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Abstract. The recent climate crisis and energy price rises are indica-
tors of the necessity of a paradigm shift in the way we think industry. A
more sustainable manufacturing industry is needed to tackle nowadays’
challenges. Practical solutions may be either using cleaner energy sources
or reducing the overall energy consumption. Efficient use of robotic sys-
tems has been identified as a promising approach, for instance re-shaping
robot trajectories ensuring reduced energy consumptions without penal-
izing throughput at the same time. The problem is herein addressed for a
particular class of manipulators, i.e. those that exhibit linear dynamics.
In this case, the optimal control problem can be solved in closed form,
giving the optimal solution in terms of minimum energy. The solution
is obtained for a two degrees of freedom planar balanced manipulator
and compared to a reference standard law. Results show a significant
reduction of the energy consumption. Since the solution is obtained an-
alytically, the computational burden allows real-time applicability.

Keywords: SDG9 · Energy Saving · Optimal Control · Robotic Manip-
ulator

1 Introduction

The recent energy price rises and the governments’ goals for sustainable growth
suggest efforts on developing strategies for reducing energy expenditure (EE) in
the manufacturing industry. In this scenario, both academia and industry are
working to reduce the impact of energy consumption of robotic sources with-
out affecting the throughput. For example, in [6, 5] lighter parts were designed
to obtain a more efficient manipulator. Other approaches exploit elastic ele-
ments: for instance, in [2, 10, 7] a proper spring system was developed to balance
gravity-related effects. Elastic elements can be introduced and tuned to obtain
an efficient conversion between kinetic and potential energy, as in [9]. Software
solutions have the advantage of easier implementation. Point-to-point (PTP) mo-
tions are a typical application. Previous works have exploited the tuning of given
laws to obtain energy-efficient trajectories, such as [4, 3, 1]. Furthermore, not only
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the motion law has influence on the EE but also the location in the workspace
of the given task. For example, in [11] a novel performance index was developed,
able to predict the energy expenditure of a task based on the inertia ellipsoid. A
more general solution for the problem of finding the minimum-energy trajectory
for PTP motions lies in optimal control. On the other hand, a closed-form so-
lution is typically difficult to obtain since the dynamics of manipulators are, in
general, nonlinear. Yet, there exist particular cases that exhibit linear dynam-
ics. That is the case, for example, of a balanced planar two Degree-of-Freedom
(DoF) manipulator equipped with revolute joints. In this work, a methodology
to derive optimal (in terms of minimum EE) trajectories for PTP motions is pre-
sented. This is developed for a 2 DoF balanced planar manipulator. The result
is obtained using Hamilton’s canonical equations.

The methodology can be applied for any manipulator that exhibits linear
dynamics, for instance, cartesian robots. The aforementioned planar manipulator
was chosen to show the applicability of the method also in presence of coupled
dynamics.

The remainder of this paper is organized as follows. The formulation of the
problem is provided in Section 2. Section 3 presents algorithms for real-time com-
putation of energy-optimal trajectories. Numerical results in Section 4 demon-
strate the benefits of the presented methodology. Conclusions are in Section 5.

2 Problem statement

2.1 Electro-mechanical model

Considering a manipulator equipped with DC motors (extension to permanent
magnet synchronous motors is straightforward using the DC-equivalent model),
the electrical power consumption, for each motor, can be computed as:

Pj(t) = va,j(t)ia,j(t) (1)

where Pj is the absorbed electrical power, va,j is the armature tension and ia,j is
the armature current for the j-th motor. Based on the equivalent circuit model,
the tension is made up of two terms, one related to the copper losses and one to
the back electromotive force:

va,j(t) = Ra,jia,j(t) + La,j
d ia,j(t)

dt
+ kv,j ϑ̇j (2)

where Ra,j and La,j are the resistance and inductance of the armature of the

j-th motor. kv,j is the back electromotive force (EMF) constant and ϑ̇j is the
angular velocity of the j-th motor. The inductive term of the armature tension is
not included since it is negligible with respect to the other two terms. In general,
the armature current and the torque τ delivered by each motor are related by the
torque constant ia = τ/kt. As known, numerically the torque constant is equal
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Fig. 1. Two Degree-of-Freedom balanced planar manipulator.

to the back EMF constant kt = kv. By substituting the current with the torque
divided by the torque constant in (1), the following expression is obtained:

Pj =
Ra,j

k2t,j k
2
r,j

τ2j + τj ϑ̇j (3)

where kr,j is the ratio of the j-th gearbox. The efficiency of the gearbox is con-
sidered η = 1 for simplicity, but the derivation is straightforward with η < 1.

Referring to a two degrees of freedom planar manipulator equipped with rev-
olute joints, some conditions are needed to exhibit linear dynamics. For example,
a possible configuration is with the second link balanced (its center-of-mass is
coincident with the second revolute joint) in the horizontal plane. A schematic
is depicted in Fig. 1. The dynamics are:[

τ1
τ2

]
=

[
I1 +m1ℓ

2
1 +m2a

2
1 I2

I2 I2

] [
ϑ̈1

ϑ̈2

]
+

[
F1 0
0 F2

] [
ϑ̇1

ϑ̇2

]
(4)

where Ij and Fj are, respectively, the total barycentric mass moment of inertia
and viscous friction coefficient of the j − th link. m2 is the mass of the second
link and a1 the length of the first link, according to the Denavit-Hartenberg
convention. From here onwards, the symbol I∗1 = I1 + m1ℓ

2
1 + m2a

2
1 will be

used for the sake of compactness. Substituting (4) into (3) gives the following
expression for the powers required:

P1 =
Ra,1

k2t,1 k2r,1

(
I∗1 ϑ̈1 + I2ϑ̈2 + Fm,1ϑ̇1

)2

+
(
I∗1 ϑ̈1 + I2ϑ̈2 + Fm,1ϑ̇1

)
ϑ̇1

P2 =
Ra,2

k2t,2 k2r,2

(
I2ϑ̈1 + I2ϑ̈2 + Fm,2ϑ̇2

)2

+
(
I2ϑ̈1 + I2ϑ̈2 + Fm,2ϑ̇2

)
ϑ̇2

(5)

Clearly, the total power consumption is the sum of the power consumed by each
motor.
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2.2 Trajectory requirements

The focus of this work is on PTP motion with fixed final time tf . This means
that the trajectory has to satisfy the following boundary conditions:

ϑ1(0) = ϑin,1

ϑ1(tf ) = ϑfin,1

ϑ2(0) = ϑin,2

ϑ2(tf ) = ϑfin,2


ϑ̇1(0) = 0

ϑ̇1(tf ) = 0

ϑ̇2(0) = 0

ϑ̇2(tf ) = 0

(6)

where ϑin,j and ϑfin,j are the initial and final values of the angular position,
respectively, for the j-th motor.

2.3 Problem formulation

Since the goal is to minimize the overall energy expenditure, the integral of power
has to be minimized. To do so, the problem is rewritten in state-space form, i.e.
ẋ = f(x,u, t). Let [ϑ1 ϑ̇1 ϑ2 ϑ̇2]

⊺ = [x1 x2 x3 x4]
⊺ = x and [ϑ̈1 ϑ̈2]

⊺ = [u1 u2]
⊺ =

u. The dynamics of the system is as follows:
ẋ1 = x2

ẋ2 = u1

ẋ3 = x4

ẋ4 = u2

(7)

By substituting the symbols of the state-space form, the power required can be
rewritten as:

P = π1x
2
2+π2x

2
4+π3u

2
1+π4u

2
2+π5x2u1+π6x2u2+π7x4u1+π8x4u2+π9u1u2 (8)

where P = P1+P2 and the parameters πj are readily obtained from (5). Hence,
the optimal control problem at hand is:

minimize
u∈U

E =

∫ tf

0

P(x,u, t) dt

subject to (6)

ẋ = f(x,u, t)

(9)

where tf is the prescribed final time and U is the space of the possible controls
according to the boundary conditions (6). In this work no constraints, such as
torque and velocity limits, are imposed other than the boundary conditions.

Let tmin be the minimum time, according to the constraints, to perform the
task. In this work, it is assumed that the assigned final time tf is strictly greater
than tmin. If tf < tmin, there is clearly no solution. If tf = tmin the solution is
the minimum time solution.
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3 Solution

The problem stated in (9) can be solved using Pontryagin’s maximum principle.
The Hamiltonian of the system is:

H = P + p⊺f (10)

where P is given by (8), f by (7) and p = [p1 p2 p3 p4]
⊺ is the vector of co-states.

The problem can be solved imposing the boundary conditions given by (6) since
for a fixed final-time problem with n states, we can apply 2n boundary condi-
tions. The necessary conditions for strong extrema are provided by Hamilton
Canonical Equations. The stationary conditions are:

∂H
∂u1

= 2π3u1 + π5x2 + π7x4 + π9u2 = 0 (11)

∂H
∂u2

= 2π4u2 + π6x2 + π8x4 + π9u1 = 0 (12)

while the co-state equations are:

∂H
∂x1

= 0 = −ṗ1 −→ p1 = const (13)

∂H
∂x2

= 2π1x2 + π5u1 + π6u2 = −ṗ2 (14)

∂H
∂x3

= 0 = −ṗ3 −→ p3 = const (15)

∂H
∂x4

= 2π1x2 + π5u1 + π6u2 = −ṗ4 (16)

By deriving (11) and (12) with respect to time, isolating ṗ2 and ṗ4 and
substituting, respectively, into (14) and (16), it is possible to write them in the
following form:

ẏ = Ay + b →


ẋ2

ẋ4

u̇1

u̇2

 =


0 0 1 0
0 0 0 1
α1 α2 α3 α4

α5 α6 α7 α8



x2

x4

u1

u2

+


0
0

α9p1 + α10p3
α11p1 + α12p3

 (17)

It is worth noticing that p1 and p3 are unknown but constant. The parameters
αj are readily obtained from (11), (12), (14) and (16). The solution of (17) is
the sum of two terms, a particular solution and the solution of the homogeneous
associate system. In mathematical terms y = yst +yom. The particular solution
is straightforward by considering yst = const:

0 = Ayst + b → yst = −A−1b = R [p1 p3]
⊺ (18)

where in the last step the co-state variables are isolated using the 4× 2 matrix
R. The solution of the associate homogeneous system is:

yom(t) = c1v1e
λ1t + c2v2e

λ2t + c3v3e
λ3t + c4v4e

λ4t (19)
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where cj-s are integration constants, vj-s and λj-s are, respectively, the eigen-
vectors and eigenvalues of A. Once (18) and (19) are obtained, the final solution
will be the sum of the two:

y = c1v1e
λ1t + c2v2e

λ2t + c3v3e
λ3t + c4v4e

λ4t +R [p1 p3]
⊺ (20)

The integration of y is necessary to obtain the position law. In particular, inte-
grating the first two terms of y gives:

x1(t) =

∫
{y}1dt =

4∑
k=1

1

λk
cke

λkt{vk}1 + r11p1t+ r12p3t+ c5 (21)

x3(t) =

∫
{y}2dt =

4∑
k=1

1

λk
cke

λkt{vk}2 + r21p1t+ r22p3t+ c6 (22)

where {(·)}n means the n-th component of (·), and rij is the element in the i-th
row and j-th column of R. Using the first two terms of vector y defined as in
(20) and the position laws given by (21) and (22) it is possible to impose the
boundary condition stated in (6). In particular the following 8× 8 linear system
in the unknowns [c1, . . . , c6, p1, p3] has to be solved:


V 02 V
VΛ 02 V
VΓ 12 02

VΛΓ 12 tfV



c1
...
c6
p1
p3

 =


04,1

ϑin,1

ϑin,2

ϑfin,1

ϑfin,2

 (23)

where V is the matrix of the eigenvectors of A, Λ = diag(eλ1tf , . . . , eλ4tf )
and Γ = diag(1/λ1, . . . , 1/λ4). With 0n,m and 1n,m are indicated the n × m
null and the identity matrix1. Once the constants are obtained, the solution is
completely known using equation (21) and (22). By deriving them, also velocity
and acceleration laws are known.

4 Results

In this section, numerical examples are provided to show the benefits of the
method. First, the solution is compared to a standard law, such as the trapezoidal
symmetric velocity law with a 20% acceleration ratio (amount of time with
nonzero acceleration over total time tf ). The data used for the comparison are
reported in Tab. 1. The energy consumed in the proposed case is 13.1% less
than in the standard case (6.43 J vs 7.40 J).

Moreover, the proposed solution is benchmarked with the one provided by a
general open source numerical optimal control toolbox, ICLOCS2 [8]. In Fig. 2
a comparison between the proposed solution, the one generated by ICLOCS and
the standard trapezoidal law is reported.

1 If only one subscript is used, the matrix is considered square.
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Table 1. Manipulator data used in the simulations.

Parameter Ij Fj Ra,j kt,j kr,j mj aj ℓj ϑin,j ϑfin,j

Unit kg m2 N m s/ rad Ω N m/A - kg m m rad rad
j = 1 0.21 2 · 10−3 1.0 0.2 50 2.0 0.175 0.0875 0 0
j = 2 0.0675 2 · 10−3 1.0 0.7 50 4.0 0.225 0 π/2 π/2

Fig. 2. The proposed solution is reported in blue. The trapezoidal law is reported in
dotted orange line. The benchmark (ICLOCS2) solution is reported in yellow.

Due to the numerical nature of the ICLOCS solution, the required solving
time is higher than for the herein proposed analytical solution. In particular, the
computational time required by ICLOCS is 3 seconds against the 0.008 seconds
of the proposed method (data obtained using a laptop equipped with a Ryzen 5
4500U and 8 GB of RAM). By comparing such figures with the task time tf , the
proposed method is deemed real-time capable for this application (0.008 s < tf ),
that is an important benefit with respect to ICLOCS.

5 Conclusions

Reducing the energy expenditure in the manufacturing industry is important to
face nowadays challenges. This paper presented a method for deriving optimal
trajectories for point-to-point motions in terms of minimum energy expenditure
for a two degrees of freedom balanced planar manipulator. This is achieved using
Hamilton’s canonical equations, and can be applied to all manipulators that ex-
hibit linear dynamics. The validity of the proposed methodology is demonstrated
through numerical results, showing its potential for reducing energy consumption
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and its real-time capability. Overall, the method provides a viable solution that
can be implemented to reduce energy expenditure in robotic systems without
affecting throughput.
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