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Abstract
Projection-free block-coordinate methods avoid high computational cost per itera-
tion, and at the same time exploit the particular problem structure of product domains.
Frank–Wolfe-like approaches rank among the most popular ones of this type. How-
ever, as observed in the literature, there was a gap between the classical Frank–Wolfe
theory and the block-coordinate case, with no guarantees of linear convergence rates
even for strongly convex objectives in the latter. Moreover, most of previous research
concentrated on convex objectives. This study now deals also with the non-convex
case and reduces above-mentioned theory gap, in combining a new, fully developed
convergence theory with novel active set identification results which ensure that inher-
ent sparsity of solutions can be exploited in an efficient way. Preliminary numerical
experiments seem to justify our approach and also showpromising results for obtaining
global solutions in the non-convex case.
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1 Introduction

We consider the problem

min
x∈C

f (x) , (1)

with objective f having L-Lipschitz regular gradient, and feasible set C ⊆ R
n closed

and convex. Furthermore, we assume that C is block separable, that is

C = C(1) × ... × C(m) (2)

with C(i) ⊂ R
ni closed and convex for i ∈ [1 :m], and of course

∑m
i=1 ni = n.

Notice that problem (1) falls in the class of composite optimization problems

min
x∈C

[ f (x) + g(x)] (3)

with f smooth and g(x) = ∑m
i=1 χC(i) (x

(i)) convex and block separable (see, e.g.,
[37] for an overview of methods for this class of problems); here χD : Rd → [0,+∞]
denotes the indicator function of a convex set D ⊆ R

d , and for a block vector x ∈
R

n = R
n1 × ... × R

nm we denote by x(i) ∈ R
ni the component corresponding to the

i-th block, so that x = (x(1), ..., x(m)).
Problems of this type arise in a wide number of real-world applications like, e.g.,

traffic assignment [31], structural SVMs [28], trace-norm based tensor completion
[32], reduced rank nonparametric regression [22], semi-relaxed optimal transport
[23], structured submodular minimization [26], group fused lasso [1], and dictionary
learning [18].

Block-coordinate gradient descent (BCGD) strategies (see, e.g., [4]) represent a
standard approach to solve problem (1) in the convex case. When dealing with non-
convex objectives, those methods can anyway still be used as an efficient tool to
perform local searches in probabilistic global optimization frameworks (see, e.g., [33]
for further details). The way BCGD approaches work is very easy to understand: those
methods build up, at each iteration, a suitable model of the original function for a block
of variables and then perform a projection on the feasible set related to that block.

Projection-based strategies (see, e.g., [6, 19, 21, 40] for further details, with sig-
nificant contributions by Daniela di Serafino) are in practice widely used also in a
block-coordinate fashion (see, e.g., [35]). However, they might be costly even when
the projection is performed over some structured sets like, e.g., the flow polytope, the
nuclear-norm ball, the Birkhoff polytope, or the permutahedron (see, e.g., [20]). This
is the reason why, in recent years, projection-free methods (see, e.g., [14, 25, 29]) have
been massively used when dealing with those structured constraints.

These methods simply rely on a suitable oracle that minimizes, at each iteration,
a linear approximation of the function over the original feasible set, returning a point
in

argminx∈C〈g, x〉.
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When C is defined as in (2), this decomposes in m independent problems thanks to
the block separable structure of the feasible set. In turn, the resulting problems on
the blocks can then be solved in parallel, a possibility that has widely been explored
in the literature, especially in the context of traffic assignment (see, e.g., [31]). In
a big data context, performing a full update of the variables might still represent
a computational bottleneck that needs to be properly handled in practice. This is
the reason why block-coordinate variants of the classic Frank–Wolfe (FW) method
have been recently proposed (see, e.g., [28, 36, 41]). This method is proposed in
[28] for structured support vector machine training, and randomly selects a block at
each iteration to perform an FW update on the block. Several improvements on this
algorithm, e.g., adaptive block sampling, use of pairwise and away-step directions,
or oracle call caching, are described in [36], which obviously work in a sequential
fashion.

However, in case one wants to take advantage of modern multicore architectures
or of distributed clusters, parallel and distributed versions of the block-coordinate FW
algorithm are also available [41]. It is important to highlight that all the papers men-
tioned above only consider convex programming problems and use random sampling
variants as the main block selection strategy.

Furthermore, as noticed in [36], the standard convergence analysis for FW variants
(e.g., pairwise and away step FW) cannot be easily extended to the block-coordinate
case. In particular, there has been no extension in this setting of the well known linear
convergence rate guarantees for FW variants applied to strongly convex objectives
(see [14] and references therein). This is mainly due to the difficulties in handling
the bad/short steps (i.e., those steps that do not give a good progress and are taken to
guarantee feasibility of the iterate) within a block-coordinate framework. In [36], the
authors hence extend the convergence analysis of FW variants to the block coordinate
setting under the strong assumption that there are no bad steps, claiming that novel
proof techniques are required to carry out the analysis in general and close the gap
between FW and BCFW in this context.

Here we focus on the non-convex case and define a new general block-coordinate
algorithmic framework that gives flexibility in the use of both block selection strategies
and FW-like directions. Such a flexibility is mainly obtained thanks to the way we
perform approximate minimizations in the blocks. At each iteration, after selecting
one block at least, we indeed use the Short Step Chain (SSC) procedure described
in [39], which skips gradient computations in consecutive short steps until proper
conditions are satisfied, to get the approximate minimization done in the selected
blocks.

Concerning the block selection strategies, we explore three different options. The
first one we consider is a parallel or Jacobi-like strategy (see, e.g., [5]), where the
SSC procedure is performed for all blocks. This obviously reduces the computational
burden with respect to the use of the SSC in the whole variable space (see, e.g., [39])
and eventually enables to usemulticore architectures to perform those tasks in parallel.
The second one is the random sampling (see, e.g., [28]), where the SSC procedure
is performed at each iteration on a randomly selected subset of blocks. Finally we
have a variant of the Gauss–Southwell rule (see, e.g., [34]), where we perform SSC
in all blocks and then select a block which violates optimality conditions at most.
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Such a greedy rule may make more progress in the objective function, since it uses
first order information to choose the right block, but is, in principle, more expensive
than the other options we mentioned before (notice that the SSC is performed, at each
iteration, for all blocks).

Furthermore, we consider the following projection-free strategies: Away-step
Frank–Wolfe (AFW), Pairwise Frank–Wolfe (PFW), and Frank–Wolfe method with
in face directions (FDFW), see, e.g., [39] and references therein for further details.
The AFW and PFW strategies depend on a set of “elementary atoms” A such that
C = conv(A). Given A, for a base point x ∈ C we can define

Sx = {S ⊂ A : x is a proper convex combination of all the elements in S} ,

the family of possible active sets for a given point x. For x ∈ C and S ∈ Sx, dPFW is a
PFW direction with respect to the active set S and gradient −g if and only if

dPFW = s − q with s ∈ argmaxs∈C〈s, g〉 and q ∈ argminq∈S〈q, g〉 . (4)

Similarly, given x ∈ C and S ∈ Sx, dAFW is an AFW direction with respect to the
active set S and gradient −g if and only if

dAFW ∈ argmax{〈g,d〉 : d ∈ {dFW,dAS}} , (5)

where dFW is a classic Frank–Wolfe direction

dFW = s − x with s ∈ argmaxs∈C〈s, g〉 , (6)

and dAS is the away direction

dAS = x − q with q ∈ argminq∈S〈q, g〉 . (7)

The FDFW only requires the current point x and gradient −g to select a descent
direction (i.e., it does not need to keep track of the active set) and is defined as

dF = x − xF with xF ∈ argmin{〈g, y〉 : y ∈ F(x)}

for F(x) the minimal face of C containing x. The selection criterion is then analogous
to the one used by the AFW:

dFD ∈ argmax{〈g,d〉 : d ∈ {dF ,dFW}} . (8)

From a theoretical point of view, this new algorithmic framework enables us to
give:

– a local linear convergence rate for any choice of block selection strategy and FW-
like direction. This result is obtained under a Kurdyka-Łojasiewicz (KL) property
(see, e.g., [3, 7, 8]) and a tailored angle condition (see, e.g., [39]). Thanks to the
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waywe handle short steps in our framework we are thus able to extend the analysis
given for FW variants to the block-coordinate case and then to close the relevant
gap in the theory highlighted in [36].

– a local active set identification result (see, e.g., [12, 13, 15, 24]) for a specific
structure of the Cartesian product defining the feasible set C, suitable choices of
projection-free strategy (i.e., AFW direction is used), and general smooth non
convex objectives. In particular, we prove that our framework identifies in finite
time the support of a solution. Such a theoretical feature allows to reduce the
dimension of the problem at hand and, consequently, the overall computational
cost of the optimization procedure.

This is, to the best of our knowledge, the first time that both a (bad step free) linear
convergence rate and an active set identification result are given for block-coordinate
FW variants. In particular, we solve the open question from [36] discussed above,
proving that the linear convergence rate of FW variants can indeed be extended to the
block coordinate setting. Furthermore, our results guarantee, for the first time in the
literature of projection free optimization methods, identification of the local active set
in a single iteration without a tailored active set strategy.

We also report some preliminary numerical results on a specific class of structured
problems with a block separable feasible set. Those results show that the proposed
framework outperforms the classic block-coordinate FW and, thanks to its flexibility,
it can be effectively embedded into a probabilistic global optimization framework thus
significantly boosting its performances.

The paper is organized as follows. Section2 describes the details of our new algo-
rithmic framework. An in-depth analysis of its convergence properties is reported in
Sect. 3. An active set identification result is reported in Sect. 4. Preliminary numerical
results, focusing on the computational analysis of both the local identification and
the convergence properties of our framework, are reported in Sect. 5. Finally, some
concluding remarks are included in Sect. 6.

1.1 Notation

For a closed and convex set C ⊂ R
h we denote by π(C, x) the Euclidean projection

of x ∈ R
h onto C , and by TC (x) the tangent cone to C at x ∈ C , itself again a closed

convex set:

TC (x) = closure{t(v − x) : t ≥ 0, v ∈ C} .

For g ∈ R
h we also use πx(g) as a shorthand for ‖π(TC (x), g)‖. We denote by ŷ the

vector y
‖y‖ for y �= o, and ŷ = o otherwise. We finally denote by B̄r (x) and Br (x) the

closed and open balls of radius r centered at x.
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2 A new block-coordinate projection-freemethod

The block-coordinate framework we consider here applies the Short Step Chain
(SSC) procedure from [39], described below as Algorithm 2, to some of the blocks
at every iteration. A detailed scheme is specified as Algorithm 1; recall notation
x = (x(1), ..., x(m)) with x(i) ∈ C(i), all i ∈ [1 :m].

Algorithm 1 Block coordinate method with Short Step Chain (SSC) procedure
1: x0 ∈ C, k = 0.
2: If xk is stationary, then STOP
3: ChooseMk ⊂ [1 :m].
4: For all i /∈ Mk set x(i)

k+1 = x(i)
k

5: For all i ∈ Mk set x(i)
k+1 = SSC(x(i)

k ,−∇ f (xk )(i)))

6: k = k + 1. Go to step 2.

In Algorithm 1, we perform two main operations at each iteration. First, in Step 3,
we pick a suitable subset of blocksMk according to a given block selection strategy.
We then update (Steps 4 and 5) the variables related to the selected blocks by means
of the SSC procedure, while keeping all the variables in the other blocks unchanged.

We now briefly recall the SSC procedure from [39], designed to recycle the gradient
in consecutive bad steps until suitable stopping conditions are met, in Algorithm 2.
Here and in the sequel we denote by αmax(y j ,d j ) the set of feasible step sizes at y j

in direction d j .

Algorithm 2 Short Step Chain procedure – SSC(x̄, g)
1: Initialization. y0 = x̄, j = 0

2: Select d j ∈ A(y j , g), α
( j)
max ∈ αmax(y j , d j ),

3: if d j = 0 then return y j
4: end if
5: compute an auxiliary step size β j

6: let α j = min(α( j)
max, β j )

7: y j+1 = y j + α jd j
8: if α j = β j then return y j+1
9: end if
10: j = j + 1, go to Step 2

ByA we indicate a projection-free strategy to generate first-order feasible descent
directions for smooth functions on the block where the SSC is applied (e.g., FW, PFW,
AFW directions). Since the gradient, −g, is constant during the SSC procedure, it is
easy to see that the procedure represents an application ofA to minimize the linearized
objective fg(z) = 〈−g, z− x̄〉+ f (x̄), with suitable stepsizes and stopping condition.
More specifically, after a stationarity check (see Steps 2–4), the stepsize α j is the

minimum of an auxiliary stepsize β j > 0 and the maximal stepsize α
( j)
max (which we

always assume to be strictly positive). The point y j+1 generated at Step 7 is always
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feasible since α j ≤ α
( j)
max. Notice that if the methodA used in the SSC performs a FW

step (see equation (6) for the definition of FW step), then the SSC terminates, with
α j = β j or with y j+1 a global minimizer of fg.

The auxiliary step size β j (see Step 5 of the SSC procedure) is thus defined as the
maximal feasible stepsize (at y j ) for the trust region

Ω j = B‖g‖/2L(x̄ + g
2L

) ∩ B〈g,d̂ j 〉/L(x̄) . (9)

This guarantees the sufficient decrease condition

f (y j ) ≤ f (xk) − L

2
‖xk − y j‖2 (10)

and hence a monotone decrease of f in the SSC. For further details see [39].

2.1 Block selection strategies

As briefly mentioned in the introduction, we will consider three different block selec-
tion strategies in our analysis. The first one is a parallel or Jacobi-like strategy (see,
e.g., [5]). In this case, we select all the blocks at each iteration. Aswe already observed,
this is computationally cheaper than handling the whole variable space at once. Fur-
thermore, multicore architectures might eventually be considered to perform those
tasks in parallel. A definition of the strategy is given below:

Definition 1 (Parallel selection) SetMk = [1 :m].
The second strategy is a variant of the GS rule (see, e.g., [34]), where we first

perform SSC in all blocks and then select a block that violates optimality conditions
at most. The formal definition is reported below.

Definition 2 (Gauss–Southwell (GS) selection) Set Mk = {i(k)}, with

i(k) ∈ argmaxi∈[1:m]〈g(i),SSC(x(i)
k ,−∇ f (xk)

(i)) − x(i)
k 〉.

Finally, we have random sampling (see, e.g., [28]). Here we randomly generate one
index at each iteration with uniform probability distribution. The definition we have
in this case is the following:

Definition 3 (Random sampling) SetMk = {i(k)}, with i(k) index chosen uniformly
at random in [1 :m].

3 Convergence analysis

In this section, we analyze the convergence properties of our algorithmic framework.
In particular, we show that under a suitably defined angle condition on the blocks and
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a local KL condition on the objective function, we get, for any block selection strategy
used, a linear convergence rate. The convergence analysis presented in this section
extends the results given in [39] to the block coordinate setting, a demanding task
which is by no means straightforward. Hence, some novel arguments are required for
this extension, which are now introduced, and then described in detail in the appendix.

Our convergence framework makes use of the angle condition introduced in [38,
39]. Such a condition ensures that the slope of the descent direction selected by the
method is optimal up to a constant. We now recall this angle condition. For x ∈ C and
g ∈ R

n we first define the directional slope lower bound as

DSBA(C, x, g) = inf
d∈A(x,g)

〈g,d〉
πx(g)‖d‖ , (11)

if x is not stationary for −g, otherwise we set DSBA(C, x, g) = 1. Given a subset P
of C, we then define the slope lower bound as

SBA(C, P) = inf
g∈Rn

x∈P

DSBA(C, x, g) = inf
g:πx(g) �=0x∈P

DSBA(C, x, g) . (12)

We use SBA(C) as a shorthand for SBA(C, C), and say that the angle condition holds
for the method A if

SBA(C) = τ > 0 . (13)

Remark 1 AFW, PFW and FDFW all satisfy the angle condition, when C is a polytope.
A detailed proof of this result is reported in [39], together with some other examples of
methods satisfying the angle condition for convex setswith smooth boundary described
in [38].

We now report the local KL condition used to analyze the convergence of our
algorithm. The same condition was used previously as well [39, Assumption 2.1].

Assumption 1 Given a stationary point x∗ ∈ C, there exists η, δ, μ > 0 such that for
every x ∈ Bδ(x∗) with f (x∗) < f (x) < f (x∗) + η we have

πx(−∇ f (x)) ≥ √
2μ[ f (x) − f (x∗)] 12 . (14)

When dealing with convex programming problems, a Hölderian error bound with
exponent 2 on the solution set implies condition (14), see [9, Corollary 6]. Therefore,
our assumption holds when dealing with μ-strongly convex functions (see, e.g., [27]),
and in particular for the setting of the open question from [36] discussed in the intro-
duction. It is however important to highlight that the error bound (14) holds in a variety
of both convex and non-convex settings (see [39] for a detailed discussion on this mat-
ter). An interesting example for our analysis is the setting where f is (non-convex)
quadratic, i.e., f (x) = x�Qx + b�x, and C is a polytope.

We now report our main convergence result.
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Theorem 1 Let Assumption 1 hold at x∗. Let us consider the sequence {xk} generated
by Algorithm 1. Assume that:

– the angle condition (13) holds in every block for the same τ > 0;
– the SSC procedure always terminates in a finite number of steps.
– f (x∗) is a minimum in the connected component of {x ∈ C : f (x) ≤ f (x0)}

containing x0.

Then, there exists δ̃ > 0 such that, if x0 ∈ Bδ̃(x∗):

– for the parallel block selection strategy, we have

f (xk) − f (x∗) ≤ (qP )k[ f (x0) − f (x∗)] , (15)

and xk → x̃∗ with

‖xk − x̃∗‖ ≤
√
2 − 2qP√

L(1 − √
qP )

(qP )
k
2 [ f (x0) − f (x̃∗)] , (16)

for

qP = 1 − μτ 2

4L(1 + τ)2
. (17)

– for the GS block selection strategy, we have

f (xk) − f (x∗) ≤ (qGS)k[ f (x0) − f (x∗)] , (18)

and xk → x̃∗ with

‖xk − x̃∗‖ ≤
√
2 − 2qGS√

L(1 − √
qGS)

(qGS)
k
2 [ f (x0) − f (x̃∗)] , (19)

for

qGS = 1 − μτ 2

4mL(1 + τ)2
, (20)

– for the random block selection strategy we have, under the additional condition
that

min{ f (x) : ‖x − x∗‖ = δ} > f (x∗) (21)

holds for some δ > 0, that

E[ f (xk) − f (x∗)] ≤ (qR)k[ f (x0) − f (x∗)] , (22)

123



I. Bomze et al.

and xk → x̃∗ almost surely with

E[‖xk − x̃∗‖] ≤
√
2 − 2qR√

L(1 − √
qR)

(qR)
k
2 [ f (x0) − f (x̃∗)] (23)

for qR = qGS.

This convergence result extends [39, Theorem 4.2] to our block coordinate setting.
However, since the SSC is here applied independently to different blocks, we cannot
directly apply the results from [39]. Instead, we combine the properties of the SSC
applied in single blocks by exploiting the structure of the tangent cone for product
domains:

TC(x) = TC(1) (x
(1)) × · · · × TC(m)

(x(m)) . (24)

This requires proving stronger properties for the sequence generated by the SSC than
those presented in [39]. The details with references to relevant results from [39] can
be found in the appendix. Finite termination of the SSC procedure is instead directly
ensured by the results proved in [38, 39], in particular for the AFW, PFW and FDFW
applied on polytopes.

Remark 2 If the feasible set C is a polytope and if we assume that the objective function
f satisfies condition (14) on every point generated by the algorithm, with fixed f (x∗),
then Algorithm 1 with AFW (PFW or FDFW) in the SSC converges at the rates given
above. Condition (14) holds in case ofμ-strongly convex functions, and hencewe have
that in those cases our algorithm globally converges with the rates given in Theorem 1.

Remark 3 Both the parallel and the GS strategy give the same rate with different
constants. In particular, the constant ruling the GS case depends on the number of
blocks used (the larger the number of blocks, the worse the rate) and is larger than the
one we have for the parallel case.

Remark 4 The random block selection strategy has the same rate as the GS strategy,
but it is given in expectation. In particular, the constant ruling the rate is the same as
the GS one, hence depends on the number of blocks used. Note that a further technical
assumption (21) on x∗ is needed in this case.

4 Active set identification

We now report an active set identification result for our framework, assuming that the
sets in the Cartesian product have a specific structure:

C = Δn1 × ... × Δnm , (25)

so that the set C(i) is the (ni − 1)-dimensional standard simplex

Δni = {x ∈ R
ni+ : x�e(i) = 1} , i ∈ [1 :m] ,
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for e ∈ R
n the vector with components all equal to 1. We only focus on Algorithm 1

withAFWin theSSCand assume that strict complementarity holds at a stationary point
x∗, i.e., either (x∗)i = 0 or ∂ f

∂xi
(x∗) = 〈x∗,∇ f (x∗)〉 holds but not both simultaneously,

for all i . As usual, the support supp x = {i ∈ [1 : n] : xi > 0}. We now report our
main identification result. A detailed proof is included in the appendix.

Theorem 2 Under the above assumptions on C, let A(i) be the AFW for i ∈ [1 : m],
and let strict complementarity conditions hold at x∗ ∈ C.

– If {xk} is generated by Algorithm 1 with parallel selection, then there exists a
neighborhood U of x∗ such that if xk ∈ U then supp(xk+1) = supp(x∗).

– If {xk} is generated by Algorithm 1 with randomized or GS selection, then there
exists a neighborhood U of x∗ such that if xk ∈ U then supp(xi(k)

k+1) = supp(xi(k)∗ ).

When the sequence generated by our algorithm converges to the point x∗, it is then
easy to see that the support of the iterate matches the final support of x∗ for k large
enough.

Corollary 1 Under the above assumptions on C, letA(i) be the AFW for i ∈ [1 :m], and
let strict complementarity conditions hold at x∗ ∈ C. If xk → x∗ (almost surely), then
for parallel and GS selection (for random sampling) we have supp(xk) = supp(x∗)
for k large enough.

This result has relevant practical implications, especially when handling sparse
optimization problems. Since the algorithm iterates have a constant support when k is
large, we can simply focus on the few support components and forget about the others
in this case. We hence can exploit this by embedding sophisticated tools (like, e.g.,
caching strategies, second-ordermethods) in the algorithm, thus obtaining a significant
speed up in the end.

5 Numerical results

We report here some preliminary numerical results for a non-convex quadratic opti-
mization problem referred to as Multi-StQP [16] on a product of (here identical)
simplices, that is

min
{
x�Qx : x ∈ (Δl)m

}
. (26)

The matrix Q was generated in such a way that the solutions of problem (26) had
components sparse but different from vertices. This is in fact the setting where FW
variants have proved to be more effective [15, 39]. In order to obtain the desired
property, we consider a perturbation of a stochastic StQP [11]. Given {Q̄i }i∈[1:m]
representing m possible StQPs, with Q̄i ∈ R

l×l for i ∈ [1 : m], the corresponding
stochastic StQP with sample space [1 :m] is given by

max

{
m∑

i=1

piy�
i Q̄iyi : yi ∈ Δl for all i ∈ [1 :m]

}

. (27)
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with pi probability of the StQP i . Equivalently, (27) is an instance of problem (26)
with Q = Q̄, for

Q̄ =

⎡

⎢
⎢
⎢
⎣

−p1Q̄1 0 · · · 0
0 −p2Q̄2 · · · 0
...

...
. . .

...

0 0 · · · −pmQ̄m

⎤

⎥
⎥
⎥
⎦

. (28)

In our tests, we added to the stochastic StQP a perturbation coupling the blocks.
More precisely, the matrix Q was set equal to Q̄ + εQ̃, for Q̃ a random matrix with
standard Gaussian independent entries. The coefficient ε was set equal to 1

2m2 . We set

Q̄i = Āi + αIl, for α = 0.5 and Āi the adjacency matrix of an Erdős-Rényi random
graph, where each couple of vertices has probability p of being connected by an edge,
independently from the other couples. Hence, for i ∈ [1 :m] the problem

min
{
−y�Q̄iy : y ∈ Δl

}
(29)

is a regularizedmaximum-clique formulation,where eachmaximal clique corresponds
to a unique strict local maximizer with support equal to its vertices, and conversely
(see [10] and references therein). The probability p is set as follows

p =
(

l

s

) 2
s(s−1)

, (30)

for s the nearest integer to 0.4l, so that the expected number of cliques with size
≈ 0.4l is 1, (see, e.g., [2]). Notice that the perturbation term Q̃ ensures that problem
(26) cannot be solved by optimizing each block separately.
We remark here that different ways to build large StQPs starting from smaller instances
and preserving the structure of their solutions have been discussed in [17]. However,
while the resulting problems decouple on the feasible set of the larger problem, they
still decouple on the product of the feasible sets of the smaller instances, and for our
purposes are equivalent to the block diagonal structure.

We tested four methods in total: AFW + SSC with parallel, GS and randomized
updates (PAFW + SSC, GSAFW + SSC, BCAFW + SSC respectively), and FW with
randomized updates (BCFW, coinciding with the block coordinate FW introduced in
[28]). Our tests focused on the local identification and on the convergence properties
of our methods.

The code was written in Python using the numpy package, and the tests were
performed on an Intel Core i9-12900KS CPU 3.40GHz, 32GB RAM. The codes
relevant to the numerical tests are available at the following link: https://github.com/
DamianoZeffiro/Projection-free-product-domain.
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Fig. 1 Comparison using multistart between GSAFW + SSC, PAFW + SSC and BCAFW + SSC. l = m =
100

5.1 Multistart

We first considered a multistart approach, where the results are averaged across 20
runs, choosing 4 starting points for each of 5 random initializations of the objective.

We measure both optimality gap (error estimate) and sparsity (number of nonzero
components, 0 norm) of the iterates, reporting average and standard deviation in the
plots. The estimated global optimumused in the optimality gap is obtained by subtract-
ing 10−5 from the best local solution found by the algorithms. We mostly consider the
performance with respect to block gradient computations, with one gradient counted
each time the SSC is performed in one of the blocks, as in previous works (see, e.g.,
[28]). In some tests involving the GSAFW + SSC, we consider instead block updates,
with one block update counted each time the algorithms modifies the current iterate
in one of the blocks. It is important to highlight that, since at each block update the
gradient is constant and only one linear minimization is required at the beginning of
the SSC, the number of gradient computations for our algorithms also coincides with
the number of linear minimizations on the blocks for the FW variants we consider.

We first compare PAFW + SSC, BCAFW + SSC and GSAFW + SSC (Fig. 1).
As expected, while GSAFW + SSC shows good performance with respect to block
updates, it has a very poor performance with respect to block gradient computations,
since at every iteration m gradients must be computed to update a single block. We
then compared PAFW + SSC, BCAFW + SSC and BCFW. The results (Fig. 2) clearly
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Fig. 2 Comparison using multistart between BCFW, PAFW + SSC and BCAFW + SSC. l = m = 100 in
the first row, l = 40 and m = 250 in the second row, l = 250 and m = 40 in the third row

show that PAFW + SSC and BCAFW + SSC outperform BCFW. All these findings
are consistent with the theoretical results described in “An active set identification
criterion" section.

5.2 Monotonic basin hopping

We then consider the monotonic basin hopping approach (see, e.g., [30, 33]) described
in Algorithm 3. The method computes a local optimizer x∗,i close to the current iterate
x̄i (Step 2). ThereM is a local optimization algorithm, and given as inputM and x̄i ,
the subroutine LO returns the result of applying M starting from x̄i , with a suitable
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Fig. 3 Comparison usingMonotonic Basin Hopping with BCFW, PAFW + SSC and BCAFW+ SSC. From
left to right: l = m = 100; l = 40 and m = 250; l = 250 and m = 40

stopping criterion which in our case is given by a limit on the number of gradient
computations, set to 10m. The sequence of best points found in the first i iterations
{x̄∗,i } is updated in Step 3, and in Step 5, x̄i+1 is chosen in a neighborhood of x̄∗,i .
The neighborhood B(x, γ ) for x ∈ C and γ ∈ (0, 1] is given by

B(x, γ ) = {x + γ (y − x) : y ∈ C} . (31)

In the tests, we chose y uniformly at random in C and set x̄i+1 = x̄i + γ (y − x̄i ),

Algorithm 3Monotonic Basin Hopping Strategy
1: x̄0 ∈ C, imax ∈ N, γ ∈ [0, 1], i = 0. Set x̄∗,−1 = x̄0
2: Compute a local optimizer x∗,i = LO(M, x̄i )

3: If f (x∗,i ) < f (x̄∗,i−1) then set x̄∗,i = x∗,i , else set x̄∗,i = x̄∗,i−1.
4: If i = imax, then STOP.
5: Randomly chose x̄i+1 in B(x̄∗,i , γ ).
6: Set i = i + 1. Go to step 2.

with γ = 0.25. sThe methods we consider as subroutines in Step 2 are PAFW + SSC,
BCAFW + SSC and BCFW. We set imax = 9, and perform 10 runs of Algorithm
3, randomly initializing the starting point. We plot once again (Fig. 3) average and
standard deviation for { f (x̄∗,i )− f̃ ∗}with f̃ ∗ estimating the global optimum (obtained
by subtracting 10−1 from the best solution found by the methods).
The results again show that PAFW + SSC and BCAFW + SSC find better solutions
than BCFW, with BCAFW + SSC outperforming PAFW + SSC in most instances if
l ≤ m.

6 Conclusions

For a quite general optimization problem on product domains, we offer a seemingly
new convergence theory, which ensures both convergence of objective values and
(local) linear convergence of the iterates under widely accepted conditions, for block-
coordinate FW variants. Convergence is global for μ-strongly convex objectives, but
we mainly focus on the non-convex case. In case of randomized selection of the
blocks, all results are in expectation, and need a further technical assumption. As
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usual, constants and rates are specified in terms of the Lipschitz constant L for the
gradient map, the constant μ used in the local Kurdyka-Łojasiewicz-condition, and
the parameter τ in the so-called angle condition.

The results are complemented by an active set identification result for a specific
structure of the product domain and suitable choices of a projection-free strategy (FW-
approach with away steps for the search direction): it is proved that our framework
identifies the support of a solution in a finite number of iterations.

To the best of our knowledge, this is the first time that both a linear convergence rate
and an active set identification result are given for (bad step-free) block-coordinate
FW variants, in an effort to narrow the research gap observed in [36].

In our preliminary experiments, numerical evidence clearly points out the advan-
tages of our strategy to exploit structural knowledge. On randomly generated
non-convex Multi-StQPs where easy instances were carefully avoided, our approach
(AFW with parallel or randomized updates, both combined with the Short Step
Chain strategy SSC) is dominating the block-coordinate FWmethod with randomized
updates.

We tested resilience of our reported observations by employing two experimental
setups, puremultistart andmonotonic basin hopping. The same effects seem to prevail.

Instance constructionwasmotivatedby a stochastic variant of theStQP, varyingboth
domain dimension l and number m of possible scenarios. In case l ≤ m there seems to
be a slight edge towards the combination of AFW with randomized updates and SSC,
compared to the parallel variant. This effect does not seem to happen with large l in
comparison to m, but would not change superiority over traditional block-coordinate
FW methods.

7. Appendix

7.1 Proofs

In the rest of this section, we always assume that the SSC terminates in a finite number
of steps and that the angle condition holds.
The first lemma is related to the single block setting, and strengthens some of the
properties proved for the SSC in [39, Proposition 4.1].

Lemma 1 For a fixed i ∈ [1 :m], let {wk} = {x(i)
k }, and let wk+1 = SSC(wk, g). Then

there exists w̃k ∈ {y j }T
j=0 such that

‖wk+1 − wk‖ ≥ τ

L
‖π(TC(i) (w̃k), g)‖ (32)

and

‖w̃k − wk‖ ≤ ‖wk+1 − wk‖ , (33)

〈g, w̃k − wk〉 ≤ 〈g,wk+1 − wk〉 . (34)
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Furthermore, we have

L‖y − wk‖2 ≤ 〈g, y − wk〉 (35)

for y ∈ {wk+1, w̃k}.
Proof Let B̄ = B̄ ‖g‖

2L
(wk + g

2L ) and let T be such that wk+1 = yT . By [39, (4.4)] we

have that (35) holds for every z ∈ B̄ (in place of y), and therefore as desired for every

y ∈ {wk+1, w̃k} ⊂ {y j : j ∈ [0 :T ]} ⊂ B̄ .

Let now p̃ j = ‖π(TC(i) (y j ), g)‖. Notice that, if w̃k = yl , then

τ

L
‖π(TC(i) (w̃k), g)‖ = τ

L
p̃l ≤ 1

L
〈g, d̂l〉 , (36)

where the inequality follows from 〈g,d̂l 〉
p̃l

≥ DSBA(C(i), yl , g) ≥ SBA(C(i)) = τ . Thus
for proving (32), in the rest of the proof it will be enough to prove

〈g, d̂l〉 ≤ L‖wk+1 − wk‖ . (37)

Furthermore, since by definition of the SSC, the scalar product 〈g, y j 〉 is increasing
in j , we have

〈g, w̃k − wk〉 = 〈g, yl − wk〉 ≤ 〈g, yT − wk〉 = 〈g,wk+1 − wk〉 .

We distinguish four cases, according to how the SSC terminates. In the first two,
we show we can choose the last step, w̃ = yT ; in the third, the penultimate choice
w̃ = yT −1 satisfies all conditions, and in the fourth case, an intermediate step is an
appropriate choice. We abbreviate B j = B̄〈g,d̂ j 〉/L(wk).
Case 1: T = 0 or dT = o. Since there are no descent directions, wk+1 = yT must be
stationary for the gradient −g. Equivalently, p̃T = ‖π(TC(i) (wk+1), g)‖ = 0. Finally,
it is clear that if T = 0 then d0 = o, since y0 must be stationary for −g. Thus taking
w̃k = yT the desired properties follow.
Before examining the remaining cases we remark that if the SSC terminates in Phase
II, then αT −1 = βT −1 must be maximal w.r.t. the conditions yT ∈ BT −1 or yT ∈ B̄.
If αT −1 = 0 then yT −1 = yT , and in this case we cannot have yT −1 ∈ ∂ B̄, otherwise
the SSC would terminate in Phase II of the previous cycle. Therefore necessarily
yT = yT −1 ∈ int(BT −1)

c (Case 2). If βT −1 = αT −1 > 0 we must have yT −1 ∈
CT −1 = BT −1 ∩ B̄, and yT ∈ ∂ BT −1 (Case 3) or yT ∈ ∂ B̄ (Case 4) respectively.

Case 2: yT −1 = yT ∈ int(BT −1)
c, which means ‖yT −1 − wk‖ ≥ 〈g,d̂T −1〉

L . We can
rewrite the condition as

〈g, d̂T −1〉 ≤ L‖yT −1 − wk‖ = L‖yT − wk‖ , (38)

123



I. Bomze et al.

which is exactly (37). Then w̃k = wk+1 = yT satisfies the desired conditions.
Case 3: yT = yT −1 + βT −1dT −1 and yT ∈ ∂ BT −1. Then from yT −1 ∈ BT −1 it
follows

L‖yT −1 − wk‖ ≤ 〈g, d̂T −1〉 , (39)

and yT ∈ ∂ BT −1 implies

〈g, d̂T −1〉 = L‖yT − wk‖ , (40)

which is (37) for l = T − 1. Combining (39) with (40) we also obtain

L‖yT −1 − wk‖ ≤ L‖yT − wk‖ , (41)

so that in particular we can take w̃k = yT −1.
Case 4: yT = yT −1 + βT −1dT −1 and yT ∈ ∂ B̄.
The condition wk+1 = yT ∈ ∂ B̄ can be rewritten as

L‖wk+1 − wk‖2 = 〈g,wk+1 − wk〉 . (42)

Indeed, for any {a,b} ⊂ R
n , the equation ‖b − a‖ = ‖b‖ implies ‖a‖2 = 2〈a,b〉,

wherefrom (42) follows, putting a = wk+1 − wk and b = g
2L . For every j ∈ [0 : T ]

we have

wk+1 = y j +
T −1∑

i= j

αidi . (43)

We now want to prove that for every j ∈ [0 :T ]

‖wk+1 − wk‖ ≥ ‖y j − wk‖ . (44)

Indeed, we have

L‖wk+1 − wk‖2 = 〈g,wk+1 − wk〉 = 〈g, y j − wk〉 +
T −1∑

i= j

αi 〈g,di 〉

≥ 〈g, y j − wk〉 ≥ L‖y j − wk‖2 ,

where we used (42) in the first equality, (43) in the second, 〈g,d j 〉 ≥ 0 for every j in
the first inequality and y j ∈ B̄ in the second inequality (using an argument similar to
that for (42)), which proves (44). We also have

〈g,
T −1∑

j=0

α jd j 〉 =
T −1∑

j=0

α j‖d j‖〈g,d j 〉
‖d j‖ ≥ min

{ 〈g,di 〉
‖di‖ : i ∈ [0 :T − 1]

} T −1∑

j=0

α j‖d j‖ ,
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which implies

〈g,wk+1 − wk〉
‖wk+1 − wk‖ = 〈g,∑T −1

j=0 α jd j 〉
‖∑T −1

j=0 α jd j‖
≥ 〈g,∑T −1

j=0 α jd j 〉
∑T −1

j=0 α j‖d j‖
≥ min

{ 〈g,di 〉
‖di‖ : i ∈ [0 :T − 1]

}

, (45)

using the triangle inequality for the left inequality. Thus for T̃ ∈
argmin

{ 〈g,di 〉
‖di ‖ : i ∈ [0 :T − 1]

}
we have

〈g, d̂T̃ 〉 ≤ 〈g,wk+1 − wk〉
‖wk+1 − wk‖ = L‖wk+1 − wk‖ , (46)

where we used (45) in the first inequality and (42) in the second (equality).
In particular w̃k = yT̃ satisfies the desired properties,where‖w̃k−wk‖ ≤ ‖wk+1−wk‖
by (44) and (37) holds by (46). ��

We denote by SSC(wk, g) a point w̃k with the properties stated in the above lemma.
It is also useful to define U0 as the connected component of {x ∈ C : f (x) ≤
f (x0)} containing x0. The next result shows how in our block coordinate setting the
assumption of Theorem 1 on U0 allows us to retrieve a lower bound on the objective
for points generated by the SSC. This lower bound is analogous to the lower bound
required in [39, Theorem 4.2].

Lemma 2 Let {xk} be a sequence generated by Algorithm 1. Let x̄k =
[SSC(x(i)

k ,−∇ f (xk)
(i))]m

i=1. Assume also that f (x∗) is a minimum in U0. Then,
{ f (xk)} is decreasing, and for every k, {xk, x̄k} ⊂ U0, with f (y) ∈ [ f (x∗), f (x0)] for
y ∈ {xk, x̄k}.
Proof Let Uk be the minimal connected component of {x ∈ C : f (x) ≤ f (xk)]
containing xk , let g = −∇ f (xk) and let B̄C

k = C∩∏
i B̄ ‖g(i)‖

2 L

(x(i)
k + g(i)

2 L ). For y ∈ B̄C
k ,

we have xk ∈ B̄C
k and

f (y) ≤ f (xk) + 〈∇ f (xk), y − xk〉 + L

2
‖y − xk‖2

= f (xk) +
m∑

i=1

〈∇ f (xk)
(i), y(i) − x(i)

k 〉 + L

2
‖y(i) − x(i)

k ‖2

≤ f (xk) − L

2

m∑

i=1

‖y(i) − x(i)
k ‖2 = f (xk) − L

2
‖xk − y‖2

(47)

where we used the standard Descent Lemma in the first inequality and the the second
follows by definition of B̄C

k . From (47) it follows that { f (xk)} is decreasing, and that
B̄C

k ⊂ {x ∈ C : f (x) ≤ f (xk)}. Furthermore, since B̄C
k is connected and contains xk ,
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the stronger inclusion B̄C
k ⊂ Uk is also true. Thus {xk+1, x̄k} ⊂ B̄C

k ⊂ Uk , so that
in particular Uk+1 ⊂ Uk since f (xk+1) ≤ f (xk), and by induction we can conclude
{xk+1, x̄k} ⊂ U0. Finally, f (y) ∈ [ f (x∗), f (xk)] for y ∈ {xk+1, x̄k}, where the lower
bound follows from the assumption that f (x∗) is a minimum in U0, and the upper
bound follows from (47).

��
In the following lemma, the properties of the SSC proved in Lemma 1 for single
blocks are combined to obtain analogous properties on the whole product of blocks,
and the KL condition is then used to lower bound suitable improvement measures
with an optimality gap for the objective. We would like to highlight that, unlike the
single block case, this optimality gap is measured with respect to an auxiliary point
which is not necessarily among those generated by the algorithm. Proof of the linear
convergence rate hence requires proper handling in this case.

Lemma 3 Let {xk} be a sequence generated by Algorithm 1, and assume that the
angle condition holds for the method A(i) with the same τ , for all i ∈ [1 : m]. Let
x̄k = [SSC(x(i)

k ,−∇ f (xk)
(i))]m

i=1 and x̃k+1 = [SSC(x(i)
k ,−∇ f (xk)

(i))]m
i=1. If (14)

holds at x̄k , we then have, abbreviating g = −∇ f (xk):

‖x̃k+1 − xk‖2 ≥ τ 2

2(1 + τ 2)L2 ‖π(TC(x̄k),−∇ f (x̄k))‖2 ≥ τ 2μ

L2(1 + τ 2)
[ f (x̄k) − f ∗] ,

(48)

1

2
〈g, x̃k+1 − xk〉 ≥ 1

3
[ f (xk) − f (x̄k)] . (49)

Proof Let ḡ = −∇ f (x̄k), q̄(i) = ‖π(TC(i) (x̄
(i)
k ), ḡ(i))‖, and q(i) =

‖π(TC(i) (x̄
(i)
k ), g(i))‖. Observe that by the Lipschitz continuity of the gradient, we

have the inequality

q̄(i) ≤ q(i) + L‖x̄(i)
k − x(i)

k ‖ (50)

and thus

q̄2
(i) ≤ 2q2

(i) + 2L2‖x̄(i)
k − x(i)

k ‖2 ≤ 2L2(1 + τ 2)

τ 2
‖x̃(i)

k+1 − x(i)
k ‖2 , (51)

where we applied Jensen’s inequality to (50) in the first inequality, and (32) together
with (33) in the second inequality.
Thus we can write

‖x̃k+1 − xk‖2 =
m∑

i=1

‖x̃(i)
k+1 − x(i)

k ‖2 ≥ τ 2

2L2(1 + τ 2)

m∑

i=1

q̄2
(i)

= τ 2

2L2(1 + τ 2)
‖π(TC(x̄k),−∇ f (x̄k))‖2 ≥ τ 2μ

L2(1 + τ 2)
[ f (x̄k) − f ∗] ,

(52)
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where we used (51) in the first inequality and the KL property in the second. This
proves (48).
Using the standard Descent Lemma, we can give the upper bound

f (xk) − f (x̄k) ≤ 〈g, x̄k − xk〉 + L
2 ‖x̄k − xk‖2 ≤ 3

2 〈g, x̄k − xk〉

= 3
2

m∑

i=1

〈g(i), x̄(i)
k − x(i)

k 〉 , (53)

where we used (35) in the second inequality. We can finally prove (49):

1
2 〈g, x̃k+1 − xk〉 ≥ 1

2 〈g, x̄k − xk〉 = 1
2

m∑

i=1

〈g(i), x̄(i)
k − x(i)

k 〉 ≥ 1
3 [ f (xk) − f (x̄k)] ,

(54)

where we used (34) in the first inequality and (53) in the second one. ��
The next result, which directly follows from the previous lemma, explicitly lower

bounds the improvement on the objective with the optimality gap introduced above.

Lemma 4 Let {xk} be a sequence generated by Algorithm 1, and assume that the
angle condition holds for the method A(i) with the same τ , for all i ∈ [1 : m]. Let
x̄k = (SSC(x(i)

k ,−∇ f (xk)
(i)))m

i=1. Then, if the KL property (14) holds at x̄k , for
parallel updates

f (xk) − f (xk+1) ≥ τ 2μ

2L(1 + τ 2)
( f (x̄k) − f ∗) , (55)

for GS updates

f (xk) − f (xk+1) ≥ τ 2μ

2L(1 + τ 2)

1

m
( f (x̄k) − f ∗) , (56)

and for random updates

E[ f (xk) − f (xk+1)] ≥ τ 2μ

2L(1 + τ 2)

1

m
E[ f (x̄k) − f ∗] . (57)

Proof We first prove the inequality for parallel updates. We have

f (xk) − f (xk+1) ≥ L

2
‖xk − xk+1‖2 ≥ L

2

τ 2

2L2(1 + τ 2)
‖π(TC(x̄k),−∇ f (x̄k))‖2

= τ 2

4L(1 + τ 2)
‖π(TC(x̄k),−∇ f (x̄k))‖2 ≥ τ 2μ

2L(1 + τ 2)
[ f (x̄k) − f ∗] ,

(58)
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where the first inequality follows from (47), the second inequality by (48) where with
the notation introduced in Lemma 3 we have by definition xk+1 = x̃k+1. For GS
updates, we have

f (xk) − f (xk+1) ≥ 〈g, xk+1 − xk〉 − L

2
‖xk+1 − xk‖2 ≥ 1

2
〈g, xk+1 − xk〉

= 1

2
max

i∈[1:m]〈g
(i), x̃(i)

k+1 − xk〉 ≥ 1

2m
〈g, x̃k+1 − xk〉 ≥ L

2m
‖x̃k+1 − xk‖2

≥ τ 2μ

2mL(1 + τ 2)
[ f (x̄k) − f ∗] ,

(59)

where in the first inequality we used the standard Descent Lemma, (35) in the second
inequality; the equality follows by definition of GS updates, in the fourth inequality
we applied again (35), and (48) in the last one.
Finally, for random updates we have, denoting as i(k) = j the event that the index
chosen at the step k is j :

E[ f (xk) − f (xk+1)] ≥ L

2
E[‖xk+1 − xk‖2] = L

2

m∑

j=1

P(i(k) = j)E[‖x̃( j)
k+1 − x( j)

k ‖2]

= L

2m

m∑

j=1

E[‖x̃( j)
k+1 − x( j)

k ‖2] = L

2m
E[‖x̃k+1 − xk‖2] ≥ τ 2μ

2L(1 + τ 2)
E[ f (x̄k) − f ∗] ,

(60)

where the first inequality follows from (47), we used P({i(k) = j}) = 1
m in the second

equality and (48) in the last inequality. ��
In the next two lemmas, we relate the improvement measured with respect to the

auxiliary point to the true improvement of the objective, and thus manage to extend
the linear convergence rate in [39, Lemma 4.3] to the block coordinate setting.

Lemma 5 Let {xk} be a sequence generated by Algorithm 1, and assume that the
angle condition holds for the method A(i) with the same τ , for all i ∈ [1 : m]. Let
x̄k = (SSC(x(i)

k ,−∇ f (xk)
(i)))m

i=1. Then for parallel updates

f (xk) − f (xk+1) ≥ 1

3
[ f (xk) − f (x̄k)] , (61)

for GS updates

f (xk) − f (xk+1) ≥ 1

3m
[ f (xk) − f (x̄k)] , (62)

and for random updates

E[ f (xk) − f (xk+1)] ≥ 1

3m
E[ f (xk) − f (x̄k)] (63)
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Proof For parallel updates, we have

f (xk) − f (xk+1) ≥ 〈g, xk+1 − xk〉 − L

2
‖xk+1 − xk‖2 ≥ 1

2
〈g, xk+1 − xk〉

= 1

2
〈g, x̃k+1 − xk〉 ≥ 1

3
[ f (xk) − f (x̄k)] ,

(64)

where we have used the standard descent Lemma in the first inequality, (35) in the
second inequality, and (49) in the last inequality.
The proof follows analogously for GS updates, after noticing

〈g, xk+1 − xk〉 ≥ 1

m
〈g, x̃k+1 − xk〉 , (65)

as showed in (59), and for random updates, using

E[〈g, xk+1 − xk〉] = 1

m
E[〈g, x̃k+1 − xk〉] , (66)

respectively. ��
Lemma 6 Let {xk} be a sequence generated by Algorithm 1, and assume that the angle
condition holds for the method A(i) with the same τ , for all i ∈ [1 : m]. Then, if the
KL property (14) holds at xk , for parallel updates

f (xk+1) − f ∗ ≤ qP ( f (xk) − f ∗) , (67)

for GS updates

f (xk+1) − f ∗ ≤ qGS( f (xk) − f ∗) , (68)

and for random updates

E[ f (xk+1) − f ∗] ≤ qRE[ f (xk) − f ∗] . (69)

Proof First observe that since τ ∈ [0, 1] and μ ≤ L we have

τ 2μ

2L(1 + τ 2)
≤ μ

3L
≤ 1

3
. (70)

Then, combining (55) and (61), we can write

2[ f (xk) − f (xk+1)] ≥ 1

3
[ f (xk) − f (x̄k)] + τ 2μ

2L(1 + τ 2)
[ f (x̄k) − f ∗]

≥ τ 2μ

2L(1 + τ 2)
[ f (xk) − f (x̄k)] + τ 2μ

2L(1 + τ 2)
[ f (x̄k) − f ∗]

= τ 2μ

2L(1 + τ 2)
[ f (xk) − f ∗)] ,

(71)
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and rearranging an inequality of the form 2(a − b) ≥ γ (a − f ∗) into the form
b − f ∗ ≤ (1 − γ

2 )(a − f ∗), using (17),

f (xk+1) − f ∗ ≤ qP [ f (xk) − f ∗] . (72)

The thesis follows for GS and random updates analogously, invoking (20). ��
Given the previous results for the block coordinate setting, the remaining part of the

proof is a straightforward adaptation of arguments used in the proof of [39, Theorem
4.2].

Proof of Theorem 1 We need to prove that the KL property (14) holds in {x̄k}. The
bounds on f (xk) − f (x∗) then follow immediately by induction from Lemma 6, and
in turn the bounds on ‖xk − x∗‖ follow as in the proof of [39, Lemma 4.3].
For random updates, we can take δ̃ < δ small enough so that f (x0) < f (x∗) + η.
Then by construction the KL property (14) holds in U0, and since {x̄k} is contained in
U0 by Lemma 2, (14) holds in particular in {x̄k}.
For parallel updates, thanks to Lemma 2 we have that { f (xk)} is decreasing and
f (x̄k), f (xk) ≥ f (x∗). It can then be proved with an argument analogous to the proof
of [39, Theorem 4.2] that for δ̃ small enough, (14) holds in {x̄k}. We include the
argument here for completeness. Let fk = f (xk) − f (x∗), and let δ̃ < δ/2 defined as
in the proof of [39, Theorem 4.2] so that

δ̃ <
δ

2
< δ −

√
2 f0(1 − q)

L(1 − √
q)

−
√

2

L

√
f0 , (73)

with q = qP here. We now want to prove
⋃

[0:k−1]{xi , x̄i } ∪ {xk} ⊂ Bδ(x∗) for every
k ∈ N, by induction on k. Notice that x0 ∈ Bδ(x∗) by construction. To start with the
inductive step,

k−1∑

i=0

‖xi − xi+1‖ ≤
√

2

L

k−1∑

i=0

√
fi − fi+1 ≤

√
2 f0(1 − q)√
L(1 − √

q)
(74)

where we used (47) in the first inequality, and the second can be derived from [39,
Lemma 8.1] as in the proof of [39, Theorem 4.2]. But then

‖xk+1 − x∗‖ ≤ ‖x0 − x∗‖ +
(

k−1∑

i=0

‖xi − xi+1‖
)

+ ‖xk − xk+1‖

≤ δ̃ +
√
2 f0(1 − q)

L(1 − √
q)

+
√

2

L

√
fk − fk+1

< δ̃ +
√
2 f0(1 − q)

L(1 − √
q)

+
√

2

L

√
fk < δ ,

(75)

where we used (74) together with (47) in the second inequality, fk+1 = f (xk+1) −
f (x∗) ≥ 0 in the third inequality, and (73) together with f0 ≥ fk in the last inequality.
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We now have

‖x̃k − x∗‖ ≤ ‖x0 − x∗‖ +
(

k−1∑

i=0

‖xi − xi+1‖
)

+ ‖xk − x̃k‖

≤ ‖x0 − x∗‖ +
(

k−1∑

i=0

‖xi − xi+1‖
)

+ ‖xk − xk+1‖ < δ ,

(76)

wherewe used ‖x̃k −xk‖ ≤ ‖xk+1−xk‖ in the second inequality and the last inequality
follows as in (75). Thus x̃k ∈ Bδ(x∗) as well, and the induction is complete. For GS
updates the proof that {x̃k} ⊂ Bδ(x∗) is analogous. ��

7.2 An active set identification criterion

We prove in this section Theorem 2, proposing a general active set identification
criterion for Algorithm 1 in the special case where the feasible set C is the product
of simplices. With the notation introduced in Sect. 4, let C∗ = {x ∈ C : supp(x) =
supp(x∗)} and S∗ = {x ∈ R

n : supp(x) = supp(x∗)} be the subset of points in C
and the subspace of directions with the same support of x∗ respectively. For ease
of notation, we will use the Bachmann/Landau symbols y = o(1) for a sequence
y = yν ∈ R

d if yν → o as ν → ∞, and y = Θ(1) if ‖yν‖ is both bounded away from
zero and bounded above, for all sufficiently large ν.

Definition 4 We say that the method Ā has active set related directions in x∗ if it can
do a bounded number of consecutive maximal steps, and if for some neighborhood V
of x∗, x → x∗, g → −∇ f (x∗) and d ∈ Ā(x, g):
– if x ∈ C∗ then d ∈ S∗ with αmax(x, d̂) = Θ(1),
– if x ∈ C \ C∗ then 〈g, d̂〉 = Θ(1).

Lemma 7 Under the assumptions of Definition 4:

– if x ∈ C \ C∗ we have αmax(x, d̂) = o(1),
– if x ∈ C∗, then 〈g, d̂〉 = o(1).

Proof Notice that

0 ≤ αmax(x, d̂)〈g, d̂〉 = 〈g, (x + αmax(x, d̂)d̂) − x〉
= 〈−∇ f (x), (x + αmax(x, d̂)d̂) − x〉 + o(1) ≤ 〈−∇ f (x), x∗ − x〉 + o(1) = o(1) .

(77)

Thus

αmax(x, d̂) ≤ o(1)

〈g, d̂〉 = o(1) , (78)

where in the equality we used 〈g, d̂〉 = Θ(1) by assumption. This proves the first part
of the claim. As for the second part, we have

〈g, d̂〉 = 〈−∇ f (x∗), d̂〉 + o(1) = o(1) , (79)
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where we used 〈−∇ f (x∗), d̂〉 = 0 in the second equality, guaranteed by stationarity
conditions since d ∈ S∗. ��
Proposition 1 Let Algorithm 1 be applied to a method with active set related directions
in x∗ as in Definition 4. Then there is a neighborhood U of x∗ such that if xk ∈ U then
supp(xk+1) = supp(x∗).

Proof Let {yi : i ∈ [0 : j]} be the set of points generated by SSC(xk,−∇ f (xk)), T̄
the upper bound on the number of consecutive maximal steps, so that T ≤ T̄ + 1, and
let B̄ and B j as in the proof of Lemma 1. We assume without loss of generality that
‖d j‖ = 1 for j ∈ [0 :T ].
We will show that for xk sufficiently close to x∗ certain inequalities, namely (81), (82)
and (85) are satisfied, allowing us to deduce the identification property. Let

T ∗ = max{ j ∈ [0 :T ] : {yi : i ∈ [0 : j]} ⊂ C \ C∗}

whenever y0 /∈ C∗, and T ∗ = −1 otherwise.Wefirst claim T̄ ≥ T ∗+1. This is clear by
the definition of T ∗ if T ∗ = −1. Otherwise, for j ∈ [0 :T ∗] let ỹ j+1 = y j + α

( j)
maxd j .

We now show ỹ j+1 ∈ C j . First, we check ỹ j+1 ∈ int(B̄). On one hand we have

L‖ỹ j+1 − y0‖2 = L‖α( j)
maxd j +

j−1∑

i=0

αidi‖2 ≤ L

⎛

⎝
j−1∑

i=0

α(i)
max‖di‖

⎞

⎠

2

= L

⎛

⎝
j−1∑

i=0

α(i)
max

⎞

⎠

2

= O( max
i∈[0: j](α

(i)
max)

2) ,

(80)

where we used ‖di‖ = 1 by assumption in the second equality. On the other hand

〈g, ỹ j+1 − y0〉 = α( j)
maxd j +

j−1∑

i=0

αi 〈gi ,di 〉 = O( max
i∈[0: j] α

(i)
max) . (81)

Since y(i) ∈ C \ C∗, by the active set related property α
(i)
max = o(1) for xk → x∗. Let

now M1 and M2 be the implicit constants in (80) and (81). For y0 = xk close enough
to x∗ we obtain

L‖ỹ j+1 − y0‖2 ≤ M1 max
i∈[0: j](α

(i)
max)

2 < M2 max
i∈[0: j] α

(i)
max ≤ 〈g, ỹ j+1 − y0〉 , (82)

where we used (80) in the first inequality, maxi∈[0: j] α(i)
max = o(1) in the second

inequality and (81) in the last inequality. From (82), ỹ j+1 ∈ intB̄ follows easily as
desired.
We now need to check ỹ j+1 ∈ B j . Reasoning as above, on the one hand we have
‖g‖
2L = Θ(1) for xk → x (setting aside the trivial case where −∇ f (x∗) = 0), and on
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the other hand ‖ỹ j+1 − y0‖ = o(1) by (80), so that

‖ỹ j+1 − y0‖ <
‖g‖
2L

(83)

for y0 close enough to x∗ and ỹ j+1 ∈ B j as desired. Then ỹ j+1 ∈ int(C j ) for j ∈ [0 :
T ∗], or equivalently β j > α

( j)
max the SSC does always maximal steps in the first T ∗ +1

iterations. In particular, it generates the point yT ∗+1 ∈ C∗ \ {yT ∗}. The claim is thus
proved.
If yT ∗+1 is stationary for g, the SSC terminates at step 4 with output yT ∗+1 ∈ C∗
and the thesis is proved. Otherwise, we claim that the SSC terminates with output
yT ∗+2 ∈ C∗ and βT ∗+1 < α

(T ∗+1)
max . First, observe that by assumption we must have

dT ∗+1 ∈ S∗, and therefore yT ∗+2 = yT ∗+1 + αT ∗+1dT ∗+1 ∈ C∗. Second, we have
α

(T ∗+1)
max = Θ(1), and at the same time

βT ∗+1 ≤ diam(CT ∗+1) ≤ diam(BT ∗+1) ≤ 2〈gT ∗+1,dT ∗+1〉 = o(1) . (84)

Thus for y0 close enough to x∗ we must have

βT ∗+1 < α(T ∗+1)
max , (85)

and the claim is proved. Since the SSC terminates either with yT ∗+1 or yT ∗+2, and
both of these points are in C∗, the thesis follows. �� ��
Lemma 8 For x → x∗, g → −∇ f (x∗), if x ∈ C∗, d ∈ S∗ and αmax(x, d̂) coincides
with the maximal feasible stepsize, then αmax(x, d̂) = Θ(1).

Proof We have

αmax(x, d̂) = min
i :d̂i <0

xi

|d̂i |
≥ min

i :d̂i <0
xi ≥ min

i∈supp(x∗)
xi = Θ(1) , (86)

where we used |d̂i | ≤ ‖d̂‖ ≤ 1 in the first inequality, supp(d) ⊆ supp(x∗) in the
second inequality, and xi → x∗,i > 0 in the third one.

��
For x ∈ C, we define the expression

λ(i)(x, g) = 〈g(i), x(i)〉 e(i) − g(i) , i ∈ [1 :m] ,

and the Lagrangian multiplier vector

λ(i)(x) = λ(i)(x,−∇ f (x)) = ∇ f (x)(i) − 〈∇ f (x)(i), x(i)〉 e(i) , i ∈ [1 :m] . (87)

We notice that strict complementarity holds at a stationary point x∗ ∈ C for ∇ f (x∗)
if and only if it holds for every i ∈ [1 :m] at x(i)∗ ∈ C(i) and ∇ f (x∗)(i).
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Lemma 9 Assume that strict complementarity holds at x∗. Then the AFW applied to
the simplex has active set related directions in x∗ as in Definition 4.

Proof For x → x∗ and g → −∇ f (x∗) we have λ(x, g) → λ(x∗), and therefore
in particular λi (x, g) → 0 for i ∈ supp(x∗) while λi (x, g) → λi (x∗) > 0 for
i ∈ [1 : n] \ supp(x∗). Therefore, for x ∈ C \ C∗ close enough to x∗ we must have
max{λi (x, g) : i ∈ supp(x)} > max{−λi (x, g) : i ∈ [1 : n]}, so that by [13, Lemma
3.2(a)] we have that the descent direction selected by the AFW satisfies d = x − eî

for some î ∈ argmax{λi (x, g) : i ∈ supp(x)} ⊂ [1 :n] \ supp(x∗). Therefore

〈g, d̂〉 = 〈g, x − eî

‖x − eî‖
〉 = λî (x, g)

‖x − eî‖
= Θ(1) (88)

for x → x∗ and g → −∇ f (x∗).
As for the case x ∈ C∗, then if x, g are close enough to x∗ we must have λi (x, g) > 0
for every i in [1 :n] \ supp(x∗). Therefore by [13, Lemma 3.2(b)] if y is obtained from
xwith a FW update we must have yi = 0 for i ∈ [1 :n]\ supp(x∗), which is equivalent
to say that the update directionmust be in S∗. The property αmax(x, d̂) = Θ(1) follows
by Lemma 8. ��
Proof of Theorem 2 Follows by applying the property proved in Lemma 9 to each block
selected by the method.
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