF. See Appendix A.

Finally, the optimal rate is chosen according to:

R∗(SNR) = argmin
Rtx

J
∗
∞(Rtx, SNR).
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5 Sub-optimal solution for time-varying SNR

In the time-varying case, in order to optimally and si-
multaneously design the controller and the transmission
rate, statistical information about the SNR dynamics
is needed. However, even if this is available, the LQG
framework would require the solution of a complex dy-
namic programming problem which might not be feasi-
ble. Moreover, due to the typical channel coherence time,
SNR is not likely to change very rapidly as compared
to the control period T , and therefore a quasi-static ap-
proach for the control rate could be effective. For this
reason, we decide to fix the rate policy based on the
static scenario. More specifically, at each transmission
instant, the rate R(k) to transmit yk is selected to mini-
mize the infinite-horizon LQG cost as if the SNR would
remain constant and equal to the value of time instant
k, denoted SNRk:

R(k) = argmin
Rtx

J
∗
∞(Rtx, SNRk) (9)

The solution is a static map that associates a trans-
mission rate to each SNR, thus it can be implemented
through a look-up table. From a practical point of view, a
SNR measure can be provided by the Wi-Fi board while
a specific user’s routine can set the data-rate of the com-
munication. It is worth mentioning that the possibility
to set the data-rate is ensured by the Wi-Fi standard,
and several off-the-shelf boards provide the SNR mea-
sure to the user. Alternatively it can be estimated e.g.
from the RSSI. Practical considerations and execution
times of the mentioned routine can be found in [4], while
a similar implementation has be done in [34]. Note that
R(k) determines also the period until the following sent
packet. Once the rate selection algorithm is chosen, we
solve the LQG problem for the control and the estimate
with time-varying SNR. From Theorem 3, the optimal
control gain is not affected by SNR and Rtx, so it is the
same with time-varying and constant SNR. Likewise, the
optimal estimate procedure is the same given the infor-
mation set, because a missing packet due to the adoption
of a lower transmission rate is treated as a packet lost. It
follows that the SRC under constant SNR can work in a
time-varying SNR fashion just adding the time-varying
on-line rate selection (see Fig. 3). It is interesting to note
that, if the SNR is constant for a long period, the pro-
posed solution coincides with the optimal solution for
the constant SNR scenario without any modification.

Since the transmission rate can change, it is not more
guaranteed that the closed-loop system is still stable
since we are in the presence of a switching system, which
is known to possibly be unstable even if the switching is
performed between stable dynamics. In the following we
prove the stability of the SRC with time-varying SNR.
We consider that the SNR can be measured instanta-
neously by the sensor and it is able to select the optimal
rate from the set {R1, . . . , RM}.

Assumption 5 The sequence SNRk is constant over
each period [Nh,Nh+N), with N the least common mul-
tiple of the first M positive integers, and lower-bounded
by a given SNRmin. Moreover, the first transmission is
scheduled at k = 0.

Piece-wise constant SNRk with changes at multiples of
N implies that the chosen rate is constant in the pe-
riod [Nh,Nh + N). Since N is multiple of any i ∈
{1, . . . ,M}, Nh+N is a transmission instant indepen-
dently of which rate Ri ∈ {R1, . . . , RM} has been cho-
sen in [Nh,Nh+N). This hypothesis is a technical as-
sumption to simplify the subsequent analysis but it is
reasonable if the SNR changes slowly, e.g. under slow
fading scenario or with slow user mobility. Moreover,
the lower bound SNRmin excludes loss probabilities that
would compromise stability even with a single rate ap-
proach. We consider the subsequence:{

E
[
PNh
Nh|Nh−1

]}+∞

h=0
.

A first issue is due to the fact that the evolution of the
sequence above depends on the rate chosen in each pe-
riod. The problem is even more difficult because, even
for periods characterized by the same transmission rate,
the arrival probability can vary within a certain range
according to the SNR. Each transmission rate is so char-
acterized by a worst case, that is in correspondence of
the lowest SNR for which it is adopted:

SNRi,L := inf
{
SNR ≥ SNRmin : R∗(SNR) = Ri

}
.

The corresponding limit arrival probability λi,L for the
transmission rate Ri is the arrival probability associated
to SNRi,L:

λi,L := λ(Ri, SNRi,L)

that is, under the mild hypothesis that the arrival prob-
ability is monotonically non-decreasing with respect to
the SNR, the smallest arrival probability for which Ri

is optimal. A graphical representation of this values is
shown in Fig. 5 for a specific case.

Consider the linear operator:

LTi(K,X) = (Ai + λi,LKC)X(Ai + λi,LKC)′

and its compositions 1 :

Li(K,X) = LiT ◦ LiT ◦ · · · LiT︸ ︷︷ ︸
N/i times

(K, X)

Now we can state the stability theorem.

1 with a little misuse of notation: f ◦ f(a, b) = f(a, f(a, b))
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Theorem 6 Consider that (A,B) is stabilizable and

(A,
√
W ) is detectable, while (Ai, Ci) is detectable and

(Ai,
√
Qi) is stabilizable ∀i ∈ {1, . . . , M}. Assume that

Ass. (5) holds true with SNRmin such that λi,L > λi ∀i.
Under rate adaptation law (9), SRC given in (7), and
estimator given in (3)-(5), if there exist aK and a Y > 0
such that Li(K,Y ) < Y ∀i, then the closed-loop system
is mean square stable.

PROOF. See Appendix B.

It is clear that a necessary condition for the stability
of the time-varying case is the stability under constant
SNR, which is guaranteed if λi,L > λi: this motivates

the condition on SNRmin. The existence ofK and Y > 0
is only a sufficient condition and possibly tighter condi-
tions could exist. However, following the idea proposed
in [32], the previous conditions can be cast into a semi-
definite programming (SDP) problem, which can be nu-
merically solved. In the interest of space, the SDP deriva-
tion is omitted.

6 Simulations

The results presented in the previous sections are now
assessed within a specific simulation setup. First, we
show the outcome of the rate selection algorithm for a
particular case of study. Then, through the widely used
Simulink-based TrueTime simulator [6], we implement
the simplified but realistic network model introduced in
Sec. 2 to show the benefits of the proposed scheme.

The system used for our simulation tests is a two-wheeled
balancing robot, usually referred to as segway, consist-
ing of a rigid body equipped with two wheels. Two DC
motors provide the torque to the wheels aiming to keep
the rigid body upright while moving on the plane. For
sake of simplicity, we assume that the segway can move
only along a straight line (i.e. the two DC motors are
always supplied by the same voltage input). An iner-
tial measurement sensor estimating the tilt angle and
an encoder on a wheel constitute the on-board sensing
and encoding device. The dynamics can be described
by a continuous-time non-linear model: for the case of
this work, we consider the dynamical model studied in
[2]. Our approach is oriented to linear continuous-time
plants, so we consider the state-space system linearized
in the neighborhood of the origin:

Ac=


0 0 1 0

0 0 0 1

0 43.57 −3.81 3.41

0 55.22 1.97 −2.25

Bc=


0

0

4.92

−3.25

Cc=


1 0

0 1

0 0

0 0


′

where the state consists of the wheel angle, the tilt angle,
and their derivatives. The input is the voltage of the DC
motors and the output is the measurements given by the
encoder and the inertial measurement sensor. The other
matrices presented in Sec. 2 are:√

Wc =
[
1 100 0 0

]
Wc =

√
Wc

′√
Wc Uc = 1

√
Qc=

[
0 10−4 0 0

]′
Qc=

√
Qc

√
Qc

′
R=

[
10−9 0

0 10−6

]
For the simulations we have adopted the set of sampling
periods {T, 2T, 3T}, where T = 0.01s, that are used to
discretize the linear continuous system. From the sam-
pling periods, it is possible to compute the transmis-
sion rates and the control rates. We associate R1, R2,
R3 to the data-rates 54, 36, 18Mbit/s, respectively. For
each transmission rate and for each SNR level we have
adopted the arrival probabilities in Fig. 2.

6.1 Numerical results under constant SNR

In Fig. 4 we report the asymptotic costs for the case
of the segway as given by the formulas of Theorem 4
with constant SNR. The plot reports the cost on the y-
axis and the inverse of the SNR, denoted by SNR−1, on
the x-axis. Note that, with this notation, it holds that
SNR|dB = −SNR−1|dB. For each transmission rate, the
asymptotic cost is computed over only a finite number of
quantized levels (with step of 1 dB) and as long as it ad-
mits a steady-state value, i.e. λ(Ri, SNR) > λi. We can
see that the highest transmission rate achieves the min-
imum cost for good channel condition, corresponding to
left part of the plot, thanks to the largest available in-
formation set. Decreasing the SNR, i.e. for larger values
on the x-axis, communications with the highest trans-
mission rate start to be affected by packet loss, while
the other rates are still reliable. Accordingly, while the
cost with R2 is still constant, the cost with R1 increases
and eventually R2 achieves the lowest cost. The same
happens for lower SNR with R2 and R3, that eventually
becomes the optimal rate. For even worse channel condi-
tions, also communications with R3 are not reliable and
the sufficient condition for the stability is not satisfied.
In Fig. 5 we highlight the loss probability corresponding
to the optimal rate. We see that the optimal rate is not
always the one for which the loss probability is the low-
est, but it is a trade-off between the arrival probability
and the control performances.

6.2 TrueTime implementation

TrueTime is a simulator for networked and real-time con-
trol systems compatible with the well-known Simulink
environment. It provides a custom block library contain-
ing a Kernel block and a Network block that can inter-
act with other blocks in an unique Simulink model. The

8



Fig. 4. LQG cost vs. SNR

Fig. 5. Optimal loss probability

Kernel block models a computing processor with limited
computational resources shared among multiple tasks,
while the Network block models several widespread local
networks like Ethernet, CAN, PROFINET, and ZigBee.

Our Simulink model comprises a block in which the dy-
namical non-linear system is implemented by a Matlab
S-function, two Kernel blocks, and a IEEE 802.11b Net-
work block that simulates the Wi-Fi communications
between the two Kernel blocks. The input of the non-
linear system is fed by the output of the first Kernel,
which represents the control unit. It is the receiver in
our setup. At each sampling time, it checks if new pack-
ets are arrived, then it elaborates the control input and
provides it to the plant. The continuous-time output of
the system is instead connected to the input of the sec-
ond Kernel block, which represents the sensor. It is the
transmitter in our setup. At the transmission instants
indicated by the chosen rate, it packetizes and transmits

S-function

Plant

TrueTime
Wireless Network

TrueTime Kernel
RECEIVER

TrueTime Kernel
SENDER

u y

TrueTime Kernel
INTEFERENCE

TrueTime Kernel
INTEFERENCE

TrueTime Kernel
INTEFERENCE

Fig. 6. TrueTime model (simplified)

the system output. The IEEE 802.11b Network block
manages the communication from the sensor to the con-
trol unit and simulates the access to the medium, the
transmission intervals, and the packet losses. Fig. 6 is an
intuitive sketch of the implemented Simulink model. A
set of Kernel blocks are used to simulate different lev-
els of noise. Since TrueTime assumes a rather simplistic
model of the bit error rate, it does not capture the be-
haviour of the packet loss probability due to the chang-
ing data-rate, so we decide to modify the source files of
the simulator in order to include the behavior of Fig. 2.

6.3 Numerical results under time-varying SNR

It is interesting to compare our control strategy to ex-
isting controllers for NCSs. One popular approach [23]
[9], sometimes referred to as emulation-based, considers
to design the regulator as if the network is not present,
while, in the implementation, a lost packet is replaced
by the last received one. This approach is attractive be-
cause it allows to re-use the standard well-known con-
trol schemes. Since any possible control algorithm can be
adopted according to this strategy, we decide to consider
a standard Kalman filter followed by the optimal con-
trol gain. We will referred to it as emulation-based LQG
controller. We aim to compare the proposed cross-layer
approach to the independent design of network and con-
trol, e.g. when the future channel condition is optimisti-
cally considered or when the chosen rate is conservative.

The SRC can switch Rtx among R1, R2, and R3, while
Rctr is fixed to R1 accordingly. The emulation-based
controller is not designed to support a control rate dif-
ferent from the transmission rate, so Rtx = Rctr. We
decide to consider a first controller with R1 and a sec-
ond one with R3. In particular, rate R1 should provide
high performances when the communication channel is
good, while R3 would provide lower performances but a
greater robustness when the channel quality degrades.
In every controller we add integral action for tracking of
step reference on the wheel angle. In our simulations, we
consider a square wave with period 12s and duty cycle

9



Fig. 7. Comparison on the square wave response between SRC and emulation-based LQG controller [23].

50%. We consider a piece-wise constant SNR:

SNR(t) =


18 dB t ∈ [0s, 12s)

12 dB t ∈ [12s, 24s)

6 dB t ∈ [24s, 36s)

that represents the case in which the channel is ideal in
the first period (R∗ = R1), then it deteriorates in the sec-
ond period (R∗ = R2), and finally it is affected by high
noise (R∗ = R3). The results are plotted in Fig. 7. In the
first period, with high SNR, the SRC and the emulation-
based LQG controller with R1 coincide. They outper-
form the emulation-based LQG controller with R3 that
exhibits a longer settling time due to the longer sam-
pling period. Note that, in this period, emulation-based
step response with R3 would coincide to the output
with a model-based controller identical to SRC but with
Rctr = Rtx = R3, so it is possible to infer the improve-
ment achieved by the adoption of a higher rate also with
respect to the same control algorithm. In the second pe-
riod, the SNR decreases and the emulation-based LQG
controller with R1 is not able to stabilize the system due
to the high packet loss incurred (λ(R1, 12 dB) = 0.95).
The emulation-based LQG controller with R3 obtains
exactly the same result of the previous period, because
the changing of SNR from 18 dB to 12 dB is invisible for
R3 since the corresponding packet loss probabilities are
both zero (see Fig. 5). The SRC switches fromR1 andR2

but its performance is barely affected by this change. In
the third period, where the noise is high, the emulation-
based LQG controller with R3 becomes unstable. Also
the performances of the SRC deteriorate due to the se-
vere packet loss (settling time 0.5 s worse). However, the
degradation is mild if we take into account that the SRC
with Rtx = R1 or with Rtx = R2 would work without
feedback due to the very high loss probabilities for such
a SNR (see Fig. 5) and would not be able to stabilize
the system. It is possible to see the benefits of the pro-

posed rate adaptation mechanism: under good channel
conditions, an high Rtx is adopted ensuring better per-
formance than a lower one, while, in bad channel con-
ditions, a low Rtx guarantees good performances when
an higher one may led to instability. These simulations
clearly show the benefit of a model-based control design
to take into account packet losses with respect to the the
emulation-based approach.

7 Conclusions and future works

This work analyses the LQG control for a NCS where
the link between the sensor and the controller is imple-
mented through aWi-Fi network. Based on the relation-
ship between the packet error probability and the SNR,
we study the rate selection algorithm that minimizes the
LQG cost under constant SNR. We show that the opti-
mal rate increases with the SNR, as expected, however
under some specific values of SNR, the rate selection al-
gorithm dictates to pick a fast rate with non-negligible
packet loss probability (up to 50%) rather then a lower
rate with minimal packet loss. Adopting an higher up-
date rate of the input with respect to the sampling rate
of the output, we provide the control strategies named
SRC that is optimal with constant rate (i.e. constant
SNR) and is guaranteed, under mild conditions, to sta-
bilize the system also in time-varying channel conditions
(i.e. time-varying SNR). Numerical simulations involv-
ing TrueTime simulator show the benefits of the adap-
tive approach under a time-varying SNR condition with
respect to standard constant-rate controller. The pro-
posed algorithm can be further generalized to include
multi-agent systems, and possible applications are col-
laborative robotics, building maintenance, and forma-
tion control of swarm of autonomous systems. The next
step, starting from the implementation presented in [5],
is to experimentally validate the proposed algorithm.
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A Proofs for constant SNR

First we introduce the following lemma.

Lemma 7 The following properties hold:

(1) gτ
′+τ ′′

λ (P ) = gτ
′

0 ◦ gτ ′′

λ (P ) ∀τ ′, τ ′′ > 0.

(2) Consider X ≤ Y . Then gτλ(X) ≤ gτλ(Y ).

(3) Consider λ′ ≤ λ′′. Then gτλ′(P ) ≥ gτλ′′(P ).

(4) Consider X, Y ≥ 0 and α ∈ [0, 1]. Then
gτλ(αX + (1− α)Y ) ≥ αgτλ(X) + (1− α)gτλ(Y )

(5) Consider λ′, λ′′ and α ∈ [0, 1]. Then
gταλ′+(1−α)λ′′(X) = αgτλ′(X) + (1− α)gτλ′′(X)

(6) Let X ≥ 0 be a random matrix. Then
E[gτλ(X)] ≤ gτλ(E[X])

PROOF. (1) can be proved by computing gτ
′

0 ◦ gτ ′′

λ (P )
and using the definitions given in Sec. 2, under the key
assumption that R is independent of the sampling pe-
riod. Properties (2)-(4) are given in [32], while (5) is
trivial. They state that gτλ(X) is monotonically increas-
ing w.r.t. X, monotonically decreasing w.r.t. λ, concave
w.r.t. X, and affine w.r.t. λ, respectively. (6) follows im-
mediately from (4) employing Jensen’s inequality.

Consider Rctr = R1 and Rtx = Ri. Without loss of gen-
erality, we assume that only the output at time instants
ih, h ∈ N is sent, while the output at other instants is
never sent. Recalling that the measurement yih arrives
in the time interval (ih, ih + i) or it never arrives, we
can summarize:

γih+i+n
ih = γih+i

ih ∀n ∈ N
γih+j+n
ih+j = 0 j ∈ {1, . . . , i− 1}, ∀n ∈ N.

Lemma 8 The error covariance on the transmission in-
stants with Rctr = R1 and Rtx = Ri has the same evolu-
tion of the case with Rtx = Rctr = Ri, i.e.:

P ih
ih|ih−1 = giTγih

ih−i

(
P ih−i
ih−i|ih−i−1

)
.

PROOF. For sake of simplicity, we prove the Lemma
with Rtx = R2 and even time instants as transmission
instants. By Eq. (5), it holds that:

P 2h
2h|2h−1 = gTγ2h

2h−1

(
P 2h
2h−1|2h−2

)
P 2h
2h−1|2h−2 = gTγ2h

2h−2

(
P 2h
2h−2|2h−3

)
and so

P 2h
2h|2h−1 = gTγ2h

2h−1
◦ gTγ2h

2h−2

(
P 2h
2h−2|2h−3

)
.

Moreover, P 2h
2h−2|2h−3 = P 2h−2

2h−2|2h−3 because I2h does

not have more information than I2h−2 that is useful for
computing {x̂2h

k|k−1}
2h−2
k=0 , since if the measurement does

not arrive until the next transmission instant it is dis-
carded. By hypothesis γ2h

2h−1 = 0. We obtain:

P 2h
2h|2h−1 = gT0 ◦ gTγ2h

2h−2

(
P 2h−2
2h−2|2h−3

)
,

= g2Tγ2h
2h−2

(
P 2h−2
2h−2|2h−3

)
using Lemma 7(1).

Lemma 9 Consider the arrival instant of yih is uni-
formly distributed across the period (ih, ih+ i). The ar-
rival process is then described by:

P
[
γih+j
ih =1

]
=

j

i
λ(Ri, SNR) =

j

i
λi j ∈ {1, . . . , i}

It is schematically depicted in Fig. A.1. Then, the ex-
pected error covariance can be upper-bounded by:

E
[
P k
k|k−1

]
≤ P

k

k|k−1 ∀k ∈ N

where for k = ih:

P
ih

ih|ih−1 = giTλi

(
P

ih−i

ih−i|ih−i−1

)
P

0

0|−1 = E
[
P 0
0|−1

]
while for k = ih+ j, j ∈ {1, . . . , i− 1}:

P
ih+j

ih+j|ih+j−1 = gjTj
i λi

(
P

ih

ih|ih−1

)

PROOF. We prove the lemma for the case Rtx = R2.
The upper bound on even instants follows from [32] tak-
ing into account that on even instants the error covari-
ance has the same evolution of the case with Rtx =
Rctr = R2, as shown in Lemma 8. For odd instants:

E
[
P 2h+1
2h+1|2h

]
= E

[
gT
γ2h+1
2h

(
P 2h
2h|2h−1

)]
= E

[
gTλ2

2

(
P 2h
2h|2h−1

)]
≤ gTλ2

2

(
E
[
P 2h
2h|2h−1

])
≤ gTλ2

2

(
P

2h

2h|2h−1

)
= P

2h+1

2h+1|h

where we have employed the fact gTγ (X) is affine w.r.t
γ, it is concave w.r.t. X and Jensen’s inequality, and
that it is monotonically increasing w.r.t. X, as stated in
Lemma 7(2)-(6).

PROOF (Theorem 4). For sake of simplicity we re-
strict to the case Rtx = R2. If λ2 > λ2, it has been
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Fig. A.1. Arrival probability within two transmission instants

proved in [32] that the sequence of upper bounds given
in Lemma 9 on even instants converges:

lim
h→∞

P
2h

2h|2h−1 = P
2

0 with P
2

0 = g2Tλ2

(
P

2

0

)
.

It follows that the upper bound on odd instants at
steady-state is:

P
2

1 = gTλ2
2

(P
2

0).

We can divide the cost (8) in two parts:

J∗
∞(R2, SNR) = c+ tr(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0,
even

tr
(
(A′S∞A− S∞ +W )E[P k

k|k−1]
)

+ lim
K→∞

sup
1

K

K−1∑
k=0,
odd

tr
(
(A′S∞A− S∞ +W )E[P k

k|k−1]
)
.

Since A′S∞A−S∞+W ≥ 0, the cost is upper-bounded
by substituting the lim sup of the expected error covari-
ance on even and odd instants with the corresponding
steady-state upper bounds. Then, the statement of the
theorem follows immediately.

B Proofs for time-varying SNR

In this section, to simplify the notation, the one-step
prediction error covariance matrix at the time instant k
is denoted by Pk, i.e.: Pk := P k

k|k−1.

Based on the operator gτλ(X), we define following non-
linear operators:

gi(X) = giTλi,L
◦ giTλi,L

◦ · · · ◦ giTλi,L︸ ︷︷ ︸
N/i times

(X)

Note that the subscript indicates both the sampling pe-
riod and the limit arrival probability.

Define the operator:

ΦTi

λ (K,X) = λ(FiXF ′
i + Vi) + (1− λ)(AiXA′

i +Qi)

with Fi = Ai +KC, Vi = Qi +KRK ′, where Ti is the
sampling period with which Ai and Qi are discretized.
It is affine with respect to the second argument. Define
the following operators:

Φi(K,X) = ΦiT
λi,L

◦ ΦiT
λi,L

◦ · · · ◦ ΦiT
λi,L︸ ︷︷ ︸

N/i times

(K, X)

Note that K is always the same from the inner to the
outer application of the operator and, as for gi(·), the
subscript denotes both the sampling period and the limit
arrival probability. They are still affine because the com-
position of affine operators is an affine operator. For each
affine operator there exists a linear operator such that
the affine operator can be obtained by the sum of the
linear operator and a constant. Hence, it is possible to
define:

Li(K,X) : Φi(K,X) = Li(K,X) + Ui

Note that these operators correspond to the ones given
in Eq. (5). Finally, consider:

Φi(K,X) = Li(K,X) + U

where U ≥ 0 is such that U ≥ Ui ∀i ∈ {1, . . . , M}.
It is easy to prove that it always exists. Now we recall
some important properties that hold for the previous
operators.

Lemma 10 The following properties hold:

(1) ConsiderX ≥ 0. Then gTi

λ (X) ≤ ΦTi

λ (K,X) ∀K ∀i.
(2) Consider X ≥ 0. Then gi(X) ≤ Φi(K,X) ∀K ∀i.

PROOF. (1) is given in [32], while (2) is a consequence
of (1) and Lemma 7(2).

Lemma 11 Consider a generic sequence {ik} with ik ∈
{1, . . . , M}. If there exist a K and a Y > 0 such that
Li(K,Y ) < Y ∀i ∈ {1, . . . , M}, then the sequence
Yk+1 = Φik(K,Yk) is bounded ∀Y0 ≥ 0.

PROOF. The following properties hold:

(1) ∀Y0 ≥ 0 ∃mY0
: Y0 ≤ mY0

Y ,
(2) ∃mU : U ≤ mUY ,

(3) ∀i ∃ri ∈ (0, 1) : Li(K,Y ) < riY ,
(4) r = max(ri) ⇒ r ∈ (0, 1), Li(K,Y ) < rY ∀i.
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Choose a generic initial condition Y0 ≥ 0. It holds that:

Yk+1 = Φik ◦ Φik−1
◦ · · · ◦ Φi0(K,Y0)

= Lik ◦ Lik−1
◦ · · · ◦ Li0(K,Y0)

+

k∑
t=1

Lik ◦ Lik−1
◦ · · · ◦ Lit(K,U) + U

≤ mY0Lik ◦ Lik−1
◦ · · · ◦ Li0(K,Y )

+mU

(
k∑

t=1

Lik ◦ Lik−1
◦ · · · ◦ Lit(K,Y ) + Y

)

≤ mY0r
kY +mU

k∑
t=0

rtY ≤
(
mY0 +

mU

1− r

)
Y

where we exploit Lemma 10 and the linearity of L.

Consider the following sequence of matrices:

PNh+N = giNh
(PNh) P 0 = P0.

Lemma 12 Consider a generic sequence of SNRNh ≥
SNRmin and the corresponding sequence of indexes of
optimal rates {iNh} according to the rate selection algo-
rithm (9). If there exist a K and an Y > 0 such that
Li(K,Y ) < Y ∀i, then:

(1) ∃M ≥ 0 : PNh < M ∀h
(2) E[PNh] ≤ PNh ∀h
(3) ∃M ≥ 0 : E[Pk] < M ∀k.

PROOF. Consider the sequence of the upper-upper-
bounds:

PNh+N = giNh
(PNh)

≤ ΦiNh
(K,PNh)

= LiNh
(K,PNh) + UiNh

≤ LiNh
(K,PNh) + U

= ΦiNh
(K,PNh)

where we have exploited the definitions of P , L, Φ
and Lemma 10. Now consider the sequence P̂Nh =
ΦiNh

(P̂Nh−N ) starting from P0. This sequence is
bounded according to Lemma 11 and it limits the se-
quence of upper-upper-bounds: this proves the first
claim.

The second claim can be proved by induction. It holds

for h = 0 since P 0 = P0 = E[P0]. Now assume that

E[PNh−N ] ≤ PNh−N . If SNRNh is such that the optimal

transmission rate is Ri and the arrival probability is λi,
we have:

E[PNh] ≤ giTλi
◦ giTλi

◦ · · · ◦ giTλi︸ ︷︷ ︸
N/i times

(E[PNh−N ])

≤ giTλi,L
◦ giTλi,L

◦ · · · ◦ giTλi,L︸ ︷︷ ︸
N/i times

(E[PNh−N ]) ≤ PNh

where the first inequality holds for Lemma 7(6) and the
second holds for Lemma 7(3), as long as λi ≥ λi,L, true
by definition of λi,L if SNR ≥ SNRmin.

The third claim follows immediately from the first two
claims (for k = Nh) and the fact that the error covari-
ance can not diverge in a finite number of steps (for
k ∈ {Nh+ 1, . . . , Nh+N − 1}).

PROOF (Theorem 6). Under the hypothesis of

(A,B) stabilizable and (A,
√
W ) detectable, the system

is mean square stable if the cost is bounded. Consider
the asymptotic cost:

J∗
∞ = c+ tr(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0

tr
(
(A′S∞A− S∞ +W )E[P k

k|k−1]
)

where the steady-state value S∞ exists under the hy-
pothesis of (A,B) stabilizable and (A,

√
W ) detectable.

Since there exist a K and a Y > 0 such that Li(K,Y ) <
Y ∀i and SNRk ≥ SNRmin, the sequence of expected er-
ror covariance is bounded E[P k

k|k−1] ≤ M according to

Lemma 12 . It immediately follows that:

J∗
∞ ≤ c+ tr(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0

tr
(
(A′S∞A− S∞ +W )M

)
= c+ tr(S∞Q) + tr

(
(A′S∞A− S∞ +W )M

)
.

The right hand side is bounded, that implies that also
the left hand side is bounded, which concludes the proof.
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