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a b s t r a c t 

In this paper, we focus on the solution of online optimization problems that arise often in signal process- 

ing and machine learning, in which we have access to streaming sources of data. We discuss algorithms 

for online optimization based on the prediction-correction paradigm, both in the primal and dual space. 

In particular, we leverage the typical regularized least-squares structure appearing in many signal pro- 

cessing problems to propose a novel and tailored prediction strategy, which we call extrapolation-based. 

By using tools from operator theory, we then analyze the convergence of the proposed methods as ap- 

plied both to primal and dual problems, deriving an explicit bound for the tracking error, that is, the 

distance from the time-varying optimal solution. We further discuss the empirical performance of the 

algorithm when applied to signal processing, machine learning, and robotics problems. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Continuously varying optimization programs have appeared as 

 natural extension of time-invariant ones when the cost function, 

he constraints, or both, depend on a time parameter and change 

ontinuously in time. This setting captures relevant problems in 

he data streaming era, see e.g. [13,42] and references therein. 

We focus here on linearly constrained regularized least-squares 

roblems of the form 

 (t) : x ∗(t) , y ∗(t) = arg min x ∈ R n , y ∈ R m 
1 

2 
‖ D x −d (t) ‖ 2 + f 0 ( x ) ︸ ︷︷ ︸ 

=: f ( x ;t) 

+ h ( y ) , 

(1) 

 . t . A x + B y = c , (2) 

here, t ∈ R + is non-negative, continuous, and is used to index 

ime; f : R 

n × R + → R is a smooth strongly convex function uni-

ormly in time; in addition, h : R 

m → R ∪ { + ∞} is a closed convex

nd proper function, matrices D ∈ R 

q ×n , A ∈ R 

p×n and B ∈ R 

p×m , 
∗ Corresponding author. 
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nd vector c ∈ R 

p . Finally d (t) : R + → R 

q is a vector function of

ime, describing the data. 

Problem P (t) is typical in signal processing, and depending on 

he specific values for the matrices and vectors, it could yield a 

treaming, i.e., time-varying, LASSO, Group-LASSO, the elastic net, 

s well as various regularized least-squares problems. The struc- 

ure of Problem P (t) is so typical that we specifically use it to de-

ise novel algorithms for its resolution. In particular, we use the 

act that the Hessian of f is constant in time. 

For handy notation, when x = y , we introduce the primal prob- 

em, 

 p (t) : x ∗(t) = arg min x ∈ R n f ( x ; t) + g( x ) , (3) 

ith g : R 

n → R ∪ { + ∞} a closed convex and proper function and

f defined as before. 

Solving any of the two problems means determining, at each 

ime t , the optimizers x ∗(t) or ( x ∗(t) , y ∗(t)) , and therefore, com- 

uting the optimizers’ trajectory ( i.e. , the optimizers’ evolution in 

ime), up to some arbitrary but fixed accuracy. We notice here that 

roblems P (t) , P p (t) are not available a priori, but they are re-

ealed as time evolves: e.g. , problem P (t ′ ) will be revealed at t = t ′ 
nd known for all t ≥ t ′ . In this context, we are interested in mod-

ling how the problems P (t) , P p (t) evolve in time. 

We will look at primal and dual first-order methods. Prob- 

em (3) is the online version of a composite optimization prob- 

em ( i.e. , of the form f + g) and we will consider primal first-
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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rder methods. Note here that g could be the indicator function 

f a closed convex set, thereby enabling modeling constrained op- 

imization problems varying with time. Problem (1) is the online 

ersion of the alternating direction method of multipliers (ADMM) 

etting, and we will consider dual first-order methods. The idea is 

o present in a unified way a broad class of online optimization 

lgorithms that can tackle instances of problems (1) - (3) . Further 

ote that the two problems could be transformed into each other, 

f one so wishes, but we prefer to treat them separately to encom- 

ass both primal and dual methods. 

The focus is on discrete-time settings as in [15,41,47] . 

n this context, we will use sampling arguments to reinter- 

ret Sections 1 and (3) as a sequence of time-invariant problems. 

n particular, focusing here only on (3) for simplicity, upon sam- 

ling the objective function f ( x ; t) + g( x ) at time instants t k , k =
 , 1 , 2 , . . . , where the sampling period T s := t k − t k −1 can be cho-

en arbitrarily small, one can solve the sequence of time-invariant 

roblems 

 p (t k ) : x ∗(t k ) = arg min x ∈ R n f ( x ; t k ) + g( x ) , k ∈ N . (4)

y decreasing T s , an arbitrary accuracy may be achieved when ap- 

roximating problem (3) with (4) . In this context, we will hereafter 

ssume that T s is a small constant and T s < 1 . However, solving

4) for each sampling time t k may not be computationally afford- 

ble in many application domains, even for moderate-size prob- 

ems. We therefore consider here approximating the discretized 

ptimizers’ trajectory { x ∗(t k ) } k ∈ N by using first-order methods. 

n particular, we will focus on prediction-correction meth- 

ds [15,30,41,47] . This methodology arises from non-stationary 

ptimization [27,31] , parametric programming [15,19,22,24,35,47] , 

nd continuation methods in numerical mathematics [1] . 

This paper extends the current state-of-the-art methods, 

.g. , [40,41] , by offering the following contributions. 

1. We provide novel prediction-correction methods in both primal 

space and dual space for online optimization with constraints. 

In doing so, we show how existing prediction-correction online 

algorithms can be generalized with the help of operator the- 

oretical tools. In particular, the abstract methodology we dis- 

cuss includes special cases such as the ones based on (pro- 

jected) gradient method [41] , proximal point, forward-backward 

splitting, Peaceman-Rachford splitting [7] , as well as the ones 

based on dual ascent [40] . Moreover, the proposed algorithms 

includes new online algorithms based on the method of multi- 

pliers, dual forward-backward splitting, and ADMM. With our 

methodology, we obtain unified results, and a general error 

bound ( Proposition 1 ), which allows one to plug any prediction 

strategy they are working with and obtain the corresponding 

asymptotic error. 

2. By leveraging the structure of our signal processing problem, 

we propose and theoretically characterize a prediction strategy 

which applies extrapolation on a set of past cost functions col- 

lected by the online algorithm 

1 . The number of historical costs 

used can be tuned in order to increase accuracy. Differently 

from the Taylor expansion-based prediction strategy of e.g. [43] , 

the prediction can be computed without needing to compute 

derivatives of the cost. Under suitable assumptions, we analyze 

the convergence of the resulting online algorithm, in particular 

by deriving an upper bound to the asymptotic tracking error 

( i.e. the distance from the optimal trajectory { x ∗(t k ) } k ∈ N ). 
3. We further apply the proposed extrapolation prediction strat- 

egy to problems with linear constraints such as Problem (1) , 
1 While extrapolation is a known technique in numerical mathematics [33,34] , 

ere we fully characterize its theoretical asymptotic error, and we use it in a con- 

trained setting. 

o

i  

2 
for which we prove convergence within a bounded neighbor- 

hood of the optimal trajectories { x ∗(t k ) , y 
∗(t k ) } k ∈ N . 

.1. Related work 

Time-varying, streaming, and online problems have a long tra- 

ition in signal processing and machine learning. The recent sur- 

eys [13,42] cover some key references. From the signal process- 

ng literature, we can cite here early algorithms for recursive least- 

quares and compressive sensing [2,11,45,46] , as well as for dy- 

amic filtering [3,4,12] . These signal processing problems are spe- 

ial cases of problem (4) , and the algorithms proposed in this pa- 

er can then be applied to solve them. 

More recently, the works [23,26,41,43] are in line with what we 

resent here, in the sense that they depict time-varying optimiza- 

ion solutions where given a new problem at time t , one attempts 

t finding an approximate optimizer of it. In this sense, past data 

elp warm starting the algorithm at time t , but do not influence 

he new sampled problem. In this paper, we take the same ap- 

roach as these previous works, but propose a novel warm-starting 

trategy, and theoretically analyze its performance for the different 

lass of problems (1) . 

This line of research is also related to online convex optimiza- 

ion (OCO) [14,20,39] , which was formulated to analyze learning 

rom streaming data. However, differently from our approach, in 

CO the set-up is adversarial, in the sense that only information 

bserved up to time t k can be used to compute the decision to 

e applied at time t k +1 
2 . Once the decision is applied the learner 

ains access to the new cost function and incurs a regret; impor- 

antly, the cost function may be chosen adversarially to maximize 

his regret. 

Finally, we mention the related approach of streaming opti- 

ization discussed in [21] . Similarly to the approach in this pa- 

er, a new cost function is revealed at each time; with the differ- 

nce that also a new optimization variable is added, and the goal 

s to solve the overall problem being pieced together over time. 

n our approach, we focus on a time-varying cost function with a 

xed size unknown variable, and assume that the cost function ob- 

erved at time t k provides all the information required to compute 

in principle) the optimal solution. 

Organization. In Section 2 , we introduce the necessary back- 

round. In Sections 3 and 4 , we present the proposed prediction- 

orrection methodology and the novel extrapolation-based predic- 

ion approach, and analyze its performance. Section 5 describes the 

ual version of the proposed approach. Section 6 concludes with 

everal numerical examples. 

. Mathematical background 

.1. Notation 

Vectors are written as x ∈ R 

n and matrices as A ∈ R 

p×n . We de-

ote by λM 

( A ) and λm 

( A ) the largest and smallest eigenvalues of a 

quare matrix A ∈ R 

n ×n . We use ‖ · ‖ to denote the Euclidean norm 

n the vector space, as well as the respective induced norms for 

atrices. In particular, given a matrix A ∈ R 

p×n , we have ‖ A ‖ = 

M 

( A ) = 

√ 

λM 

( A 


 A ) , where σM 

denotes the largest singular value. 

he gradient of a differentiable function f ( x ; t) : R 

n × R + → R with

espect to x at the point ( x , t) is denoted as ∇ x f ( x ; t) ∈ R 

n , and

 x x f ( x ; t) ∈ R 

n ×n denotes the Hessian of f ( x ; t) w.r.t. x . The nota-

ions ∂ (I) 

∂t (I) ∇ x f ( x ; t) = ∇ t ···t x f ( x ; t) denote the I-th derivative w.r.t. t

f the gradient. We indicate the inner product of vectors belong- 

ng to R 

n as 〈 v , u 〉 := v 
 u , for all v ∈ R 

n , u ∈ R 

n , where (·) 
 means
2 Please refer to Remark 2 for further discussions. 
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ranspose. We denote by ◦ the composition operation. We use 

 x � } � ∈ N to indicate sequences of vectors indexed by non-negative 

ntegers, for which we define linear convergence as follows (see 

32] for details). 

efinition 1 (Linear convergence) . Let { x � } � ∈ N and { y � } � ∈ N be se- 

uences in R 

n , and consider the points x ∗, y ∗ ∈ R 

n . We say that

 x � } � ∈ N converges Q-linearly to x ∗ if there exists λ ∈ (0 , 1) such 

hat: 
∥∥x � +1 − x ∗

∥∥ ≤ λ
∥∥x � − x ∗

∥∥, ∀ � ∈ N . 

We say that { y � } � ∈ N converges R-linearly to y ∗ if there ex- 

sts a Q-linearly convergent sequence { x � } � ∈ N and C > 0 such that: 

y � − y ∗
∥∥ ≤ C 

∥∥x � − x ∗
∥∥, ∀ � ∈ N . 

.2. Convex analysis 

A function f : R 

n → R is μ-strongly convex , μ > 0 , iff f ( x ) −
μ
2 ‖ x ‖ 2 is convex. It is said to be L -smooth iff ∇ f ( x ) is L -Lipschitz

ontinuous or, equivalently, iff f ( x ) − L 
2 ‖ x ‖ 2 is concave. We de- 

ote by S μ,L (R 

n ) the class of twice differentiable, μ-strongly con- 

ex, and L -smooth functions, and κ := L/μ will denote the con- 

ition number of such functions. An extended real line func- 

ion f : R 

n → R ∪ { + ∞} is closed if its epigraph epi ( f ) = { ( x , a ) ∈
 

n +1 | x ∈ dom ( f ) , f ( x ) ≤ a } is closed. It is proper if it does

ot attain −∞ . We denote by �0 (R 

n ) the class of closed, convex

nd proper functions f : R 

n → R ∪ { + ∞} . Notice that functions in

0 (R 

n ) need not be smooth. Given a function f ∈ �0 (R 

n ) , we de-

ne its convex conjugate as the function f ∗ : R 

n → R ∪ {∞} such

hat f ∗( w ) = sup x ∈ R n { 〈 w , x 〉 − f ( x ) } . The convex conjugate of a 

unction f ∈ �0 (R 

n ) belongs to �0 (R 

n ) as well, and if f ∈ S μ,L (R 

n )

hen f ∗ ∈ S 1 /L, 1 /μ(R 

n ) , [37, Chapter 12.H] . 

The subdifferential of a convex function f ∈ �0 (R 

n ) is defined as 

he set-valued operator ∂ f : R 

n ⇒ R 

n such that: 

 �→ { z ∈ R 

n | ∀ y ∈ R 

n : 〈 y − x , z 〉 + f ( x ) ≤ f ( y ) } , 
nd we denote by ˜ ∇ f ( x ) ∈ ∂ f ( x ) the subgradients. The subdiffer- 

ntial of a convex function is monotone , that is, for any x , y ∈ R 

n :

 ≤ 〈 x − y , u − v 〉 where u ∈ ∂g( x ) , v ∈ ∂g( y ) . 

.3. Operator theory 

We briefly review some notions and results in operator theory, 

nd we refer to [9,38] for a thorough treatment. 

efinition 2. An operator T : R 

n → R 

n is: 

• λ-Lipschitz , with λ > 0 , iff ‖ T x − T y ‖ ≤ λ‖ x − y ‖ for any two 

x , y ∈ R 

n ; it is non-expansive iff λ ∈ (0 , 1] and λ-contractive iff

λ ∈ (0 , 1) ; 
• β-strongly monotone , with β > 0 , iff β‖ x − y ‖ 2 ≤ 〈 x − y , T x −

T y 〉 , for any two x , y ∈ R 

n . 

By using the Cauchy-Schwarz inequality, a β-strongly monotone 

perator can be shown to satisfy: 

‖ 

x − y ‖ 

≤ ‖ 

T x − T y ‖ 

, ∀ x , y ∈ R 

n . (5) 

efinition 3. Let T : R 

n → R 

n be an operator, a point x ∗ ∈ R 

n is a

xed point for T iff x ∗ = T x ∗. 

By the Banach-Picard theorem [9, Theorem 1.51] , contractive 

perators have a unique fixed point. 

.4. Operator theory for convex optimization 

Operator theory can be employed to solve convex optimization 

roblems; the main idea is to translate a minimization problem 

nto the problem of finding the fixed points of a suitable operator. 
3

Let f ∈ S μ,L (R 

n ) and g ∈ �0 (R 

n ) and consider the optimization

roblem 

 

∗ = arg min x ∈ R n { f ( x ) + g( x ) } . (6) 

Let T : R 

p → R 

p and X : R 

p → R 

n be two operators. Let T be

-contractive and such that its fixed point z ∗ yields the solution 

o (6) through the operator x ∗ = X z ∗. Let the operator X be χ- 

ipschitz. 

We employ then the Banach-Picard fixed point algorithm , defined 

s the update: 

 

� +1 = T z � , � ∈ N . (7) 

y the contractiveness of T , the Q-linear convergence to the fixed 

oint is guaranteed [9, Theorem 1.51] : 

z � +1 − z ∗
∥∥ ≤ λ

∥∥z � − z ∗
∥∥ ≤ λ� +1 

∥∥z 0 − z ∗
∥∥, (8) 

s well as R-linear convergence of { x � } � ∈ N obtained through x � = 

 z � as 

x � +1 − x ∗
∥∥ ≤ χλ� +1 

∥∥z 0 − z ∗
∥∥. (9) 

The following lemma further characterizes the convergence in 

erms of x . 

emma 1. Let X be β-strongly monotone. Then, convergence of the 

equence { x � } � ∈ N with x � = X z � is characterized by the following in- 

qualities: 

x � − x ∗
∥∥ ≤ ζ (� ) 

∥∥x 0 − x ∗
∥∥, 

∥∥x � − x 0 
∥∥ ≤ ξ (� ) 

∥∥x 0 − x ∗
∥∥ (10) 

here 

(� ) := 

{
1 , for � = 0 , 
χ
β
λ� , otherwise 

and ξ (� ) := 

{
0 , for � = 0 , 

1 + 

χ
β
λ� , otherwise 

. 

(11) 

roof. In the case in which � = 0 , then we have 
∥∥x � − x ∗

∥∥ =
x 0 − x ∗

∥∥ and 

∥∥x � − x 0 
∥∥ = 

∥∥x 0 − x 0 
∥∥ = 0 , which give the first cases 

n the definitions of ζ (� ) and ξ (� ) . If � > 0 , then by β-strong

onotonicity of X , Eq. (5) , we have 

z 0 − z ∗
∥∥ ≤ 1 

β

∥∥X z 0 − X z ∗
∥∥ = 

1 

β

∥∥x 0 − x ∗
∥∥. (12) 

ombining (9) with (12) then yields the second case in the def- 

nition of ζ (� ) . Moreover, using the triangle inequality we have: 

x � − x 0 
∥∥ ≤

∥∥x � − x ∗
∥∥ + 

∥∥x 0 − x ∗
∥∥, and the second case in the def- 

nition of ξ (� ) follows by (9) and (12) . �

Examples of T and X operators for primal problems are re- 

orted in Example 1 below, while Example 2 discusses the dual 

olver Alternating direction method of multipliers (ADMM). We 

ow give a formal definition of operator theoretical solver, which 

ill be needed for our developments. 

efinition 4 (Operator theoretical solver) . Let T : R 

p → R 

p and X :

 

p → R 

n be two operators, respectively, λ-contractive for T and 

-Lipschitz and β-strongly monotone for X , such that the solu- 

ion x ∗ of (6) can be computed as x ∗ = X z ∗ with z ∗ being the fixed 

oint of T . Suppose that a recursive method, e.g. the Banach-Picard 

n (7) , is available to compute the fixed point z ∗. Then we call 

his recursive method an operator theoretical solver for problem (6) , 

nd call each recursive update of the method a step of the solver. 

e also use the short-hand notation O (λ, χ, β) to indicate such a 

olver, for which the contraction rates in Lemma 1 are valid. 

xample 1 (Operator theoretical solvers) . Problem (6) can be 

olved by applying one of the following splitting algorithms : 
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Fig. 1. The prediction-correction scheme. 
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3 Also called proximal gradient method . 
• Forward-backward splitting (FBS) (or proximal gradient method ): 

we choose T = prox ρg ◦ (I − ρ∇ x f ) , which is contractive for 

ρ < 2 /L and has X = I; the algorithm is characterized by [44] :

y � = x � − ρ∇ x f ( x 
� ) , x � +1 = prox ρg ( y 

� ) , � ∈ N . (13)

• Peaceman-Rachford splitting (PRS) : we choose T = reflρg ◦ reflρ f , 

which is contractive for any ρ > 0 and has X = prox ρ f ; the al-

gorithm’s updates are [18] : 

x � = prox ρ f ( z 
� ) , y � = prox ρg (2 x � − z � ) , z � +1 = z � + ( y � − x � ) 

(14) 

and, from the fixed point z ∗ of T we compute the solution x ∗

through X = prox ρ f . 

If problem (6) does not have a non-smooth term ( g( x ) = 0 for

ll x ∈ R 

n ), then FBS and PRS reduce to the gradient descent method 

44] and proximal point algorithm (PPA) [36] , respectively. 

. Prediction-Correction algorithms 

We start by describing in this section the proposed prediction- 

orrection methodology, referring to problem (4) : 

 

∗
k = arg min x ∈ R n { f ( x ; t k ) + g( x ) } , k ∈ N (15) 

here hereafter x ∗
k 

:= x ∗(t k ) . Notice that the size n of the problem

oes not change over time, only the cost function f . As said, prob- 

em (15) can model a wide range of both constrained and uncon- 

trained optimization problems, in which a smooth term f is (pos- 

ibly) summed to a non-smooth term g. For example, we may have 

hat g is the indicator function of a constraint set, or a non-smooth 

unction promoting some structural properties (such as an � 1 norm 

nforcing sparsity). 

emark 1 (Explicit. v. implicit time-dependence) Notice that in 

any data-driven applications, the costs would not depend explic- 

tly on time; rather, they would depend on time-varying data, and 

ence only implicitly on time. Nonetheless, the model we employ 

s general enough to account also for implicit time-dependence. 

.1. Methodology 

Suppose that an operator theoretical solver for problem (15) is 

vailable. The prediction-correction scheme is characterized by the 

ollowing two steps: 

• Prediction : at time t k , we approximate the as yet unobserved 

cost f ( x ; t k +1 ) using the past observations; let ˆ f k +1 ( x ) be such 

approximation, then we solve the problem 

ˆ x 
∗
k +1 = arg min x ∈ R n 

{ 

ˆ f k +1 ( x ) + g( x ) 
} 

(16) 

with initial condition x k , which yields the prediction 

ˆ x 
∗
k +1 . In 

practice, it is possible to compute only an approximation of 

ˆ x 
∗
k +1 , denoted by ˆ x k +1 , by applying N P steps of the solver. 

• Correction : when, at time t k +1 , the cost f k +1 ( x ) := f ( x ; t k +1 ) is

made available, we can correct the prediction computed at the 

previous step by solving: 

x ∗k +1 = arg min x ∈ R n { f k +1 ( x ) + g( x ) } (17) 

with initial condition equal to ˆ x k +1 . We will denote by x k +1 

the (possibly approximate) correction computed by applying N C 

steps of the solver. 

Fig. 1 depicts the flow of the prediction-correction scheme, in 

hich information observed up to time t k is used to compute the 

rediction 

ˆ x k +1 . In turn, the prediction serves as a warm-starting 

ondition for the correction problem, characterized by the cost ob- 

erved at time t k +1 . 
4 
.1.1. Solvers 

As described above, the proposed methodology requires that 

n operator theoretical solver for the prediction and correction 

teps be available. In particular, there are λ-contractive operators 
ˆ 
 k +1 , T k +1 : R 

p → R 

p with fixed points ˆ z 
∗
k +1 , z 

∗
k +1 

, and χ-Lipschitz, 

-strongly monotone operators ˆ X k +1 , X k +1 : R 

p → R 

n , such that 

ˆ 
 

∗
k +1 = 

ˆ X k +1 ̂ z 
∗
k +1 and x ∗k +1 = X k +1 z 

∗
k +1 . 

or simplicity, we assume that the convergence rate of the pre- 

iction and correction solvers are the same, and we denote 

hem by O (λ, χ, β) . Therefore the contraction functions ζ and ξ
n Lemma 1 are the same in both cases. 

There is a broad range of solvers that can be used within 

he proposed methodology, depending on the structure of prob- 

em (15) . For example, if g ≡ 0 , then gradient method and proximal 

oint algorithms are suitable solvers, while if g �≡ 0 then forward- 

ackward 3 and Peaceman-Rachford splitting can be used. 

.2. Prediction methods 

The most straightforward prediction method is the choice 
ˆ f k +1 ( x ) = f k ( x ) which simply employs the last observed cost as a

rediction of the next. However, as we will discuss in the follow- 

ng, using a more sophisticated prediction strategy can lead to bet- 

er performance. 

In particular, we look at extrapolation-based prediction. First of 

ll we briefly review a numerical technique for polynomial inter- 

olation [34] , which we then leverage to design a novel prediction 

trategy. 

.2.1. Polynomial interpolation 

Let ϕ : R → R be a function that we want to interpolate from

he pairs { (t i , ϕ i ) } I i =1 
where ϕ i := ϕ(t i ) , and with t i � = t j for any i � =

j. The interpolated function is then defined as [34, Theorem 8.1] : 

ˆ  (t) = 

I ∑ 

i =1 

ϕ i � i (t) , with � i (t) = 

∏ 

1 ≤ j≤I 
j � = i 

t − t j 

t i − t j 
. (18) 

The interpolation error can be characterized by [34, Theo- 

em 8.2] : 

(t) − ˆ ϕ (t ) = 

ϕ 

(I) (v ) 
I! 

ω I (t ) with ω I (t ) = 

I ∏ 

i =1 

(t − t i ) (19)

nd where v is a scalar in the smallest interval that contains t and 

 t i } I i =1 
. 

Since in the following we are interested in evaluating the inter- 

olated function at a point t that lies outside the interval [ t 1 , t I ] ,

e will refer to the resulting function as extrapolation . 
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.2.2. Extrapolation-based prediction 

Let us now apply the polynomial interpolation technique (18) to 

he function f ( x ; t) : R 

n × R + → R 

n w.r.t. the scalar variable t ∈ R + .
n particular, we compute the predicted function 

ˆ f k +1 from the set 

f past functions { f i ( x ) } k i = k −I+1 
. Since the sampling times are mul-

iples of T s , it is easy to see that the coefficients in (18) become:

 i (t k +1 ) = 

∏ 

k −I+1 ≤ j≤k 
j � = i 

t k +1 −t j 

t i −t j 
= 

∏ 

1 ≤h ≤I 
h � = i −(k +1) 

h 

i −(k + 1) −h 
= (−1) i −(k +1) 

(
I 

i − (k + 1) 

)

and letting � i := � i (t k +1 ) the prediction is thus given by 

ˆ f k +1 ( x ) = 

k ∑ 

i = k −I+1 

� i f i ( x ) , ∀ x ∈ R 

n . (20) 

n general, however, the predicted cost ˆ f k +1 may not be strongly 

onvex – as a matter of fact, it can even fail to be convex. 

However, and crucially, since for our f ( x ; t) the Hessian is time- 

ndependent, then ∇ x x f ( x ; t) = ∇ x x f ( x ) for any ( x ; t) ∈ R 

n × R + ,
hich implies that 

 x x ̂
 f k +1 ( x ) = ( 

k ∑ 

i = k −I+1 

� i ) ∇ x x f ( x ) = ∇ x x f ( x ) , (21)

aving used the fact that 
∑ k 

i = k −I+1 � i = 1 . Therefore ˆ f k +1 inherits 

he same strong convexity and smoothness properties of the origi- 

al cost. 

This property is inherent to our regularized least-squares struc- 

ure and typical in signal processing, and very useful for good pre- 

iction. 

emark 2 (Alternative prediction strategies) . We mention here 

wo alternative prediction strategies that have been proposed in 

he literature. The simpler one, widely used in the context of on- 

ine learning [39] , is the choice of ˆ f k +1 = f k . This strategy, hereafter

alled “one-step-back” prediction, is particularly suited to adver- 

arial environments, where the future cost f k +1 is chosen by the 

dversary and the best decision we can make is based on f k . Alter-

atively, under the assumption that the gradient of f k is differen- 

iable in time we can choose the Taylor expansion -based prediction 

 x ̂
 f k +1 ( x ) = ∇ x f k ( x k ) + T s ∇ t x f k ( x k ) + ∇ x x f k ( x k )( x − x k ) [43] . 

emark 3 (Computational comparison) . From Remark 2 , the 

aylor-based prediction is ∇ x ̂
 f k +1 ( x ) = ∇ x f k ( x k ) + T s ∇ t x f k ( x k ) +

 x x f k ( x k )( x − x k ) . This means that to compute it, we need to eval-

ate the gradient, the Hessian, and the time-derivative of the gra- 

ient. On the other hand, the extrapolation-based prediction only 

equires the computation of gradients from the I past costs that are 

tored – this means that we only need access to an oracle of the 

radients, and building a prediction has a much lower cost. Finally, 

e remark that the computationally cheaper approach is the one- 

tep-back prediction 

ˆ f k +1 = f k , which requires accessing the oracle 

f only one past cost. Nonetheless, as the theoretical and numer- 

cal results will show, the more refined extrapolation-based pre- 

iction achieves much smaller tracking error than using ˆ f k +1 = f k , 

hus justifying its higher computational burden. 

. Primal online algorithms 

We are now ready to present our main convergence results. 

e start by formally stating the required assumptions, and then 

e provide bounds to the tracking error achieved by the proposed 

rediction-correction method. 

.1. Assumptions 

ssumption 1. (i) The cost function f : R 

n × R + → R belongs to

 μ,L (R 

n ) uniformly in t . (ii) The function g : R 

n → R ∪ { + ∞} either
5 
elongs to �0 (R 

n ) , or g(·) ≡ 0 . (iii) The solution to (15) is finite for

ny k ∈ N . 

Assumption 1 (i) guarantees that problem (15) is strongly convex 

nd has a unique solution for each time instance. Uniqueness of 

he solution implies that the solution trajectory is also unique. 

ssumption 2. The gradient of function f has bounded time 

erivative, that is, there exists C 0 > 0 such that ‖ ∇ t x f ( x ; t) ‖ ≤ C 0 
or any x ∈ R 

n , t ∈ R + . 

By imposing Assumption 2 we ensure that the solution trajec- 

ory is Lipschitz in time, as we will see, and therefore prediction- 

ype methods would work well. 

ssumption 3. The function f has a static Hessian, that is, 

 x x f ( x ; t) = ∇ x x f ( x ) for any ( x ; t) ∈ R 

n × R + . For the chosen ex-

rapolation order I ∈ N , I ≥ 2 , there exists C(I) > 0 such that: 

∂ (I) 

∂t (I) 
∇ x f ( x 

∗
k +1 ; τ ) 

∥∥∥∥ ≤ C(I) , τ ∈ [ t k +1 −I , t k +1 ] . (22) 

As mentioned in Section 3.2.2 a static Hessian guarantees that 

he extrapolation-based prediction is strongly convex. The bound 

n the I-th time-derivative of the gradient will instead serve to 

uantify the quality of the prediction, by comparing ˆ x 
∗
k +1 and the 

rue optimum x ∗
k +1 

. 

.2. Convergence 

We start by presenting a general bound (meta)-proposition, 

hich can be used to derive the asymptotic error for a large va- 

iety of prediction strategies, and it is of independent interest. 

roposition 1 (General error bound) . Let Assumption 1 hold and 

onsider any prediction strategy that uses the same functional class 

s the original problem (15) . Let σk , τk ∈ [0 , + ∞ ) be such that for any

 ∈ N : 

x ∗k +1 − x ∗k 
∥∥ ≤ σk and 

∥∥ˆ x 
∗
k +1 − x ∗k +1 

∥∥ ≤ τk . (23) 

hen the error incurred by a prediction-correction method that uses 

he solver O (λ, χ, β) is upper bounded by: 

x k +1 − x ∗k +1 

∥∥ ≤ ζ (N C ) 
(
ζ (N P ) 

∥∥x k − x ∗k 
∥∥ + ζ (N P ) σk + ξ (N P ) τk 

)
, 

(24) 

ith functions ζ and ξ defined in Lemma 1 . 

roof. See Appendix A.1 . �

We are now ready to bound σk and τk for our prediction strat- 

gy. First, we present a useful lemma that, employing the as- 

umptions in Section 4.1 , bounds the distance between consecutive 

oints in the optimal trajectory { x ∗
k 
} k ∈ N . 

emma 2. Let Assumptions 1 and 2 hold, then the distance between 

he optimizers of problems (15) at t k and t k +1 is bounded by: 

x ∗k +1 − x ∗k 
∥∥ ≤ C 0 T s /μ. (25) 

roof. See Appendix A.3 . �

The second step is to provide a bound on the distance between 

he optimizer of the prediction problem and the actual optimizer 

 

∗
k +1 

, i.e., a τk for our prediction strategy. 

emma 3. Let Assumptions 1 and 3 hold. Using the extrapolation- 

ased prediction (20) of order I for f yields the following prediction 

rror: 

ˆ x 
∗
k +1 − x ∗k +1 

∥∥ ≤ C(I) T I s /μ. (26) 
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With these lemmas in place we can now characterize the con- 

ergence when the extrapolation-based prediction (20) is em- 

loyed. 

heorem 1. Consider Problem (15) . Consider the prediction- 

orrection algorithm with the extrapolation-based prediction strat- 

gy (20) of order I ∈ N , I ≥ 2 , for f . Let Assumptions 1 to 3 hold.

onsider the operator theoretic solver O (λ, β, χ) to solve both the 

rediction and correction problems with contraction rates ζ and ξ
iven in Lemma 1 . Choose the prediction and correction horizons N P 

nd N C such that 

(N C ) ζ (N P ) < 1 . 

hen the trajectory { x k } k ∈ N generated by the prediction-correction al- 

orithm converges Q-linearly with rate ζ (N C ) ζ (N P ) to a neighbor- 

ood of the optimal trajectory { x ∗
k 
} k ∈ N , whose radius is upper bounded 

s 

im sup 

k →∞ 

∥∥x k − x ∗k 
∥∥ = 

ζ (N C ) 

μ

[ ζ (N P ) C 0 T s + C(I) ξ (N P ) T 
I 

s ] 

1 − ζ (N C ) ζ (N P ) 
. (27) 

roof. See Appendix A.5 . �

emark 4 (. N C and N P choice) Notice that if the operator X con-

erting between z and the primal variable x is the identity (which 

s the case e.g. for gradient and proximal gradient methods), then 

(N C ) ζ (N P ) < 1 is automatically satisfied whenever at least one of

 C or N P is non-zero. 

. Dual online algorithms 

We now propose a dual version to the prediction-correction 

ethodology, that allows us to solve linearly constrained online 

roblems. We apply the extrapolation-based prediction to this 

lass of problems and study the convergence of the resulting 

ethod. 

.1. Problem formulation 

We are interested in solving the following online convex opti- 

ization problem with linear constraints, cf. (1) : 

 

∗(t) , y ∗(t) = arg min x ∈ R n , y ∈ R m f ( x ; t) + h ( y ) , s.t. A x + B y = c , 

(28) 

here A ∈ R 

p×n , B ∈ R 

p×m and c ∈ R 

p . The following assumption 

ill hold throughout this section, and we will further use Assump- 

ions 2 and 3 for f . 

ssumption 4. (i) The cost function f belongs to S μ,L (R 

n ) uni- 

ormly in time and satisfies Assumption 2 . (ii) The cost h either 

elongs to �0 (R 

m ) or h (·) ≡ 0 with B = 0 . (iii) The matrix A ∈ R 

p×n 

s full row rank and the vector c can be written as the sum of two 

ectors c ′ ∈ im ( A ) and c ′′ ∈ im ( B ) 4 

The Fenchel dual of (28) is 

 

∗(t) = arg min w ∈ R p 
{

d f ( w ; t) + d h ( w ) 
}

(29) 

here d f ( w ; t) = f ∗( A 


 w ; t) − 〈 w , c 〉 and d h ( w ) = h ∗( B 


 w ) . Prob-

em (29) conforms to the class of problems that can be solved with 

he prediction-correction splitting methods of Section 3 . Indeed, by 

ssumption 4 we can see that d f ∈ S μ̄, ̄L (R 

p ) , with μ̄ := λm 

( A A 


 ) /L
4 This assumption ensures that the problem does indeed have a solution; other- 

ise, it would not be possible to satisfy the linear constraints. 

t

l

6

nd L̄ := λM 

( A A 


 ) /μ [18, Prop. 4] ; and d h ∈ �0 (R 

p ) [9, Cor. 13.38] .

e further know that the gradient of d f is characterized by [17] : 

 w 

d f ( w ; t) = A ̄x ( w , t) −c , x̄ ( w , t) : = arg min x 

{
f ( x ; t) −〈 A 


 w , x 〉 }. 

(30) 

Finally, assuming that there exists C 0 ≥ 0 such that 

 

∇ t x f ( x ; t) ‖ ≤ C 0 , then we can prove that also the gradient of 

he dual cost d f has bounded rate of change. 

emma 4. Let Assumption 4 hold for the primal problem (28) . Then 

 

f is such that, for any x ∈ R 

n and t ∈ R + : 

∇ t w 

d f ( w ; t) 
∥∥ ≤ ‖ 

A ‖ 

C 0 /μ =: C̄ 0 . 

roof. See Appendix B.1 . �

emark 5 (Full rank. A ) The assumption that A be full row rank 

s necessary to guarantee that d f ∈ S μ̄, ̄L (R 

p ) . However, when prob-

em (31) reduces to min x f ( x ) s.t. A x = c , this assumption can be 

elaxed . In this case we are able to prove that the dual function 

 

f is strongly convex in the subspace of the image of A , i.e., im ( A ) .

herefore, if im ( A ) is an invariant set for the trajectory generated 

y the solver, the solver is contractive and the convergence analysis 

f this paper applies to show linear convergence. The solvers dual 

scent and method of multipliers indeed satisfy these conditions, 

ee [40] for more details. 

.2. Dual prediction-correction methodology 

Applying the same approach of Section 3 , we are interested in 

olving (28) sampled at times t k , k ∈ N : 

 

∗
k , y 

∗
k = arg min x ∈ R n , y ∈ R m { f ( x ; t k ) + h ( y ) } s.t. A x + B y = c (31) 

here x ∗
k 

= x ∗(t k ) , y ∗
k 

= y ∗(t k ) . The sequence of dual problems is

hen 

 

∗
k = arg min w ∈ R p 

{
d f ( w ; t k ) + d h ( w ) 

}
(32) 

ith k ∈ N , w 

∗
k 

:= w 

∗(t k ) . As mentioned above, (32) can be solved

y the prediction-correction methods described in Section 3 . The 

oal then is to design a suitable prediction strategy. 

The idea is to apply the extrapolation-based prediction of 

ection 3 to the primal cost function f k , hence choosing ˆ f k +1 ( x ) =
 I 
i =1 � i f k +1 −i ( x ) . The corresponding dual prediction problem then 

s 

ˆ 
 

∗
k +1 = arg min w ∈ R p 

{ 

ˆ d f 
k +1 

( w ) + 

ˆ d h ( w ) 
} 

(33) 

ith 

ˆ d 
f 

k +1 
( w ) = 

ˆ f ∗
k +1 

( A 


 w ) − 〈 w , c 〉 . 
.3. Convergence analysis 

The following result characterizes the convergence in terms of 

he primal and dual variables. 

heorem 2. Consider the problem (31) . Apply the prediction- 

orrection method defined in Section 3 to the dual problem (32) , with 

xtrapolation-based prediction applied to f . Let O (λ, β, χ) be a suit- 

ble dual solver with contraction rates ζ̄ and ξ̄ given in Lemma 1 for 

 

f ∈ S μ̄, ̄L (R 

p ) . Let Assumption 4 hold. 

Choose the prediction and correction horizons such that 

¯(N C ) ̄ζ (N P ) < 1 . 

hen the dual trajectory { w k } k ∈ N generated by the dual prediction- 

orrection method converges to a neighborhood of the optimal trajec- 

ory { w 

∗
k 
} k ∈ N , whose radius is upper bounded as 

im sup 

k →∞ 

∥∥w k − w 

∗
k 

∥∥ = 

ζ̄ (N C ) 

μ̄

[ ̄ζ (N P ) ̄C 0 T s + ξ̄ (N P )( ‖ 

A ‖ 

/μ) C(I) T I s ] 

1 − ζ̄ (N C ) ̄ζ (N P ) 
. 
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Fig. 2. Tracking error comparison with T s = 0 . 2 and N P = 20 . 

Table 1 

Comparison of asymptotic errors observed in the numerical simula- 

tions for (35) . 

Method T s = 0 . 2 

N P = 5 N P = 20 N P = 40 

One-step-back 3 . 39 × 10 −2 3 . 02 × 10 −2 3 . 02 × 10 −2 

Correction-only 3 . 96 × 10 −3 3 . 96 × 10 −3 3 . 96 × 10 −3 

Taylor 4 . 21 × 10 −4 5 . 45 × 10 −5 5 . 45 × 10 −5 

Extrapolation I=2 4 . 19 × 10 −4 2 . 72 × 10 −5 2 . 72 × 10 −5 

Extrapolation I=3 4 . 18 × 10 −4 2 . 35 × 10 −7 5 . 25 × 10 −7 

T s = 0 . 02 

N P = 5 N P = 20 N P = 40 

One-step-back 3 . 42 × 10 −3 3 . 02 × 10 −3 3 . 02 × 10 −3 

Correction-only 4 . 02 × 10 −4 4 . 02 × 10 −4 4 . 02 × 10 −4 

Taylor 4 . 28 × 10 −5 6 . 67 × 10 −7 6 . 63 × 10 −7 

Extrapolation I=2 4 . 26 × 10 −5 3 . 39 × 10 −7 3 . 31 × 10 −7 

Extrapolation I=3 4 . 24 × 10 −5 6 . 82 × 10 −8 5 . 48 × 10 −10 

T s = 0 . 002 

N P = 5 N P = 20 N P = 40 

One-step-back 3 . 15 × 10 −4 2 . 78 × 10 −4 2 . 78 × 10 −4 

Correction-only 3 . 71 × 10 −5 3 . 71 × 10 −5 3 . 71 × 10 −5 

Taylor 3 . 91 × 10 −6 9 . 46 × 10 −9 5 . 62 × 10 −9 

Extrapolation I=2 3 . 91 × 10 −6 7 . 55 × 10 −9 2 . 81 × 10 −9 

Extrapolation I=3 3 . 91 × 10 −6 6 . 33 × 10 −9 1 . 67 × 10 −12 

[  

r

[

o

3

i  

N

t

i

s

a

oreover, the primal trajectories { x k } k ∈ N , { B y k } k ∈ N converge to a 

eighborhood of the optimal trajectories { x ∗
k 
} k ∈ N { B y ∗

k 
} k ∈ N , whose 

adii are upper bounded as 

lim sup 

k →∞ 

∥∥x k − x ∗k 
∥∥ = ( ‖ 

A ‖ 

/μ) lim sup 

k →∞ 

∥∥w k − w 

∗
k 

∥∥, 

lim sup 

k →∞ 

∥∥B ( y k − y ∗k ) 
∥∥ = ‖ 

B ‖ 

( ‖ 

A ‖ 

2 
/μ + 1 /ρ) lim sup 

k →∞ 

∥∥w k − w 

∗
k 

∥∥. 

roof. See Appendix B.2 . �

We conclude this section showing an example of online al- 

orithm that results when applying the prediction-correction ap- 

roach in the dual space. 

xample 2 (Prediction-correction ADMM) . The well known al- 

ernating direction method of multipliers (ADMM) applied to 

in x , y f ( x ) + h ( y ) , s.t. A x + B y = c is characterized by the updates

6, eq. (8)] 5 

 

� = arg min x ∈ R n 
{ 

f ( x ) + 

ρ

2 

∥∥A x − z � /ρ − c 
∥∥2 

} 

, w 

� = z � − ρ( A x � − c ) 

 

� = arg min y ∈ R m 
{ 

h ( y ) + 

ρ

2 

∥∥B y −(2 w 

� −z � ) /ρ
∥∥2 

} 

, u 

� =2 w 

� −z � −ρB y � ,

 

� +1 = z � + 2( u 

� − w 

� ) , � ∈ N , (34) 

here only the primal costs f and h play an explicit role, and 

here w 

� is the vector of dual variables of the problem. There- 

ore, when applying ADMM as a solver for both the prediction 

nd correction problems, we apply (34) replacing f with 

ˆ f k +1 ( x ) = 

 I 
i =1 � i f k +1 −i ( x ) and f k +1 ( x ) , respectively. 

. Numerical results 

In this section, we present extensive numerical results to 

howcase the performance of the proposed prediction strategy. 

n particular, We apply our algorithm to three synthetic bench- 

arks, stemming from time-varying regularized least-squares, 

ime-varying online learning with ADMM, and online robotic track- 

ng, as well as one real-data benchmark stemming from online 

raph signal processing. 

We compare our prediction strategy to other available ones, 

amely one-step-back prediction [39] , Taylor-based prediction us- 

ng either the exact computations for the time-derivatives and 

ackward finite difference [41,43] , the simplified prediction strat- 

gy of [25] , and two ZeaD prediction formulas [33] . Other pre- 

iction strategies do exist, but they would typically involve more 

omplex computations or more memory (i.e., longer time hori- 

ons). While we do not compare all the methods in all the exam- 

les, the interested reader is referred to the tvopt Python pack- 

ge 6 [5] which provides all the tools for more extensive compar- 

sons. 

.1. Time-varying regularized least-squares 

We consider the composite problem (cf [43] .): 

f ( x ; t ) = ‖ 

x −b (t ) ‖ 

2 
/ 2 + ε log (1 + exp (〈 1 

1 1 n , x 〉 )) and g( x ) = ν‖ 

x ‖ 1 

(35) 

ith n = 20 , and where b (t) ∈ R 

n is a signal with sinusoidal com-

onents (with angular velocity ω = 0 . 02 π and randomly generated 

hases), ε = 0 . 75 , ν = 0 . 5 . The function f has μ = 1 , L = 1 + εN/ 4 ,

 0 = ω. The prediction and correction problems are solved using 

he proximal gradient method (a.k.a. forward-backward splitting) 
5 See also the arXiv version of [6] which reports the derivation of eq. (8) in Ap- 

endix A https://arxiv.org/abs/1901.09252 . 
6 Code available here https://github.com/nicola-bastianello/tvopt . 

p
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7 
9] with step-size α = 2 / (L + μ) , and N P = [5 , 20 , 40] , N C = 5 . We

un the simulations for three values of the sampling time T s = 

0 . 002 , 0 . 02 , 0 . 2] . 

We compare the proposed extrapolation-based prediction with 

rder I = 2 ( i.e. ˆ f k +1 = 2 f k − f k −1 ) and order I = 3 ( i.e. ˆ f k +1 = 3 f k −
 f k −1 + f k −2 ) against the following methods: 

• “One-step-back”: the predictive online gradient characterized 

by x k +1 = x k − α∇ f k ( x k ) [39, p. 132] ; 
• “Correction-only”: the online gradient characterized by 7 x k +1 = 

x k − α∇ f k +1 ( x k ) [13, eq. (2)] ; 
• “Taylor” (of order 2): the prediction-correction method using 

the Taylor expansion-based prediction (see Remark 2 ) [43] . 

In Fig. 2 we report a first comparison in terms of the track- 

ng error evolution for the different methods, with T s = 0 . 2 and

 P = 20 (for the methods using prediction). As we can see, an ex- 

rapolation of the third order outperforms all other methods, while 

n general the prediction-correction methods outperform the one- 

tep-back and correction-only approaches. 

These observations hold up in Table 1 , which reports the 

symptotic tracking error for the different strategies. Combining 

rediction and correction achieves better results; moreover, the 
7 Note how it differs from the “one-step-back” since the gradient of f k +1 is used 

nstead of the gradient of f k . 

https://arxiv.org/abs/1901.09252
https://github.com/nicola-bastianello/tvopt
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Fig. 3. Normalized temperatures over the range Sep. 2017 to Sep. 2022. 
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arger the sampling time is, the larger the asymptotic error, which 

s in accordance with the theory. Also we observe how extrap- 

lation with I = 3 can boost performance, especially when N P is 

arge, with respect to Taylor – this is due to the fact that in 

heorem 1 the asymptotic error depends on T I s . We also recall, by 

emark 3 , that the computational complexity of building a Taylor- 

ased prediction exceeds that of the extrapolation-based predic- 

ion, since the former needs access to second order derivatives 

hile the latter only to the gradient, so in practice it may not be

easonable to go beyond a Taylor prediction of order 2. 

.2. Online graph signal processing 

As a second example, we consider an online graph signal pro- 

essing problem, in which the goal is to learn the time-varying 

opology of a graph from signals observed at the nodes [28] . For- 

ally, we want to reconstruct the topologies of the graphs in 

he sequence {G k = (V, E k , S k ) } k ∈ N , where V = 1 , . . . , N is the set

f nodes, E k are the edges at time k , and S k ∈ R 

N×N is the graph

hift operator that represents the topology, which we need to 

econstruct. By employing the smoothness-based model of [28, 

ec. IV.C] , learning the time-varying topology requires that we 

olve the online problem min S ∈ R N×N f k ( S ) + g( S ) , where 

f k ( S ) = tr 
(
diag ( S 1 ) ̂  �k 

)
− tr 

(
S ̂  �k 

)
+ 

λ1 

4 

‖ 

S ‖ 

2 
F − λ2 1 


 log ( S 1 ) 

ith 

ˆ � = 

1 
K X k X 


 
k and X k ∈ R 

N×K stacks K samples from the nodes’ 

ignals at time k . Moreover, g( S ) = ιS ( S ) is the indicator function

f the set S of non-negative symmetric matrices with zero diago- 

al 8 

We use the dataset of hourly temperature measurements at 

5 weather stations across Ireland 

9 , collected from Sep. 2017 to 

ep. 2022. Fig. 3 depicts the normalized temperatures observed 

t the different stations over this range. We follow the set-up 

f [28, sec. VI.B] , using the proximal gradient method as solver, 

ith N P = N C = 1 . In Table 1 we compare the proposed prediction-

orrection method using an extrapolation-based strategy (with I = 

 and I = 3 ) with a correction-only approach and with [28] , which

mploys a Taylor expansion-based prediction. 

As we can see in Table 2 , introducing a prediction improves the 

erformance over a correction-only approach. And, while the Tay- 
8 In practice, we solve a vectorized version of this problem, which corresponds to 

 composite problem of the form (3) , see [28, eq. (32)] for the details. 
9 https://www.met.ie/climate/available-data/historical-data 

e

s

t
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8

or expansion-based method has very similar performance to the 

xtrapolation with I = 2 , the use of an additional past cost, with

 = 3 , in turn improves performance. Notice that the use of higher 

rder extrapolation does not yield the same drastic improvement 

s in the synthetic problem of the previous section, since it is af- 

ected by the noise in the real data and the C(I) ’s can be rather

arge for I greater than 2 or 3. 

.3. Online learning with ADMM 

Consider now the online linear regression problem 

in x 
1 
2 

∑ N 
i =1 

∥∥∥A 

i x − b i k 

∥∥∥2 

+ ν‖ x ‖ 1 , where each agent i ∈ { 1 , . . . , N} 
tores the time-varying data set ( A 

i 
, b i k ) , A 

i ∈ R 

m i ×n , b i k ∈ R 

m i .

ollowing a cloud-based learning approach, the goal is to solve 

his problem by relying on a central coordinator that receives and 

ggregates the results of local computations, without accessing 

he local data. Specifically, we reformulate the problem as (cf. [10, 

ection 8.2] ) 

min 

{ x i } N 
i =1 

, y 

1 

2 

N ∑ 

i =1 

∥∥∥A 

i x i − b 

i 
k 

∥∥∥2 

+ ν‖ 

y ‖ 1 

.t. x i = y , i = 1 , . . . , N 

here the N agents are tasked with processing the local data 

 A 

i 
, b i k ) in order to update x i , and the central coordinator has the 

ole of averaging x i and enforcing sparsity with the � 1 -norm. This 

eformulation of the problem conforms to (31) and hence we can 

pply the prediction-correction ADMM discussed in Example 2 . 

The numerical results described below were derived as follows. 

he local matrices A 

i were randomly generated so that f i 
k 
( x i ) := 

1 / 2) 

∥∥∥A 

i x i − b i k 

∥∥∥2 

∈ S μ,L (R 

n ) , and b i k = A 

i x̄ k + e i 
k 

where one third 

f x̄ k ’s components are zero and the remaining change in a sinu- 

oidal way, e i 
k 

is random normal noise with either medium vari- 

nce 0.2, or low variance 0.002. We compared the performance 

f the one-step-back ADMM, the correction-only ADMM, and the 

rediction-correction ADMM. For the latter we use extrapolation 

f order I = 2 , 3 , as well as Taylor predictions based on backward

nite-difference [43] . In particular, in this problem setting, extrap- 

lation reads: 

 = 2 : ∇ ̂

 f i k +1 ( x ) = A 

i x i + 2 b 

i 
k − b 

i 
k −1 , (36) 

 = 3 : ∇ ̂

 f i k +1 ( x ) = A 

i x i + 3 b 

i 
k − 3 b 

i 
k −1 + b 

i 
k −2 . (37)

or Taylor with O (T 2 s ) and O (T 3 s ) backward finite-difference, 

 = 2 : ∇ ̂

 f i k +1 ( x ) = A 

i x i + 2 b 

i 
k − b 

i 
k −1 , (38) 

 = 3 : ∇ ̂

 f i k +1 ( x ) = A 

i x i + 3 b 

i 
k − 3 b 

i 
k −1 + b 

i 
k −2 . (39)

ote that Taylor with backward finite-difference is the same here 

s extrapolation, but this is not true in general. Finally, we report 

eaD [33] prediction results with ζ = 1 and ζ = 2 : 

eaD , I = 3 : ∇ ̂

 f k +1 ( x ) = A 

i x i + 

2 ζ + 3 

2 
b i k −2 ζ b i k −1 + 

2 ζ−1 

2 
b i k −2 . (40) 

Table 3 reports the asymptotic error of the compared ap- 

roaches for different numbers of agents, each endowed with an 

qual number of data points from a total of m = 250 ( m i = m/N),

ith the setting P = 10 , C = 2 . Similarly to the results of the pre-

ious sections, we observe that prediction-correction is in gen- 

ral better than prediction or correction alone. Different prediction 

trategies work better in different noise and number of agent set- 

ings. In this example, extrapolations of order 2 and 3 behave in 

ar with the others, and sometimes marginally better. Additionally, 
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Table 2 

Comparison of asymptotic errors observed in the numerical simulations for real weather data. 

Method Min Mean ± Std Max 

Correction-only 5 . 293 × 10 −3 7 . 393 × 10 −2 ± 4 . 811 × 10 −3 3 . 616 × 10 −1 

Taylor [28] 3 . 264 × 10 −3 4 . 478 × 10 −2 ± 2 . 945 × 10 −2 2 . 490 × 10 −

Extrapolation ( I = 2 ) 3 . 263 × 10 −3 4 . 478 × 10 −2 ± 2 . 945 × 10 −2 2 . 490 × 10 −1 

Extrapolation ( I = 3 ) 2 . 812 × 10 −3 4 . 161 × 10 −2 ± 2 . 691 × 10 −2 2 . 156 × 10 −1 

Table 3 

Comparison of asymptotic errors with respect to the true signal, for the online 

linear regression problem solved using ADMM, for different numbers of agents N. 
∗ this is equivalent to Taylor of the same order with backward finite-difference. 

σ = 0 . 2 σ = 0 . 002 

Method N = 1 5 10 N = 1 5 10 

One-step-back 1.37 0.50 0.28 1.06 0.38 0.36 

Correction-only 1 . 29 0.63 0.20 1.07 0.50 0.45 

Extrapolation ∗ ( I = 2 ) 1.37 0 . 34 0 . 12 0 . 93 0.16 0.13 

Extrapolation ∗ ( I = 3 ) 1.37 0.42 0.15 0 . 93 0 . 15 0 . 12 

ZeaD ( ζ = 1 , I = 3 ) 1.37 0.38 0.15 0 . 93 0.16 0.13 

ZeaD ( ζ = 2 , I = 3 ) 1.35 0.48 0.18 0 . 93 0 . 15 0 . 12 
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Fig. 4. Comparison of several methods to solve an online robotics problem in terms 

of the asymptotical tracking error vs . the sampling time. 
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e notice that a larger number of agents taking part in the solu- 

ion of the problem can lead to small improvements in the asymp- 

otic error. This is partly explained by observing that the costs f i 
k 

ave a lower value of C 0 (the bound on the gradient’s variation 

ver time) than the cost defined on the whole data set, which 

eads to a lower asymptotic bound according to Theorem 2 . 

.4. Online robotics 

As a fourth example, we rework here the robotic setting consid- 

red in [7,14] In particular, we consider a number N = 10 of mobile

obots that follow a leader robot while it moves in a 2 D space. The

roblem can be formulated as, 

min 

 ∈ R 2(N+1) 
f ( x ; t k ) := 

N ∑ 

i =1 

1 

2 

(
z i k − v 
 i x 

0 
)2 + 

λ

2 

‖ x − x k ‖ 

2 , (41) 

ubject to A x = b (42) 

here x i ∈ R 

2 is the position of robot i = 0 , . . . , N, where 0 repre-

ents the leader. The above problem amounts at estimating the po- 

ition of the leader robot x 0 based on local measurements z i 
k 

and a 

inear model v 
 
i 

, with a suitable � 2 regularization. In addition, the 

ollowers move as to maintain a rigid formation as imposed by the 

onstraint A x = b . All the details are given in [7] . 

We solve the above problem with a proximal gradient, by pro- 

ecting over the constraint, employing several prediction and cor- 

ection methods. In Fig. 4 , we report the asymptotical tracking er- 

or varying the sampling time for a correction-only method, a sim- 

lified prediction [25] , two extrapolation-based predictions of 2nd 

nd 3rd order, respectively, as well as a ZeaD prediction of third 

rder with ( ζ = 1 ). In all cases, the number of proximal gradients

re P = 20 for prediction and C = 5 for correction. 

As one can appreciate, the extrapolation methods achieve the 

heoretical order of O (T 2 s ) and O (T 3 s ) and do very well with respect

o other prediction methods (simplified of second order, and ZeaD 

f third order), further advocating for this prediction modality. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 
9 
RediT authorship contribution statement 

Nicola Bastianello: Conceptualization, Methodology, Software, 

riting – original draft, Writing – review & editing. Ruggero Carli: 

upervision. Andrea Simonetto: Conceptualization, Methodology, 

oftware, Writing – original draft, Writing – review & editing, Su- 

ervision. 

ata availability 

The data used is from a database available online 

ppendix A. Proofs of Section 4 

1. Proof of Proposition 1 

Consider a prediction-correction strategy where we apply N P 

nd N C steps during prediction and correction, respectively. By 

emma 1 , the following holds: 

ˆ x k +1 − ˆ x 
∗
k +1 

∥∥ ≤ ζ (N P ) 
∥∥x k − ˆ x 

∗
k +1 

∥∥ (A.1a) 

x k +1 − x ∗k +1 

∥∥ ≤ ζ (N C ) 
∥∥ˆ x k +1 − x ∗k +1 

∥∥. (A.1b) 

The goal now is to bound the prediction error 
∥∥ˆ x k +1 − x ∗

k +1 

∥∥. If 

 P = 0 then no prediction steps are applied, and thus, using the 

riangle inequality, we can write: 

ˆ x k +1 − x ∗k +1 

∥∥ = 

∥∥x k − x ∗k +1 

∥∥ ≤
∥∥x k − x ∗k 

∥∥ + 

∥∥x ∗k +1 − x ∗k 
∥∥ ≤

∥∥x k − x ∗k 
∥∥ + σk 

= ζ (N P ) 
∥∥x k − x ∗k 

∥∥ + ζ (N P ) σk + ξ (N P ) τk 

here we used the facts that ζ (N P ) = 1 and ξ (N P ) = 0 if N P = 0

o derive the last equality (cf. Lemma 1 ). Consider now the case 

f N P > 0 . By the triangle inequality and the early termination in- 

quality (A.1a) , the following chain of inequalities holds: 

ˆ x k +1 − x ∗k +1 

∥∥ ≤
∥∥ˆ x k +1 − ˆ x 

∗
k +1 

∥∥ + 

∥∥ˆ x 
∗
k +1 − x ∗k +1 

∥∥ ≤ ζ (N P ) 
∥∥x k − ˆ x 

∗
k +1 

∥∥ + τk 
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≤ ζ (N P ) 
(∥∥x k − x ∗k 

∥∥ + 

∥∥x ∗k − x ∗k +1 

∥∥ + 

∥∥x ∗k +1 − ˆ x 
∗
k +1 

∥∥)
+ τk 

≤ ζ (N P ) 
∥∥x k − x ∗k 

∥∥ + ζ (N P ) σk + (1 + ζ (N P )) τk 

= ζ (N P ) 
∥∥x k − x ∗k 

∥∥ + ζ (N P ) σk + ξ (N P ) τk 

here the last equality follows by the fact that ξ (N P ) = 1 + ζ (N P )

f N P > 0 (cf. Lemma 1 ). Therefore for any N P ≥ 0 we can bound the

rediction error as 

ˆ x k +1 − x ∗k +1 

∥∥ ≤ ζ (N P ) 
∥∥x k − x ∗k 

∥∥ + ζ (N P ) σk + ξ (N P ) τk (A.2) 

nd combining (A.2) with (A.1b) for the correction step yields 

x k +1 −x ∗k +1 

∥∥ ≤ ζ (N C ) ζ (N P ) 
∥∥x k −x ∗k 

∥∥+ ζ (N C ) ( ζ (N P ) σk + ξ (N P ) τk ) , 

(A.3) 

rom which the thesis. �

2. A supporting result 

heorem 3. Let f ∈ S μ,L (R 

n ) and g ∈ �0 (R 

n ) , then the solution

apping S( p ) = { y | ∇ x f ( y ) + ∂g( y ) � p } of the parameterized gen- 

ralized equation ∇ x f ( y ) + ∂g( y ) � p is single-valued and μ−1 - 

ipschitz continuous. 

roof. The proof follows from [29, Theorem 1] . �

3. Proof of Lemma 2 

The following proof is an extension of [16, Theorem 2F.10] when 

 t x f exists everywhere. First, we define the auxiliary func- 

ions: �( y ) = ∇ x f k +1 ( y ) + ∂g( y ) and ψ( y ) = ∇ x f k ( y ) − ∇ x f k +1 ( y )

nd, by the fact that ∇ x f k ( x 
∗
k 
) + ∂g( x ∗

k 
) � 0 and ∇ x f k +1 ( x 

∗
k +1 

) +
g( x ∗

k +1 
) � 0 , we have (ψ + �)( x ∗

k +1 
) � ψ( x ∗

k +1 
) . We define now

he function F ( y ) = (ψ + �)( y ) and consider the parametric gen- 

ralized equation F ( y ) + p � 0 . Under Assumptions 1 and 2, Theo-

em 3 implies that the solution mapping p �→ y ( p ) for this gener- 

lized equation is everywhere single valued and Lipschitz contin- 

ous with constant μ−1 , i.e. 
∥∥y ( p ) − y ( p 

′ ) 
∥∥ ≤

∥∥p − p 

′ ∥∥/μ. There- 

ore, setting p = 0 0 0 and p 

′ = −ψ( x ∗
k +1 

) , implies 

x ∗k +1 − x ∗k 
∥∥ ≤

∥∥ψ( x ∗k +1 ) 
∥∥/μ ≤ C 0 T s /μ. 

here we used the fact that: 
∥∥ψ( x ∗

k +1 
) 
∥∥ = 

∇ x f k ( x 
∗
k +1 

) − ∇ x f k +1 ( x 
∗
k +1 

) 
∥∥ ≤ C 0 T s , see [41, eq. (59)] . �

4. Proof of Lemma 3 

Define the functions �( y ) = ∇ x f k +1 ( y ) + ∂g( y ) and ψ( y ) =
 x ̂

 f k +1 ( y ) − ∇ x f k +1 ( y ) ; by the optimality conditions of the cor-

ection and prediction problems we have that (� + ψ)( x ∗
k +1 

) � 

 ( x ∗
k +1 

) and (� + ψ )( ̂ x 
∗
k +1 ) � 0 0 0 . Then, applying Theorem 3 to the

arametrized generalized equation (� + ψ)( y ) � p we have the 

ollowing bound 

∥∥ˆ x 
∗
k +1 − x ∗

k +1 

∥∥ ≤
∥∥ψ( x ∗

k +1 
) 
∥∥/μ. By the interpola- 

ion error formula (19) , we have the bound: 

ψ( x ∗
k +1 

) 
∥∥ = 

∥∥∥∇ x ̂
 f k +1 ( x 

∗
k +1 

) − ∇ x f k +1 ( x 
∗
k +1 

) 

∥∥∥
≤

∥∥∥ 1 
I! 

∂ (I) 

∂t (I) ∇ x f ( x 
∗
k +1 

; τ ) ω I (t k +1 ) 

∥∥∥ ≤ C(I) T I s 

(A.4) 

here τ ∈ [ t k −1 , t k +1 ] , and we used the facts that ω I (t k +1 ) =
 I 
i =1 (t k +1 − t k +1 −i ) = I! T I s (cf. (19) ) and (22) to derive the last in-

quality. �
10 
5. Proof of Theorem 1 

By Lemmas 2 and 3 we know that there exist σ, τ ∈ 

0 , + ∞ ) such that 
∥∥x ∗

k +1 
− x ∗

k 

∥∥ ≤ σ and 

∥∥ˆ x 
∗
k +1 − x ∗

k +1 

∥∥ ≤ τ . As such, 

roposition 1 holds. We can then use Equation (A.3) with our 

ounds for σ, τ . 

If then, we choose N P and N C such that ζ (N P ) ζ (N C ) < 1 , then

he error converges and using the geometric series the thesis of 

heorem 1 follows. �

ppendix B. Proofs of Section 5 

1. Proof of Lemma 4 

Notice that x̄ ( w , t) is the unique solution to the equa- 

ion ψ( x ; w , t) := ∇ x f ( x ; t) − A 


 w = 0 , where ψ( x ; w , t)

s differentiable in x with ∇ x ψ( x ; w , t) = ∇ x x f ( x ; t) non- 

ingular. Now set x̄ = x̄ ( w , t) to simplify the notation. 

ixing w and applying [16, Theorem 1.B.1] w.r.t. t gives 

 ̄x / ∂t =−[ ∇ x ψ( ̄x ; w , t) ] 
−1 ∇ t ψ( ̄x ; w , t) = −∇ x x f ( ̄x ; t) −1 ∇ t x f ( ̄x ; t) , 

nd as a consequence, we have 

 t w 

d f ( w ; t) = −A ∇ x x f ( ̄x ( w , t) ; t) −1 ∇ t x f ( ̄x ( w , t) ; t) . (B.1)

Using (B.1) and the sub-multiplicativity of the norm we have 

∇ t w 

d f ( w ; t) 
∥∥ = 

∥∥A ∇ x x f ( ̄x ( w , t) ; t) −1 ∇ t x f ( ̄x ( w , t) ; t) 
∥∥

≤ ‖ A ‖ ∥∥∇ x x f ( ̄x ( w , t) ; t) −1 
∥∥‖ ∇ t x f ( ̄x ( w , t) ; t) ‖ 

≤ ‖ A ‖ C 0 /μ
here the last inequality holds by Assumption 4 (i). �

2. Proof of Theorem 2 

As observed in Section 5.1 , under Assumption 4 the dual cost 

 

f 

k 
is μ̄-strongly convex and L̄ -smooth, and d h 

k 
∈ �0 (R 

p ) . There- 

ore, we can follow the same derivation in Appendix A.5 to show 

hat (A.3) holds for the dual problem, with 

w k +1 −w 

∗
k +1 

∥∥ ≤ ζ (N C ) ζ (N P ) 
∥∥w k −w 

∗
k 

∥∥+ ζ (N C ) ( ζ (N P ) ̄σ+ ξ (N P ) ̄τ ) . 

(B.2) 

The goal now is to provide a bound to both σ̄ and τ̄ . First, since

emma 4 holds, we can apply Lemma 2 to prove that 

w 

∗
k +1 − w 

∗
k 

∥∥ ≤ C̄ 0 T s / ̄μ =: σ̄ . 

o bound τ̄ , following the derivation in Appendix A.3 we can see 

hat 

ˆ w 

∗
k +1 − w 

∗
k +1 

∥∥ ≤
∥∥ψ( w 

∗
k +1 ) 

∥∥/ ̄μ

here ψ( w ) = ∇ w 

ˆ d 
f 

k +1 
( w ) − ∇ w 

d 
f 

k +1 
( w ) . Using (30) we further

now that ∇ w 

d 
f 

k +1 
( w 

∗
k +1 

) = A ̄x − c and ∇ w 

ˆ d 
f 

k +1 
( w 

∗
k +1 

) = A ̄̄x − c , 

ith x̄ = arg min x F k +1 ( x ) and 

¯̄x = arg min x ̂  F k +1 ( x ) , having defined 

 k +1 ( x ) = f k +1 ( x ) − 〈 A 


 w 

∗
k +1 , x 〉 , 

ˆ 
 k +1 ( x ) = 

ˆ f k +1 ( x ) − 〈 A 


 w 

∗
k +1 , x 〉 = 

I ∑ 

i =1 

� i F k +1 −i ( x ) . 

sing the sub-multiplicativity of the norm we have 
∥∥ψ( w 

∗
k +1 

) 
∥∥ ≤

 

A ‖ ∥∥x̄ − ¯̄x 
∥∥, and we need to bound 

∥∥x̄ − ¯̄x 
∥∥. 

Defining �( y ) := ∇ x F k +1 ( y ) and γ ( y ) := ∇ x ̂  F k +1 ( y ) − ∇ x F k +1 ( y ) ,

e can see that x̄ and 

¯̄x are the solutions of the generalized 

quation (� + γ )( y ) = p when p = 0 0 0 and p = γ ( ̄̄x ) . Therefore, ap-

lying the inverse function theorem [16, Theorem 1A.1] we have 

x̄ − ¯̄x 
∥∥ ≤

∥∥γ ( ̄̄x ) 
∥∥/μ. Finally, we have 

γ ( ̄̄x ) 
∥∥ = 

∥∥∇ x ̂  F k +1 ( ̄x ) − ∇ x F k +1 ( ̄x ) 
∥∥ = 

∥∥∥∇ x ̂
 f k +1 ( ̄x ) − ∇ x f k +1 ( ̄x ) 

∥∥∥ ≤ C(I) T I s 
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w

∥∥
a

q

∥∥
�

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

here the inequality holds by (A.4) . 

Putting everything together yields the prediction error bound 

ˆ w 

∗
k +1 − w 

∗
k +1 

∥∥ ≤ ‖ 

A ‖ 

C(I) T I s / (μμ̄) =: τ̄

nd substituting into (B.2) yields the dual convergence bound. 

The primal convergence bound can then be derived as a conse- 

uence of (B.2) by using the fact that [8, Lemma A.1] ∥∥x k +1 − x ∗k +1 

∥∥ ≤ ‖ A ‖ /μ∥∥w k +1 − w 

∗
k +1 

∥∥, 

B ( y k +1 − y ∗k +1 ) 
∥∥ ≤ ‖ B ‖ (1 /ρ + ‖ A ‖ 2 /μ) 

∥∥w k +1 − w 

∗
k +1 

∥∥ ( in case h �≡ 0) . 
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