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Sommario

I Nuclei Galattici Attivi (AGN) sono tra le entità più affascinanti e dinamiche del cosmo. Queste mer-
aviglie astronomiche, caratterizzate dalle loro intense emissioni elettromagnetiche in un ampio inter-
vallo di energia (dalle bande radio ai raggi γ), sono centrali per la nostra comprensione dell’evoluzione
galattica. All’interno delle diverse sottoclassi di AGN, i blazar emergono come un sottoinsieme par-
ticolarmente estremo e affascinante. I loro attributi distintivi, come la rapida variabilità e la marcata
polarizzazione, li rendono indispensabili per le indagini astrofisiche.

Lo scopo principale di questa tesi è duplice: in primo luogo, sondare le complessità e le sfide as-
sociate alla classificazione binaria o al raggruppamento in blazar e, in secondo luogo, sfruttare queste
tecniche per individuare i blazar che presentano proprietà uniche. Il capitolo di apertura pone le basi,
fornendo una panoramica completa degli AGN, approfondendo i modelli di classificazione e unifi-
cazione degli AGN e mettendo in luce il processo di identificazione dei blazar con attributi fisici rari,
contrassegnandoli come la sottoclasse AGN più estrema. Il capitolo 2 sposta l’attenzione sui telescopi
e rivelatori all’avanguardia che danno forma all’astrofisica delle alte energie, con un’enfasi particolare
sui ruoli chiave svolti da Fermi-LAT e dagli IACT terrestri come H.E.S.S. e MAGIC. Vengono inoltre
discusse le potenzialità imminenti del CTAO, dei rivelatori tipo EAS e la precisione delle tecniche
VLBI. Il capitolo 3 approfondisce le metodologie adottate, con un focus speciale sul potere trasfor-
mativo dell’intelligenza artificiale (AI) nella ricerca astrofisica. La capacità dell’intelligenza artificiale
di elaborare vasti set di dati, l’impareggiabile precisione nel riconoscimento dei modelli e l’adattabilità
all’ evoluzione della ricerca ne sottolineano l’importanza nell’astrofisica moderna. I capitoli dal 4 al
6 offrono un’analisi approfondita di quattro studi innovativi che non solo contribuiscono all’ampio
contesto della classificazione binaria o del clustering, ma permettono anche di comprendere meglio i
blazar rari.

1. Il Capitolo 4 analizza il dibattito che persiste da decenni riguardo la dicotomia radio nei nuclei
galattici attivi (AGN)i. Per risolvere questo problema abbiamo analizzato gli AGN nella banda
ottica B e i dati nel radio a 6 cm. Il nostro studio sull’intensità nel radio, rappresentato come
log R, ha identificato una chiara divisione in log R = ⟨1.37 ± 0.02⟩, distinguendo gli AGN
“loud” (RL) da quelli “quiet” (RQ) , suggerendo una dicotomia RL/RQ. Proponiamo un duplice
criterio per la classificazione degli AGN, integrando la luminosità e l’intensità radio. Questo
approccio, utilizzando l’apprendimento automatizzato, è definito dalla relazione log L6cm =

−2.7 log R + 44.3. Al centro del dibattito RL/RQ c’è l’origine delle loro emissioni radio. I
nostri risultati suggeriscono che RL e RQ condividono fonti di emissione simili, come jet e
mini-jet, il che è confermato dalla correlazione tra luminosità radio 6 cm e banda B.

2. Il capitolo 5 approfondisce i jet dei blazar tramite le osservazioni di VLBI. La nostra ricerca
su 407 VLBI blazar visti daFermi (VFB) rivela una correlazione tra la luminosità dei raggi
γ (log Lγ) e la velocità apparente (log β rmapp), suggerendo l’esistenza di un legame tra ve-
locità del nodo nel jet e potenza del jet stesso. Correlazioni tra log βmax

app , radiazione del getto
(log Lrad) e luminosità del getto a 5 GHz (log Lext

5GHz) suggeriscono il collegamento del movi-
mento dei nodi all’intensit‘della radiazione e alla potenza cinetica. Tuttavia, questo è assente
per i quasar radio a spettro piatto (FSRQ). Inoltre, la correlazione di log βmax

app con la luminosità
del disco di accrescimento (log LDisk) enfatizza il ruolo dell’accrescimento nella dinamica dei
nodi. Utilizzando modelli di miscela gaussiana, abbiamo identificato 228 potenziali candidati
VFB utilizzando criteri quali log Lγ > 45.40, αph > 224 e log VI > 1.71 .

3. Il Capitolo 6 utilizza alcune tecniche di apprendimento automatizzato e supervisionato ed, in
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particolare, la regressione logistica (LR), dove LR(y) = 1
1+e−(β0+β1 x) , per identificare potenziali

candidati blazar nel TeV. Applicando LR a cataloghi come 4FGL-DR2 / 4LAC-DR2, 3FHL,
3HSP e 2BIGB, abbiamo distinto blazar TeV dalle controparti non TeV in base ad alcune carat-
teristiche selezionate. Il modello LR assegna a ciascuna sorgente la probabilità di emettere nel
TeV. Utilizzando una soglia dell’80%, abbiamo estratto dal 4FGL-DR2 / 4LAC-DR2 40 can-
didati TeV ad alta confidenza. L’analisi a banda larga delle distribuzioni spettrali di energia
(SED) suggerisce che 7 di questi sono potenzialmente rivelabili dagli attuali osservatori IACT,
ed uno potrebbe essere osservabili anche dagli EAS.

4. Il Capitolo 7 indaga le origini dei raggi cosmici di alta energia, approfondendo il modello che fa
dei blazar potenziali emettitori di neutrini. Utilizzando il transfer learning (TL), questo studio
analizza il catalogo Fermi-LAT Gamma-ray Source (4FGL-DR3) per identificare le specifiche
che concorrono all’emissione di neutrini da parte dei blazar, superando l’apparente impasse
dello squilibrio nella numerosità delle classi nel clustering. Tramite una rete neurale (ANN)
abbiamo definito uno spazio parametrico specifico, distinguendo tra blazar che emettono neu-
trini (NB) ed entità non-NB, individuando i candidati NB entro un intervallo di confidenza all
99%. Questo approccio ha identificato con successo 273 candidati NB dal catalogo 4FGL-DR3,
permettendoci di comprendere meglio l’emissione di neutrini da parte dei blazar e aiutandoci a
rimodellare i meccanismi di produzione dei raggi cosmici.

Il capitolo 8 conclude la dissertazione, fornendo una sintesi dell’attuale utilizzo dell’intelligenza
artificiale nell’ambito della ricerca astronomica, con un’enfasi particolare sulle sue implicazioni per
gli studi sui blazar. Il capitolo postula inoltre le possibili strade per un’integrazione più profonda ed
espansiva delle metodologie di intelligenza artificiale nel far progredire la nostra comprensione della
fenomenologia dei blazar.
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Abstract

Active Galactic Nuclei (AGN) are among the most captivating and dynamic entities in the cosmos.
These astronomical marvels, marked by their intense electromagnetic emissions in broad energy range
(from radio to γ-ray bands), are central to our comprehension of galactic evolution. Within the diverse
subclasses of AGN, blazars emerge as an especially extreme and fascinating subset. Their distinctive
attributes, such as rapid variability and pronounced polarization, render them indispensable for astro-
physical inquiries.

The primary aim of this dissertation is twofold: first, to probe the intricacies and challenges asso-
ciated with binary classification or clustering in blazars, and second, to leverage these techniques to
pinpoint blazars exhibiting unique properties. The opening chapter lays the groundwork, providing a
comprehensive overview of AGN, delving into the classification and unification models of AGN, and
spotlighting the identification process for blazars with rare physical attributes, marking them as the
most extreme AGN subclass. Ch. 2 is allocated to the comprehensive study of the Fermi Gamma-ray
Space Telescope with its significant catalogs like 3FHL and 4FGL series. This chapter will elucidate
the telescope’s instrumentation, mission objectives, and the wealth of discoveries made possible by
its observations. Ch. 3 delves into the methodologies adopted, with a special highlight on the trans-
formative power of Artificial Intelligence (AI) in astrophysical research. AI’s capability to process
vast datasets, its unparalleled accuracy in pattern recognition, and its adaptability in evolving research
landscapes underscore its significance in modern astrophysics. Ch. 4 through Ch. 7 offer an in-depth
analysis of four groundbreaking studies. Each of these studies not only contributes to the broader
narrative of binary classification or clustering but also advances our understanding of rare blazars.

1. Ch. 4 investigates the longstanding debate surrounding the radio dichotomy in AGNs that has
persisted for decades. We analyzed AGNs with optical B band and radio 6 cm wavelength data
to address this. Our study of radio loudness, represented as log R, identified a clear division
at log R = ⟨1.37 ± 0.02⟩, distinguishing radio-loud (RL) from radio-quiet (RQ) AGNs, hinting
at an RL/RQ dichotomy. We propose a dual criterion for AGN classification, integrating radio
luminosity and loudness. This approach, derived using machine learning, is defined by the
relation log L6cm = −2.7 log R + 44.3. Central to the RL/RQ debate is the origin of their radio
emissions. Our findings suggest RLs and RQs share similar emission sources, such as jets and
mini-jets, corroborated by correlating radio 6 cm and optical B-band luminosities.

2. Ch. 5 delves into blazar jets via the VLBI technique, our research on 407 VLBI detected Fermi
blazars (VFBs) uncovers a correlation between γ-ray luminosity (log Lγ) and apparent velocity
(log βapp), hinting at the tie of jet knot motion to jet power. Correlations between log βmax

app ,
jet radiation (log Lrad), and jet luminosity at 5 GHz (log Lext

5GHz) suggest knot motion’s link to
radiation and kinetic power. However, this is absent for flat-spectrum radio quasars (FSRQs).
Additionally, the correlation of log βmax

app with accretion disc luminosity (log LDisk) emphasizes
accretion’s role in knot dynamics. Using Gaussian mixture models, criteria including log Lγ >
45.40, αph > 2.24, and log VI > 1.71 identified 228 potential VFB candidates.

3. Ch. 6 utilizes a supervised machine learning technique, specifically Logistic Regression (LR),
where LR(y) = 1

1+e−(β0+β1 x) , to identify potential TeV blazar candidates. By applying LR to
catalogs such as 4FGL-DR2 / 4LAC-DR2, 3FHL, 3HSP, and 2BIGB, we aimed to distinguish
TeV blazars from non-TeV counterparts based on selected features. The LR model assigns a
probability to each source, indicating its likelihood of being a TeV blazar. Using a threshold
of 80%, we identified 40 high-confidence TeV candidates from the 4FGL-DR2 / 4LAC-DR2
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blazars. Broadband spectral energy distributions (SED) analysis of these candidates revealed
that 7 are probable detections for current IACT observatories, with one suitable for EAS particle
detector arrays.

4. Ch. 7 probes the origins of high-energy cosmic rays and has directed attention to blazars as po-
tential neutrino emitters. Utilizing transfer learning (TL), this study delves into the Fermi-LAT
Gamma-ray Source Catalog (4FGL-DR3) to identify blazars as neutrino emission candidates,
addressing the challenge of class imbalance in clustering tasks. By employing an artificial neu-
ral network (ANN) to create a specific parameter space, we distinguish between neutrino blazar
(NB) and non-NB entities, pinpointing NB candidates within a 99% confidence interval. This
approach has successfully identified 273 NB candidates from the 4FGL-DR3 catalog, offer-
ing insights into the relationship between blazars and neutrinos and potentially reshaping our
understanding of cosmic ray mechanisms.

In conclusion, Ch. 8 synthesizes the findings of this dissertation, drawing upon the transformative
potential of AI approaches in elucidating the intricacies of blazar research. The chapter further pos-
tulates the burgeoning role of AI, anticipating its more expansive and profound implications in future
explorations within the domain of astrophysics studies.
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Chapter 1

Introduction

1.1 Brief overview of AGN

Fath (1909) made a groundbreaking observation at the Lick Observatory, noting that the spectrum of
NGC 1068, previously classified as a spiral nebulae, exhibited six pronounced emission lines. These
lines starkly contrasted with the absorption spectra typical of stars. The seminal work of Hubble
(1926) redefined our understanding of NGC 1068 and two other spiral nebulae, identifying them as
extragalactic entities. This revelation ushered extragalactic objects into the forefront of astronomical
research. Seyfert (1943) had identified a subset of spiral galaxies characterized by intense optical
emission lines and luminous nuclei. These galaxies were subsequently termed ”Seyfert galaxies.”
The post-World War II era, spanning the 1940s to the 1950s, witnessed a surge in radio astronomy,
facilitated by the repurposing of wartime radio antennas for astronomical research. This period saw the
emergence of radio surveys, notably the 3C radio survey MacDonald et al. (1968), which introduced
a plethora of radio sources to the astronomical community.

In 1959, the Third Cambridge Catalog of Radio Sources cataloged several luminous radio sources
with optical counterparts resembling point-like stars. These entities were aptly named ”quasars”
(quasi-stellar objects or QSOs)Matthews et al. (1964). Woltjer (1959) posited that the radiation from
extragalactic galaxies was concentrated within a mere 1pc of their centers, suggesting central masses
on the order of 108M⊙. The observation of Schmidt (1963) 3C 273 using the Palomar Observatory’s 5-
meter telescope revealed a redshift of 0.158, implying luminosities surpassing the Milky Way by two
orders of magnitude. Subsequent observations of quasars like 3C 48(Greenstein & Schmidt, 1964),
with even greater redshifts as 0.37, underscored their extraordinary luminosities and atypical spectral
properties, suggesting non-stellar energy sources.

Emerging insights from X-ray astronomy led Salpeter (1964) and Lynden-Bell (1969) to propose
that the accretion of supermassive black holes (SMBHs, ranging from 106−1010M⊙) could account for
the immense luminosities observed in quasars. This realization bridged the understanding of Seyfert
galaxies and quasars, categorizing them under the umbrella of active galaxies. Based on preliminary
estimates, active galaxies constitute approximately 1% - 10% of the total galactic population (Ormes &
for High Energy Astrophysics , Goddard Space Flight Center). In both observational and theoretical
realms, the primary focus is on the properties of the nuclear region, termed the ”Active Galactic
Nucleus (AGN)”. Typically, there is no strict distinction made between AGN and active galaxies in
the literature.

Historically, the nascent stages of AGN research, constrained by observational capabilities were
centered on individual sources, delving into their structure, radiation mechanisms, and central energy

1
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dynamics. The prevailing consensus postulated that gas accretion onto the central SMBH could lib-
erate approximately 10% of the rest-mass energy of the accreted material. This period also saw the
development of continuum models rooted in accretion disk dynamics, photoionization emission line
models, and dust torus-centric infrared radiation models.

The advent of large-scale spectral surveys, such as the Sloan Digital Sky Survey (SDSS), and
multi-band deep field surveys, including the Hubble Deep Field and XMM-Newton Deep Field, ex-
ponentially expanded the catalog of known AGNs. For instance, the SDSS alone has increased the
optically-certified AGN samples to approximately 100,000. This proliferation in data has shifted the
research paradigm from individual source studies to large-sample statistical analyses, incorporating
advanced artificial intelligence techniques to probe various facets of AGNs, from accretion gas sources
to black hole seed origins.

As one of the quartet of astronomical marvels unearthed in the 1960s – alongside interstellar
molecules, cosmic microwave background radiation, and pulsars – AGNs have captivated astronomers
with their myriad of extreme observational attributes. Their compact scales, high redshifts, luminosity
fluctuations, broad-spectrum electromagnetic radiation, and other phenomena have solidified their
status as astronomical enigmas, continually driving research in the field.

1.2 Classification and Unified Model of AGN

1.2.1 Classification of AGN

A comprehensive understanding of the physical nature of AGN remains elusive. While there exists
a qualitative grasp of the central engine of AGN, the intricate details of its physical structure, radia-
tion processes, and population evolution are still under exploration. Consequently, the classification
of AGN appears somewhat convoluted. With the advancement of observational techniques, classifi-
cations have become increasingly refined, with numerous subcategories emerging from the primary
classes. Simultaneously, new types have been identified, and overlaps and mergers between various
categories have blurred the demarcation lines. Due to the diverse observational bands and objectives
in AGN research, historical naming and classification conventions persist. Netzer (2015) defines an
AGN as a galaxy whose center contains a supermassive black hole with a mass greater than 105M⊙,
which is actively accreting material, and has an Eddington ratio Lbol/LEdd > 10−5. However, it is
very difficult to strictly define AGN. It has no strict boundaries with normal galaxies and is usually
determined by its observational characteristics: (Peterson, 1997; Krolik, 1998):

• Luminous Compact Nucleus. AGN radiation is concentrated in a compact region, typically
less than 1 pc. However, their luminosity can rival or even surpass that of the entire galaxy.
AGN luminosities range from 1042 to 1048 erg/s, while typical galaxy luminosities are around
1044 erg/s.

• Broad-band Spectrum. Unlike regular galaxies that primarily radiate in the optical band,
AGN also exhibits strong X-ray emissions. Most AGN also displays radio emissions, and jet
radiation in AGN spans almost the entire electromagnetic spectrum, from radio to Very High
Energy (VHE) γ-rays (Fig. 1.1).

• Ultraviolet Excess. AGN exhibits strong ultraviolet emissions, distinct from regular stars. The
optical-ultraviolet spectrum displays a prominent bump, termed the Big Blue Bump (BBB).
This feature often serves as a primary criterion for AGN identification in surveys. The theoret-
ical peak of the BBB is expected in the extreme ultraviolet (EUV) regime. As the mass of the



1.2. CLASSIFICATION AND UNIFIED MODEL OF AGN 3

Figure 1.1: A schematic representation of the SED of an AGN is shown by the black curve, divided
into its primary physical components represented by colored curves, and compared with the SED of a
star-forming galaxy depicted by the gray curve(Hickox & Alexander, 2018).

central black hole increases, the theoretical expectation is that the accretion disk temperature
decreases, leading to a softer EUV spectrum. Observationally, brighter quasars, which imply
larger black hole masses, exhibit relatively weaker emission lines. This phenomenon can be
explained by a softer EUV spectrum and is known as the Baldwin effect (Pogge & Peterson,
1992). This observation appears to be consistent with classical accretion disk theory. However,
using ground-based SDSS and space-based GALEX observational data, and after accounting for
the incompleteness in EUV detection, it was found that the average EUV spectrum of quasars
is independent of their intrinsic luminosity. This not only suggests that intrinsic luminosity
variations cannot explain the Baldwin effect but also poses a significant challenge to the predic-
tions of standard accretion disk theory. The study proposes a potential new physical origin for
the Baldwin effect: brighter quasars have smaller thermal fluctuations in their accretion disks,
leading to fewer emission-line clouds. After correcting for the effects of intergalactic medium
absorption, the research also revealed that the average EUV spectrum of quasars is softer than
previously reported in other studies, further challenging the standard accretion disk model. This
ultra-soft, luminosity-independent EUV spectrum aligns well with predictions from accretion
disk models that incorporate disk winds, suggesting the widespread presence of disk winds
(Murray et al., 1995) in quasars.

• X-ray Continuum. This can originate either from the jet or from the accretion disk’s hot
corona through scattering processes. In both scenarios, it exhibits a power-law spectrum. Some
radio-quiet AGNs also display an excess of soft X-ray emissions, the origin of which remains
uncertain. When X-ray continua irradiates cold heavy elements, it results in the emission of
X-ray fluorescence lines, with the most notable being the iron feature around 6.4 keV. This
line can be either narrow or broad; relativistically broadened iron lines can be instrumental in
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studying the dynamics of the accretion disk very close to the nucleus, thereby shedding light on
the nature of the central black hole.

• Strong Emission Lines. Unlike stellar and galaxy spectra, AGNs exhibit strong emission lines
with Equivalent Widths (EW) of approximately 100 Å. The Full Width at Half Maximum
(FWHM) of these lines can be very broad, exceeding 104 km/s. Broad lines encompass per-
mitted and semi-forbidden lines, but not forbidden lines. Narrow emission line components
have widths on the order of a few hundred km/s and can include both forbidden and permitted
lines. A typical AGN spectrum in the optical-ultraviolet range showcases the BBB and several
primary emission lines. Additionally, near the Mg II line, there’s a smaller bump, often referred
to as the ”small blue bump,” primarily constituted by the Fe II emission line system mixed with
the Balmer continuum(Vanden Berk et al., 2001).

• Variability. AGNs display significant variability in both continuum and emission line inten-
sities. The variability amplitude and timescale are typically stochastic. Blazars, a specific
AGN subclass, can exhibit flux variations spanning several orders of magnitude, with variability
timescales ranging from years to minutes. Some sources even exhibit minute-scale variability
(Aharonian et al., 2007a; Fan et al., 2021a; Pandey & Stalin, 2022).

It’s worth noting that not all AGNs exhibit all the aforementioned characteristics. For instance,
Type II AGN optical continua are predominantly governed by their host galaxies, with minimal ul-
traviolet excess and limited variability studies. Some subclasses may lack or exhibit weak emission
lines. Additionally, many subclasses possess unique observational phenomena, some of which will
be discussed in the subsequent sections on AGN classification. Despite the complex classification of
AGNs, they are essentially categorized based on luminosity, optical spectra, radio intensity, and radio
morphology (Tadhunter, 2008).

AGN classification, though seemingly intricate, fundamentally hinges on luminosity, optical spec-
tra, radio intensity, radio morphology, and energy output modes (Tadhunter, 2008). Instead of enumer-
ating various AGN types, the following discussion will elucidate AGN classification based on these
characteristics.

Luminosity. Historically, quasars and Seyfert galaxies in AGN were named separately, with the
sole distinction being their luminosity. Schmidt & Green (1983) proposed a criterion, where a nuclear
luminosity in the B-band of MB > −21.5 + 5 log(h0) differentiates quasars from Seyfert galaxies.

Optical Spectra. Based on optical spectra, AGNs are bifurcated into Type I and Type II. Type
I AGNs exhibit both broad and narrow emission line components in their spectra, whereas Type II
AGNs display only the narrow component, with the optical continuum dominated by the host galaxy’s
stellar contribution. This classification further refines quasars and Seyfert galaxies. The distinction
between Type I and Type II is not absolute; the intensity ratio of broad to narrow components might
vary continuously. Transitional AGNs, primarily Seyfert galaxies, can be further subdivided based
on this ratio, e.g., Seyfert 1.1, 1.3, 1.6 (Osterbrock, 1981). Additionally, some AGNs exhibit spectral
transitions from Type I to Type II or vice versa, termed changing-look AGNs (LaMassa et al., 2015).

Using the ratio of narrow emission lines, Baldwin et al. (1981) devised a method to distinguish H II
regions, resulting from star-forming activities, from the nuclear active regions in AGNs. As illustrated
in Fig. 1.2, AGN can produce stronger high-ionization lines, such as [O III] 5007/Hβ, [N II]/Hα
λ6548, 6583, indicating that the ionizing photons do not originate from O or B-type stars. Based on
this methodology, AGNs with lower luminosities can be identified. Depending on the strength of high
and low-ionization lines, these AGNs are further classified into Seyfert galaxies and Low-Ionization
Nuclear Emission-line Regions (LINERs).
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Beyond emission lines, absorption features are also present in AGN spectra. Studies reveal that
approximately 10%–20% of quasar spectra exhibit broad absorption lines of high-ionization species
such as CIV λ1549, OVI λ1035, SiIV λ1397, NV λ1240, and Lyα. Among these, around 15% also
detect broad absorption lines of low-ionization species like MgII, FeII, and FeIII. Based on these
absorption features, these broad absorption line quasars (BAL QSOs) are further categorized into
High-ionization BAL QSOs (HiBALs) and Low-ionization BAL QSOs (LoBALs) (Reichard et al.,
2003).

Radio Intensity. AGNs are typically classified into Radio Loud and Radio Quiet categories based
on their radio loudness, defined as the radio-to-optical flux ratio R = f 5GHz/ f 4400Å (Kellermann
et al., 1989). AGNs with R ≥ 10 are termed Radio Loud, while those with R < 10 are Radio Quiet.
Miller et al. (1990) also suggested using radio luminosity L5GHz, with a threshold of 1025WHz−1 for
differentiation. Radio Quiet AGNs typically exhibit radio emissions weaker by factors of 100 to 1000
compared to Radio Loud AGNs. Padovani (2016) argued that the distinction between Radio Quiet
and Radio Loud AGNs is outdated and misleading. The primary physical difference between the two
is the presence of strong relativistic jets. He proposed a classification based on jetted and non-jetted
AGNs. Using machine learning, Ch. 4 revisits the specific value of radio loudness used to differentiate
Radio Loud and Radio Quiet categories and reclassifies them based on optical B-band and radio 6 cm
wavelength data.

Radio Morphology. Based on radio morphology, Radio Loud AGNs can be classified into
compact (unresolved) and extended (resolved) sources. Among the radio-strong extended sources,
they can be further categorized based on the flux and morphology of their core and lobes into core-
dominated (FR I type), lobe-dominated (FR II type), and other morphologies (e.g., head-tail type).
Additionally, with the improvement in the resolution of radio telescopes, Baldi et al. (2015) intro-
duced a new subclass of radio galaxies—FR 0 type radio galaxies. These sources exhibit properties of
FR I type radio galaxies, but their extended radiation is weaker by about 100 times compared to typical
FR I type galaxies with comparable optical emission lines or radio core luminosities. Fig. 1.3 provides
a systematic overview of AGN classification. For more detailed insights into AGN classification, refer
to Padovani et al. (2016b).

1.2.2 Energy mechanism of AGN

To unify the various subclasses of AGN, it is imperative to first discern the energy mechanism of
AGN. Historically, the energy source of celestial bodies was believed to be gravitational in the 19th
century. This perspective shifted to nuclear reactions in the 20th century, up until the discovery of
quasars in the 1960s. As previously mentioned, the typical luminosity of AGN, ranging from 1042

to 1048 erg/s, significantly surpasses that of normal galaxies. The variability timescale of AGN spans
from a few hours to several years, suggesting that the maximum scale of AGN lies between 10−4 and
10 pc, which is considerably smaller than the scale of a regular galaxy. Matthews & Sandage (1963)
estimated the radiative region of AGN to be less than a few light weeks based on optical variability
timescales. Lynden-Bell (1969) discussed the energy source of radio-loud quasars, considering their
high luminosity and small scale, and concluded that nuclear reactions could not be the primary energy
source for quasars. Instead, gravitational contraction was deemed the most significant energy source.
In fact, if the energy efficiency of nuclear reactions in stars is η = E/Mc2 ≈ 0.7%, and if quasars also
rely on nuclear reactions for energy, then they would require the conversion of approximately 250 M⊙
of hydrogen annually. Given that a typical galaxy has a mass of about 1011M⊙, it could sustain such
reactions for at most 109 years, which is significantly less than the age of the universe. Thus, nuclear
reactions cannot be the primary energy source for quasars. The mechanism of energy production
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Figure 1.2: Emission line ratio diagnostic diagram by Baldwin et al. (1981) for SDSS emission-line
galaxies. Star-forming galaxies are shown in green, Seyfert 2 in blue, and LINERs in red. The two
different curves used to separate AGN and starbursts are indicated by the solid curve (Kauffmann
separator) and the dashed curve (Kewley separator) (Groves et al., 2006).

Figure 1.3: A schematic representation of AGN classificationsE(Errando Trias, 2009)
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through the accretion of surrounding matter by a central dense body, releasing gravitational potential
energy, began to gain traction.

Accretion refers to the process wherein a celestial body attracts and accumulates surrounding
gas, dust, and other matter due to gravitational forces. The result of accretion is the conversion
of gravitational potential energy into kinetic energy, which is eventually released as electromagnetic
radiation. This energy conversion method is termed as accretion luminosity or energy production. The
quantitative estimation of energy release from accretion by dense bodies has been widely accepted.
For a central body with mass M and radius R, the gravitational potential energy released when the
matter of mass m is accreted onto its surface is given by (Frank et al., 2002): ∆Eacc = GMm/R, where
G is the gravitational constant. If the central body is a neutron star with a mass comparable to the
sun, i.e., M ≈ M⊙, and a typical neutron star radius R ≈ 10 km, then the energy released per gram
of accreted matter is ∆Eacc ≈ 1020 erg. For matter of mass m, the energy released through nuclear
fusion is ∆Enuc = 0.007mc2, where c is the speed of light. Calculations indicate that the energy
released per gram of matter through nuclear fusion is only 6 × 1018 ergs. To characterize the amount
of energy released per gram of matter, Lynden-Bell (1969) introduced the energy conversion efficiency
and defined it as: η = ∆E/mc2. The accretion luminosity efficiency is given by: η = GMm/r/mc2 =

G/c2 × M/r. It is evident that when M/r is large, implying that the central body is very dense, the
efficiency of accretion luminosity is high. Conversely, when M/r is small, the efficiency is low. The
theory of energy release through accretion does not necessitate that the center of an AGN is a black
hole; it only requires that M/r is sufficiently large. Several models have been proposed, such as the
giant pulsar model and the dense star cluster model. The giant pulsar model posits that the center
of an AGN is a rotating giant pulsar, while the dense star cluster model suggests that the center of
an AGN is a cluster of dense stars, such as neutron stars. However, these models have been refuted
based on observational and theoretical evidence. If the central body is a star or neutron star, accreted
matter can reach the surface of the body, and r is the radius of the body. For a typical neutron star,
η is approximately 15%. When the central body is a black hole, r is the radius of the innermost
stable circular orbit of the accretion disk. For a Schwarzschild black hole, η = 6%; for a maximally
spinning Kerr black hole, η can reach up to 42% (Frank et al., 2002). When the mass of the accreting
body is sufficiently large, such an energy conversion efficiency can produce the observed luminosity
of an AGN. Therefore, extracting energy from the accretion process around an SMBH provides a
natural explanation for powering AGN. Rees (1984) proposed potential pathways for the formation of
SMBH, and numerous observational evidences suggest the presence of SMBH at the centers of AGN
(Peterson, 1993; Miyoshi et al., 1995; Beckmann & Shrader, 2012). During the accretion process, due
to the transfer of angular momentum, an accretion disk is formed. Thus, the SMBH and the accretion
disk together constitute the central engine of an active galactic nucleus. Whether the central black hole
in an AGN is a Schwarzschild black hole or a Kerr black hole, and whether different types of black
holes correspond to different types of AGN, are challenging questions to answer precisely. Analyses
by Dabrowski et al. (1997); Wilms et al. (2001); Elvis et al. (2002) suggest that the majority of central
black holes in AGN are likely Kerr black holes. Bian & Zhao (2003) conducted a study on a sample of
AGN with known central black hole masses and determined the accretion efficiency. All radio-quiet
AGN in the sample had an accretion efficiency of less than 5.6%, suggesting that their central black
holes are likely Schwarzschild black holes. All radio-loud AGN had an accretion efficiency greater
than 5.6%, indicating that their central black holes are likely Kerr black holes. Notably, Cui et al.
(2023) analyzed observational data of the M87 galaxy from 2000 to 2022 and found that the jet from
the central black hole of the M87 galaxy exhibits periodic oscillations, with a period of approximately
11 years and an amplitude of about 20 degrees. This phenomenon can be explained by the precession
of the jet due to the Lense-Thirring effect, providing evidence that the M87 is a Kerr black hole.
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Figure 1.4: Top: Combined jet structure of M87 from 2013 to 2018, observed every two years at a
frequency of 43 GHz. The corresponding year is displayed in the top left corner of each subfigure.
White arrows indicate the position angle of the jet in each subfigure. Bottom: Best fit results based on
images combined annually from 2000 to 2022. Green and blue dots represent data from observation
frequencies of 22 GHz and 43 GHz, respectively. The red line represents the best fit based on the
precession model (Cui et al., 2023).

1.2.3 Unified Model of AGN

As observations became more refined, it became evident that the mere presence of a black hole and an
accretion disk could not account for several observed phenomena, such as broad emission lines, nar-
row emission lines, and large-scale radio emissions in AGN spectra. Moreover, the intrinsic properties
of AGN are likely similar, and the observed differences might be attributed to varying observational
angles. Based on these insights, the ”Unified Model” was developed. The old unified scheme (An-
tonucci, 1993; Urry & Padovani, 1995; Urry, 2003) was a bold attempt to attribute the differences
between AGN subclasses to varying observational angles (see Fig. 1.5). This model successfully
explained the observed differences between Type I and Type II AGN. However, as observational re-
search progressed, it became clear that the diversity in observational features of AGN subclasses
could not be solely attributed to observational angles. A dynamic ”weak” unified model, incorpo-
rating more intrinsic parameters, became necessary. For instance, adding rotation parameters and
accretion rate/luminosity to the observational angle, as depicted in Fig. 1.6. Tadhunter (2008) pro-
posed unifying AGN subclasses in three-dimensional parameter space (see Fig. 1.7), considering the
presence of broad permitted lines in the spectrum, radio loudness, and luminosity.

Regardless of the unified model, it is widely accepted that AGN, from the inside out, comprises
the following fundamental structures:

• SMBH. As previously mentioned, the central massive black hole is a fundamental element
common to all AGN. The black hole mass ranges from 106 to 1010M⊙, with a scale of ap-
proximately 10−7 to 10−3 pc. In astrophysical environments, the physical characteristics of a
black hole are often described solely by its mass and spin. While the impact of black hole spin
on AGN structure and radiation spectrum is challenging to confirm observationally, theoretical
studies suggest that rapidly rotating black holes have accretion disks closer to the black hole,
higher radiation efficiency, and produce bluer radiation spectra. Additionally, numerical simu-
lations indicate that rapidly rotating black holes are more likely to drive jet emissions and the
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Figure 1.5: Schematic representation of the AGN Unified Model (Marin, 2016). Type 1 AGN are
visible at inclinations of 0°–60°, while Type 2 AGN are visible at approximately 60°–90°. Color
code: Central SMBH in black, surrounding X-ray corona in purple, multi-temperature accretion disk
in rainbow pattern, BLR in red and light brown, torus of dust around the nucleus in dark brown, polar
ionized winds in dark green, and the final extension of the NLR in yellow-green. A double-sided,
kilo-parsec jet is added to account for radio-loud AGN.
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Figure 1.6: Types of active galaxies (Dermer & Giebels, 2016). Cartoon illustration of AGN tax-
onomy, following the unified scheme for radio-loud and radio-quiet galaxies. In this two-parameter
model that includes the observational angle, any given AGN is either radio-quiet or radio-loud, spec-
ulated here to depend on black hole spin a/M (where M is black hole mass and a is its angular
momentum), and either low-power or high-power, determined by the mass accretion rate. Misaligned
AGN sources are radio galaxies, including low-luminosity FR1 and high-luminosity FR2 radio galax-
ies corresponding to BL Lac objects, differentiated by direction into narrow-line and broad-line radio
galaxies.
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Figure 1.7: Types of active galaxies (Tadhunter, 2008). Cartoon illustration of AGN taxonomy, fol-
lowing the unified scheme for radio-loud and radio-quiet galaxies. In this model that includes the
observational angle as one of the parameters, any given AGN is either radio-quiet or radio-loud, spec-
ulated here to depend on black hole spin a/M (where M is black hole mass and a is its angular
momentum), and either low-power or high-power, determined by the mass accretion rate. Misaligned
AGN sources are radio galaxies, including low-luminosity FR1 and high-luminosity FR2 radio galax-
ies corresponding to BL Lac objects, differentiated by direction into narrow-line and broad-line radio
galaxies.
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formation of disk winds (Tchekhovskoy et al., 2011; Narayan et al., 2014).

• Accretion Disk (Disk). SMBHs accrete surrounding matter, forming an accretion disk or flow
with a scale ranging from ∼ 10−7 to 1 pc. The gas within the accretion disk releases gravitational
potential energy through viscous processes, serving as the primary energy source for AGNs.
During accretion, a fraction of the energy is radiated electromagnetically, while the remainder
is carried away either by radial processes or by disk winds induced by radiative pressure. Both
theoretical and observational evidence suggest that the structure of the accretion disk varies
with the accretion rate (Narayan & Yi, 1994; Vasudevan & Fabian, 2009; Yuan & Narayan,
2014). Based on accretion rates, disk models can be categorized into Slim disk, standard thin
disk (SSD), and advection-dominated accretion flows (ADAF) (Yuan & Narayan, 2014; Kat,
1998).

Specifically, a significant challenge in the development of accretion disk theory has been the
lack of understanding of viscous processes. These processes lead to the majority of matter being
accreted onto the central body, with a minor fraction carrying most of the angular momentum
outward. This is a crucial physical process in accretion disk theory. Shakura & Sunyaev (1973)
introduced the renowned α-model to describe viscosity, sidestepping detailed studies of the
viscous process. This geometrically thin but optically thick accretion disk is also termed the
standard thin disk or SSD. Another variant, the SLE disk (Shapiro et al., 1976), is dominated by
gas radiative pressure but is optically thin. Slim disks, or optically thick ADAFs, were proposed
by Abramowicz et al. (1998) as geometrically thick, radiatively dominated disks. These are
thermally and viscously stable, transonic, and physically self-consistent, making them suitable
for super-Eddington accretion scenarios. The presence of photon trapping or capture effects
in slim disks leads to a saturation luminosity (Wang & Zhou, 1999; Wang et al., 2013), which
has been proposed as a cosmological standard candle (Wang et al., 2013, 2014). ADAFs, or
optically thin variants, were introduced by Narayan & Yi (1995) and Abramowicz et al. (1995).
Some theories suggest a coexistence of multiple accretion modes around black holes, known as
the truncated disk model (Done et al., 2012; Yuan & Narayan, 2014; Bambi, 2016).

• Corona. To explain the X-ray radiation of AGN, it is widely believed that a high-temperature
(up to 109 K) hot plasma corona exists above the accretion disk near the black hole. Plasma
in the corona produces intrinsic X-ray radiation by inverse Compton scattering of ultraviolet
photons radiated by the accretion disk. The origin, heating mechanism, and geometric structure
of the corona remain unclear. The Comptonization ability of the corona to soft photons depends
on the electron temperature (Te) and optical depth (τe), typically measured by the Compton
factor y = max(τe, τ2e)(4kTe/mec2). When y > 1, the average energy gain of scattered photons
is A(y) = exp(y). When y ≫ 1, the average energy of scattered photons reaches the energy of
hot electrons, at which point Compton scattering saturates. The spectral index of the scattered
photon power spectrum is related to the Compton factor y as Γ = −1/2 +

√
9/4 + 4/y. When

y ≈ 1, Γ ≈ 2, which is the intrinsic X-ray spectral index observed in typical AGN (Rybicki &
Lightman, 1986).

• Broad Line Region (BLR). To explain the broad emission lines in AGN spectra, the uni-
fied model posits the existence of rapidly rotating (typical Keplerian speeds of approximately
3000 km s−1) independent cloudlets outside the accretion disk. These cloudlets produce broad
emission lines when ionized by radiation from the AGN center. Due to the absence of broad
forbidden lines, the electron number density in the BLR is relatively high, typically not less
than 108 cm−3. Long-term spectral observations of AGN reveal that when the AGN continuum
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Figure 1.8: A conceptual illustration depicts the arrangement of the accretion flow across various
spectral states of black holes, contingent upon the mass accretion rate. The hot accretion flow is
denoted by red triangles, while the conventional thin disk is represented by robust black horizontal
lines. As the mass accretion rate escalates, the transition radius Rtr, at which the thin disk truncates,
diminishes (Yuan & Narayan, 2014).
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undergoes light variations, the broad emission lines change accordingly, with time delays rang-
ing from several weeks to several months (Wandel et al., 1999; Kaspi et al., 2000a, 2005; Kim
et al., 2019). This suggests a BLR scale of approximately 0.01 to 1 pc, with the scale size
correlating with luminosity. Assuming Keplerian motion of BLR cloudlets, the black hole mass
can be estimated from the full width at half maximum (FWHM) of a single spectral observation
(Netzer, 2013, e.g., using Hβ;):

MBH(Hβ) = 1.05 × 108
(

L5100

1046 erg s−1

)0.65 (
FWHM(Hβ)
103 km s−1

)2

M⊙. (1.1)

• Narrow Line Region (NLR). AGN spectra feature forbidden emission lines, such as [O III]
λλ4959, 5007, [N II] λλ6548, 6583, and [S II] λλ6716, 6731 (also known as nebula lines), be-
lieved to originate from ionized cloudlets outside the BLR with lower electron densities (103 to
106 cm−3) and velocities ranging from 300 to 1000 km s−1. With the development of integral
field spectroscopy (IFU), the two-dimensional spatial structure of the NLR in nearby AGN can
now be mapped. IFU images of the [Si VI] line in the Type I AGN NGC 4151 reveal a complex
dynamical structure in the NLR, including rotation and outflows (Müller-Sánchez et al., 2011).
Additionally, spatially resolved spectra have shown that the NLR in some AGN extends up to
100 kpc or even higher, with these regions termed extended narrow-line regions (ENLR).

• Dust Torus. To explain the observational differences between Type I and Type II AGN, the
unified model suggests the existence of a toroidal structure composed of gas cloudlets and dust
with a high column density (>1022 cm−2) in the outer regions of AGN. For Type II AGN, the
dust torus obscures radiation from the central accretion disk and BLR, resulting in observational
differences in the optical-ultraviolet bands compared to Type I AGN. The inner boundary of the
dust torus depends on the sublimation temperature of the dust, with brighter AGN having a
more distant inner boundary and a smaller covering angle for the dust torus. The structure of
the dust torus is not continuous but consists of independent clumps (Elitzur & Ho, 2009).

• Jets and Outflows Black holes, during the accretion of matter, often give rise to outflows or jets
(Blandford & Begelman, 1999). In the context of hot accretion flows, ADAF self-similar solu-
tions indicate a positive Bernoulli parameter, suggesting strong outflows in the ADAF model.
Observationally, most low-luminosity AGNs exhibit radio emissions. However, systems with
geometrically thin cold disks typically exhibit weaker radio jet components. The reasons for
this disparity remain elusive, but three potential factors are the geometric thickness of ADAFs
facilitating magnetic field advection into the black hole, the larger Bernoulli parameter in hot
accretion flows, and the role of outflow winds in jet collimation and stability (Yuan & Narayan,
2014).

AGNs exhibit well-collimated plasma and energy flows, observable across radio, optical, and
X-ray wavelengths, spanning galactic to cluster scales. The relativistic motion of plasma clumps
within these jets, due to light travel time effects, can appear superluminal. Interactions between
the jet terminus and interstellar medium can lead to radio lobe or ”cocoon” structures, with
scales ranging from 1 to 1000 kpc and velocities typically less than 0.2 c. Various structures,
such as knots and bends, are also observed in these jets. The formation, acceleration, and
collimation mechanisms of these jets remain open questions. Two prerequisites for jet formation
are believed to be rotation and magnetic fields. Large-scale magnetic fields are thought to be
ubiquitous in the universe. Under certain conditions, the standard accretion disk in AGNs can
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produce magnetically dominated outflows that transfer angular momentum, allowing for the
advection of strong magnetic fields near the black hole (Cao & Lai, 2019).

Jets can be broadly categorized into two types based on morphology (Fender & Belloni, 2004):
continuous and intermittent. Continuous jets appear temporally and spatially continuous, while
intermittent jets manifest as discrete clumps. Several models have been proposed for the for-
mation of continuous jets:

1. The BZ mechanism, proposed by Blandford & Znajek (1977), where large-scale magnetic
fields extract the rotational energy of the black hole, leading to Poynting flux-dominated
jets.

2. The BP mechanism, introduced by Blandford & Payne (1982), where the energy is ex-
tracted from the accretion disk’s rotation, typically resulting in matter-dominated jets.

3. The Magnetic Tower (MT) model (Lynden-Bell, 2003), where large-scale magnetic fields
anchored to the accretion disk generate axial magnetic field components, driving jet for-
mation.

Non-relativistic outflows, termed disk winds, have slower velocities but may occupy a larger
solid angle. Despite their lower energy compared to jets, disk winds can have significant mass
loss rates. For ADAF models, early studies by Stone et al. (1997) utilized two-dimensional
hydrodynamic simulations to compute inflow, outflow, and net accretion rates. Recent obser-
vations suggest that outflows in some quasar samples can originate from distances up to 10 pc
from the galactic center (He et al., 2019), exceeding the predicted scales of disk wind mod-
els. These outflows may correspond to the scales of dust tori, with kinematics consistent with
dust-driven outflow models (He et al., 2022), indicating diverse origins for AGN outflows.

1.3 Blazar

Blazars, as one of the most extreme subclasses of active galactic nuclei (AGN), are characterized by
their non-thermal radiation predominantly emitted from relativistic plasma within their jets (Sambruna
et al., 1996). All blazars are radio-loud (Peterson, 1997). Due to the small angle between our line of
sight and the direction of jet motion, blazars only constitute a minor fraction of all AGNs. Conse-
quently, our current samples of blazars remain relatively small. Most of our understanding of blazar
phenomena is based on a limited number of luminous sources, suggesting that we are only seeing
the tip of the iceberg. Compared to other subclasses of AGN, blazars typically exhibit the following
distinct observational features (Wills et al., 1992; Urry & Padovani, 1995; Fan, 2002; Villata et al.,
2006; Fan et al., 2014; Xiao et al., 2015; Gupta et al., 2016; Xiao et al., 2019; Abdollahi et al., 2020;
Xiao et al., 2020; Fan et al., 2021b):

1. Radio Loudness. Dominant and compact emission sources.

2. Rapid and Significant Variability. Due to the relativistic beaming effect in the laboratory
frame, blazars exhibit rapid and significant variability across all observable wavelengths.

3. High Polarization. Presence of high and variable linear polarization in both radio and optical
bands. Optical polarization exceeds 3%, while radio linear polarization ranges between 1% to
2%.
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4. Non-thermal Continuous Spectrum. A continuous non-thermal radiation spectrum is ob-
served across all detectable wavelengths, with strong radiative luminosity from radio to X-ray
bands.

5. Superluminal Motion in VLBI Components. Indicative of relativistic jets.

6. Strong γ-ray Sources. All extragalactic γ-ray sources detected by the Energetic Gamma Ray
Experiment Telescope (EGRET) are blazars, with a majority of identified TeV sources being
blazars.

From these observational characteristics, we can infer various intrinsic properties or physical pro-
cesses of the jet. For instance, the absence of thermal radiation from the accretion disk, as observed in
other galaxies, suggests that the dominant non-thermal radiation from the jet overshadows the thermal
radiation from the inner black hole-accretion disk system. Superluminal motion hints at the relativis-
tic motion of the primary radiation zone of the jet. The relativistic motion of this primary radiation
zone, combined with the jet’s motion direction nearly pointing towards the observer, results in a strong
relativistic beaming effect. This effect inevitably leads to faster and more intense observed variability.
Based on radio and optical polarization, it is evident that the radiation from radio to ultraviolet, and
even soft X-rays, predominantly arises from synchrotron radiation of extremely relativistic electrons
within the jet. If the intense gamma radiation is interpreted through the leptonic origin model, it im-
plies the presence of ultra-relativistic electrons with γ > 106. However, synchrotron radiation would
rapidly cool such high-energy electrons. To sustain continuous high-energy radiation, lower-energy
electrons must be continuously accelerated to maintain a sufficient number of ultra-high-energy elec-
trons. This acceleration/cooling process might further contribute to the rapid and significant variability
observed.

1.3.1 Types of Blazars

Blazars were initially grouped as Optically Violent Variable (OVV) and BL Lac object (Peterson,
1997). OVV is the optical counterpart of FSRQ. Similarly, based on the mode of discovery, FSRQs
have also been referred to as Highly Polarized Quasars (HPQs) and Core-Dominated Quasars (CDQ)
(Sambruna et al., 1996). The more prevalent classification now combines FSRQ and BL Lac into the
blazar category.

A classic division of blazars is based on the equivalent width (EW) of their emission lines. Flat
Spectrum Radio Quasars (FSRQs) have an emission line EW ≥ 0.5 nm, while BL Lacertae objects
either lack emission lines or have an EW ≤ 0.5 nm (Stickel et al., 1991). While this criterion is
convenient, it has been argued that it doesn’t distinctly separate FSRQs from BL Lacs. The main
reason is the absence of a bimodal distribution in EW values, which can vary depending on the flux
state of the source. Some blazars, despite having small observed EWs, inherently possess emission
line luminosities comparable to FSRQs. Their broad-band SEDs also resemble those of FSRQs. The
weak emission lines are a result of being overwhelmed by the non-thermal radiation from the jet.
Thus, using EW as a distinguishing factor might lead to misclassifications (Ghisellini et al., 2011;
Giommi et al., 2012).

The difference in emission line strength between BL Lac objects and FSRQs, which is attributed
to photoionization by the accretion disk continuum, naturally raises the question of whether their
accretion modes differ. Observational studies have indeed confirmed the presence of two distinct
accretion modes in blazars (Marchesini et al., 2004; Ghisellini et al., 2009).
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Originally, BL Lacs were further categorized into Radio-selected BL Lacs (RBL) and X-ray-
selected BL Lacs (XBL) based on their discovery in radio and X-ray surveys, respectively (Giommi
et al., 1995). Over time, it was realized that many RBLs are radio-strong and X-ray-weak due to their
synchrotron emission peaking at relatively lower frequencies (infrared to optical), while many XBLs
are radio-weak and X-ray-strong, with their synchrotron peak in the UV to X-ray range. Thus, a more
accurate terminology emerged: Low-frequency-peaked BL Lacs (LBL) and High-frequency-peaked
BL Lacs (HBL), depending on whether the radio/X-ray spectral index arx is greater or less than 0.75
(Urry & Padovani, 1995) or 0.8 (Sambruna et al., 1996).

the original classification of BL Lac objects by Padovani & Giommi (1995) delineated two sub-
classes: LSP BL Lac or LBL and HSP BL Lac or HBL. This classification was based on whether their
broadband radio-to-X-ray spectral index was greater or less than 0.75 (Urry & Padovani, 1995) or 0.8
(Sambruna et al., 1996). This categorization was later expanded to encompass all blazars by Abdo
et al. (2010b), who proposed a threefold subdivision based on the synchrotron peak frequency: LSP,
where log νsp ≤ 14.0; ISP (intermediate synchrotron peaked sources), with 14 < log νsp ≤ 15; and HSP,
for log νsp > 15. Subsequently, Fan et al. (2016) suggested slightly modified criteria, defining ISPs as
having 14 < log νsp ≤ 15.3 and HSPs as those with log νsp > 15.3. A similar classification scheme was
also recently presented by Yang et al. (2022a).

Furthermore, Costamante et al. (2001) introduced a fourth subclass, termed extreme HBLs (EHBLs),
characterized by BL Lacs with log νsp > 17. According to Foffano et al. (2019), EHBLs can be further
divided into three subclasses based on the peak of their inverse Compton (IC) bump. The subclass
with an IC bump peak between 0.1 TeV and 1 TeV is considered a continuation of HSP, whereas the
subclass with an IC bump peak > 10 TeV, referred to as “hard-TeV blazars”, constitutes a distinct
category. These hard-TeV blazars are notable for their high power, remarkably stable flux, and hard-
TeV spectral behavior at TeV energies, presenting challenges to the synchrotron self-Compton (SSC)
model. The remaining subclass, with an IC bump peaking at a few TeV, acts as a transitional class
with a flat TeV spectral slope.

The distinction between BL Lacs and FSRQs based on their SEDs, the presence or absence of
a blue bump (attributed to accretion disk radiation), and the orientation of the electric vector con-
cerning the jet direction (Lister & Marscher, 1999) further underscores the complex nature of blazar
classification and the underlying physics.

1.3.2 Blazar Sequence

In the study conducted by Fossati et al. (1998), three comprehensive blazar samples were analyzed.
The findings revealed an inverse correlation between the luminosity of the synchrotron peak, the lu-
minosity at 5GHz, the dominance of γ-rays, and the frequency of the synchrotron peak. A sequence
was identified where sources with higher thermal luminosity had a lower synchrotron peak frequency,
and conversely, sources with a higher peak frequency had lower thermal luminosity. This sequence
illustrated an evolutionary scenario from FSRQs to LBLs to HBLs. Based on these findings, a unified
model for the spectral distribution of blazars termed the ”blazar sequence”, was proposed (see Fig.
1.9). Since the introduction of the blazar sequence, its authenticity has been a subject of continu-
ous debate. Initial skepticism revolved around the existence of blazars with high peak frequencies
and high luminosities. While some candidates were identified, subsequent observations refuted these
claims (Padovani et al., 2002, 2003, 2004; Padovani, 2007). Ghisellini et al. (1998) provided a theo-
retical explanation using a single-zone, uniform, and steady-state electron model. A decrease in the
synchrotron peak frequency corresponded to an intensification of the external photon field (originat-
ing from the accretion disk or broad-line region), which in turn enhanced the cooling capability of
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relativistic electrons, leading to a decrease in γpeak as Compton dominance increased.
Differentiating blazars based on their energy extraction methods, Cavaliere & D’Elia (2002) pro-

posed an evolutionary sequence for blazars. They posited that as the accretion rate decreases from
FSRQs to BL Lacs, the relativistic jet transitions from being powered by accretion to being powered
by the Blandford-Znajek (BZ) mechanism. Böttcher & Chiang (2002) argued that the blazar sequence
could not be solely explained by orientation effects. Through analytical radiation models, they esti-
mated significant physical parameters in FSRQs and proposed an evolutionary sequence for blazars
based on the temporal evolution of the accretion rate. They suggested that FSRQs existed in the early
universe, and as time progressed, the accretion rate of the black hole decreased, leading to a reduc-
tion in the energy density of surrounding matter and external soft photon fields. This resulted in an
evolutionary sequence from FSRQs to LBLs to HBLs. They further proposed that the accretion rate
is directly proportional to the scattering optical depth of the BLR, using a single physical parameter,
radial Thomson depth τT,BLR, to describe the blazar sequence.

Ghisellini & Tavecchio (2008) systematically pointed out that the intrinsic physical reasons for
the blazar sequence are due to differences in accretion modes (accretion rates) and black hole masses
among different blazar subclasses. Based on observations, they assumed that the jet power is propor-
tional to the accretion rate, the distance of the jet dissipation region from the black hole is proportional
to the black hole mass, and the luminosity of the accretion disk cannot effectively ionize the broad-line
region below a certain threshold. This led to the ”theoretical blazar sequence”, explaining the blazar
sequence and two types of exceptions (red low-power FSRQs and blue high-power FSRQs). They also
predicted the existence of sources with high peak frequencies and high luminosities and sources with
low peak frequencies and low luminosities. Giommi et al. (2012) used Monte Carlo simulations to an-
alyze the effects of peak frequency position, host galaxy components, accretion modes, and beaming
effects on blazar emission line intensities. They concluded that the observed blazar sequence is due
to a selection effect caused by the absence of redshift constraints for most high peak frequency and
high luminosity sources. Subsequently, Padovani et al. (2012) identified four sources with high peak
frequencies and high luminosities using photometric redshift results. Meyer et al. (2012) proposed a
possible explanation for the blazar sequence based on the properties of blazar jet structures using a
radio-selected AGN sample. They suggested that the jets of BL Lacs might exhibit velocity gradients
and are decelerating, while the jets of FSRQs do not have velocity gradients and can be described by
a single Lorentz factor. Several observational evidences support the possibility of different Lorentz
factors for BL Lacs and FRIs, and the lack of γ-ray detections for FRIIs suggests that FRIIs/FSRQs
might not exhibit such jet properties. In addition to the selection effect caused by redshift, the blazar
sequence might also be a result of beaming effects. Nieppola et al. (2008) analyzed the correlation
between synchrotron peak frequency and luminosity after correcting for beaming effects and found
that they are no longer inversely correlated but have a certain positive correlation. Finke (2013) found
a correlation between Compton dominance and synchrotron peak frequency, supporting the blazar
sequence. After correcting for beaming effects, they found a positive correlation between intrinsic lu-
minosity and frequency. Therefore, they suggested that this inverse correlation is caused by beaming
effects or selection effects.

1.3.3 Multi-band Radiation Characteristics of Blazars

Radio band. Morphologically, based on the location where the radio radiation is mainly concentrated,
the radio band radiation is divided into core-dominant and lobe-dominant types. In addition, a small
number are in between the two. Most radio-loud AGNs have lobe-dominant radio radiation, and
the radio radiation is generally considered to have a power-law spectrum: νFν ∝ ν−α, where νFν
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Figure 1.9: Fossati et al. (1998) shows the synthetic SED of PKS 2155-304 showing the highest and
lowest simultaneous states of the night, as well as historical data (shown in gray). The hard X-ray
data (butterfly) corresponds to the RXTE-HEXTE spectrum of the high state in 1996. The right axis
provides the luminosity scale in erg/s. Highest state (blue triangles): T300-high spectrum scaled to the
highest VHE flux in the 4-minute light curve. Lowest state (red squares): T300-low spectrum, scaled
to the lowest VHE flux in the 4-minute light curve. The X-ray state during the corresponding period
is equal to the T300-Xmax and T400-Xmin spectra, so it is plotted here. The dashed line shows the
single-zone SSC fit of the multi-wavelength activity in 2003 (black circles).
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is the flux density and α is the spectral index (Perrone, 2023). In the standard model (Blandford
& Königl, 1979; Falcke & Biermann, 1995), the longitudinal pressure gradient theoretically leads
to a moderate acceleration along the jet. Previously, this acceleration was ignored, and the velocity
was initially proposed by Falcke (1995) to explain the inversion observed in the radio core of M81.
Proper acceleration increases the Lorentz factor in the low-frequency direction, so the distance from
the jet base increases, making the observed flux dimmer relative to the high-frequency direction. In
summary, considering the influence of the longitudinal pressure gradient, a more inverse spectrum can
be naturally explained. In addition, large-scale synchrotron radiation losses and adiabatic losses, as
well as external pressures that may limit jet expansion, may also play a role.

UV-Optical-Infrared band. The continuous spectrum of Blazars from UV to infrared can be
described by a power-law spectrum, with a spectral index between 0 and 1, and successfully explains
the BBB; however, unlike general AGNs, blazars generally do not show BBB. In addition, blazars also
have SBB, a dip at 1m, and an infrared “bump”. The infrared radiation of blazars has both thermal and
non-thermal origins (Sanders et al., 1989; Paltani et al., 1998). The thermal radiation origin theory
believes that it may be the outer accretion disk of the black hole that absorbs surrounding matter
and releases energy, but when fitting the spectrum with thermal radiation, the line of sight problem
should be considered; but for the non-thermal origin of infrared radiation, the fast variable non-thermal
radiation may come from synchrotron radiation inside the jet (Paltani et al., 1998). There is some
evidence supporting the non-thermal radiation of infrared radiation: first, the power-law spectrum,
which is considered to be a feature of non-thermal radiation; second, the absorption and emission
of dust particles; third, light changes, which are considered to be strong evidence of non-thermal
radiation origin; and finally, infrared radiation may be related to other radiation bands (such as hard
X-rays). Blazars and quasars have a common feature of light changes, but they are different. For
example, the light changes of quasars are small and have no periodicity, while some blazars can detect
quasi-periodicity.

X-ray band. Blazars are radio-loud sources that emit strong X-ray radiation. Generally speaking,
the X-ray radiation luminosity accounts for 5%-40% of the total thermal luminosity. Blazars have
core-dominant and lobe-dominant types of radio-loud sources. The radio-loud sources of the two
are different from X-ray radiation, of course, they are also different from radio-quiet quasars. Lobe-
dominant radio sources account for the majority, and only a few are core-dominant radio sources.
However, whether it is core-dominant or lobe-dominant sources, there are two points in common.
First, the X-ray spectrum can be regarded as a power spectrum; second, there is no bump in the X-ray
spectrum near 20KeV. X-rays can observe more violent light changes than other bands. Although
the changes in X-rays are the most violent compared to other bands, rapid light changes in the X-ray
band have not formed a stable period. In recent years, through the study of radio jets of radio-loud
quasars, a batch of X-ray jets with various morphologies has been detected (Schwartz et al., 2000;
Wilson et al., 2001; Marshall et al., 2001), indicating the complex structure of the jet, implying that
the X-ray radiation mechanism should be applied to different parts of the X-ray jet.
γ-ray band. For blazars, they are strong γ-ray sources, and most of the radiation energy is mainly

in the energy E¿100MeV band. A simple rate spectrum can be used to describe the γ-ray spectrum
of the γ-ray band, with an average photon spectral index of 2.2, and there will be no significant
difference between different subtypes; whether it is FSRQs or BL Lac objects, the gamma spectral
index is not related to redshift. In terms of light changes, the γ-ray flux changes frequently, and the
proportion of FSRQs is higher than that of BL Lac objects. In general, when the γ-ray flux increases,
the spectrum becomes flat, and no periodicity of γ-ray flux has been found so far. The radiation of
X-rays and high-energy γ-rays in blazars is very complicated, and many radiation mechanisms may
work together. Such as blackbody radiation, synchrotron radiation (Maraschi et al., 1992a; Bloom
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& Marscher, 1996a), inverse Compton scattering (Hardcastle et al., 2001), etc. The evolutionary
stage of blazars may determine which model dominates the radiation in the X-ray band: synchrotron
self-Compton (SSC) scattering or external Compton (EC) scattering. It is generally believed that for
FSRQs, the EC model dominates the radiation in the X-ray band; while for BL Lacs, the SSC model
dominates the radiation in the X-ray band.

Very High Energy γ-ray. Very High Energy (VHE) γ-rays, characterized by radiation energies
exceeding 100 GeV, serve as one of the most significant messengers from the non-thermal universe.
The primary impetus behind VHE γ-ray astronomy lies in the quest to identify the origins of high-
energy cosmic rays. The Crab Nebula was the first VHE source detected by the Imaging Atmospheric
Cherenkov Telescope (IACT) in 1989 (Weekes et al., 1989), marking a milestone in the field. Subse-
quently, an increasing number of VHE sources have been discovered across various celestial objects,
with AGN being a prominent category.

Predominantly, VHE γ-ray emissions have been observed from blazars and a minority of radio
galaxies. Notably, Mrk 421 was the first extragalactic VHE γ-ray source detected by IACT (Punch
et al., 1992). Since the initial detection of Mrk 421, numerous extragalactic sources have been iden-
tified in the TeV band (Punch et al., 1992; Abeysekara et al., 2017a). Utilizing the 10-meter Gran
Telescopio Canarias (GTC), Paiano et al. (2017) detected 22 objects in the constellation Scorpius, 15
of which were confirmed at TeV energy levels, with the remaining seven posited as TeV candidates.
Rapid variability on the scale of hours in the TeV band for 3C 279 was reported by Paliya et al.
(2015). Additionally, VHE γ-ray emissions from the flat-spectrum radio quasar PKS 1222+21 (4C
21.35, z=0.432) were detected by the MAGIC telescope (Aleksić et al., 2011; Zha et al., 2019).

In Ch. 6, this dissertation endeavors to identify further candidates of blazars emitting in the TeV
range, expanding upon the current compendium of VHE sources.

1.3.4 SED Characteristics of Blazars

Observations across the entire electromagnetic spectrum provide us with the SED of blazars. In
astronomy, multi-wavelength SEDs are typically represented in a logv-logvFv space. A logv-logvFv
plot can intuitively reflect the radiative flux of different bands and the relative flux between them.
The radiation from blazars primarily originates from non-thermal emission in the jet. Blazar multi-
wavelength SEDs exhibit a distinct double-peaked structure, as shown in Fig. 1.10. Meanwhile, blazar
SEDs are typically characterized by two well-separated bumps: a low-energy bump in the infrared
to soft X-ray range due to synchrotron emission, and a high-energy bump between hard X-ray to
γ-ray associated with inverse Compton (IC) radiation in the leptonic model (IC; e.g., Sikora et al.
1994a). The seed photons for IC scattering could either come from the same electron population that
produces the synchrotron bump in the self-Compton (SSC) model (Ghisellini et al., 1985; Maraschi
et al., 1992b; Bloom & Marscher, 1996b), e.g., 1ES 0347-121, 1ES 0229+200 (Costamante et al.,
2018; Aharonian et al., 2007b,c), or from external regions in the External Compton (EC) model, e.g.,
from the accretion disk (Dermer & Schlickeiser, 1993a), broad line region (Sikora et al., 1994b), and
dust torus (Błażejowski et al., 2000a). Alternatively, the hadronic process can also contribute to the
high-energy bump through high-energy cosmic rays via photohadronic reactions (Dimitrakoudis et al.,
2012; Tavecchio, 2014). Blazars are often observed to exhibit rapid and significant variability, with
minimum variability timescales ranging from minutes to days. During blazar flaring episodes, changes
might be observed across all spectral bands (Aharonian et al., 2009a). However, recent observations
have revealed that flares in certain blazars, such as 1ES 1959 + 650 (Aliu et al., 2014) and Mkn 421,
do not occur simultaneously across all bands but are restricted to specific ones. Fig. 1.10 presents the
multi-wavelength SEDs of 1ES 1959 + 650 in both quiescent and flaring states. While a significant
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outburst is observed in the VHE TeV γ-ray band for 1ES 1959 + 650, almost no variation is detected
in other bands (optical, X-ray). Such unique flares are termed “orphan TeV flares” and are typically
explained using the hadronic model.

Figure 1.10: Broadband SED of 1ES 1959+650 with data from MJD 56064 (black) and MJD 56067
(red). The VHE spectrum for the low state is represented by the average spectrum measured over the
two dark runs, excluding the state on MJD 56067. These data are explored with an SSC representation,
where the black line corresponds to the low state and the red dashed and dotted lines correspond to
the high γ-ray state observed on MJD 56067 (Aliu et al., 2014).

1.3.5 Radiative Models of Blazars

The high apparent thermal luminosity, rapid variability, and superluminal motion provide credible
evidence for the existence of relativistic jets. The radiative models for blazars generally assume
that the radiation is produced in a roughly spherical region. This region propagates along the jet
with a speed of βT c, corresponding to a bulk Lorentz factor of Γ = 1/

√
1 − β2. If the jet forms an

angle θ with the line of sight, it will undergo Doppler boosting, with the Doppler factor given by
δD = [Γ(1 − βT cos θ)]−1. Doppler boosting and cosmological effects will influence the observed
properties, mainly reflected in the following aspects, where primed quantities refer to the comoving
frame and unprimed quantities refer to the observer’s frame: (1) Flux enhancement, Fobs

νobs
= δ3DF′ν′ .

(2) Frequency blue-shift, νobs = δDν
′/(1 + z). (3) Time variability shortening, tobs

var = t′var(1 + z)/δD.
Apart from the relativistic boosting effects and cosmological effects mentioned above, the mech-

anism responsible for the low-energy peak of the blazar spectrum is generally believed to be syn-
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chrotron radiation from relativistic electrons in a magnetic field. As for the γ-rays, their production
mechanism remains a topic of debate. Current research on their radiative mechanism is mainly divided
into two categories: leptonic models, which mainly involve inverse Compton scattering by relativistic
electrons in the jet (the soft photons could either be from the jet’s synchrotron radiation, from external
regions, or cosmic microwave background photons), and hadronic models, which involve interactions
between high-energy relativistic protons in the jet and external soft photons, leading to the production
of secondary electron-positron pairs and low-energy gamma-rays. The secondary pairs can then un-
dergo inverse Compton scattering or synchrotron radiation. Proton synchrotron radiation could also
be a source of high-energy gamma-rays. Böttcher (2000) and Rachen (2000) provide overviews of
these two models. Additionally, Böttcher et al. (2013) introduced a hybrid leptonic-hadronic model
to explain the VHE spectra of TeV blazars. Below, we briefly introduce the leptonic and hadronic
models (see Fig. 1.11).

Figure 1.11: Schematic representation of the primary hadronic and leptonic radiative processes in the
emission region (Mastichiadis, 2016).

Leptonic Model

In scenarios where protons are not accelerated to sufficiently high energies to reach the threshold
energy for p-γ interactions to produce π mesons, high-energy radiation is dominated by Comp-
ton scattering of relativistic electrons. The leptonic model posits that the low-energy component
of blazars’ SEDs arises from synchrotron radiation of relativistic electrons, while the high-energy
component is due to inverse Compton scattering of relativistic electrons with soft photons. These
soft photons can either be synchrotron photons from within the jet, i.e., the SSC model (Bloom &
Marscher, 1996a; Maraschi et al., 1992a; Zhang et al., 2012a), or external photons, i.e., the EC model
(Georganopoulos et al., 2002). The external soft photon field could be radiation from the accretion
disk (Dermer & Schlickeiser, 1993b), radiation scattered from the broad-line region (Sikora et al.,
1994c), near-infrared radiation from the dust torus, or synchrotron radiation from other radiative zones
(Błażejowski et al., 2000b). Both internal and external γ-γ absorption can modify the observed ra-
diation spectrum. Internal γ-γ absorption can lead to the injection of new electron-positron pairs.
In a self-consistent blazar leptonic model, synchrotron self-absorption must also be considered. The
standard SSC model successfully explains the SEDs of most HBLs. However, it does not adequately
explain the SEDs of FSRQs and ISP BL Lacs, which typically have dominant γ-ray emission. SSC
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model fits suggest that the energy densities of electrons and magnetic fields are far from equiparti-
tion. To address this, a separate high-energy component has been introduced to explain the γ-ray
emission of FSRQs. The EC model has more free parameters than the SSC model, and the γ-ray
emission of FSRQs may be contributed by multiple EC components. However, the strength of each
EC component depends on the distance of the radiative zone from the central black hole. Since the
location of the γ-ray emitting zone in FSRQs is still uncertain, the physical parameters in the FSRQ jet
are not well-constrained. To better constrain the physical parameters in the FSRQ jet, Dermer et al.
(2014) proposed fitting FSRQs’ SEDs using an equipartition approach. Fits to FSRQs’ SEDs sug-
gest that they are generally close to equipartition, while BL Lacs deviate slightly from equipartition
(Ue/UB ∼ 10 − 100). The equipartition approach may explain the blazar sequence.

Steady-state leptonic models typically assume a known electron spectrum, either a power-law or a
broken power-law. Based on this assumption, leptonic models can fit most blazars’ SEDs well (Ghis-
ellini et al., 2010). However, this approach lacks a self-consistent treatment of the electron spectrum.
A more realistic approach considers the temporal evolution of the electron spectrum, including a self-
consistent treatment of particle injection, acceleration, cooling, and escape. To explain the SEDs and
variability patterns of blazars, it is essential to solve the time-dependent electron dynamics and radia-
tive transfer problems. Time-dependent Synchrotron Self-Compton (SSC) models have successfully
explained many blazars’ SEDs and variability patterns (Kataoka et al., 2000; Li & Kusunose, 2000;
Mastichiadis & Kirk, 1997; Sokolov et al., 2004). External radiation fields have also been included
in this manner (Böttcher & Dermer, 2002; Sikora et al., 2001; Sokolov & Marscher, 2005). Homoge-
neous leptonic models explain many blazars’ SEDs and correlate multi-wavelength variability well.
However, some new observational results challenge the homogeneous leptonic model, prompting the
development of inhomogeneous leptonic models. For example, in HBL 1ES1959+650 (Krawczynski
et al., 2004) and MrK 412 (Błażejowski et al., 2005), X-ray and γ-ray emissions are uncorrelated.
In PKS 2155304, X-rays and TeV γ-rays are correlated, but optical and X-rays are not, along with
minute-scale γ-ray variability (Costamante, 2008). To overcome these challenges, several inhomoge-
neous leptonic models have been proposed, including the spine-sheath model (Ghisellini et al., 2005),
the jet deceleration model (Georganopoulos & Kazanas, 2003), the internal shock scenario (Böttcher
& Dermer, 2010; Joshi & Böttcher, 2011; Spada et al., 2001), and the turbulent multi-zone model
(Marscher, 2014).

Hadronic Model

The hadronic model can be divided into proton-proton (p-p) interactions and proton-photon (p-γ)
interactions. If protons are accelerated to extremely high energies to reach the threshold energy for p-
γ or p-p interactions to produce π mesons, high-energy protons will interact with surrounding matter
or background photons to produce high-energy gamma-rays. The core idea of the hadronic model
is that high-energy gamma-rays are produced by proton-induced cascades. The p-p interaction has
been used to explain the high-energy radiation of blazars. In this model, it is generally assumed
that high-energy protons interact with clouds in the broad-line region to produce π0, which decays
to produce the observed gamma-rays. The p-p interaction generally requires a relatively high neutral
hydrogen number density (nH > 1011cm−3). However, such a high number density is challenging
to achieve in the environment of blazars. Therefore, in the environment of blazars, the efficiency
of the p-p interaction will be much lower than that of the p-γ interaction, with the p-γ interaction
being dominant. For BL Lacs, since there is no strong external photon field around them, high-energy
protons mainly interact with synchrotron radiation photons. For FSRQs, which typically have a strong
external photon field around them, high-energy protons can interact with both synchrotron radiation
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photons within the jet and external soft photons to produce high-energy gamma-rays. The hadronic
model generally believes that the low-energy component of the SEDs still comes from the primary
electron synchrotron radiation, while the high-energy component comes from proton synchrotron
radiation, photons from π0 decay, and synchrotron and inverse Compton radiation from secondary
particles. To accelerate protons to extremely high energies, the hadronic model generally requires a
relatively high magnetic field, ranging from several tens to hundreds of Gauss.

1. Proton Synchrotron Model (SPB): Shock waves accelerate both electrons and protons simulta-
neously. The low-energy component of the SEDs is produced by primary electron synchrotron
radiation, while the high-energy component is produced by proton synchrotron radiation. The
SPB model requires a relatively high magnetic field, ranging from several tens to hundreds of
Gauss, to accelerate protons to extremely high energies. The SPB model can explain the SEDs
of some blazars, especially those with a dominant high-energy component. However, the SPB
model requires a relatively high magnetic field, which is difficult to achieve in the environment
of blazars. Therefore, the SPB model is not widely accepted.

2. Proton-Photon Model (PPB): The PPB model posits that high-energy protons interact with
background photons to produce π0, which decays to produce the observed gamma-rays. The
PPB model can explain the SEDs of some blazars, especially those with a dominant high-energy
component. However, the PPB model requires a relatively high neutral hydrogen number den-
sity (nHH > 1011cm−3), which is difficult to achieve in the environment of blazars. Therefore,
the PPB model is not widely accepted.

3. Proton-Photon Model (PGB): The PGB model posits that high-energy protons interact with
background photons to produce π0, which decays to produce the observed gamma-rays. The
PGB model can explain the SEDs of some blazars, especially those with a dominant high-energy
component. However, the PGB model requires a relatively high neutral hydrogen number den-
sity (nHH > 1011cm−3), which is difficult to achieve in the environment of blazars. Therefore,
the PGB model is not widely accepted. 4. Proton-Induced Cascade Cluster Radiation Model
(PIC): Since the p-p interaction does not need to be considered, the PIC model mainly in-
volves the p-γ interaction. The gyroradius of the proton is RL = 3.3 × 1015B−1

1 E19cm, where
B10 = 10B1G and E19 = 1019E1eV. The light variation time scale indicates that the typical
scale of the radiation zone is Rb ≤ 1016cm. The condition RL < Rb indicates that the maximum
energy that protons can be accelerated to is Emax

p ≥ 1019eV. When the energy of the proton
reaches the threshold energy for π meson production through the p-γ interaction, the proton-
induced cascade process will begin. The processes of πmeson production in the p-γ interaction
are:

p + γ → p + π0 (1.2)

p + γ → n + π+ (1.3)

The decay processes of the π meson are:

π+ → µ+ + νµ, (1.4)

µ+ → e+ + νe + ν̄µ, (1.5)

π0 → 2γ, (1.6)

π0 → 3γ (less common). (1.7)
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Lepto-Hadronic Model

The lepto-hadronic model is a combination of the leptonic and hadronic models. In this model, both
electrons and protons are accelerated to relativistic energies, and both contribute to the observed ra-
diation. The lepto-hadronic model can explain the SEDs of some blazars, especially those with a
dominant high-energy component. However, the lepto-hadronic model requires a relatively high mag-
netic field, which is difficult to achieve in the environment of blazars. Therefore, the lepto-hadronic
model is not widely accepted.

The pathways leading to the production of high-energy γ-rays have been subject to various in-
terpretations by different authors. One perspective, exemplified by Cao & Wang (2014), posits that
the origin of high-energy γ-rays can be attributed to the synchrotron self-Compton (SSC) mechanism
involving electrons, as well as directly from the decay of π mesons into secondary gamma photons.
Another hypothesis, proposed by Cerruti et al. (2015a), suggests that all particles resulting from the
decay of π mesons contribute to the radiation in the emission region.

A further viewpoint considers that some high-energy photons may originate from high-energy
protons escaping the emission region and interacting with the cosmic microwave background (CMB)
photons through p-γ interactions. This initiates a new cascade of gamma photons, which may per-
sist or be considered only for the first-generation secondary electrons that undergo inverse Compton
scattering with CMB photons (Yan & Zhang, 2015; Zheng et al., 2016).

The hadronic processes imply that blazars could be sources of neutrino emissions. On Septem-
ber 22, 2017, the IceCube Neutrino Observatory detected for the first time a high-confidence ( 3σ)
neutrino event associated with the flaring activity of the blazar TXS 0506+056 in both time and
space across multiple wavelengths (IceCube Collaboration et al., 2018c). This finding substantiates
the role of blazars as one of the primary extragalactic sources of high-energy neutrinos. Ch. 7 of
this dissertation will discuss in detail the methodologies employed to identify additional potential
neutrino-emitting blazars.

1.3.6 Jet of Blazars

Blazars are a distinct subclass of AGN characterized by jets with extreme relativistic velocities. These
jets, with small opening angles, are oriented either directly or nearly directly towards the observer.
Due to the relativistic beaming effect, the radiation from the jet is significantly amplified, dominating
the overall emission. The jet’s luminosity often surpasses the luminosity of the entire host galaxy, with
velocities sometimes exceeding 0.999c. Consequently, observations and studies of blazars provide
valuable insights into the characteristics of these jets.

Particle Acceleration Mechanisms in Jets

As relativistic shock waves traverse the jet, they accelerate particles within. Depending on the orien-
tation of the background magnetic field concerning the shock normal, these shocks can be classified
as parallel or oblique. Particles can be accelerated through two primary Fermi acceleration mecha-
nisms. The first-order Fermi acceleration mechanism posits that particles gain energy by repeatedly
crossing the shock front between the downstream and upstream regions of the shock. The energy
gain is proportional to the particle’s velocity, i.e., ∆E/E ∝ u/c. The second-order Fermi acceleration
mechanism, a stochastic process associated with plasma turbulence, suggests that particles gain en-
ergy through reflections by moving magnetic mirrors. The energy gain in this case is proportional to
the square of the mirror’s velocity, i.e., ∆E/E ∝ (u/c)2. Relativistic parallel shocks produce a power-
law injection spectrum N(γ) ∝ γ−q with an injection index q ≈ 2.2 − 2.3 (Achterberg et al., 2001).
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Oblique shocks yield a softer spectral index q > 2.3 (Ostrowski & Bednarz, 2002). The second-order
Fermi acceleration might produce a harder spectral index, q ≈ 1 or slightly greater (Virtanen & Vainio,
2005). The spectral indices q adopted in fitting blazar SEDs and light curves may reveal the dominant
acceleration mechanism within the blazar jet.

Direct X-ray and high-energy γ-ray observations indicate that particles within blazar jets can be
accelerated to very high energies. However, the location of particle injection into the radiation zone
and the subsequent acceleration mechanisms remain elusive. Several theories regarding particle injec-
tion/acceleration have been proposed, including impulsive injection near the base of the jet (Dermer
& Schlickeiser, 1993b; Dermer et al., 1997), isolated shocks propagating along the jet (Kirk et al.,
1998; Marscher & Gear, 1985; Sikora et al., 2001; Sokolov et al., 2004), internal shocks produced by
collisions between multi-shell materials within the jet (Spada et al., 2001; Böttcher & Dermer, 2010;
Joshi & Böttcher, 2011), random acceleration in relativistic shear layers (Rieger & Duffy, 2004), and
magnetic reconnection in Poynting-flux dominated jets (Sikora et al., 2005).

Observations of Jets

The morphology of AGN jets varies across different observational wavelengths, as illustrated in Fig.
1.12. Structurally, jets comprise distinct features such as a bright core, jet body, lobes, and hot spots.
Some jets, as depicted in Fig. 1.13, also exhibit distinct knots or nodes in radio observations. While
jets are generally considered to be highly collimated, recent studies suggest the presence of a pro-
nounced conical structure (Kishimoto et al., 2022). Additionally, some research indicates that jets
may possess a parabolic structure (Nokhrina et al., 2022).

Figure 1.12: The renowned jet of quasar 3C 273 is depicted through multi-wavelength observations:
(a) the radio frequency image at 1.6 GHz sourced from the MERLIN archive; (b) the optical rep-
resentation captured by the Hubble Space Telescope at a wavelength of 6000 Å; and (c) the X-ray
visualization derived from a series of observations by the Chandra X-ray Observatory, processed to
highlight the energy range of 0.3–6 keV and subsequently subjected to minor smoothing for clarity
(Boettcher et al., 2012).
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Figure 1.13: Lobe and knot of Cygnus A. Figure courtesy of http://www.cv.nrao.edu/ abri-
dle/images/knot.pdf.

Superluminal Motion in Jets

Radio VLBI observations have revealed that the structure of radio jets is not continuous but consists of
multiple sub-sources or knots. These sub-sources are not stationary but exhibit motion. By comparing
the distances between various knots and their propagation times in jet images taken at different epochs,
some jets exhibit apparent superluminal motion, a visual illusion caused by special relativistic effects.
Using radio spectra taken at different times, the angular displacement ∆θ of a sub-source can be
calculated. Knowing the distance d, the angular distance can be converted to a linear distance: ∆θ =
d∆θ. Given the observational time interval ∆ta, the apparent velocity is: vapp = d∆θ/∆ta. For some
AGN, this velocity exceeds the speed of light c, manifesting as superluminal motion. Fig. 1.14
provides a schematic representation explaining superluminal motion. This topic will be discussed in
detail in Ch. 5.

http://www.cv.nrao.edu/~abridle/images/knot.pdf
http://www.cv.nrao.edu/~abridle/images/knot.pdf
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Figure 1.14: Schematic representation of superluminal motion (Ghisellini, 2013). A sub-source moves
at a speed of βc. In the comoving frame, it moves from point A to point B in time∆te, emitting photons.
The time interval between photon receptions at point D is ∆ta = ∆te/δ.
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Figure 1.15: Multi-epoch KaVA 22 GHz images of the M87 jet. All images are convolved with a 1
mas circular beam. The green line represents a constant velocity at the speed of light (Hada, 2017).



Chapter 2

Fermi telescope and Fermi source catalogs

2.1 Historical Context and Genesis of the Fermi Mission

• Overview of the Fermi γ-ray Space Telescope. The Fermi γ-ray Space Telescope (FGST1),
formerly the γ-ray Large Area Space Telescope (GLAST), is a premier observatory for γ-ray
astronomy. Launched on June 11, 2008, Fermi has been surveying the sky in γ-rays, which are
the most energetic form of light. The telescope’s observations cover an energy range from 8 keV
to over 300 GeV, revealing a universe that is vastly different from the one visible to the naked
eye. The Large Area Telescope, its primary instrument, has been instrumental in advancing our
understanding of cosmic phenomena, from the behavior of supermassive black holes in active
galaxies to the origins of cosmic rays and the properties of dark matter (Atwood et al., 2009a;
Ajello et al., 2020; Abdo et al., 2009; Ackermann et al., 2015b). Fig. 2.1 shows the γ-ray sky
seen by FGRST

• Historical context of the Fermi mission. The Fermi mission, named after the renowned physi-
cist Enrico Fermi, is a collaborative effort involving NASA, the United States Department of
Energy, and international partners. It follows in the footsteps of previous γ-ray observatories,
offering unprecedented sensitivity and resolution. The mission’s scientific objectives are broad,
encompassing the study of particle acceleration mechanisms, the resolution of the γ-ray sky,
and the exploration of fundamental physics questions (Atwood et al., 2009a; Abdo et al., 2009;
Ackermann et al., 2015b; Carr et al., 2010). Fermi’s Large Area Telescope (LAT) has provided
critical data on blazars, γ-ray bursts, and the Milky Way, contributing to a deeper understanding
of these complex phenomena (Ajello et al., 2020; Lott et al., 2020; Abdo et al., 2009; Berenji
& Siegal-Gaskins, 2014).

• Genesis of the Fermi mission. The Fermi telescope’s journey began with its assembly and
prelaunch activities at the Astrotech payload processing facility in Titusville, Florida2. After
a successful launch, Fermi entered a low-Earth orbit, ready to embark on its mission to map
the γ-ray sky. The mission has not been without its challenges, including a close encounter
with space debris, but through careful management and software upgrades, such as the Pass 8
data analysis enhancement3, Fermi has continued to operate effectively. Its ongoing mission
promises to further our understanding of the high-energy universe, with the potential for new

1https://fgst.slac.stanford.edu/
2https://www3.nasa.gov/centers/kennedy/news/releases/2008/release-20080304.html
3https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_usage.html
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https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_usage.html
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Figure 2.1: The γ-ray sky in the view of FGRST beyond 1 GeV within 12 years. Figure courtesy of
https://space.mit.edu/HETG/Reports/HETG Report SciJun02.html.

and unexpected discoveries (Acero et al., 2015; Ajello et al., 2017; Ajello et al., 2020; Lott et al.,
2020; Abdollahi et al., 2020; Ballet et al., 2020; Abdollahi et al., 2022; Ballet et al., 2023).

2.2 Fermi instruments

The FGST is equipped with a pair of scientific instruments: the Large Area Telescope (LAT, Atwood
et al. 2009a), to perform a comprehensive survey of the entire sky in high-energy γ-rays, studying a
wide range of cosmic phenomena, from black holes to dark matter. and the Gamma-ray Burst Monitor
(GBM, Meegan et al. 2009), to detect and analyze γ-ray bursts and other transient events, providing
rapid notifications and detailed observations of these fleeting high-energy occurrences. Fig. 2.2 is a
schematic diagram of Fermi-LAT and Fermi-GRB.

2.2.1 Fermi-LAT

The Fermi-LAT is the principal scientific instrument on the FGST, which was launched into orbit on
June 11, 2008. As a powerful γ-ray observatory, the LAT’s mission is to survey the high-energy sky,
mapping and studying γ-ray sources, which include not only γ-ray bursts but also other phenomena
such as active galactic nuclei, pulsars, and diffuse γ-ray emissions.

• Specific requirements.

1. Due to the presence of numerous variable sources of γ-rays radiation in the cosmos, LAT
must have a large field of view, exceeding 2 square degrees (approximately one-fifth of
the entire sky).

2. To precisely identify and study sources, LAT must be capable of measuring the positions
of sources within 1 arcminute (approximately 1/30th the diameter of the full moon).

https://fermi.gsfc.nasa.gov/ssc/Fermi_5_year.pdf
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Figure 2.2: The FGST and its two instruments. The LAT images the sky in the energy band from
about 20 MeV to more than 300 GeV while the GBM complements the LAT for the study of GRBs
and transients, providing spectral coverage from 8 keV to about 40 MeV (Michelson et al., 2010).
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3. The study of gamma rays spans a wide energy range; therefore, LAT’s energy coverage
must extend from 8 keV to 300 GeV. Additionally, LAT’s sensitivity will extend beyond
10 GeV, as very little is known about cosmic objects at these energies.

4. γ-ray bursts (GRBs) can release a significant amount of gamma rays within fractions of a
second. Consequently, LAT must be able to measure γ-rays emissions within short time
intervals.

• Instrumentation and Capabilities. The Fermi-LAT is a marvel of modern astrophysics instru-
mentation, featuring a modular design of a 4 × 4 array of identical towers. Each tower measures
40 × 40 cm2 and is a composite of a tracker, a calorimeter, and a data acquisition module. The
tracker, consisting of 18 xy layers of silicon strip detectors, boasts a long and successful history
in high-energy physics experiments. It achieves high detection efficiency (¿ 99%), exceptional
position resolution ( < 60 µm), a strong signal-to-noise ratio (> 20:1), minimal cross-talk, and
efficient triggering and readout processes without the need for consumables.

The calorimeter, integral to each tower, comprises eight layers of cesium iodide (CsI) bars ar-
ranged hodoscopically and read out by photodiodes, amounting to a total thickness of 10 radia-
tion lengths. This hodoscopic configuration allows for the three-dimensional reconstruction of
particle showers, aiding in energy leakage correction and enhancing the discrimination against
hadronic cosmic rays. The anticoincidence shield, enveloping the array of towers, utilizes seg-
mented scintillator tiles read out by wavelength-shifting fibers and miniature phototubes, ensur-
ing that the LAT is sensitive primarily to γ-rays and not charged particles.

The Fermi-LAT instrument comprises three main subsystems (see Fig. 2.3): the Anti-coincidence
Detector (ACD), the Tracker (TKR), and the Calorimeter (CAL). Additionally, it is equipped
with a Data Acquisition System (DAQ) for data collection and processing.

1. Anti-coincidence Detector. The Anti-coincidence Detector (ACD) serves as the first line
of defense against cosmic-ray-induced false events in the LAT (Moiseev et al., 2007). Its
primary purpose is to tag incoming particles before they enter the telescope. The ACD
consists of 89 plastic scintillator tiles, each 1 cm thick, which produce flashes of light
when charged cosmic-ray particles (but not electrically neutral gamma rays) strike them.
This allows the LAT to distinguish between charged cosmic rays and passing gamma rays.
The ACD is segmented into different sizes as it approaches the calorimeter, with the top
surface composed of a 5x5 array of 32 cm x 32 cm plastic scintillator tiles. The side
sections include 4x4 arrays of scintillator tiles, with the third row reducing to 15 cm x 32
cm, and the bottom row consisting of a single large tile measuring 170 cm x 170 cm. Each
scintillator tile is read out by two photomultiplier tubes (PMTs) located at the bottom of
the ACD, providing high detection efficiency for gamma rays (0.9997).

2. Tracker. The Tracker (TKR) plays a crucial role in determining the direction of γ-ray
photons and accurately measuring the paths of electrons and positrons produced by initial
γ-ray interactions (Belli et al., 2007). It consists of 18 x, y planes (a total of 36 layers) of
silicon-strip tracking detectors (SSDs), with the first 16 layers interleaved with tungsten
converter foils. The TKR is physically divided into 19 trays, with the top and bottom
trays containing parallel SSD layers in the y-direction. The middle 17 trays consist of
two parallel SSD planes, alternating vertically between trays, providing x and y position
measurements for particles traversing the detector. The top 12 trays (front section) con-
tain thin tungsten converter foils located just above the uppermost detector layers, with
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a thickness of 0.035 X0 (radiation lengths). The back 4 trays consist of thicker tungsten
converter foils (0.18 X0), and the bottom 3 trays do not contain any converter material.
Under normal incidence, the detector’s total depth is 1.5 X0, allowing for the detection of
electromagnetic particles cascading through.

3. Calorimeter. The Calorimeter (CAL) measures the energy of gamma photons and is de-
signed to provide precise energy measurements and reject cosmic rays, which deposit
energy differently from gamma rays. The calorimeter consists of 8 layers of thallium-
doped cesium iodide (CsI) crystals (Moskalenko et al., 2007). Each crystal is optically
isolated and read out at both ends by two PIN photomultiplier tubes (PMTs), generating
fluorescence. The 8 layers of crystals in CAL are aligned alternately in the x and y di-
rections, forming a star-shaped array. The calorimeter has a depth of 8.6 X0 for vertically
incident particles, allowing it to capture γ-ray energies up to 1 TeV. CAL provides three
spatial coordinates: the x and y coordinates of the crystal and the position of the photon
crossing the crystal axis. The latter is determined by measuring the intensity ratio of light
received at both ends of the crystal using two PMTs with significantly different gains, en-
abling position measurements accurate to less than a millimeter for gamma photons with
energies exceeding 1 GeV. The LAT instrument consists of a total of 1536 crystals, with
each module measuring 1080 cm in its active range. CAL achieves an energy resolution
of less than 10% at 10 GeV and less than 6% at 300 GeV.

4. Data Acquisition System. The Data Acquisition System (DAQ) is the central nervous sys-
tem behind LAT and includes the Global-trigger/ACD-module/Signal-distribution Unit
(GASU), the Global Trigger Module (GTM), the Event Builder Module (EBM), and the
Command Response Unit (CRU). The Tower Electronics Module (TEM) facilitates trig-
gering and data readout for each module in the Tracker and Calorimeter. Two primary
Event Processing Units (EPUs) and one primary Spacecraft Interface Unit (SIU) handle
data collection from the Tracker, Calorimeter, and Anti-coincidence Detector, providing
preliminary discrimination between unwanted signals from cosmic rays and genuine γ-ray
signals to determine which signals should be transmitted to the ground. The DAQ system
is composed of dedicated electronics and microprocessors.

The Fermi LAT instrument operates cohesively, utilizing these subsystems and the DAQ system
to capture high-energy γ-ray events, enabling the exploration of the high-energy universe.

• Scientific Objectives. Gamma-ray Source Cataloging. It aims to create a comprehensive cata-
log of γ-ray sources, contributing to our understanding of the high-energy universe.

Dark Matter Research. The LAT searches for indirect signals of dark matter, which could be
revealed through excess γ-rays from annihilations or decays of dark matter particles.

Fundamental Physics. It tests models of fundamental physics, including searches for violations
of Lorentz invariance or changes in the nature of space-time at small scales.

Transient Phenomena. The LAT monitors the sky for transient events, such as γ-ray bursts and
flares from blazars, providing crucial data for multi-wavelength and multi-messenger astron-
omy.

• Operational Aspects. The LAT operates autonomously, with events causing detector hits in
three planes automatically triggering readouts of each tower and the anticoincidence system.
Data analysis is a complex process involving the calibration of detectors, signal extraction, and
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Figure 2.3: Schematic representation of the LAT instrument’s cross-section, illus-
trating the annihilation of incident photons into e+ and e−. Figure courtesy of
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone Introduction/LAT overview.html.

interpretation of the results. The LAT team collaborates with other missions and observatories
for coordinated observations and has been instrumental in numerous discoveries and advance-
ments in the field of high-energy astrophysics.

The LAT’s design and capabilities have been validated through detailed computer simulations and
tests with prototype towers at particle accelerators. Its data and the resulting scientific insights have
significantly advanced our understanding of the γ-ray sky, providing an unprecedented view of the
energetic universe.

2.2.2 Fermi-GRB

The Fermi-GBM is a pivotal instrument aboard the Fermi Gamma-ray Space Telescope, to observe the
cosmos in γ-rays light. The GBM’s primary role is to work in concert with the Large Area Telescope
(LAT) to detect and analyze γ-rays bursts (GRBs)—the universe’s most luminous and energetic events
that occur during cataclysmic occurrences such as the collapse of massive stars or the collision of
dense objects like neutron stars or black holes.

• Specific requirements.

1. GRBs emanate from arbitrary directions in the sky; thus, GBM must observe the entire
sky as much as possible at all times.

2. To gather more information about GRBs, GBM should be capable of measuring photon
energies over a wide range, from as low as 8 keV to energies overlapping with LAT’s
range.

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/LAT_overview.html
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3. Since the durations of GRBs can vary from microseconds to several thousand seconds,
GBM must be able to detect GRBs over a broad time range.

• Instrumentation and Capabilities. The GBM’s detection suite includes 12 Sodium Iodide
(NaI) scintillation detectors and 2 Bismuth Germanate Oxide (BGO) scintillation detectors. The
NaI detectors are attuned to γ-rays in the lower energy spectrum, ranging from about 8 keV to 1
MeV, providing burst triggers and localization. The BGO detectors extend the energy coverage
from approximately 150 keV to 30 MeV. This arrangement not only ensures a seamless overlap
between the NaI and BGO detectors but also with the LAT for higher energy γ-rays. The
GBM’s detectors are strategically mounted to avoid obstructing the LAT’s field of view or the
spacecraft’s solar panels, fitting snugly between the LAT and the spacecraft’s shroud envelope.
The BGO detectors are placed on opposite sides of the spacecraft, while the NaI detectors
are arranged in four banks of three, allowing for comprehensive coverage of various azimuth
and elevation angles. This configuration mirrors the capabilities of the BATSE large area and
spectroscopy detectors but with an expanded energy range and a more compact collection area.

• Scientific Objectives. GRB Detection. Its foremost objective is to detect GRBs and ascertain
their characteristics, such as duration, spectrum, and temporal profile.

Transient Events. The GBM is also vigilant for other transient occurrences, including solar
flares, terrestrial γ-rays flashes, and magnetar bursts.

GRB Alerts. It provides real-time alerts for GRBs, facilitating immediate multi-wavelength
follow-up observations that are crucial for understanding the bursts’ progenitors and physics.

Cross-Correlation. In synergy with the Fermi-LAT, the GBM enables cross-correlation of low-
energy and high-energy γ-rays observations, offering a comprehensive view of GRBs and other
transient high-energy phenomena.

Operational Aspects. The GBM’s operational framework involves meticulous data analysis,
where the team calibrates the detectors, extracts γ-rays signals, and interprets the findings within
the ambit of theoretical models. Collaboration is a cornerstone of the GBM’s operation, as it
partners with various missions and observatories for swift response and extensive monitoring.
This collaborative approach is vital for multi-messenger astronomy, allowing for an integrated
study of GRBs across the electromagnetic spectrum and, potentially, alongside gravitational
wave and neutrino observations.

Through its sophisticated instrumentation and strategic design, the GBM has significantly pro-
pelled our comprehension of GRBs, unveiling novel burst attributes and deepening our insight into
the extreme physical processes that unfold during these explosive events.

2.3 Fermi Data Processing

2.3.1 Instrument Response Functions

On August 4, 2008, the Fermi-LAT began its scientific operations. Approximately one year later,
LAT data became publicly available through the Fermi Science Support Center (FSSC). The standard
astronomical data analysis relies on a set of specialized scientific analysis tools developed, maintained,
and made publicly accessible by the LAT team and FSSC, collectively referred to as ScienceTools.
One critical component of these tools is the Instrument Response Functions (IRFs). The performance
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of the detector is described using IRFs, which are influenced by factors such as the energy of incident
photons, the incident angle, and the location of electron-positron pair conversion.

The LAT team interprets three key aspects of IRFs:

1. Effective area, Aeff(s, E, v̂). This represents the probability of γ-ray conversion in a given set
cross-sectional area for a given event selection s, photon energy E, and velocity direction v̂.

2. Point Spread Function (PSF), P(v̂′; E, v̂, s). It denotes the probability density of reconstructing
the velocity direction for a given event selection.

3. Energy dispersion, D(E′; E, v, s). This indicates the probability density of measuring energy
for a given event selection.

Instrument Response Functions are used in maximum likelihood analysis to predict the observed
γ-ray spectrum M(E′, P̂′, s) based on the infrared spectra:$

S (E, p̂′) Aeff(E, v̂(t, p̂), s) P(v̂′(t, p̂), s) E(v̂(t, p̂), s) dE dt dΩ (2.1)

The integration range includes the required time range for analysis, the solid angle in the LAT
reference frame, and the energy range of LAT. It’s important to note that IRFs can significantly vary
within the LAT’s Field of View (FOV).

2.3.2 Data Analysis Versions

Throughout Fermi-LAT’s mission, as our understanding of LAT’s performance and its in-orbit envi-
ronment improved, the analysis software for γ-ray events has undergone several updates. There have
been four major versions (Passes) of LAT’s database: Pass 6, Pass 7, Pass 7 Reprocessed, and Pass 8.
These updates primarily focused on reducing systematic errors in the IRFs. The latest Pass 8 version
represents a comprehensive correction to the entire data analysis chain, resulting in increased effec-
tive area, improved PSF, and reduced background contamination. Another significant parameter is the
observation time distribution in the LAT reference frame, closely related to exposure.

2.3.3 Effective Area Calculation

The effective area for a given energy and direction in the sky (E, P̂, s) is defined as the integral of the
instrument’s effective area over the entire time range of interest:

ϵ(E, p̂, s) =
∫

Aeff(E, v̂(t, p̂, s)) dt (2.2)

2.3.4 Event Reconstruction Versions (Passes)

Changes in event reconstruction or parameterization for event classes are referred to as ”Passes,” and
they correspond to improvements in the instrument’s response. For example, P7 SOURCE V6 refers
to the use of Pass 7 reconstruction for source-class data with version 6 of the response functions.
These version changes affect the instrument’s response functions but do not impact the basic data
reconstruction or event types.
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2.3.5 Evolution of Data Analysis

Since 2008, LAT data’s event reconstruction and the choice of instrument response functions have
undergone three versions: Pass 6 in 2008, Pass 7 in August 2011, and Pass 7 Reprocessed, which
improved the γ-ray Galactic diffuse model, IRFs, and direction reconstruction for energies exceeding
3 GeV. Subsequently, in June 2015, Pass 8 (Ackermann et al. 2016) was released. Pass 8 signif-
icantly improved LAT’s performance compared to Pass 7, including complete data reconstruction,
reduced γ-ray background, increased effective area, improved PSF, more accurate directional mea-
surements, and the ability to analyze data down to 60 MeV. However, in Pass 8 (version P8R2), only
the ULTRACLEANVETO event class is fully isotropic, meaning that there are no further concerns
about source-class anisotropy in LAT data reconstruction and selection. To address this issue, the
Fermi group reclassified all LAT data and produced a new Pass 8 version (P8R3 V3, Ackermann et al.
2015c; Bruel et al. 2018) with improvements in source acceptance and reduced background, particu-
larly with no significant isotropic background. These changes resulted in an improved PSF for γ-ray
point sources.

2.3.6 The Importance of IRFs

It’s crucial to emphasize that the correct interpretation of Fermi-LAT data relies heavily on a precise
knowledge of the instrument’s response to gamma rays. Any uncertainties or inaccuracies in the
IRFs can lead to systematic errors in the analysis. Therefore, the Fermi group continually refines and
updates the IRFs to improve the accuracy of data interpretation and the reliability of scientific results.

2.4 Fermi-LAT Gamma-Ray Source Catalogs

The Fermi-LAT has been a remarkable instrument in the field of γ-ray astronomy since its launch in
2008. One of its significant contributions to the scientific community is the creation of Fermi-LAT
catalogs, which systematically document and classify γ-ray sources detected by the telescope. These
catalogs have played a pivotal role in advancing our understanding of high-energy astrophysics, and
in this section, we will explore the evolution of these catalogs from the first 1FGL to the latest release,
4FGL-DR4.

The Fermi-LAT has been a remarkable instrument in the field of γ-ray astronomy since its launch
in 2008. One of its significant contributions to the scientific community is the creation of Fermi-LAT
catalogs, which systematically document and classify γ-ray sources detected by the telescope. These
catalogs have played a pivotal role in advancing our understanding of high-energy astrophysics, and
in this section, we will explore the evolution of these catalogs from the first to the latest release,
4FGL-DR4.

2.4.1 The First Fermi-LAT Source and AGN Catalog

1. The First Fermi-LAT Source Catalog (1FGL). The journey of Fermi-LAT catalogs began with
the 1FGL (Abdo et al., 2010c), which was released in 2010. This catalog marked a significant
milestone as it provided the first comprehensive list of γ-ray sources detected by Fermi-LAT.
The 1FGL catalog contained 1451 sources (see Fig. 2.4) in the energy range from 100 MeV to
100 GeV, including 685 blazar candidates. Each source was characterized by its position in the
sky, spectrum, and variability information. The 1FGL catalog was invaluable for researchers
as it identified a wide variety of γ-ray emitters, including AGN, pulsars, supernova remnants,
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and more. It allowed astronomers to systematically study these objects in the γ-ray regime,
providing a wealth of data for multi-wavelength and multi-messenger studies.

2. The First Fermi-LAT AGN Catalog (1LAC). Before the release of the 1LAC catalog, Abdo
et al. (2009) studied the first batch of bright AGNs detected by Fermi-LAT in the initial three
months of its survey (the LAT Bright AGN Sample, LABS), which included 58 FSRQs, 42 BL
Lacs, 2 radio galaxy nuclei, and 4 AGNs of unknown type. Thus, the first AGN catalog detected
by Fermi-LAT, the 1LAC, collected data over 11 months. However, 1LAC is also a subset of
1FGL. It comprises 671 γ-ray sources located at high Galactic latitudes (—b—¿10°), each with
a Test Statistic value greater than 25. Some LAT sources are associated with multiple AGNs,
so the actual catalog includes 709 AGNs, encompassing 300 BL Lac objects, 296 FSRQs, 41
AGNs of other types, and 72 AGNs of unknown type (as shown in Fig. ??). 1LAC provides
a detailed introduction to the 1LAC sample and summarizes its characteristics, including the
distribution of γ-ray flux, γ-ray photon spectral index, γ-ray variability, redshift distribution,
and γ-ray luminosity. It also describes the multi-wavelength properties of 1LAC AGNs from
radio to TeV energies. For more details, see Abdo et al. (2010a).

Figure 2.4: The clean sample’s source locations are depicted as follows: FSRQs are marked with red
circles, BL Lacs with blue circles, radio galaxies with magenta stars, and AGNs whose types are not
identified are indicated by green triangles. (Abdo et al., 2010a).

2.4.2 The Second Fermi-LAT Source and AGN Catalogs

1. The Second Fermi-LAT Source Catalog (2FGL). Nearly a year after the release of the first
clean sample (1LAC), Tosti et al. (2011); Nolan et al. (2012a) published the 2FGL data. The
2FGL data is based on the first 24 months of operations starting from August 4, 2008. A detailed
comparison between 2FGL and 1FGL is provided. The isotropic galactic diffuse model used in
the 2FGL analysis was improved compared to the 1FGL detection period. Based on the average
flux detected over the first 24 months, 2FGL includes 1873 sources detected or characterized in
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the 100 MeV to 100 GeV range, with 127 sources confirmed and the remaining 1170 associated
or correlated with known or potential γ-ray emitters. The catalog was updated in April 2012,
for more details see Nolan et al. (2012a).

2. The Second Fermi-LAT AGN Catalog (2LAC). Four months after the release of 2FGL, 2LAC
published a clean sample based on 2FGL data, including 886 AGNs, comprising 395 BL
Lacs, 310 FSRQs, 157 unclassified blazar candidates (i.e., with broadband blazar character-
istics but without observed optical spectral features), 8 misaligned AGNs, 4 narrow-line Seyfert
1s (NLS1s), 10 AGNs of other types, and 2 starburst galaxies (see Fig. 2.5). Almost all FSRQs
have a synchrotron peak frequency <1014 Hz, but about half of the BL Lacs have a synchrotron
peak frequency >1015 Hz. Compared to the 1LAC catalog, the number of associated sources in
2LAC increased by 52%. Therefore, a comprehensive description of the newly detected sources
will require more broadband data. The general trends observed in 1LAC were confirmed (Ack-
ermann et al., 2011).

Figure 2.5: The positions of sources in the 2LAC clean sample. Red circles: FSRQs; Blue circles:
BL Lac objects; Magenta circles: non-blazar AGNs; Green triangles: AGNs of unknown type (Ack-
ermann et al., 2011).

2.4.3 The Third Fermi-LAT Source and AGN Catalogs

1. The Third Fermi-Large Area Telescope Source Catalog (3FGL). The Fermi-LAT Collabo-
ration 2015 (Acero et al., 2015) first published the 3FGL catalog, later updating it in April and
June with two versions correcting the original. The 3FGL catalog includes 3033 sources with
detection confidence levels higher than 4σ, detailing each source’s location, spectral properties,
and variability curves. Over 1100 confirmed or associated sources are blazars, including several
other non-blazar AGN categories (Acero et al., 2015).

2. The Third Fermi-LAT AGN Catalog (3LAC). Ackermann et al. (2015a) introduced the third
generation Fermi-LAT source clean catalog (3LAC Clean Sample), based on observations from
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August 4, 2008, to July 31, 2012, in the 100 MeV to 300 GeV energy range with Test Statistic
(TS) data greater than 25. 3LAC includes 1591 AGNs at high Galactic latitudes (—b—¿10°),
a 71% increase over the second catalog based on two years of data. There are 28 sources with
multiple associations, and out of 2193 high-latitude γ-ray sources, 1563 are AGNs (see Fig.
2.6). Most of them (98%) are blazars. About half of the newly detected blazars are of unknown
type, lacking sufficient spectral information to determine their emission lines’ intensity. Based
on their γ-ray spectral characteristics, these sources are evenly divided into FSRQs and BL
Lacs. The most detected BL Lacs are of the high synchrotron peak (HSP) type. About 50%
of BL Lacs have no measured redshift. Some new rare extreme types (HSP FSRQs and high-
luminosity HSP BL Lacs) are recorded. The general properties of the 3LAC sample confirm
the findings of previous catalogs. The latest discovery is that even the faintest blazars listed
in the BZCAT blazar sample, covering flux distributions from radio, optical, and X-ray bands,
still represent a significant proportion of the 3LAC blazar population, suggesting that even
the weakest known blazars may eventually emit gamma rays at LAT detection levels. Also,
the 3LAC catalog includes 25 non-blazar AGNs, a significant increase over the 2LAC catalog
(Ackermann et al., 2015a).

Figure 2.6: The distribution of sources in the 3LAC clean sample. Red circles: FSRQs; Blue circles:
BL Lac objects; Magenta circles: non-blazar AGNs; Green triangles: AGNs of unknown type (Ack-
ermann et al., 2015a).

3. The Third Fermi-LAT High-Energy Catalog (3FHL). The Fermi-LAT catalogs continued to
evolve with the release of the Third Fermi-LAT High-Energy Catalog (3FHL) in 2017. Focusing
on the high-energy γ-ray sky, 3FHL extended the energy range from 10 GeV to 2 TeV, marking a
significant advancement in the study of the most energetic γ-ray sources. The 3FHL catalog in-
cluded 1556 sources, of which 1207 were identified as blazars, making it an invaluable resource
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for researchers exploring extreme astrophysical phenomena. It provided detailed spectral in-
formation for these high-energy sources, enabling deeper investigations into the mechanisms
responsible for γ-ray production at these extreme energies.

2.4.4 The Fourth Fermi-LAT and AGN Catalogs

1. The Fourth Fermi-Large Area Telescope Source Catalog (4FGL). The Fourth Fermi-Large
Area Telescope Source Catalog (4FGL) (Abdollahi et al., 2020) introduced the fourth genera-
tion of γ-ray source catalogs from the Fermi-LAT. Based on the first eight years of data from
the Fermi satellite, it covered an energy range from 50 MeV to 1 TeV, the broadest to date.
Compared to the 3FGL catalog, 4FGL doubled the exposure and included several analytical
improvements such as an updated model for diffuse galactic γ-ray emission and bi-monthly and
annual γ-ray light curves. The 4FGL catalog detected 5064 sources with a confidence level
above 4σ (see Fig. 2.7), providing location and spectral characteristics for each. Over 3130 of
these sources were confirmed or associated with blazars, and 239 were identified as pulsars.

Figure 2.7: Survey locations of the 4FGL sources (upper part) and their positions on the galactic
plane (lower three parts categorized by source type). All AGNs are marked in blue, well-defined
associations of other classes in red, and unassociated sources or those with unknown properties in
black (Abdollahi et al., 2020).

2. The Fourth Fermi-LAT Catalog Data Release 2 (4FGL-DR2). The 4FGL-DR2 (Ballet et al.,
2020) summarized the LAT results from August 4, 2008, to August 2, 2018. This edition was
based on a decade of survey data in the 50 MeV-1 TeV energy range. Post-maximum likelihood
calculation, the threshold for including new sources was a Test Statistic (TS) ¿ 25, correspond-
ing to a significance slightly higher than 4σ. The 4FGL-DR2 catalog contained 5787 sources.
Even if the TS was ¡ 25, original 4FGL sources were retained in 4FGL-DR2. Of the 5064
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sources detected in 4FGL, 120 fell below the detection threshold, 53 were newly associated, 4
associations were retracted, and 732 new sources were discovered, with 2 associated and 341
having tentative associations at other wavelengths.

3. The Fourth Fermi-LAT Source Catalog Data Release 3 (4FGL-DR3). The 4FGL-DR3 (Ab-
dollahi et al., 2022) compiled LAT results from August 4, 2008, to August 2, 2020. This
version, based on 12 years of survey data in the 50 MeV-1 TeV range, adapted the analysis for
more sources with curved spectra. It introduced a more robust spectral parameterization for pul-
sars and extended spectral points up to 1 TeV. Like 4FGL-DR2, the inclusion threshold for new
sources post-maximum likelihood was a TS ¿ 25. The catalog listed 6658 sources. All previous
4FGL sources (DR1 and DR2, with some exceptions discussed in the paper) were retained in
4FGL-DR3, even if TS ¡ 25. Of the 5064 sources detected in 4FGL, 16 were removed, 112 fell
below the detection threshold, 74 were newly associated, 10 associations were improved, and
7 were retracted. A total of 1610 new sources were found, with 8 associated and 699 having
tentative associations at other wavelengths.

4. The Fourth Fermi-LAT Source Catalog Data Release 4 (4FGL-DR4). The 4FGL-DR4 (Bal-
let et al., 2023) summarized the LAT results from August 4, 2008, to August 2, 2022. This
edition, based on 14 years of survey data in the 50 MeV-1 TeV range, followed the same maxi-
mum likelihood inclusion criteria as 4FGL-DR2 and 4FGL-DR3, with a TS ¿ 25 threshold for
new sources. The catalog included 7194 sources, retaining all previous 4FGL sources (except
for some discussed in this paper), even if TS ¡ 25.

5. The Four Fermi-LAT AGN Catalog (4LAC). The 4LAC released a clean catalog of AGNs de-
tected from August 4, 2008, to August 2, 2016, based on the 4FGL catalog (4LAC). It included
2863 high-latitude galactic objects (see Fig. 2.8), an 85% increase over the 3LAC catalog from
the previous four years. AGNs constituted at least 79% of the 4FGL class, with the same en-
ergy range (50 MeV to 1 TeV). Additionally, 344 γ-ray AGNs were discovered in low-latitude
galactic regions. The majority of 4LAC-AGNs were blazars ( 98%), with the remainder being
other types of AGNs. The blazar population comprised 24% FSRQs, 38% BL Lac objects,
and 38% unidentified blazar candidates (BCUs). Overall, FSRQs exhibited softer γ-ray spec-
tra, and stronger variability, confirming previous findings. All AGNs detected by ground-based
atmospheric Cerenkov telescopes were also included in 4LAC.

6. The Four LAT AGN Catalog Release 2 (4LAC-DR2). The 4LAC-DR2, based on a decade of
data, detected 723 additional sources, including 285 new 4FGL-DR2 AGNs. Apart from two
radio galaxies, these active galactic nuclei are all blazars. The overall sample of new sources
comprises 39 FSRQs, 59 BL Lacs, 185 candidate blazars of unknown type (BCUs), and two
radio galaxies, NGC 3078 and NGC 4261. The 4LAC-DR2 includes 262 new AGNs at high
latitudes (|b| > 10◦), while the low-latitude sample contains an additional 23 (all BCUs except
one BL Lac). A total of 67 sources lack a classification based on their SED. The new 4LAC-
DR2 FSRQs have a slightly higher median photon index than the DR1 sample (2.63 vs. 2.45),
indicating a softer spectrum. The median redshift is very similar to that of 4LAC-DR1 (1.19
vs. 1.12). PKS 2318-087 (4FGL J2320.8-0823), with a redshift of (z = 3.164), has the highest
redshift among the new 4LAC-DR2 FSRQs. Four DR1 FSRQs have even higher redshifts, up
to 4.31.

7. The Four Fermi-LAT AGN Catalog Release 3 (4LAC-DR3). The 4LAC-DR3 (Ajello et al.,
2022) is derived from the 4FGL-DR3, based on 12 years of γ-ray data above 50 MeV. It features
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Figure 2.8: Locations of 4LAC sources projected on galactic coordinates (upper part) and J2000
equatorial coordinates (lower part) (Ajello et al., 2020).

updated spectral parameters, SEDs, annual light curves, and associations for all sources. The
4LAC-DR3 includes 1607 new sources relative to the initial 4FGL catalog. Ajello et al. (2022)
discusses the properties of 283 new 4FGL-DR2 and 308 new 4FGL-DR3 AGNs, which are
predominantly blazars, except for four radio galaxies.



Chapter 3

Methodology

The primary methodologies employed in this thesis are machine learning (ML) and its distinguished
branch, deep learning (DL), both of which fall under the umbrella of Artificial Intelligence (AI) and
Data Mining. The relationship between AI, ML, and DL is shown in Fig. 3.1.

Figure 3.1: The inclusion relationship between AI, ML, and DL (Yang et al., 2019).

47
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3.1 Briefly overview of AI and Data Mining

AI encompasses a range of disciplines, including cognitive science, operations research, statistics,
and computer science, and even extends into economics and philosophy. Different researchers define
AI from various perspectives. A popular definition, as proposed by Russell & Norvig (2010, 2020),
suggests that AI should be defined based on its objectives, forming eight definitions across four groups
along two dimensions (see Fig. 3.2): human performance or ideal rationality, and thinking/reasoning
or behavior. They argue that the contrast between thinking/reasoning systems and acting systems is
central to AI, equating intelligence with rationality. Specifically, AI is seen as the field dedicated
to building intelligent agents (see Fig. 3.3), functions that take perceptual tuples from an external
environment as inputs and generate behavior (actions) based on these perceptions. This definition
posits goal-directed behavior as the essence of intelligence. Goal-directed agents can also be described
in economic terms as “rational agents”, possessing a “utility function” that encapsulates all AI goals.
Such agents aim to create and execute any plan that maximizes the expected value of this utility
function upon completion (Bringsjord & Govindarajulu, 2022).

Figure 3.2: Four sets of definitions of AI (Russell & Norvig, 2010, 2020).

Figure 3.3: Simple reflex agent diagram (Russell & Norvig, 2010, 2020).
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Data mining, an integral part of the data science field, involves discovering patterns, correlations,
and insights from large data sets using statistical methods, ML, and database systems (Han et al.,
2012). It is an interdisciplinary subfield of computer science and statistics, with the overarching goal
of extracting information (using intelligent methods) from data sets and transforming it into a com-
prehensible structure for further use (Hastie et al., 2009; Sammut & Webb, 2017). Data mining is
the analysis step of the knowledge discovery from data (KDD) process (Fayyad et al., 1996), involv-
ing database and data management aspects, data preprocessing, model and inference considerations,
interestingness measures, complexity considerations, post-processing of discovered structures, visu-
alization, and online updating.

The interrelationship between AI and data mining is multifaceted. In the contemporary technolog-
ical landscape, the synergy between AI and data mining is crucial, representing a fusion of method-
ologies and objectives that drive the advancement of intelligent data analysis. The intersection of data
mining with AI is often seen as an application within the AI field, frequently utilizing AI methods,
particularly ML algorithms, for data analysis and interpretation. Conversely, AI systems, especially
those based on ML, rely on data mining to identify patterns and regularities in data, aiding in the
training and refinement of AI models (Bishop, 2007). This symbiotic relationship is further solidi-
fied through the shared use of techniques such as classification, clustering, and regression analysis, as
well as ML and the more recent DL, which have become key technologies linking these two domains
(LeCun et al., 2015). In practical applications, the convergence of AI and data mining is increasingly
evident. For instance, in fields like recommendation systems, financial market analysis, and health
informatics, data mining is used to extract insights, while AI is employed to build systems capable of
learning from these insights and making intelligent decisions (Jordan & Mitchell, 2015). This collab-
orative dynamic not only enhances the efficiency of data analysis but also fosters the development of
systems capable of intelligently navigating and interpreting complex data environments. In summary,
while AI and data mining have distinct objectives and methodologies, their integration in practical
applications demonstrates their complementarity, jointly advancing the evolution of large-scale data
knowledge extraction and intelligent decision-making. This thesis focuses on the intersection of AI
and data mining, specifically on some ML/DL algorithms and data processing procedures, and applies
them to the classification of AGN/blazars and the screening of rare sources.

3.2 Historical Context

• The Inception of AI. The concept of AI dates back to ancient history, with myths and stories
of artificial beings endowed with intelligence or consciousness by master craftsmen. However,
as a scientific discipline, AI began in the mid-20th century. The term “Artificial Intelligence”
was first coined by John McCarthy in 1956 at the Dartmouth Conference, marking the birth of
AI as an independent field (McCarthy, 2004).

• The Emergence of Data Mining. Data mining, conceptually older, gained prominence in the
1990s. The term is believed to have been coined in the 1960s, but it was the advent of large
databases and the need to extract meaningful information from these that propelled data mining
into a field of its own (Fayyad et al., 1996).

• Evolution of AI.

1. Early AI (1950s - 1970s). The initial phase of AI was characterized by enthusiasm and
significant achievements. Early AI research focused on problem-solving and symbolic
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methods. The development of algorithms for games like chess and checkers, and the cre-
ation of ELIZA, a natural language processing computer program, are notable milestones
(Newell & Simon, 1976).

2. AI Winter (1970s - mid-1980s). The AI winter refers to periods where funding and in-
terest in AI research declined. The limitations of early AI became apparent, leading to
skepticism and reduced funding (Crevier, 1993).

3. Resurgence and Growth (mid-1980s - 2000s). The revival of AI was marked by the adop-
tion of ML techniques, the rise of the internet, and increasing computational power. This
period saw the development of neural networks, DL, and reinforcement learning (Good-
fellow et al., 2016).

4. Modern AI (2000s - Present). The current era of AI is characterized by big data, advanced
algorithms, and significant improvements in computational power. AI applications are
now widespread, ranging from voice recognition systems to autonomous vehicles (Jordan
& Mitchell, 2015).

• Evolution of Data Mining.

1. Early Developments (1960s - 1980s). The origins of data mining are in statistical analysis
and early database technology. The focus was primarily on data collection and storage
(Tukey, 1977).

2. Growth and Recognition (1990s - 2000s). The 1990s saw a surge in interest in data mining,
driven by the growth of large databases and the development of new algorithms for data
analysis. This period marked the establishment of data mining as a distinct field (Burges,
1998).

3. Big Data and Advanced Analytics (2000s - Present). The explosion of big data has trans-
formed data mining. The focus has shifted to handling large-scale, diverse datasets and
real-time data processing. Techniques like ML, pattern recognition, and network analysis
have become central to data mining (Manyika, 2011).

3.3 Segmentation of AI

• Weak AI vs. Strong AI. AI systems are generally categorized into weak (or narrow) AI and
strong (or general) AI. Weak AI, designed for specific tasks, is prevalent in applications like
Siri or Google’s search algorithms (Poole et al., 1998). Strong AI, which aims to replicate gen-
eral human cognitive abilities, remains a largely theoretical concept but is a subject of intense
research and ethical debate (Searle, 1980).

• Advances in ML and DL. The resurgence of AI in the 21st century is largely attributed to
advances in ML and DL. ML, a subset of AI, involves algorithms learning from and making
predictions on data (Bishop, 2007). DL, a further subset of ML, employs neural networks with
multiple layers to analyze vast datasets, significantly improving tasks like image and speech
recognition (LeCun et al., 2015).

Applications of AI and data mining are vast and varied. In healthcare, they are used for dis-
ease prediction and diagnosis. In finance, they are applied in fraud detection and risk management.
Other sectors like retail, manufacturing, and transportation also benefit from AI and data mining for
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customer insights, predictive maintenance, and optimizing logistics (Davenport, 2006). There is no
doubt that AI is a universal tool. These technologies are also applicable in the field of astronomy, as
will be illustrated with specific examples in the later sections of this thesis.

3.4 ML

ML, a crucial subfield of artificial intelligence (AI), has fundamentally transformed our approach to
problem-solving and data analysis across various domains. At its core, ML involves the development
of algorithms that enable computers to learn from data and make predictions or decisions (Jordan &
Mitchell, 2015). This transformative capability has reshaped how we tackle challenges in numerous
fields.

• Definition and Scope of ML. ML is defined as the scientific study of algorithms and statistical
models that enable computer systems to perform specific tasks without explicit instructions,
relying instead on identifying patterns and making inferences (Bishop, 2007). It is a branch of
AI that endows systems with the ability to learn and improve automatically through experience
(Alpaydin, 2014). The scope of ML ranges from straightforward tasks like data classification
to more complex challenges such as image recognition, natural language processing, and pre-
dictive analytics.

• Historical Context and Evolution of ML. The concept of machines learning from data dates
back to the early days of computing. The term “machine learning” was formally introduced in
the 1950s by Arthur Samuel (Samuel, 1959). Since then, the field has undergone significant
evolution, marked by several key developments:

1. ML, as a scientific endeavor, originated from the pursuit of AI. In the early days of AI
as a discipline, some researchers were intrigued by the idea of machines learning from
data. They experimented with various symbolic methods and what were then known as
“Neural Networks”. These primarily included perceptrons and other models, which were
later recognized as reinventions of generalized linear statistical models (Sar, 1994). Prob-
abilistic reasoning was also adopted, especially in automated medical diagnostics (Russell
& Norvig, 2010, 2020).

2. However, the growing emphasis on logic and knowledge-based methods led to a rift be-
tween AI and ML. Probabilistic systems were plagued by theoretical and practical issues
in data acquisition and representation (Russell & Norvig, 2010, 2020). By the 1980s, ex-
pert systems had come to dominate AI, and statistical methods fell out of favor (Langley,
2011). Work on symbolic/knowledge-based learning continued within AI, leading to in-
ductive logic programming, but more statistical research now fell outside the realm of AI
itself, in areas like pattern recognition and information retrieval (Russell & Norvig, 2010,
2020). Neural network research was also abandoned by AI and computer science around
the same time. This line of research was continued outside the AI/CS field by researchers
from other disciplines under the banner of “Connectionism”. Their major success came
from the mid-1980s rediscovery of backpropagation.

3. ML underwent a reorganization and emerged as its field, flourishing in the 1990s. The
focus shifted from achieving AI to solving practical, solvable problems. It moved its
emphasis from the symbolic methods inherited from AI to methods and models borrowed
from statistics, fuzzy logic, and probability theory (Russell & Norvig, 2002, 2010, 2020).
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3.4.1 Supporting Disciplines of ML

• ML and Optimization Theory. Optimization theory plays a crucial role in ML, especially in
the training of algorithms. The learning process in ML is fundamentally an optimization prob-
lem, aiming to minimize a loss function that measures the discrepancy between predicted and
actual outcomes. This optimization is vital for algorithms such as gradient descent used in train-
ing neural networks (Goodfellow et al., 2016). The interaction between ML and optimization is
not limited to loss minimization but extends to more complex aspects like constraint satisfaction
and resource allocation, aiming to find the best possible (or sufficiently good) solutions for a
given problem under a set of specific constraints (Boyd & Vandenberghe, 2004a). These are
foundational in areas like DL and reinforcement learning (Goodfellow et al., 2016).

• ML and Statistics. The relationship between ML and statistics is deeply rooted and symbiotic.
ML extensively draws from statistical theory, especially in areas of inference, probabilistic
models, and concepts of generalization (Hastie et al., 2009). Statistical methods provide the
foundation for many ML algorithms, particularly in supervised learning, where the goal is to
infer a function from labeled training data (Vapnik, 1998). ML heavily relies on statistical the-
ory to build algorithms capable of learning and predicting from data (Hastie et al., 2009). This
relationship is particularly evident in areas like Bayesian learning, where statistical methods are
used to update beliefs based on new data (Gelman et al., 2004). The principles of statistical
learning guide the development of algorithms that can make predictions and reveal patterns in
data, thereby enhancing the ability of trained data to generalize to unseen data (James et al.,
2013).

However, ML and statistics, while overlapping in data analysis, differ in focus and approach.
ML emphasizes prediction and algorithmic complexity, prioritizing performance and adaptabil-
ity to data (Breiman, 2001a). Statistics, in contrast, is grounded in probabilistic modeling and
inference, with an emphasis on understanding data generation and making population inferences
(Efron & Hastie, 2016).

From the above, two ML modeling paradigms can be distinguished: Data models and Algorith-
mic models. Data models, often statistical, focus on understanding the data generation process
and are used for inference and hypothesis testing (McCullagh & Nelder, 1989). Algorithmic
models, common in ML, prioritize prediction accuracy and are designed for performance, han-
dling complex data structures without necessarily providing interpretability (Hastie et al., 2009).

• ML and Computational Complexity Computational complexity is a key aspect of ML, affect-
ing the feasibility and scalability of ML algorithms. The complexity of an algorithm determines
how its computational time and resource requirements grow with the size of the input data (Cor-
men et al., 2001). In ML, this is particularly important for algorithms that need to process large
datasets or complex models, such as DL networks (Goodfellow et al., 2016). The trade-off
between model accuracy and computational complexity is a key consideration in designing ef-
ficient ML algorithms.

The synergy among these disciplines drives the advancement of ML. Optimization theory provides
the tools for building and refining models; statistics offer the principles for learning from and making
predictions based on data; and computational complexity ensures the practicality and efficiency of
these processes. Together, they form the pillars of an effective and efficient ML system.



3.4. ML 53

3.4.2 Classification of ML algorithms

ML algorithms can be mainly divided into three paradigms (Russell & Norvig, 2010, 2020). super-
vised learning, unsupervised learning, and reinforcement learning (see Fig. 3.4).

Figure 3.4: Classification of ML algorithms (Peng et al., 2021).

• Supervised machine learning. Supervised Machine learning (SML), a predominant paradigm
in ML, involves training algorithms on a labeled dataset, where the desired output is known.
In this approach, the algorithm learns a mapping from inputs to outputs, guided by a known
set of input-output pairs. The primary goal is to generalize from the training data to unseen
situations in a predictive manner. This form of learning is widely used in applications such as
image recognition, speech recognition, and medical diagnosis, where historical data with known
outcomes are available. Supervised learning algorithms include linear regression for continuous
output prediction and logistic regression, support vector machines, and neural networks for
classification tasks. SML is the most commonly used paradigm in ML. Most of the algorithms
used in this thesis belong to SML.

• Unsupervised machine learning. Unsupervised machine learning (UML) deals with finding
patterns or intrinsic structures in unlabeled data. Unlike supervised learning, unsupervised
learning algorithms do not aim to predict an output but to understand the data’s underlying
structure. This approach is essential in exploratory data analysis, anomaly detection, and clus-
tering tasks. Common unsupervised learning methods include k-means clustering, hierarchical
clustering, and principal component analysis (PCA), which are used to group data based on
similarities or to reduce the dimensionality of data for more efficient processing.

• Reinforcement machine learning. Reinforcement machine learning (RML) is a distinct type
of ML where an agent learns to make decisions by performing actions in an environment to
achieve a goal. The learning process is driven by the feedback received in the form of rewards
or penalties. Unlike supervised learning, reinforcement learning does not require labeled in-
put/output pairs but instead focuses on finding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge). Applications of reinforcement learning in-
clude robotics, game playing, and autonomous vehicles, where the agent must learn to make a
sequence of decisions that maximize some notion of cumulative reward.
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Some perspectives suggest defining semi-supervised learning as an intermediary between SML
and UML (Russell & Norvig, 2010, 2020), which combines both labeled and unlabeled data for
training. It is particularly useful when labeled data is scarce or costly to obtain. Semi-supervised
learning aims to improve model performance by using abundant unlabeled data alongside the limited
labeled data. This approach is effective in areas like image and speech recognition, where fully labeled
datasets are often hard to come by.

The subsequent subsection will detail common algorithms within SML and UML, with all al-
gorithms utilized in this thesis falling under these two categories. DL, as a branch of ML based
on Artificial Neural Networks (ANN) and focused on representation learning, possesses unique and
exceptional qualities. These will be specifically addressed in Sec. 3.4.6.

3.4.3 ML flowchart

In the realm of ML, the processing flow is a meticulously structured sequence that transforms raw
data into actionable insights, Fig. 3.5 illustrates the SML process. The UML flowchart is similar but
differs in its handling of unlabeled data. This flow commences with the acquisition of data, a critical
phase where diverse data sources are amalgamated and prepared for analysis. Following this, data
preprocessing takes center stage, involving cleansing to rectify inconsistencies and missing values,
normalization to standardize the range of data features, and feature extraction to identify the most rel-
evant attributes. The heart of the ML process lies in the selection and application of algorithms, where
choices are made between SML, UML, and RML based on the nature of the problem and data. SML,
for instance, requires labeled datasets to train models, whereas UML algorithms discern patterns with-
out preassigned labels. Post-algorithm selection, the model undergoes training, where it learns from
the data, followed by a validation phase to fine-tune parameters and prevent overfitting. The final step
is model evaluation, using metrics such as accuracy, precision, recall, and F1-score, to assess its per-
formance. This comprehensive process, from data acquisition to model evaluation, encapsulates the
essence of ML, driving the extraction of meaningful patterns and predictions from complex datasets.
It is unrealistic to completely introduce the technology of every link in the flowchart. This thesis only
introduces some of the most commonly used ones or even the parts that are only used in this thesis.

3.4.4 Basic framework of ML

The task of ML is to learn a model that can make a good prediction of its corresponding output for any
given input. Taking SML as an example, the algorithm is designed to create a model that maps input
data to output data. Based on the type of output - whether it’s a category (discrete) or a numerical
value (continuous) - this algorithm is categorized into either classification or regression. In this thesis,
the focus will be on the classification algorithms. Before introducing SML algorithms, it is necessary
to lay out some concepts (Mitchell, 1997; Boyd & Vandenberghe, 2004b; Mukherjee et al., 2006;
Hastie et al., 2009; Nocedal & Wright, 2006; Abu-Mostafa et al., 2012; James et al., 2013; Alpaydin,
2014; Goodfellow et al., 2016; Mohri et al., 2018).

• Input, Feature, and Output space. In ML, the input space, often denoted as X, is the set of all
possible values that the input variables (or features) can take. For a dataset with n features, the
input space can be mathematically represented as a subset of n-dimensional space, typically Rn

for continuous features or a discrete set for categorical features.

Feature space (F ) is a transformation or subset of the input space (X), where each dimension
corresponds to a feature used in the model. For a dataset with n features, the feature space can
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Figure 3.5: SML flowchart.

be represented as Rn or a transformed version of it. Essentially, models of SML are defined
within the feature space.

The output space in ML, denoted as Y, refers to all possible outputs or responses that an ML
model can predict. This space is crucial for defining the nature of the learning task, such as
classification or regression, and influences the choice of algorithms and evaluation metrics. The
nature of the output space determines whether the task is a classification (discrete output space)
or regression (continuous output space).

In the process of SML, input-output pairs are considered as values of random variables defined
on input/feature space and output space. Conventionally, the values of input variables are de-
noted by x, and those of output variables by y. In classification problems, Y often represents
categories, also known as labels. This thesis deals with binary classification tasks, where y takes
values 0 or 1. An input-output pair (x, y) is also referred to as a sample or sample point. X and
Y together constitute a sample space. For instance, if classifying sources in the 4FGL catalog
into two categories based on TeV emission, the input space X is the set of physical attributes,
with x being specific attribute values, x = (x1, x2, ..., xi, ..., xn), representing a feature/feature
vector. For example, the redshift feature z can be represented as z = (z1, z2, ..., zi, ..., zn), where
zi denotes the redshift of the i-th source.

Datasets are usually divided into two groups: a training set to train the model with known data,
and a test set, acting as unclassified data for the model to make predictions. Sometimes, a
small part of the training set is separated as a validation set for more refined model learning.
For a sample (x, y) in the sample space (X,Y), it is assumed that there exists an unknown true
mapping f : X → Y . Depending on whether the model in SML is a probabilistic model or
a non-probabilistic model, this mapping f is a conditional probability distribution P(Y |X) or
a decision function Y = f (X). For the former, it is assumed in SML that X and Y follow a
joint probability distribution P(X,Y). However, the form of P(X,Y) is often unknown, and the
training and test sets are considered to be independently and identically distributed according to
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P(X,Y). Formally, the task of SML can be divided into learning and prediction processes. In the
learning process, on the training set T = {(x1, y1), (x2, y2), ..., (xn, yn)}, a function f̂ (or model)
is obtained through learning (or training) to approximate f ; in the prediction process, for a
given input xn+1 in the test set, the output yn+1 is given by the mapping f̂ . The learning process
involves continuous attempts to select the best model, minimizing the difference between the
output yi of the training set and the model output f̂ (xi).

• Hypothesis and Version space. The determination of the hypothesis space signifies the estab-
lishment of the scope of learning. The hypothesis space F is typically a family of parameterized
functions: F = { f̂ (x, θ)|θ ∈ Rm}, where f̂ (x, θ) represents the model, θ denotes a set of learnable
parameters, m is the number of parameters, and Rm is the parameter space.

For example, a decision tree algorithm has a hypothesis space comprising all the possible deci-
sion trees that can be constructed from the features, while a neural network’s hypothesis space
includes all the possible weight configurations of the network’s architecture. The learning pro-
cess involves searching this space to find the hypothesis that best approximates the true un-
derlying function, typically by minimizing a loss function. This search is guided by training
data and is subject to the constraints of the chosen model’s structure. The determination of the
hypothesis space signifies the establishment of the scope of learning.

Version space, denoted as V, is the portion of the hypothesis space that agrees with all the
training data (see Fig. 3.6). It represents all the hypotheses that have not been ruled out by the
training examples. In other words, every hypothesis in the version space correctly classifies all
the training examples.

Figure 3.6: Hypothesis space and version space(Hsieh & Wang, 2018).

SML, UML, and RML all encompass three fundamental elements: model, strategy, and optimiza-
tion algorithm.

1. Model. In SML, the model represents the mapping f to be learned, typically in the form of
a conditional probability distribution or a decision function. The hypothesis space includes all
possible conditional probability distributions or decision functions, generally infinite in number.
The goal of learning is to select the best hypothesis f from the version space based on its
performance on the training set. Subsequent chapters will introduce common algorithms for
SML and UML.
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• Generative and Discriminative Models. In SML, models can be broadly categorized
into generative models and discriminative models. The models learned are referred to as
generative or discriminative models, respectively (see Fig. 3.7). Generative and discrimi-
native models each have their advantages and disadvantages and are suitable for different
learning problems under various conditions.

(a) Generative Models. Generative approaches learn the joint probability distribution
P(Y |X) and then derive the conditional probability distribution P(Y |X) as the predic-
tive model. The generative model is defined as: P(Y |X) = P(Y |X)

P(X) Such models are
termed generative because they model the generation process of the output Y given
an input X. Typical generative models include Gaussian Mixture Models.

(b) Characteristics of Generative Models.
– Generative models can restore the joint probability distribution P(X, Y), which

discriminative models cannot.
– They converge faster in learning, meaning the model can converge to the true

model more quickly as the sample size increases.
– Generative models can be used when there are hidden variables, whereas dis-

criminative models cannot.
– For generative models, ΣP(x, y) = 1, but ΣP(y|x) < 1, making it difficult to create

a clear boundary between different classes, leading to overlapping regions.
(c) Discriminative Models. Discriminative models, on the other hand, learn the decision

function f (X) or the conditional probability distribution P(Y |X) directly as the predic-
tive model. Discriminative models focus on predicting the output Y for a given input
X. Typical discriminative methods include Perceptron, Logistic Regression, Support
Vector Machines, and Neural Networks. These classification algorithms will be dis-
cussed later in this thesis.

(d) Characteristics of Discriminative Models.
– Discriminative methods learn the conditional probability P(Y |X) or decision func-

tion f (X) directly, often resulting in higher accuracy for prediction.
– They allow for various degrees of abstraction and feature definition, simplifying

the learning problem.
– For discriminative models, ΣP(y|x) = 1, enabling them to create a clear distinc-

tion between classes.

2. Strategy. The objective of statistical learning is to learn the optimal model from the hypothesis
space. Once the hypothesis space F and learning criteria are determined, finding the optimal
model becomes an optimization problem. The training process in machine learning is essen-
tially the process of solving this optimization problem, involving criteria such as expected risk
minimization, empirical risk minimization, and structural risk minimization. Loss functions
measure the quality of a single prediction, while risk functions measure the model’s average
prediction quality.

• Loss Functions and Risk Functions. In SML, the model f (x, θ) provides an output y for
a given input x. An ideal model f (x, θ) should consistently match the output of the true
mapping function y = f (x) for all possible values of (x, y). However, the predicted output
f (x, θ) may or may not match the true value y, necessitating a loss function or cost function
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Figure 3.7: Generative vs. Discriminative Models. Source:
https://www.blog.dailydoseofds.com/p/an-intuitive-guide-to-generative.

https://www.blog.dailydoseofds.com/p/an-intuitive-guide-to-generative
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to quantify the discrepancy between the model’s prediction and the actual label. The loss
function is a non-negative real-valued function, denoted as L(y, f (x, θ)) = | f (x, θ)− y| < ε,
where ε is a small positive number. Common loss functions include:

(a) 0-1 Loss Function.
L(y, f (x, θ)) = I(y , f (x, θ)), (3.1)

where I(·) is the indicator function. Although the 0-1 loss objectively evaluates the
model, it is not continuous and has a derivative of zero, making it difficult to optimize.
Continuous and differentiable loss functions are often used as substitutes.

(b) Quadratic Loss Function.

L(y, f (x, θ)) = ( f (x, θ) − y)2, (3.2)

commonly used in tasks where the label y is a real number (e.g., regression tasks).
(c) Logarithmic Loss Function.

L(y, f (x, θ)) = − log f (x, θ), (3.3)

often interpreted as a log-likelihood function.
(d) Cross-Entropy Loss Function. Assuming label y belongs to {1, 2, ..., C}, and the

model output f (x, θ) is a conditional probability distribution over C classes. The loss
is defined as:

L(y, f (x, θ)) = −
C∑

c=1

yc log fc(x, θ), (3.4)

where y is a label vector, yc indicates the probability of class c, and fc(x, θ) is the
conditional probability of class c. This loss function is typically used in multi-class
tasks.

(e) Hinge Loss Function.

L(y, f (x, θ)) = max(0, 1 − f (x, θ)), (3.5)

commonly used in binary classification problems.

• Empirical Risk Minimization and Structural Risk Minimization. The smaller the loss
function value, the better the model. If the model’s input and output follow a joint proba-
bility distribution P(X,Y), the expected value of the loss function can be expressed as the
risk function or expected loss:

Rexp(θ) = EP[L(y, f (x, θ))] =
∫

X×Y
L(y, f (x, θ))P(x, y)dxdy. (3.6)

This is the theoretical average cost of the model f (x, θ) for the joint distribution P(X,Y),
known as the risk function or expected loss. The goal of ML algorithms is to minimize the
expected generalization error represented by this quantity, choosing the model with the
minimum expected risk. It is important to note that this expectation is taken over the true
underlying distribution P(X,Y). If we knew the true distribution P(X,Y), minimizing the
risk would become an optimization problem solvable by optimization algorithms. How-
ever, in machine learning problems, we typically do not know the true distribution and
only have access to a subset of the data in the training set. This makes supervised learning
an ill-formed problem.
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(a) Empirical risk minimization. The simplest method to transform a machine learn-
ing problem into an optimization problem is by minimizing the expected loss on the
training set. This implies using the empirical distribution P̂(X,Y) from the training
set to approximate the true distribution P(X,Y). The model’s average loss over the
training set becomes the empirical risk (or empirical loss), denoted as:

Remp(θ) =
1
N

N∑
n=1

L(y, f (x, θ)). (3.7)

This training process based on minimizing the average training error is known as
empirical risk minimization (ERM). In this case, the empirical risk becomes the target
function for optimization, and supervised learning is transformed into an optimization
problem of minimizing the empirical risk function.

(b) Structural risk minimization. Empirical risk minimization is widely adopted, espe-
cially in the form of maximum likelihood estimation, and can ensure effective learn-
ing when the sample size is sufficiently large. However, in most cases, the training
set is not infinite and often represents a small subset of the real data or contains noisy
data, which may not accurately reflect the true distribution of all data. Compared to
the limited data, models with too many parameters or overly complex structures tend
to closely or precisely match a specific dataset, making them unable to fit unknown
data well. Empirical risk minimization can easily lead to a model with a low error
rate on the training set but a high error rate on unknown data. This phenomenon is
known as overfitting, which will be discussed further.
Structural risk minimization (SRM) is a strategy proposed to prevent overfitting.
Overfitting often results from limited data and noise, as well as strong model ca-
pabilities. To address overfitting, regularization is introduced on top of empirical risk
minimization to limit the model’s capabilities and prevent it from minimizing the em-
pirical risk excessively. Structural risk minimization is equivalent to regularization.
Structural risk = empirical risk + regularization term. In a determined hypothesis
space, loss function, and training set, structural risk is defined as follows:

Rsrm(θ) = Remp + λJ(θ) =
1
N

N∑
n=1

L(y, f (x, θ)) + λJ(θ). (3.8)

Here, J(θ) represents the model’s complexity, a function defined on the hypothesis
space F , commonly using L1 or L2 norms. J(θ) can be understood as a penalty
term for model complexity. λ > 0 controls the regularization strength, balancing
empirical risk and model complexity. The SRM criterion considers the model with
the minimum empirical risk as the optimal model. The optimization model is found
by minimizing the structural loss function:

θ∗ = arg min
θ

Rsrm(θ∗). (3.9)

3. Optimization Algorithm. Based on the training set and learning strategy, selecting the optimal
model from the hypothesis space ultimately involves considering which computational method
to use for solving the optimal model. At this point, the SML problem is transformed into
an optimization problem (Boyd & Vandenberghe, 2004b; Nesterov, 2004; Luenberger & Ye,



3.4. ML 61

2015). Optimization problems typically do not have analytical solutions and require numerical
methods for resolution. Ensuring the discovery of a global optimal solution and making the
solving process highly efficient becomes a crucial issue. The following sections introduce four
common types of optimization algorithms: Fermat’s theorem, first-order derivative (gradient)
methods, second-order derivative methods, and divide-and-conquer methods.

(a) Fermat’s Theorem. For a differentiable function, a unified approach to finding its ex-
tremum is to locate points where the derivative is zero, as stated in Fermat’s Theorem.
Points where the derivative is zero are called stationary points. It is important to note that
a zero derivative is a necessary, but not sufficient, condition for an extremum; these are
potential extremum points. For univariate functions, further judgment requires examining
the second derivative, while for multivariate/vector functions, the Hessian matrix should
be considered. At points where the derivative is zero, the function may not attain an ex-
tremum, known as saddle points. Besides saddle points, optimization algorithms may
encounter another issue: local extremum, where a stationary point is an extremum but not
the global extremum. Imposing certain constraints on optimization problems can effec-
tively avoid these issues. A typical example is convex optimization, which requires the
feasible domain of optimization variables to be a convex set, and the objective function to
be a convex function. Formally, a convex set C is defined as convex if, for any two points
x, y ∈ C, the line segment connecting x and y also lies within C. Mathematically, for all
θ ∈ [0, 1], it holds that θx + (1 − θ)y ∈ C. A convex function f : Rn → R is convex if
its domain is a convex set and for any two points x, y in its domain and any θ ∈ [0, 1], the
following inequality holds:

f (θx + (1 − θ)y) ≤ θ f (x) + (1 − θ) f (y). (3.10)

The convex optimization problem can be formally expressed as:

min
x∈C

f (x), (3.11)

where f (x) is a convex function, and C is a convex set.

(b) Lagrange Multiplier Method. Fermat’s Theorem provides the necessary condition for an
extremum of functions without constraints. For practical problems, there are often equality
or inequality constraints. For problems with equality constraints, the classical solution is
the Lagrange Multiplier Method. This method introduces additional variables, known
as Lagrange multipliers, for each constraint. The key idea is to transform a constrained
optimization problem into an unconstrained problem in a higher-dimensional space. The
Lagrange function is defined as:

L(x, λ) = f (x) − λ · g(x), (3.12)

where f (x) is the objective function to be optimized, g(x) = 0 represents the constraint,
and λ is the Lagrange multiplier. To find the optimal points, one needs to solve the fol-
lowing system of equations derived from the Lagrange function:

∇L(x, λ) = 0. (3.13)

This involves taking the gradient of the Lagrange function concerning both the original
variables and the Lagrange multipliers and setting them to zero. The solutions to this
system give the candidate points for the optima under the given constraints.



62 CHAPTER 3. METHODOLOGY

(c) Karush-Kuhn-Tucker Conditions. The Karush-Kuhn-Tucker (KKT) conditions are a set
of necessary conditions for a solution in nonlinear programming to be optimal, especially
when the problem involves inequality constraints. These conditions generalize the method
of Lagrange multipliers to handle inequality constraints. The KKT conditions include
both primal and dual feasibility, stationarity, and complementary slackness conditions.
Consider an optimization problem of the form: Minimize f (x), subject to gi(x) ≤ 0 for
i = 1, . . . ,m, and h j(x) = 0 for j = 1, . . . , p. The KKT conditions are:

• Primal Feasibility. The solution must satisfy the problem’s constraints.
• Dual Feasibility. The Lagrange multipliers associated with the inequality constraints

must be non-negative.
• Stationarity. The gradient of the Lagrangian concerning the variables x must be

zero.
• Complementary Slackness. For each inequality constraint, the product of the La-

grange multiplier and the constraint function must be zero.

The Lagrangian for this problem is given by:

L(x, λ, µ) = f (x) +
m∑

i=1

λigi(x) +
p∑

j=1

µ jh j(x), (3.14)

where λi and µ j are the Lagrange multipliers. The KKT conditions can then be written as:

∇xL(x, λ, µ) = 0 (3.15)

gi(x) ≤ 0, λi ≥ 0, λigi(x) = 0 for all i (3.16)

h j(x) = 0 for all j. (3.17)

Numerical Optimization Algorithms. While theoretical derivations and root-finding formulas for
equation systems are applicable in cases like linear functions and maximum likelihood estimation un-
der normal distribution, they fall short when dealing with transcendental functions like exponential
and logarithmic functions. In such scenarios, where the gradient equals zero, numerical optimiza-
tion algorithms that utilize derivative information, such as first and second-order derivatives, become
essential.

1. Iterative Methods. In practical implementations, iterative methods are commonly employed.
These methods start from an initial point x0 and repeatedly move from xold to xnew according to
a specific rule, forming a sequence that converges to a point where the gradient is zero:

lim
i→∞
∇ f (xold) = 0. (3.18)

These rules typically utilize first-order derivative information, i.e., the gradient, or second-order
derivative information, i.e., the Hessian matrix. The core of these iterative methods is to obtain
an iterative formula that determines the next point from the previous one:

xnew = h(xold). (3.19)

2. First-Order Derivative Methods: Gradient Descent. Gradient Descent is a fundamental op-
timization algorithm in first-order derivatives, particularly effective for differentiable objective
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functions. Its variants and extensions enhance its efficiency and applicability. The basic update
rule for gradient descent is:

θnew = θold − η · ∇θJ(θold), (3.20)

where θ represents the model parameters, η is the learning rate, and ∇θJ(θ) is the gradient of the
objective function.

3. Variants of Gradient Descent. Several common variants of Gradient Descent are introduced
below (Ruder, 2016).

• Stochastic Gradient Descent. Stochastic Gradient Descent (SGD) estimates the gradient
of the cost function using a single data point at each iteration, particularly useful for large
datasets.

θnew = θold − η · ∇θJ(θold, x(i), y(i)). (3.21)

• Mini-batch Gradient Descent. A compromise between batch gradient descent and SGD,
computing the gradient on a small subset of the training data.

θnew = θold − η · ∇θJ(θold, Xmini-batch,Ymini-batch). (3.22)

• Momentum Gradient Descent. Incorporates momentum to accelerate gradients and re-
duce oscillations.

vnew = γvold + η∇θJ(θ), θnew = θold − vnew. (3.23)

• Nesterov Accelerated Gradient. Nesterov Accelerated Gradient (NAG) is a variation
that calculates the gradient at a position ahead in the direction of momentum.

vnew = γvold + η∇θJ(θ − γvold)θnew = θold − vnew. (3.24)

4. second derivative method.

(a) Newton’s method. Newton’s Method, also known as the Newton-Raphson method, is
a powerful technique in optimization, particularly for finding the roots of a real-valued
function or the critical points of a real-valued function (i.e., points where the derivative is
zero). The method is based on the idea of using a second-order Taylor series expansion
to approximate a function near a point, and then iteratively improving the approximation.
Given a function f : R→ R, Newton’s Method updates the estimate of the root or critical
point x as follows:

xnew = xold −
f ′(xold)
f ′′(xold)

, (3.25)

where f ′(x) and f ′′(x) are the first and second derivatives of f at x, respectively. Newton’s
Method can converge very quickly, especially if the starting point is close to the optimal
point. However, the method requires the computation of second derivatives, which can
be computationally expensive. It also assumes the function is twice differentiable and the
Hessian is invertible.
In the context of optimization, particularly for finding the minima or maxima of a function,
Newton’s Method is applied to the derivative of the function. The update rule becomes:

xnew = xold −
f ′(xold)
f ′′(xold)

, (3.26)

where f ′(x) is the gradient, and f ′′(x) is the Hessian matrix of the objective function.
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(b) Quasi-Newton methods. Quasi-Newton methods are a group of optimization algorithms
that seek to approximate Newton’s Method for optimization, especially in scenarios where
the computation of the exact Hessian matrix is computationally expensive or impractical.
Quasi-Newton methods approximate the Hessian matrix of second derivatives, which is
used in Newton’s Method, with an easier-to-compute update at each iteration. This ap-
proach significantly reduces the computational burden while maintaining a superlinear
convergence rate. The general update rule in Quasi-Newton methods is:

xnew = xold − H−1∇ f (xold), (3.27)

where xold and xnew are the current and updated parameter values, respectively. H−1 is the
approximation of the inverse Hessian matrix, ∇ f (xold) is the gradient of the function at
xold.
Quasi-Newton methods are used in various optimization problems in machine learning,
particularly where the objective function is smooth but complex, and the computation of
the exact Hessian is not feasible.

(c) Trust-Region Newton Method in Optimization. The trust-region Newton Method is an
optimization algorithm that combines the concepts of trust-region methods and Newton’s
method. It is particularly effective for solving nonlinear optimization problems. Unlike
traditional methods that focus solely on the gradient or Hessian information, the Trust
Region Newton Method considers both, but within a ”trust region” around the current
point. This region defines the area where the model is trusted to be a good approximation
of the objective function.
The method iteratively solves a subproblem within the trust region to find the step direction
and length. The subproblem typically involves minimizing a quadratic approximation of
the objective function subject to a constraint that keeps the solution within the trust region:

min
∆x

{
∇ f (x)T∆x +

1
2
∆xT B∆x

}
subject to ∥∆x∥ ≤ δ, (3.28)

where ∆x is the step to be taken, B is an approximation of the Hessian matrix, δ is the
radius of the trust region.
The size of the trust region δ is adjusted based on how well the quadratic model approx-
imates the objective function in the current region. More robust to the choice of initial
point and to the ill-conditioning of the problem. However, it often converges in fewer
iterations than standard Newton’s method, especially for difficult problems.

5. Divide and Conquer. Divide-and-conquer is an algorithmic design philosophy that breaks
down a large problem into smaller sub-problems to be solved individually. The solutions to
these sub-problems are then combined to construct the solution for the entire problem. In op-
timization methods, this approach is specifically implemented by adjusting only a subset of
components of the feature vector x in each iteration, while keeping the other components fixed.

This translation captures the essence of the divide-and-conquer strategy in the context of op-
timization methods, emphasizing the process of solving smaller parts of a problem and then
integrating these solutions.

(a) Coordinate Descent method. The Coordinate Descent method is an optimization al-
gorithm that solves optimization problems by successively optimizing along coordinate
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directions to find the minimum of a function. It works by iteratively optimizing the ob-
jective function along one coordinate direction at a time while keeping other coordinates
fixed. This method is particularly effective for problems where optimizing along a sin-
gle coordinate is significantly simpler than optimizing along all directions simultaneously.
Given a function f : Rn → R, the Coordinate Descent algorithm updates one coordinate
at a time:

x(k+1)
i = arg min

xi
f (x(k+1)

1 , . . . , x(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
n ), (3.29)

for i = 1, . . . , n and k denotes the iteration number. The Coordinate Descent method
iterates over coordinates in a fixed order and chooses a random coordinate to optimize at
each iteration.
Coordinate Descent is widely used in large-scale optimization problems. It is conceptually
easy to implement and efficient when the optimization problem decomposes nicely along
individual coordinates.

(b) Sequential Minimal Optimization. Sequential Minimal Optimization (SMO) is an algo-
rithm for solving the quadratic programming (QP) problem that arises during the training
of Support Vector Machines. It is known for its efficiency in large-scale SVM training.
SMO breaks the large QP problem into a series of smallest possible QP problems. These
small QP problems are solved analytically, which significantly reduces the computational
intensity compared to standard QP-solving methods. SMO works by choosing two La-
grange multipliers at each step and finding the optimal values for these multipliers while
fixing all others. The algorithm iteratively updates these multipliers until convergence:
Choose αi and α j, and solve the two-dimensional QP problem.
The SMO maximizes the SVM objective function concerning the chosen multipliers. The
algorithm maintains the constraints of the SVM optimization problem at each step. SMO
can be faster than traditional QP solvers for SVM training, especially when dealing with
large datasets. Besides, it does not require an external QP optimization package.

(c) Stage-wise Optimization Algorithms. Stage-wise optimization algorithms are a class of
methods in machine learning where the model is built in a step-by-step fashion. AdaBoost
(Adaptive Boosting) is a prominent example of this approach, particularly used in the
context of ensemble learning. In stage-wise optimization, the model is constructed by
adding a new component at each stage, to reduce the overall model error. The process is
iterative, with each step building upon the previous ones.
AdaBoost is one of the most popular stage-wise optimization algorithms. It combines
multiple weak learners to form a strong learner. In each stage, AdaBoost changes the
weights of misclassified data points so that subsequent learners focus more on difficult
cases. Given: Training data xi, yi), i = 1, . . . ,N. Initialize: Weights wi =

1
N , for all i. For

t = 1 to T: 1. Train weak learner using weights wi). 2. Calculate error and learner weight
αt. 3. Update weights wi).
AdaBoost is less prone to overfitting compared to many other algorithms. It can be used
with any learning algorithm that accepts weights on the training set. AdaBoost is widely
used for binary classification problems and has been extended to multi-class and regres-
sion tasks.

• Model Selection.
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– Overfitting. When the hypothesis space contains models of varying complexities (e.g.,
different numbers of parameters), the issue of model selection arises. If one solely aims to
enhance the predictive ability on the training set, it often leads to the phenomenon known
as ”overfitting.” Overfitting occurs when a machine learning model excessively adapts to
the training set, resulting in poor performance on new test or validation sets. This is typi-
cally due to either excessive model complexity or insufficient training data. Overfitting is
characterized by excellent performance on training data but poor performance on test data,
where the model may generate overly complex decision boundaries that fail to generalize
to new data. This situation equates to low bias but high variance, necessitating a trade-off
between bias and variance, which is a bias-variance trade-off problem, as shown in Fig.
3.8.

Figure 3.8: Bias-variance trade-off (Rashidi et al., 2019).

– Regularization. In addition to simplifying the model and expanding the dataset, regular-
ization is a classic method to combat overfitting. Regularization implements the strategy
of structural risk minimization by adding a regularizer or penalty term to the empirical
risk. The regularizer is typically a monotonically increasing function of model complex-
ity. Regularization generally takes the following form:

min
f∈F

1
N

N∑
i=1

L(yi, f (xi)) + λJ( f ), (3.30)

where the first term is the empirical risk, and the second term is the regularizer, with λ ≥ 0
as the penalty strength. The most commonly used regularizers are the L1 norm regularizer
and the L2 norm regularizer.
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The L1 norm regularizer can be expressed as:

L(w) =
1
N

N∑
i=1

( f (x; w) − yi)2 + λ∥w∥, (3.31)

where ∥w∥ represents the L1 norm of the parameter vector w.
The L2 norm regularizer can be expressed as:

L(w) =
1
N

N∑
i=1

( f (x; w) − yi)2 +
λ

2
∥w∥2, (3.32)

where ∥w∥ represents the L2 norm of the parameter vector w. Fig. 3.9 shows L1 and L2
regularization.

Figure 3.9: L2 norm regularization (left) and L1 norm regularization (right) (Santosh et al., 2022).

The first term’s empirical risk is smaller for more complex models (with multiple non-
zero parameters), resulting in a larger model complexity in the second term. The role of
regularization is to select models with both low empirical risk and low model complexity.
The concept of Occam’s Razor (Sober, 2015) in machine learning is similar to the idea of
regularization: simpler models have better generalization capabilities. If two models have
similar performance, the simpler model should be chosen. In machine learning criteria,
parameter regularization is often introduced to limit model capabilities and avoid overfit-
ting. One formalization of Occam’s Razor is the Minimum Description Length (MDL)
principle, which states that for a dataset D, the best model f ∈ F is the one that achieves
the best compression of the dataset, i.e., the shortest encoding length. The minimum de-
scription length can also be interpreted from a Bayesian learning perspective (MacKay,
2003). The log posterior probability of a model f given a datasetD is:

max
f

log p( f |D) = max
f

log p(D| f ) + log p( f ), (3.33)

where − log p( f ) and − log p(D| f ) can be viewed as the encoding length of the model f
and the encoding length of the dataset D under that model, respectively. In other words,
we not only want the model f to encode the datasetD but also want the model f to be as
simple as possible.

• Cross-Validation. Cross-validation is a prevalent method for model selection. When sample
data is abundant, it can be divided into training, validation, and test sets. The training set is
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used for model training, the validation set for model selection, and the test set for final model
evaluation. Among models of varying complexities, the one with the smallest prediction error
on the validation set is chosen. If the validation set is sufficiently large, it is effective for model
selection. However, in practice, data may not always be abundant. To select an appropriate
model, cross-validation methods are employed, which involve repeatedly using data; splitting
the given data, combining split datasets into training and test sets, and repeatedly training, test-
ing, and selecting models. The following are some of the most commonly used cross-validation
methods:

1. HoldOut Cross-validation. In this technique, the entire dataset is randomly divided into
a training set and a test set. For example, approximately 70% of the dataset is used as the
training set and the remaining 30% as the test set. This method is straightforward to im-
plement but is not suitable for imbalanced datasets. For instance, in a binary classification
task with labels 0 and 1, if 80% of the data belongs to class 0, dividing the dataset into
an 8:2 ratio might result in class 0 data being entirely in the training set and class 1 data
in the test set. Moreover, in small datasets, some data reserved for testing might contain
important features, and the model might miss these during training.

2. K-Fold Cross-Validation. In K-Fold cross-validation, the entire dataset is divided into
K equal parts, each called a ”Fold.” Thus, there are K parts, known as K-Fold. One Fold
is used as the test set, and the remaining K-1 Folds as the training set. This process is
repeated K times until each Fold has been used as the test set. The final accuracy of the
model is calculated by averaging the accuracies of k models. However, this method is also
not suitable for imbalanced datasets or time series data. In time series data, the order of
samples is important, but in K-Fold cross-validation, samples are selected randomly. Fig.
3.10 illustrates K-Fold Cross-Validation.

Figure 3.10: K-Fold Cross-Validation https://www.analyticsvidhya.com/blog/2022/02/k-fold-cross-
validation-technique-and-its-essentials/.

3. Stratified K-Fold Cross-Validation. Stratified K-Fold is an enhanced version of K-Fold
cross-validation, primarily used for imbalanced datasets. Like K-fold, the entire dataset
is divided into K Folds of equal size. However, in this technique, the proportion of in-

https://www.analyticsvidhya.com/blog/2022/02/k-fold-cross-validation-technique-and-its-essentials/
https://www.analyticsvidhya.com/blog/2022/02/k-fold-cross-validation-technique-and-its-essentials/
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stances of the target variable in each Fold matches the proportion in the entire dataset.
This method is effective for imbalanced data. Each Fold in stratified cross-validation will
have representatives of all classes, in the same proportion as the entire dataset. However,
it is also not suitable for time series data. The thesis primarily deals with binary classi-
fication tasks with imbalanced classes, and the cross-validation method used is Stratified
K-Fold Cross-Validation.

Figure 3.11: Stratified K-Fold Cross-Validation (Duan, 2023).

4. Leave P Out Cross-Validation. Leave P Out cross-validation is an exhaustive technique
where p samples are used as the validation set and the remaining n samples as the training
set. For example, if we have 100 samples in the dataset and use p=10, then in each
iteration, 10 samples will be used as the validation set and the remaining 90 as the training
set. This process is repeated until the entire dataset is divided into p-sample validation sets
and n-p training samples. However, this technique is computationally intensive and not
suitable for imbalanced datasets. Like K-Fold cross-validation, if we only have samples
of one class in the training set, our model will not be able to generalize to the validation
set.

5. Leave One Out Cross-Validation. Leave One Out cross-validation is another exhaustive
technique where one sample point is used as the validation set and the remaining n-1
samples as the training set. This process is repeated until every sample in the dataset has
been used as a validation point. This is similar to Leave P Out cross-validation with P=1.
However, it requires less computation time compared to Leave P Out, thus sharing similar
advantages and disadvantages.

Metrics of Classification. SML learns a classification model or decision function from data, known
as a classifier, with the output being categories. For multi-category classification problems, this thesis
primarily discusses binary classification problems. There are several common evaluation metrics for
binary classification. The class of interest is usually designated as the positive class, denoted as 1, and
the other as the negative class denoted as 0. Based on the predicted and actual categories, there are
four combinations: TP - positive class predicted as positive; FN - positive class predicted as negative;
FP - negative class predicted as positive; TN - negative class predicted as negative. These four items
can be intuitively represented as a confusion matrix (see Fig. 3.12).

These four items lead to many commonly used metrics: Accuracy (ACC) = (TP + TN) / (FP +
FN + TP + TN), representing the proportion of correctly predicted samples out of the total samples;
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Figure 3.12: Confusion Matrix (Duan, 2023).

True Positive Rate (TPR) = TP / (FN + TP), indicating the model’s ability to correctly identify pos-
itive classes. A higher TPR means the model is more effective at identifying positive samples; False
Positive Rate (FPR) = FP / (FP + TN), representing the proportion of negative samples incorrectly
marked as positive out of all actual negative samples. A lower FPR indicates the model performs
better in avoiding wrongly identifying negative samples as positive; Precision (PRE) = TP / (TP +
FP), representing the proportion of actual positive samples among those predicted as positive by the
model; Recall/Sensitivity (REC/SEN) = TPR = TP / (FN + TP), indicating the proportion of actual
positive samples correctly identified as positive by the model; F1 score = 2 × (PRE × REC) / (PRE
+ REC); Receiver Operating Characteristic Curve (ROC): In the ROC curve, TPR is usually the or-
dinate, and FPR is the abscissa, used to assess the model’s performance at different discrimination
thresholds. Area Under the Curve (AUC): An ideal classifier should maximize TPR while minimizing
FPR. The area under the ROC curve, AUC, provides a measure of the overall performance of a model.
AUC values range between 0 and 1. AUC = 1 indicates a perfect classifier, able to completely dis-
tinguish between positive and negative classes; 0.5 < AUC < 1 indicates the model can differentiate
between positive and negative classes, with performance improving as AUC approaches 1; AUC = 0.5
indicates no discriminative ability, equivalent to random guessing; AUC < 0.5 is rare and indicates
performance worse than random guessing. ROC and AUC are particularly useful when dealing with
imbalanced datasets, as they are unaffected by class distribution. By comparing the AUCs of different
models, it is possible to determine which model performs better overall.

In this thesis, we focus on two traditional SML techniques: logistic regression and support vector
machine. Additionally, we explore a DL approach based on artificial neural networks, specifically
the transfer learning method. For UML, we employ the Gaussian mixture model. The subsequent
algorithmic discussions are primarily centered around these specified algorithms and their related
methodologies. For comprehensive details on other algorithms, readers are referred to the following
key texts: MacKay (2003); Webb (2010); Abu-Mostafa et al. (2012); Raschka (2015a); Mohri et al.
(2018); An (2019); Rashidi et al. (2019).
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Figure 3.13: ROC Curves (Raschka, 2015a).

3.4.5 SML algorithms

Perceptron and Adeline

The perceptron, introduced by Mcculloch & Pitts (1943), is a linear classification model for binary
classification, aiming to identify a separating hyperplane that divides the dataset in the feature space
into positive and negative categories, classifying it as a discriminative model. The perceptron can be
presented in two forms: the primal form and the dual form.

• Formal Definition

The perceptron model defines the so-called activation function, which is a linear equation used
to map input feature vectors to a binary output (+1 or -1, representing two classes):

f (x) = sign(w · x + b)

where w is the weight vector, x is the input feature vector, b is the bias term, and sign is a sign
function that maps positive values to +1 and negative values to -1.

The activation function in a perceptron is designed to emulate the response pattern of neurons
in the human brain. This function activates when the input signal surpasses a specific threshold,
akin to the activation of a neuron. When an instance is input into the perceptron, if its output
exceeds a predetermined threshold, it is classified into the +1 category; otherwise, it falls into
the -1 category.

• Geometric Interpretation

Geometrically, the perceptron model can be viewed as a hyperplane dividing two classes in the
feature space. The vector w determines the orientation of the hyperplane, while b determines
its distance from the origin.
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• Linear Separability of the Dataset

The perceptron algorithm applies to linearly separable datasets, where a hyperplane can com-
pletely and correctly separate the two classes.

• Loss Function

The perceptron uses the total distance of misclassified points to the hyperplane as its loss func-
tion:

L(w,b) = −
∑
xi∈M

yi(wi · xi + bi), (3.34)

where M is the set of misclassified points.

• Original Form of the Algorithm

The perceptron learning strategy aims to minimize the loss function, typically implemented
through stochastic gradient descent. The algorithm adjusts w and b to move the hyperplane
towards misclassified points.

• Dual Form

The dual form of the perceptron is based on expressing w and b as linear combinations of the
training data points. It maintains a vector α, where αi is associated with the training instance xi.
The update rule involves updating α instead of directly updating w and b.

• Algorithm Procedure

1. Initialization. Set initial values of w and b, usually to 0.

2. Select Misclassified Point. Find a misclassified data point (xi, yi).

3. Update Weights and Bias.

– wi ← wi + ηyixi

– bi ← bi + ηyi

where η is the learning rate.

4. Iteration. Repeat steps 2 and 3 until no misclassified points are found.

• Handling Non-Completely Separable Datasets

The perceptron algorithm, as initially conceived, assumes that the dataset is linearly separable.
However, in real-world scenarios, datasets often are not completely separable. In such cases,
the perceptron algorithm faces the following limitations:

– Convergence Issue. The perceptron algorithm may fail to converge if the dataset is not
linearly separable. This is because the algorithm continually adjusts weights and biases
without reaching a state where all points are correctly classified.

– Oscillation. In non-separable cases, the algorithm may oscillate indefinitely, continu-
ously updating the model parameters without finding an optimal hyperplane.
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Adeline (Laboratories et al., 1960), an enhancement of the perceptron model, refines the funda-
mental concept of the loss function and its optimization. This advancement lays the groundwork
for comprehending more complex algorithms, including logistic regression, support vector ma-
chines, and artificial neural networks. Adeline distinguishes itself from the perceptron primarily
through its activation function, which is a continuous linear function rather than the perceptron’s
unit step function. Specifically, Adeline employs an identity function as its activation mecha-
nism, expressed as

f (w · x) = w · x, (3.35)

, where w represents the weight vector and x denotes the input vector.

Fig. 3.14 is the algorithm diagram of the perceptron and Adaline.

Figure 3.14: The algorithm diagram of the perceptron and Adaline (Raschka, 2015a).

Logistic Regression
Logistic Regression is a fundamental statistical method used for binary classification. It models

the probability of a binary outcome based on one or more predictor variables. This method is grounded
in the principles of the Exponential Family and Generalized Linear Models (GLMs), offering a robust
framework for understanding and predicting binary events.

• Odds and Sigmoid in Logistic Regression

The ”odds” in Logistic Regression refer to the ratio of the probability of an event occurring
to the probability of it not occurring. This concept is crucial in understanding how Logistic
Regression predicts binary outcomes. The odds are modeled using the logit function, which is
the natural logarithm of the odds:

logitp = Odds =
p

1 − p
(3.36)

log(Odds) = log
(

p
1 − p

)
(3.37)
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The primary objective of Logistic Regression is to estimate the probability that a given instance
falls into a particular category. This is achieved through the logistic function, which serves as
the inverse of the logit function. Characterized by its S-shaped curve, as depicted in Fig. 3.15,
this function is commonly referred to as the sigmoid function due to its distinctive shape.

The sigmoid function (also see Fig. 3.15), often represented as σ(z), is defined as:

σ(z) =
1

1 + e−z , (3.38)

where z = w · x, e is the base of the natural logarithm.

In contrast to Adaline, which employs a linear activation function, logistic regression utilizes
the sigmoid function as its activation function, as illustrated in Fig. 3.16.

Figure 3.15: Sigmoid function (Raschka, 2015a).

• Logistic Regression and the Exponential Family

Logistic Regression can be seen as a special case of GLMs where the response variable’s dis-
tribution belongs to the Exponential Family, specifically the Bernoulli distribution. The Expo-
nential Family is characterized by the following form:

p(y; θ) = b(y) exp(η(θ)T T (y) − a(θ)) (3.39)

In the context of Logistic Regression, the Bernoulli distribution models the probability of the
binary outcome, and the link function (logit function) connects the linear predictors to the mean
of the distribution:

log
(

p
1 − p

)
= β0 + β1X1 + . . . + βnXn (3.40)

• Loss Function and Convex Optimization
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Figure 3.16: Comparison of activation functions in Adaline and Logistic Regression.

The loss function in Logistic Regression is derived from the likelihood function of the Bernoulli
distribution. The negative log-likelihood, used for minimization, is a convex function, ensuring
that any local minimum is also a global minimum. This property simplifies the optimization
process. The log-loss for Logistic Regression is:

L(β) = −
n∑

i=1

[yi log(πi) + (1 − yi) log(1 − πi)] (3.41)

• Regularization in Logistic Regression

Regularization techniques are often applied in Logistic Regression to prevent overfitting, espe-
cially when dealing with high-dimensional data. Regularization adds a penalty term to the loss
function, which helps to control the model complexity. The most common forms of regulariza-
tion are L1 (Lasso) and L2 (Ridge) regularization.

Support Vector Machine

The Support Vector Machine (SVM) represents another advancement beyond the perceptron and Ada-
line models. It is fundamentally aimed at maximizing the margin of classification, distinguishing it
from its predecessors. The core of SVM lies in solving a convex quadratic programming problem,
which equivalently minimizes the regularized hinge loss function. SVM encompasses a range of
models, from simple to complex (Boser et al., 1992; Burges, 1998; Vapnik, 2000). In scenarios where
data is linearly separable, a linear SVM is employed. For approximately linearly separable data, SVM
adapts through the maximization of a soft margin. Non-linear SVMs address non-linear classifica-
tion challenges by employing kernel tricks combined with soft margin maximization, thus offering a
versatile solution for various data separability conditions.

• linear SVM machine in linearly separable case
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In the context of a linear SVM machine in a linearly separable case, data is considered
linearly separable if there exists a hyperplane that can separate the data points of one class
from another without any overlap. Mathematically, for a binary classification with labels
yi ∈ {−1, 1}, a dataset is linearly separable if there exist parameters w (weight vector) and
b (bias) such that:

yi(w · xi + b) > 0, for all i (3.42)

• Geometric Margin and Functional Margin

The functional margin of a hyperplane concerning a training example (xi, yi) is defined
as:

γ̂i = yi(w · xi + b) (3.43)

The geometric margin is the Euclidean distance from the hyperplane to the closest data
point and is normalized by the norm of the weight vector:

γi =
γ̂i

∥w∥
(3.44)

• Maximum Margin Hyperplane

The maximum margin hyperplane is the one that maximizes the minimum geometric
margin. This is equivalent to minimizing ∥w∥ while ensuring that the functional margin
for each training example is greater than or equal to 1.

• Convex Quadratic Programming

The optimization problem in SVM is a convex quadratic programming problem, formu-
lated as:

min
w,b

1
2
∥w∥2 (3.45)

subject to:
yi(w · xi + b) ≥ 1, for all i (3.46)

• Support Vectors and Margin Boundaries

Support vectors are the data points that lie closest to the decision surface (or hyperplane).
They are critical elements as they define the margin boundaries.

• Dual Problem The dual problem in SVM involves transforming the primary optimization
problem into a dual form using Lagrange multipliers. The dual problem is given by:

max
α

n∑
i=1

αi −
1
2

n∑
i, j=1

yiy jαiα j(xi · x j) (3.47)

subject to:
n∑

i=1

αiyi = 0 and αi ≥ 0, for all i (3.48)
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1. Support Vector Machine for approximately linearly separable data

In the context of SVM for data that is not completely separable, the concept of soft margins
and slack variables is introduced to handle misclassifications. The optimization goal of SVM
in such cases is to find a balance between maximizing the margin and minimizing the misclas-
sification errors. This is achieved through convex quadratic programming and the introduction
of a regularization term.

• Soft Margin SVM

When dealing with data that is not completely separable, SVM uses a soft margin ap-
proach. This approach introduces slack variables ξi to allow some misclassifications.
The optimization problem is formulated as:

Objective Function:

min
w,b,ξ

1
2
∥w∥2 +C

n∑
i=1

ξi (3.49)

Constraints:
yi(w · xi + b) ≥ 1 − ξi and ξi ≥ 0 for all i (3.50)

Here, w is the weight vector, b is the bias, ξi are the slack variables representing the
degree of misclassification, and C is the regularization parameter that controls the trade-
off between maximizing the margin and minimizing the misclassification.

• Dual Formulation

The dual formulation of the soft margin SVM is derived using Lagrange multipliers. The
dual problem is often preferred due to its computational efficiency and the ability to apply
the kernel trick for non-linear classification.

– Dual Objective Function:

max
α

n∑
i=1

αi −
1
2

n∑
i, j=1

yiy jαiα j(xi · x j) (3.51)

– Constraints:
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C for all i (3.52)

In this dual problem, αi are the Lagrange multipliers, and the constraints ensure that the
solution lies within a specified range, governed by the regularization parameter C.

• Hinge Loss Function

The hinge loss function is a key component in the formulation of SVMs. It is defined as:

L(y, f (x)) = max(0, 1 − y · f (x)) (3.53)

This loss function penalizes predictions that are on the wrong side of the margin, and its
minimization leads to the optimal separating hyperplane in the SVM framework.
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• Regularization
Regularization in SVMs is crucial for preventing overfitting, especially in cases where
the data is not completely separable. It is achieved through the regularization parame-
ter C, which controls the trade-off between maximizing the margin and minimizing the
misclassification errors.

2. Non-linear Classification with SVM
SVMs are powerful tools for both linear and non-linear classification tasks. For non-linear
classification, SVMs employ kernel functions to map input data into a higher-dimensional space
where linear separation is feasible. This approach is known as the kernel trick.

• Kernel Functions and the Kernel Trick The kernel trick is a method used in SVMs to
solve non-linear problems by transforming them into linear ones in a higher-dimensional
space. The transformation is achieved through a kernel function K(x, x′), which computes
the inner product of two vectors x and x′ in the transformed feature space. Common
kernel functions include polynomial kernels, Gaussian (Radial Basis Function - RBF)
kernels, and others.

• Positive Definite Kernels and Hilbert Spaces Positive-definite kernels are functions that
satisfy certain mathematical conditions, ensuring that the corresponding feature space is
a Hilbert space. This property is crucial for the theoretical foundation of kernel methods
in SVMs.

• Non-linear SVM Classification Decision Function
Given a non-linear SVM, the classification decision function is defined using a positive
definite kernel function. The decision function for a new input x is given by:

f (x) = sign

 N∑
i=1

αiyiK(xi, x) + b

 , (3.54)

where:

– αi are the Lagrange multipliers obtained from the solution of the dual problem.
– yi are the labels of the training data.
– xi are the support vectors.
– K(xi, x) is the kernel function, a positive definite function used to compute the inner

product in the transformed feature space.
– b is the bias term.
– N is the number of support vectors.

The kernel function K(xi, x) maps the input data into a higher-dimensional space where
linear separation is possible. Common choices for K include polynomial kernels, Gaus-
sian (RBF) kernels, and others, depending on the specific requirements of the dataset and
problem. Fig. 3.17 shows the kernel trick.

• Convex Quadratic Programming in Non-linear SVMs When the kernel function is
positive definite, the optimization problem of SVM is a convex quadratic programming
problem, and the solution exists.
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Figure 3.17: Kernel trick diagram (Hachimi et al., 2020).

3.4.6 UML algorithms

Unsupervised learning is a type of machine learning that deals with unlabeled data. Unlike supervised
learning, where models are trained on data paired with known outputs, unsupervised learning algo-
rithms infer patterns directly from the input data without reference to known, or labeled, outcomes.

The objectives of unsupervised learning can vary, including but not limited to:

• Clustering: One of the primary tasks in unsupervised learning is clustering, where the algo-
rithm groups data points into distinct clusters based on their similarities. Common clustering
algorithms include K-means, hierarchical clustering, the Gaussian Mixture Model based on the
EM algorithm, and DBSCAN.

• Dimensionality Reduction: Unsupervised learning is often used to reduce the number of vari-
ables in a dataset while preserving as much information as possible. Techniques like PCA are
widely used for dimensionality reduction, which will be discussed in detail later.

• Association: Discovering rules that describe large portions of the data, such as frequent item-
sets or correlations.

• Anomaly Detection: Identifying rare items, events, or observations that raise suspicions by
differing significantly from the majority of the data.

logistic regression vs. SVM In practical classification tasks, the results obtained from logistic regres-
sion and SVM often exhibit similarities. Logistic regression focuses on maximizing the conditional
likelihood of the training set, continuously updating the posterior probabilities. This approach makes
it more adept at handling outliers compared to SVM, which primarily concentrates on the points near
the decision boundary. Another advantage of logistic regression is its inherent simplicity and ease of
model updating, making it a convenient choice for many applications. In this section, we focus exclu-
sively on two algorithms pertinent to this thesis: K-means and Gaussian Mixture Models (GMM). For
a broader exploration of unsupervised learning algorithms, readers are directed to additional resources
(Hinton & Sejnowski, 1999; Kotsiantis & Pintelas, 2004; Duda et al., 2012).

K-means algoritm

The K-means algorithm is a widely used method in unsupervised learning, particularly for clustering
tasks. It aims to partition a set of observations into K clusters, where each observation belongs to the
cluster with the nearest mean. The algorithm can be formalized as follows:
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1. Initialization: Select K points as the initial centroids. These points can be chosen randomly or
based on a specific strategy.

2. Assignment Step: Assign each observation to the cluster whose centroid is nearest. The dis-
tance is typically calculated using the Euclidean distance. Formally, this step involves partition-
ing the observations based on the given centroids. If we denote Ci as the set of observations in
the i-th cluster, the assignment can be represented as:

Ci = {x j : ||x j − µi||
2 ≤ ||x j − µk||

2 for all k , i}

where x j is an observation, µi is the centroid of the i-th cluster, and || · || denotes the Euclidean
norm.

3. Update Step: Recalculate the centroids of the clusters. The new centroid of each cluster is
calculated as the mean of all observations in that cluster. Mathematically, the update of the
centroid µi of the i-th cluster is given by:

µi =
1
|Ci|

∑
x j∈Ci

x j

where |Ci| is the number of observations in the i-th cluster.

4. Repeat: Steps 2 and 3 are repeated until the centroids no longer change significantly, indicating
that the clusters have stabilized.

The objective of the K-means algorithm is to minimize the within-cluster sum of squares (WCSS),
which is the sum of squared distances between each observation and its corresponding centroid. The
WCSS can be expressed as:

WCSS =
K∑

i=1

∑
x j∈Ci

||x j − µi||
2

. Fig. 3.18

Figure 3.18: Schematic diagram of K-means algorithm (Raschka, 2015a).
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Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is an iterative method used for
finding maximum likelihood estimates of parameters in statistical models, where the model depends
on unobserved latent variables. The algorithm alternates between performing an expectation (E) step
and a maximization (M) step.

• Formal Definition

Consider a statistical model with observed data X, unknown parameters θ, and latent variables
Z. The likelihood of the observed data is given by L(θ; X) = p(X|θ).

The EM algorithm seeks to maximize the log-likelihood log L(θ; X), which is difficult due to
the latent variables Z. The algorithm works iteratively as follows:

• E Step

Calculate the expected value of the log-likelihood function, concerning the conditional distri-
bution of Z given X under the current estimate of the parameters θ(t):

Q(θ|θ(t)) = EZ|X,θ(t)[log L(θ; X,Z)]

• M Step

Find the parameter that maximizes this quantity:

θ(t+1) = arg max
θ

Q(θ|θ(t))

• Iterative Process

1. Initialize θ(0), the initial parameter estimates.

2. Repeat until convergence:

– E Step: Compute Q(θ|θ(t)).

– M Step: Update θ(t+1) = arg maxθ Q(θ|θ(t)).

• Jensen’s Inequality in EM

Jensen’s inequality is crucial in the EM algorithm, especially in the E step. It provides a lower
bound to the log-likelihood. The inequality states that for any random variable Y and a convex
function f ,

f (E[Y]) ≤ E[ f (Y)]

In EM, this inequality allows deriving the Q function in the E step as a lower bound for the
log-likelihood, which is then maximized in the M step. This approach guarantees that the log-
likelihood increases with each iteration, ensuring convergence to a local maximum.
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Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a probabilistic model that assumes all the data points are gen-
erated from a mixture of a finite number of Gaussian distributions with unknown parameters. GMMs
are commonly used as a parametric model of the probability distribution of continuous measurements
or features in a biometric system, such as the iris, fingerprint, or face recognition systems.

• Formal Definition

A Gaussian Mixture Model is a weighted sum of M component Gaussian densities as given by
the equation:

p(x|λ) =
M∑

i=1

wi · g(x|µi,Σi) (3.55)

where:

– x represents the data points.

– λ represents the parameters of the mixture model.

– wi are the mixture weights.

– g(x|µi,Σi) are the component Gaussian densities.

– Each component density is a multivariate Gaussian function of the form:

g(x|µi,Σi) =
1

(2π)d/2|Σi|
1/2 exp

(
−

1
2

(x − µi)TΣ−1
i (x − µi)

)
(3.56)

– µi and Σi are the mean and covariance of the ith component.

– d is the dimensionality of the data.

• Parameters Estimation

The parameters of a GMM are typically estimated using the EM algorithm. The EM algorithm
iteratively adjusts the parameters to maximize the likelihood of the data given in the model.

• Expectation Step (E-step)

In the E-step, the algorithm computes the responsibilities, which reflect the probability that each
data point belongs to each cluster:

γ(zik) =
wk · g(xi|µk,Σk)∑M
j=1 w j · g(xi|µ j,Σ j)

(3.57)

where γ(zik) is the responsibility of cluster k for data point i.

• Maximization Step (M-step)

In the M-step, the algorithm updates the parameters using the current responsibilities:
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– Update the weights:

wnew
k =

1
N

N∑
i=1

γ(zik) (3.58)

– Update the means:

µnew
k =

∑N
i=1 γ(zik)xi∑N

i=1 γ(zik)
(3.59)

– Update the covariances:

Σnew
k =

∑N
i=1 γ(zik)(xi − µ

new
k )(xi − µ

new
k )T∑N

i=1 γ(zik)
(3.60)

DL algorithms

DL, a transformative approach within ML, fundamentally relies on the concept of distributed represen-
tation. This paradigm posits that observations emerge from the complex interplay of various factors.
DL extends this concept by proposing that these interactions can be decomposed into multiple layers,
each representing different levels of data abstraction (Bengio et al., 2013a).

• Hierarchical Abstraction in DL DL employs a hierarchical abstraction process, where higher-
level, more complex concepts are derived from lower-level, simpler ones. This hierarchical
structure is typically constructed in a layer-wise manner, often employing greedy algorithms
designed to select features that most effectively contribute to the learning process (Bengio et al.,
2013a). A significant portion of DL algorithms falls under the category of unsupervised ma-
chine learning (UML), enabling their application to unlabeled datasets, which are more abun-
dant and accessible compared to labeled data (Bengio et al., 2013a).

• Representation Learning

– Traditional ML Feature Learning

Traditional ML feature learning includes techniques like Principal Component Analysis
(PCA) (Pearson, 1901) and Linear Discriminant Analysis (LDA) (FISHER, 1936), as
well as Manifold Learning, which emerged in 2000 to discover inherent structures in
high-dimensional data.

– Deep Neural Network-Based Feature Learning

Deep Neural Network-Based Feature Learning gained prominence with the demonstra-
tion of Rumelhart et al. (1986) that the backpropagation algorithm could learn useful in-
trinsic representations in a network’s hidden layers. Hinton et al. (2006) introduced meth-
ods for greedy hierarchical pre-training and deep neural network fine-tuning, addressing
neural networks’ challenges with model overfitting and gradient diffusion (Hinton et al.,
2006).

• Artificial Neural Networks in DL

The conceptual foundation of Artificial Neural Networks (ANNs), a cornerstone of DL, is
rooted in the seminal work of Hubel & Wiesel (1959) on the neuronal structure of the human
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brain. Minsky & Papert (1969) proved that the linear model of the perceptron cannot represent
complex functions and cannot solve the exclusive OR (XOR) problem. The Universal Approx-
imation Theorem (Cybenko, 1989; Chen et al., 1995; Lu et al., 2017) posits that a feedforward
neural network (FNN) with a single hidden layer can approximate continuous functions.

• The Depth in DL

Deep neural networks (DNNs) are typically an extension of FNNs, although they have also
been adapted into recurrent neural networks (RNNs) for specific applications like language
modeling (Mikolov et al., 2010). The term “deep” in DL refers to the number of hidden layers
in the network, denoting the depth of the credit assignment path (CAP).

• Applications of DL

In SML tasks, DL techniques eliminate the need for manual feature engineering by transforming
data into compact, intermediate representations akin to principal components. These algorithms
are also applicable to UML tasks, providing a significant advantage due to the abundance of un-
labeled data. Various DL frameworks have been successfully applied in fields such as computer
vision, speech recognition, natural language processing, audio recognition, and bioinformatics,
yielding impressive results.

Artificial Neural Networks

The inception of artificial neural networks (ANNs) is deeply rooted in the study of the human central
nervous system. These computational models are comprised of elementary units known as artificial
neurons, which are interconnected in a manner akin to the neural networks observed in biological
systems.

• Definition and Structure

There is currently no unified formal definition of ANN. However, it generally has three compo-
nents nodes or neurons, organized in layers, capable of handling tasks like pattern recognition,
classification, and prediction. Each neuron is interconnected with others via links analogous
to the axon-synaptic-dendritic connections found in biological systems. These nodes, upon re-
ceiving data through these connections, execute designated operations and tasks on the received
information. Each link is characterized by a weight, which signifies the extent of influence one
neuron exerts over another (Russell & Norvig, 2010, 2020). This weighting mechanism facil-
itates the selective transmission of signals between neurons, thereby enabling the network to
process and learn from the input data effectively. Fig. 3.19 is the schematic diagram of human
brain neurons, artificial neurons, and ANN. The following is a brief introduction to ANN:

– Input Layer:

* Receives raw input data.

* Each neuron represents one feature of the input data.

* Formally represented as a vector X = [x1, x2, . . . , xn].

– Hidden Layers:
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* Situated between the input and output layers.

* Apply transformations to inputs: H = f (Wh · X + Bh).

– Output Layer:

* Produces the network’s output.

* Output computed as Y = g(Wo · H + Bo).

• Neurons

ANNs are composed of simulated neurons. Each neuron is connected to other nodes through
links like biological axon-synaptic-dendritic connections. All nodes connected through a link
receive some data and use it to perform specific operations and tasks on the data. Each link has
a weight that determines the strength of the influence of one node on another node (Russell &
Norvig, 2010, 2020), allowing the weight to select the signal between neurons. Neurons can be
summarized as the following:

– Fundamental unit of ANNs.

– Computes a weighted sum and bias: z =
∑

i(wi · xi) + b.

– Activation function introduces non-linearity.

• Activation Functions

Activation functions in ANNs introduce non-linearity, enabling the network to model complex
data patterns. An activation function transforms the linear combination of inputs into a non-
linear output:

f (z) = Non-linear function(z), (3.61)

where z is the weighted sum of inputs and biases.

– Common Types

* Sigmoid Function: Maps inputs to a range between 0 and 1.

σ(z) =
1

1 + e−z , (3.62)

* Hyperbolic Tangent (tanh): Outputs values between -1 and 1.

tanh(z) =
ez − e−z

ez + e−z , (3.63)

* Rectified Linear Unit (ReLU): Outputs the input if positive, else zero.

ReLU(z) = max(0, z), (3.64)
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Figure 3.19: human brain neurons, artificial neurons, and ANN (Bre et al., 2017).



3.4. ML 87

* Leaky ReLU: Allows a small gradient when inactive.

Leaky ReLU(z) = max(αz, z), (3.65)

where α is a small constant.

* Softmax Function: Used in multi-class classification to turn logits into probabili-
ties.

Softmax(zi) =
ezi∑
j ez j

– Backpropagation
Backpropagation calculates the gradient of the loss function concerning the network
weights. Backpropagation computes the gradient of the loss function for each weight
by the chain rule, propagating the error backward.

– Process

1. Forward Pass: Compute output and loss.

2. Backward Pass: Compute the gradient of the loss function.

∂L

∂w
=
∂L

∂y
·
∂y
∂w

where L is the loss function, and y is the network output.

3. Update Weights: Adjust weights to minimize loss.

w = w − η ·
∂L

∂w

where η is the learning rate.

– Regularization
In addition to the common L1 (Lasso) and L2 (Ridge) regularization, Dropout is also a
regularization technique that randomly deactivates a subset of neurons during training.
This process is mathematically represented as:

h′ = h ⊙ Dropout(ρ), (3.66)

where h is the input to the dropout layer, and h′ is the output after applying dropout (Wan
et al., 2013).

– Formal Representation
A simple three-layer ANN:

* Input: X = [x1, x2, . . . , xn]

* Hidden: H = f (Wh · X + Bh)

* Output: Y = g(Wo · H + Bo)
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Disadvantages of DL

• Gradient Vanishing and Gradient Exploding
DL is not omnipotent and will still face some difficulties. In the context of DL, particularly
in training deep neural networks (DNNs), two significant challenges are the phenomena of
gradient vanishing (Hochreiter, 1991) and gradient exploding (Pascanu et al., 2012a). These
issues are pivotal in understanding the limitations and behavior of DNNs during the training
process.

– Gradient Vanishing
Gradient vanishing refers to the problem where the gradients of the loss function concern-
ing the network’s parameters become increasingly small as the error is backpropagated
through the layers. This effect is more pronounced in deeper networks. Mathematically,
it can be expressed as:

lim
l→0

∂L

∂w(l) ≈ 0, (3.67)

where L is the loss function, w(l) represents the weights of the l-th layer, and l denotes
the layer index, counting backward from the output layer.

– Causes
The primary cause of gradient vanishing is the use of certain activation functions, like the
sigmoid or hyperbolic tangent, which saturate at their asymptotes, leading to derivatives
close to zero. In deep networks, as the gradient is backpropagated, the multiplication of
these small derivatives leads to an exponentially smaller gradient for layers closer to the
input layer Hochreiter & Schmidhuber (1997); Glorot & Bengio (2010).

– Gradient Exploding
Conversely, gradient exploding occurs when the gradients of the loss function become
excessively large, potentially leading to divergent behavior in the learning process. This
is represented as:

lim
l→0

∣∣∣∣∣ ∂L∂w(l)

∣∣∣∣∣→ ∞. (3.68)

– Causes
Gradient exploding is often observed in networks with deep architectures and is typically
due to the multiplication of gradients larger than one through the layers during backprop-
agation. This is particularly problematic with activation functions that do not have an
upper bound on their derivatives Pascanu et al. (2012b).

– Mitigation Strategies for Gradient Vanishing

* Use of ReLU Activation Function: The Rectified Linear Unit (ReLU) and its
variants (e.g., Leaky ReLU) help mitigate the vanishing gradient problem due to
their non-saturating nature Nair & Hinton (2010).

* Weight Initialization Techniques: Proper initialization methods, such as Xavier
or He initialization, can prevent gradients from diminishing too quickly He et al.
(2015).
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* Batch Normalization: Normalizing the inputs of each layer ensures that they have
a mean of zero and a variance of one, which helps maintain stable gradients Ioffe
& Szegedy (2015).

– Mitigation Strategies for Gradient Exploding

* Gradient Clipping: This technique involves scaling down gradients when they
exceed a certain threshold, thus preventing them from becoming too large Pascanu
et al. (2012b).

* Careful Network Design: Avoiding excessively deep architectures or using skip
connections (as in ResNet) can reduce the risk of exploding gradients.

• Interpretability and Opacity in DL

DL has achieved remarkable success across various domains, from image recognition to natural
language processing. However, the interpretability of these models, often referred to as their
”black box” nature, remains a significant challenge in the field.

– The Black Box Nature of Deep Learning

DL models, particularly DNNs, are often considered opaque due to their complex struc-
ture and the high dimensionality of the data they process. This opacity arises from the
intricate interplay of numerous parameters within these models, making it challenging to
understand the specific reasons behind their decisions or predictions Castelvecchi (2016).

– Challenges in Interpretability

* Complexity of Models: DNNs can consist of millions of parameters and numerous
layers, making it difficult to trace how input data is transformed into outputs.

* Non-linearity: The non-linear activation functions used in DNNs add to the com-
plexity, as they create non-linear mappings between inputs and outputs.

* High Dimensionality: DL models often work with high-dimensional data, which
is inherently difficult to visualize or interpret in human-understandable terms.

Transfer learning

Transfer learning (TL) is an ML method where a model developed for a task is reused as the starting
point for a model on a second task. It is a popular approach in deep learning where pre-trained
models are used as the starting point for computer vision and natural language processing tasks. The
formidable capabilities of ANNs in feature learning and nonlinear fitting render them the optimal
choice for implementing Transfer Learning. These networks excel in discerning intricate patterns and
relationships within data, a trait that is crucial for the successful application of Transfer Learning
methodologies.
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• Historical Background The concept of transfer learning dates back to the 1990s, but it gained
significant traction in the 2010s with the advent of deep learning. The success of transfer learn-
ing in deep learning is largely attributed to the introduction of large-scale datasets and the de-
velopment of high-capacity models that can learn rich representations from these datasets West
et al. (2007); Karimpanal & Bouffanais (2019); Bozinovski (2020).

• Formal Definition

TL involves leveraging knowledge from a source domainDS with its task TS to enhance learn-
ing in a different target domain DT and its task TT . In TL, a domain D comprises a feature
space X and a marginal probability distribution P(X), while a task T includes a label space
Y and a predictive function f . The function f maps inputs x ∈ X to labels y ∈ Y, learned
from input-output pairs xi, yi. TL is particularly effective in imbalanced clustering tasks, using
knowledge from DS to improve performance in DT , especially when DT has limited samples.
This approach helps in modeling minority classes and addressing class imbalance challenges.
The process of TL is illustrated in Fig. 3.20.

Figure 3.20: TL process diagram https://medium.com/modern-nlp/transfer-learning-in-nlp-
f5035cc3f62f.

• TL in Practice In practice, transfer learning can be implemented in several ways, such as:

– Feature Extraction: Using the representations learned by a previous network to extract
meaningful features from new samples.

– Fine-Tuning: Adjusting the weights of a pre-trained network by continuing the back-
propagation process, allowing the model to learn task-specific features from the new
dataset.

3.4.7 Data Preprocessing

Data preprocessing is a fundamental step in the ML workflow (Russell & Norvig, 2010, 2020; Raschka,
2015a), pivotal for enhancing the quality and utility of data for effective model training. This section
explores the intricate processes and methodologies involved in data preprocessing, underscoring its
critical role in ML.

https://medium.com/modern-nlp/transfer-learning-in-nlp-f5035cc3f62f
https://medium.com/modern-nlp/transfer-learning-in-nlp-f5035cc3f62f
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• Data Cleaning. Dealing with missing values is a critical aspect of data preprocessing in ML.
The presence of missing data can significantly impact the performance of models, making it
essential to address them effectively. This section delves into various strategies for handling
missing values.

1. Deletion Methods. The simplest approach is to ignore or remove the rows or columns
with missing values. While straightforward, this method, known as listwise or pairwise
deletion, can lead to significant data loss and potential bias, especially if the missingness
is not random.

2. Imputation Techniques. Imputation involves substituting missing values with estimated
ones. The basic form of imputation replaces missing values with central tendency mea-
sures such as mean, median, or mode. More sophisticated techniques include:

3. KNN Imputation. This method estimates missing values based on the k-nearest neigh-
bors, considering the similarity between instances.

4. Regression Imputation. Missing values are predicted using regression models, where
other variables in the dataset serve as predictors.

5. Multiple Imputation. It involves creating multiple imputations for missing values to
reflect the uncertainty around the true value. This approach is particularly useful when
the data is missing at random (MAR).

6. Algorithmic Approaches. Certain machine learning algorithms can handle missing val-
ues inherently. For instance, decision trees and random forests can split nodes using
available data without imputing missing values

7. Data Augmentation. In some cases, missing values can be addressed through data aug-
mentation, where synthetic data is generated to fill in the gaps. This approach is often
used in DL contexts.

• Feature Discretization. Feature discretization converts a range of continuous values into a
smaller number of intervals or bins. This process can be particularly useful when dealing with
non-linear relationships in the data, as it allows inherently linear models (like linear regres-
sion or LR) to capture non-linear effects. Here are many common methods of discretization
(Dougherty et al., 1995; Kotsiantis & Kanellopoulos, 2005; Huang et al., 2014).

1. Equal-width binning. Divide the range of values into intervals of equal size. The main
disadvantage is its sensitivity to outliers, as they can skew the distribution of the bins.

2. Equal-frequency binning. Each bin contains approximately the same number of data
points. This method is less sensitive to outliers but can lead to bins with very different
width ranges.

3. K-means binning. Uses the K-means clustering algorithm to partition data into k clus-
ters. Each cluster forms a bin, and the boundaries are determined by the cluster centroids.

4. Decision tree-based binning. Utilizes decision trees to determine optimal binning. The
splits made by the decision tree define the bin boundaries, which can capture complex
structures in the data.
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• Dealing with categorical. In the realm of ML, the treatment of nominal and ordinal features
is a crucial aspect of data preprocessing, as it significantly influences the performance of the
learning algorithms. This subsection delves into the methodologies employed for effectively
processing these categorical data types.

1. Nominal Features. Nominal features, representing discrete and unranked data cate-
gories, necessitate specific preprocessing techniques to transform them into a format suit-
able for machine learning algorithms. The most prevalent method is one-hot encoding,
where each category is transformed into a new binary feature. This approach effectively
deals with the non-ordinal nature of nominal data, ensuring that machine learning models
do not erroneously attribute an order or priority to these categories. However, one-hot en-
coding can lead to a high-dimensional feature space, especially with features with many
categories, which might necessitate dimensionality reduction techniques.

2. Ordinal Features. Ordinal features, in contrast, are categorical data types with a natu-
ral order or ranking among the categories. The primary challenge in processing ordinal
features is to encode the inherent order in the data appropriately. Common techniques in-
clude label encoding, where each category is assigned a unique integer based on its order.
This method preserves the ordinal relationship between categories, making it suitable for
algorithms that can interpret numerical values and their order. Another approach is to use
binary encoding, which reduces the feature space compared to one-hot encoding while
maintaining the order of information.

3.4.8 Splitting Dataset into Training, Validation, and Testing Sets

Splitting a dataset into training, validation, and testing sets is a crucial step in the development of
machine learning models. This process helps in assessing the model’s performance and ensuring that
it generalizes well to new, unseen data.

• Standard Splitting Methods

1. Random Split. The dataset is randomly divided into training, validation, and testing sets.
A common split ratio is 70% for training, 15% for validation, and 15% for testing.

2. Stratified Split. This method is used to ensure that each split of the dataset contains
approximately the same percentage of samples of each target class as the original dataset.
It is particularly useful when dealing with imbalanced datasets.

3. Time-based Split. In time-series data, the dataset is split based on time, ensuring that the
training set contains earlier data while the validation and testing sets contain later data.

• Handling Imbalanced Datasets. Imbalanced datasets, where some classes are underrepresented,
pose a significant challenge in model training and evaluation. Specialized techniques are used
to ensure a fair representation of all classes in each dataset split:

1. Stratified Sampling. Ensures that each class is adequately represented in each split of
the dataset. This method maintains the same class proportion in training, validation, and
testing sets as in the original dataset.
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2. Oversampling and Undersampling. Involves adjusting the class distribution of the
dataset. Oversampling the minority class or undersampling the majority class can be
applied before the split to balance the dataset.

3. Synthetic Data Generation. Techniques like the Synthetic Minority Over-sampling
Technique (SMOTE) can be used to generate synthetic samples for minority classes be-
fore the dataset split.

• Feature scaling. Feature scaling is a crucial step in the preprocessing of data for machine learn-
ing algorithms. It involves adjusting the scale of the features in the dataset to a common range or
distribution. This is important because features on different scales can disproportionately influ-
ence the model’s learning process. Two common methods of feature scaling are normalization
and standardization.

– Normalization. Normalization, often referred to as Min-Max scaling, rescales the feature
values to a range of [0, 1]. The formula for normalization is given:

xnormalized =
x −min(x)

max(x) −min(x)
(3.69)

where x is an individual data point, min(x) is the minimum value of the feature across
all data points, and max(x) is the maximum value of the feature. This scaling method is
useful when the algorithm assumes the data to be on a bounded interval.

– Standardization. Standardization, on the other hand, rescales data to have a mean (µ) of
0 and a standard deviation (σ) of 1. The formula for standardization is:

xstandardized =
x − µ
σ

(3.70)

, where x represents an individual data point, µ is the mean of the feature, and σ is the
standard deviation of the feature. Standardization is less affected by outliers and is often
used when the algorithm assumes data to be normally distributed.

Both normalization and standardization are essential techniques in data preprocessing,
ensuring that each feature contributes equally to the model’s performance and improving
the convergence of the algorithm.

3.4.9 Data Reduction

Data compression, a pivotal technique in the realm of machine learning and data science, plays a
crucial role in managing the ever-growing volume of data in modern computational tasks. It involves
reducing the size of a dataset while retaining its essential information, thereby enhancing storage effi-
ciency and computational speed. In the context of ML, data compression is not merely about reducing
storage requirements. It is also instrumental in addressing the “curse of dimensionality”, a term coined
by Bellman et al. (1957); BELLMAN (1961) in the context of dynamic programming, refers to various
phenomena that arise when analyzing and organizing data in high-dimensional spaces, often encoun-
tered in fields like ML and data analysis. As the dimensionality of a dataset increases, the volume of
the space increases exponentially, making the available data sparse. This sparsity is problematic for
any method that requires statistical significance, as more data is needed to support the model reliably.
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In high-dimensional spaces, the distance between data points becomes less meaningful, as high-
lighted by Beyer et al. (1999). This undermines the effectiveness of many ML algorithms, especially
those relying on distance calculations, like KNN. The increased dimensions also lead to overfitting,
where a model learns noise in the training data instead of the intended outputs, reducing its predictive
power on new, unseen data.

Dimensionality reduction techniques, such as PCA and LDA, are often employed to mitigate the
curse of dimensionality. These methods reduce the number of random variables under consideration,
either by selecting only the most relevant variables (feature selection) or by transforming them into a
lower-dimensional space (feature extraction), as discussed by Jolliffe (2002) and Hastie et al. (2009).

• Feature selection The primary goal of feature selection is to improve model performance,
whether measured by accuracy, precision, speed, or robustness. It also helps in understand-
ing the underlying processes that generated the data, as noted by (Guyon & Elisseeff, 2003).
Feature selection methods fall into three broad categories: filter methods, wrapper methods,
and embedded methods (see Fig. 3.21).

Feature selection, an essential process in ML, involves selecting a subset of relevant features
(variables, predictors) for use in model construction. This process simplifies models to make
them easier to interpret, reduces the computational cost of modeling, and, most importantly,
can enhance the generalization capabilities of the model by eliminating irrelevant or redundant
data.

Figure 3.21: Three types of methods for Feature selection: filter, wrapper, and embedded method (Xie
et al., 2020).

– Filter methods Filter methods in machine learning are a set of techniques used for fea-
ture selection, primarily based on statistical measures. They evaluate the importance of
features independently of any machine learning algorithm. This independence from the
predictive model makes filter methods computationally efficient, and particularly useful
for high-dimensional datasets. Here are some of the common filter methods (Koller &
Sahami, 1996; Cover & Thomas, 2006; Amorim, 2009).

1. Variance Threshold. This method removes all features whose variance does not
meet a certain threshold. It operates under the assumption that features with low
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variance are less informative. The variance threshold is defined as: Var(X) = σ2 =
1
N

∑N
i=1(xi − µ)2, where σ2 is the variance, N is the number of observations, xi is

each individual observation, and µ is the mean of the feature.

2. Pearson Correlation Coefficient. This method evaluates the linear correlation
between two variables. The Pearson correlation coefficient is calculated as:

r =
∑

(xi − x)(yi − y)√∑
(xi − x)2 ∑

(yi − y)2
, (3.71)

where xi and yi are the individual sample points indexed with i, x and y are the
sample means. A high absolute value of r indicates a strong relationship between
the features.

3. Mutual Information (Information Gain). Mutual information measures the amount
of information one can obtain from one random variable given another. The mutual
information between two variables X and Y is calculated as:

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

,

)
(3.72)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and
p(y) are the marginal probability distribution functions of X and Y respectively.

4. Chi-Squared Test. This statistical test is used to determine if there is a significant
association between two categorical variables. The formula for the chi-squared
statistic is:

χ2 =
∑ (Oi − Ei)2

Ei
, (3.73)

where Oi is the observed frequency, and Ei is the expected frequency under the null
hypothesis.

• Wrapper methods. Wrapper methods in ML are feature selection techniques that use a pre-
dictive model to evaluate the combination of features and determine their effectiveness. Unlike
filter methods, wrapper methods consider the interaction between features and are typically
more computationally intensive. Here are some of the common wrapper methods:(Pudil et al.,
1994; Kohavi & John, 1997; Saeys et al., 2007).

1. Sequential Forward Selection (SFS). This method starts with an empty model and suc-
cessively adds features that improve the model’s performance the most until a specified
stopping criterion is reached. The general idea can be expressed as:

S k+1 = S k ∪ {x+}, (3.74)

where S k is the set of selected features at step k, and x+ is the feature that maximizes the
performance criterion when added to S k.

2. Sequential Backward Selection (SBS). This method starts with the full set of features
and iteratively removes the least significant feature that causes the least performance loss.
The process is described as:

S k−1 = S k − {x−}, (3.75)
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where S k is the set of selected features at step k, and x− is the feature that, when removed
from S k, has the least impact on performance.

3. Recursive Feature Elimination (RFE). RFE recursively removes the least important
features based on the model weights. It is particularly useful with models that assign
importance to each feature, such as linear models with coefficients. The process can be
summarized as:

S k−1 = S k − {least important feature (3.76)

until the desired number of features is reached.

• Embedded methods. Embedded methods are a type of feature selection technique in ML that
performs feature selection as part of the model training process. These methods are particularly
efficient as they combine the qualities of filter and wrapper methods, offering a balance between
computational efficiency and model performance. Here are some of the common wrapper meth-
ods (Quinlan, 1986; Tibshirani, 1996; Breiman, 2001b).

1. L1 (LASSO) Regularization. L1 regularization adds a penalty equal to the absolute
value of the magnitude of coefficients. This method can shrink some coefficients to zero,
effectively performing feature selection. The optimization problem can be formulated as:

min
β

{
1

2n
||Y − Xβ||22 + λ||β||1

}
, (3.77)

where β represents the coefficients, X is the feature matrix, Y is the target vector, n is the
number of samples, and λ is the regularization parameter.

2. Decision tree. DT inherently performs feature selection by selecting the most informative
features to split on at each node. The selection is based on measures like Gini impurity
or information gain.

3. Random Forest. RF extends the concept of decision trees. Each tree in the forest is
built from a sample drawn with replacement from the training set. When splitting a
node during the construction of the tree, the split that is chosen is the best split among a
random subset of the features. This randomness helps in achieving a more diversified set
of features.

• Feature extraction. Feature extraction (Sarangi et al., 2020) is a process in ML where new
features are constructed from the original set of features to reduce the dimensionality of the
dataset. This process is crucial for improving the efficiency of machine learning algorithms,
especially when dealing with high-dimensional data. Feature extraction techniques transform
the input data into a set of features that are more meaningful and informative for the learning
algorithms.

Three of the most common feature extraction methods are PCA (Pearson, 1901; Jolliffe, 2014)),
LDA (FISHER, 1936)), and Kernel Principal Component Analysis (Kernel PCA, Schölkopf
et al. 1997; Schölkopf et al. 1998).
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1. PCA. PCA is a statistical technique used to emphasize variation and capture strong pat-
terns in a dataset. It transforms the original data into a new set of variables, the principal
components, which are orthogonal and uncorrelated. The first principal component ac-
counts for the most variance in the data. The mathematical formulation of PCA involves
an eigenvalue decomposition of the data covariance matrix or singular value decomposi-
tion of the data matrix. The PCA transformation is defined as:

Y = WT · X, (3.78)

where X is the data matrix, W is the matrix of eigenvectors, and Y is the matrix of princi-
pal components.

2. LDA. LDA is a SML method used to find the linear combinations of features that best
separate two or more classes of objects or events. The resulting combination may be used
as a linear classifier or for dimensionality reduction. The goal of LDA is to maximize
the ratio of between-class variance to the within-class variance in any particular data set,
thereby ensuring maximum separability. The LDA transformation can be represented as:

W = arg max
|WT S BW |
|WT S WW |

, (3.79)

where S B is the between-class scatter matrix and S W is the within-class scatter matrix.

3. Kernel PCA. Kernel PCA applies a nonlinear kernel function to the original data to map
it into a higher-dimensional feature space where linear separation is possible. In this new
space, the standard PCA is then applied to find the principal components. The kernel
function, such as the polynomial, radial basis function (RBF), or sigmoid kernel, defines
the nature of the high-dimensional space. The transformation in Kernel PCA can be
represented as:Φ : xi 7→ Φ(xi),Y = Φ(X)W where xi are the original data points, Φ is the
nonlinear mapping function defined by the kernel, X is the matrix of original data, W is
the matrix of eigenvectors in the feature space, and Y is the transformed data in the kernel
principal component space.

Fig. 3.22 and Fig. 3.23 visualize the PCA, LDA, and Kernel PCA.

• Hyperparameters. Hyperparameters are external configurations to the model that are not learned
from data but are set before the training process. They are crucial in controlling the behavior of
the learning algorithm and can significantly impact the performance of the model.

Selecting the optimal hyperparameters is a critical step, often achieved through processes like
grid search, random search, or Bayesian optimization:

– Grid Search. Grid search is a methodical approach to hyperparameter tuning that in-
volves exhaustively searching through a specified subset of hyperparameters. It defines a
grid of hyperparameter values and evaluates the model’s performance for each combina-
tion in the grid. Grid search is simple to understand and implement. Guarantees finding
the optimal solution if it lies within the grid. However, it is computationally intensive,
especially with a large number of hyperparameters or large value ranges.
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Figure 3.22: PCA versus LDA. Figure courtesy of https://sebastianraschka.com/Articles/2014 python lda.html

Figure 3.23: PCA versus Kernel PCA. Figure courtesy of https://ml-
lectures.org/docs/structuring data/ml without neural network-2.html

https://sebastianraschka.com/Articles/2014_python_lda.html
https://ml-lectures.org/docs/structuring_data/ml_without_neural_network-2.html
https://ml-lectures.org/docs/structuring_data/ml_without_neural_network-2.html
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– Random Search. Random search selects random combinations of hyperparameters to
evaluate. It defines a search space as ranges for hyperparameters and randomly selects
combinations for evaluation. Random search is more efficient than grid search, especially
when only a few hyperparameters significantly influence the model. However, there is no
guarantee of finding the optimal solution, and the search might miss important areas of
the hyperparameter space.

• Bayesian Optimization. Bayesian optimization uses a probabilistic model to guide the search
for the best hyperparameters. It builds a probabilistic model of the function mapping from hy-
perparameter values to the target evaluated on the validation set. Bayesian optimization is more
efficient than random or grid search, particularly for high-dimensional spaces. Nevertheless,
bayesian optimization is more complex to implement and understand. Requires careful choice
of the prior and the update rule.

3.5 ML/DL applications in astronomy

In the era of astronomical big data, driven by advancements in observational tools, there has been
an exponential increase in astronomical data. For instance, the Hubble Space Telescope (HST) Data
Warehouse provides access to engineering data from 1990 to 2002, with a current data volume of 2.8
TB (Miebach, 2002). The Sloan Digital Sky Survey (SDSS) had amassed 40 TB of data by the early
21st century (York et al., 2000), while the Large Synoptic Survey Telescope (LSST) is expected to
collect approximately 30 TB of data nightly over a decade, potentially discovering 100,000 variable
objects each night. The total image data volume of LSST is projected to be around 70 PB, with
catalogs estimated to be 10-20 PB (Borne, 2008). Gaia (Gaia Collaboration et al., 2016) is mapping
a three-dimensional chart of the Milky Way and will provide precise positional and radial velocity
measurements for over a billion stars in the Milky Way and the entire Local Group. The Jet Propulsion
Laboratory Adaptive Recognition Tool (JARTool, Burl et al. 1994) is used for identifying volcanoes
in over 10,000 Venusian images returned by the Magellan mission. The Euclid space mission is
expected to generate data in the tens of PB (An, 2019), and the Square Kilometre Array will produce
700 PB of scientific data annually. In this data-intensive era of astronomy, facing large, complex, and
multidimensional datasets, there is a need for automated, efficient, and intelligent methods capable
of performing tasks akin to those of astronomers, such as identifying known objects, discovering
unknown entities, and recognizing rare phenomena. All these tasks can be attempted using ML/DL
technologies (Wang et al., 2018; Rodriguez et al., 2022; Patil, 2023).

The surge in astronomical data necessitates the adoption of cutting-edge advanced data processing
methods for data processing and analysis. This era of data-intensive astronomy calls for automated,
efficient, and intelligent methods capable of performing tasks akin to those of astronomers, such as
recognizing known objects, discovering unknown entities, and identifying rare phenomena, all achiev-
able through ML/DL techniques (Wang et al., 2018; Rodriguez et al., 2022; Patil, 2023). Many astro-
nomical classification tasks, such as the classification of stars and galaxies, galaxy morphology, and
AGN/blazar classification, have successfully applied ML/DL technologies. Some detailed examples
are provided below.

• Classification of Stars and Galaxies. Distinguishing between stars and galaxies is a funda-
mental task in astronomical data analysis. The most common method for this purpose is mor-
phological classification, which relies on the appearance, shape, and size of objects in images.
Stars, being relatively closer to Earth, typically appear as more or less circular point sources,
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while galaxies, being farther away, usually present extended structures with varying shapes and
luminosity distributions. A widely used technique is the analysis of light profiles. Stars, due
to their point-like nature, have light profiles that can be well described by a PSF. On the other
hand, galaxies have more complex light distributions that cannot be fully captured by PSF mod-
els. This distinction forms the basis for star-galaxy classification in many surveys, including
the Sloan Digital Sky Survey (SDSS) (Stoughton et al., 2002). However, other astrophysical
objects, such as quasars and supernovae, also appear as point sources. Therefore, dividing pho-
tometric catalogs into stars and galaxies, or more generally, stars, galaxies, and other objects,
is an important issue. ML algorithms, particularly supervised learning methods, have become
increasingly popular in this task. These algorithms can be trained on labeled datasets containing
known stars and galaxies, learning to recognize patterns and features that differentiate these two
categories. For example, SVMs have been effectively used for star-galaxy classification (Fadely
et al., 2012). DL, which has seen significant success in recent years, allows ANNs to automati-
cally learn hierarchical features from image data, making them highly suitable for classifying a
diverse range of astronomical objects Kennamer et al. (2018); Kim & Brunner (2016). Devices
like APM and DPOSS, which scan photographic plates, have used various ML/DL algorithms.
In addition to ANNs (Odewahn et al., 1992, 1993; Bazell & Peng, 1998; Andreon et al., 2000;
Philip et al., 2002; Odewahn et al., 2004; Collister et al., 2007), there are DTs (Odewahn et al.,
2004; Weir et al., 1995; Ball et al., 2006), and hybrid modeling (Qin et al., 2003), most of which
exceed 95% efficiency. This efficiency is usually achieved by analyzing a set of morphological
parameters extracted from photometric measurements, often supplemented with additional data
such as color or seeing conditions. These studies demonstrate the efficacy of ML/DL algorithms
in accurately classifying stars and galaxies in large astronomical datasets.

• Classification of Galaxy Morphology. Galaxies exhibit a variety of sizes and morphologies.
The Hubble Sequence stands out as the primary method for classifying galaxy morphology,
categorizing galaxies into ellipticals, spirals, barred spirals, and irregulars, each with further
subdivisions (Fath, 1909; Hubble, 1926; Sandage, 1961; van den Bergh, 1998). This system is
linked to key physical characteristics that are crucial for the formation and evolution of galaxies
(Roberts & Haynes, 1994; Firmani & Avila-Reese, 2003). Other classification systems, such as
the Yerkes system, utilize the concentration index (Morgan, 1958, 1959; 197, 1977), while the
de Vaucouleurs index and S´ersic index focus on the light profile of galaxies (de Vaucouleurs,
1948; Freeman, 1970; Sersic, 1968; Graham & Driver, 2005).

The Hubble Sequence has been extended, particularly for data mining, using the T system,
which numerically represents Hubble types from E to Irr as values from -5 to 10. Studies
classifying galaxies such as E/S0, Sabc, and Sd/Irr based on surface brightness and light profiles
using ANNs include works by (Odewahn et al., 1996; Windhorst et al., 1999; Driver et al.,
2003). Additionally, Odewahn et al. (2002) applied Fourier decomposition and ANNs to galaxy
images for bar detection and T-type assignment. The innovative Galaxy Zoo project Masters
et al. (2019) employs crowdsourcing for morphological classification, inviting the public to
categorize SDSS images. This project introduced new categories, such as edge-on views and
spiral arm winding, and generated numerous scientific insights. While slower than automated
algorithms, this method provides a valuable complement to them. Recent advancements in DL
(especially CNNs) have played a key role in galaxy shape classification. Studies have shown
that AI can automatically classify galaxy shapes by training CNNs with crowdsourced data
from Galaxy Zoo (Dieleman et al., 2015). Although matching human accuracy, these networks
also inherit human biases.
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• Classification of AGN/Blazars. Identifying AGNs/quasars from astronomical observations is a
key and complex task, well suited for data mining techniques. It is well-known that active galac-
tic nuclei are detected to varying degrees across different wavebands (X-ray, optical, radio),
with no single waveband capable of identifying all AGNs. Traditional classification of AGNs
often uses the BPT (Baldwin et al., 1981), delineating AGN star-forming regions through a
curved demarcation line. Data mining enhances this approach by enabling more refined or mul-
tidimensional separation and incorporating passive objects into the analysis. This advancement
facilitates the calculation of the likelihood of an object harboring an AGN, without the necessity
of detecting all or any specific emission lines.

Several research groups have employed ANNs (Carballo et al., 2004; Claeskens et al., 2006;
Carballo et al., 2008) and DTs (Suchkov et al., 2005; Ball et al., 2006; ?) to select quasar
candidates from survey data. Other methodologies include PCA (Yip et al., 2004), SVM and
Learning Vector Quantization (Zhang & Zhao, 2003), k-d trees (Gao et al., 2008), and cluster-
ing techniques like principal surfaces and negative entropy clustering (D’Abrusco et al., 2009),
along with kernel density estimation (Richards et al., 2009). Many of these studies integrate
multiwavelength data, particularly from X-ray, optical, and radio sources. Similarly, various
types of AGN candidates can be effectively selected and classified (Sanchez Saez, 2022). The
availability of multiwavelength data enhances the capability of data mining algorithms to con-
struct models of requisite complexity, thereby leveraging the full spectrum of information to
extract more comprehensive AGN samples.

Certain blazars, due to the lack of optical spectroscopic information, cannot be definitively cat-
egorized as either BL Lac or FSRQ. These sources are referred to as blazar candidates of an
unknown type (BCU) in the Fermi-LAT catalog. Numerous outstanding works on BCU classi-
fication have employed a variety of ML/DL techniques, such as LR, SVM, DT, RF, XGBoost,
CatBoost, ANN, GMM, K-means, etc., with accuracies exceeding 90% (Chiaro et al., 2016; ?;
Kang et al., 2019; Fan et al., 2022; Xiao et al., 2022b; Agarwal, 2023; Tolamatti et al., 2023).
The subsequent four chapters will showcase how this thesis applies ML/DL techniques for the
classification of AGN/blazars and the identification of rare sources.

3.6 Class-imbalance problem

ML classification methodologies assume a balanced distribution of classes (Weiss, 2004, 2005). How-
ever, this is not always the case in real-world scenarios. It is not uncommon to encounter classification
problems where one class is significantly underrepresented compared to others, a situation known as
the class-imbalance problem (He & Garcia, 2009; Ortigosa-Hernández et al., 2017). In binary classi-
fication tasks, the disparity between the two classes can reach magnitudes of 100:1, 1000:1, or even
10000:1 (Kubat et al., 1998; He & Shen, 2007; He & Garcia, 2009). In Chapter 7, we address a
sample class imbalance where the positive class, neutrino blazars (NBs), consists of only a few dozen
instances, whereas the negative class, non-NBs, comprises thousands. Notably, the class-imbalance
issue can be further divided into relative imbalance/rarity and absolute imbalance/rarity (Weiss, 2004,
2005), indicating that the same proportion of positive to negative classes can have different implica-
tions depending on the absolute numbers involved.

It has been established that class imbalance adversely affects the training of traditional ML classi-
fiers, including Multilayer Perceptrons and Convolutional Neural Networks (CNNs), leading to over-
fitting and results dominated by the majority class (Japkowicz & Stephen, 2002; Drummond & Holte,
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2005; Mazurowski et al., 2008; Buda et al., 2018). Some studies have explored solutions to the class-
imbalance problem for ANNs, such as developing novel loss functions for ANN training (Wang et al.,
2016) and designing a new CNN approach that involves two-phase training of the network, initially
on a class-balanced dataset followed by fine-tuning of the output layer (Havaei et al., 2017).

Traditional solutions to the class-imbalance problem can be summarized into five categories (Weiss,
2004, 2005):

1. Collecting more data is always beneficial but often impractical.

2. Changing the evaluation metrics:

• Precision/recall (also known as specificity/sensitivity) calculated through the confusion
matrix.

• F1-score (a controllable weighted average of precision and recall).

• ROC curves, etc.

3. Data-level methods, also known as resampling methods, focus on modifying the training dataset
to enable standard learning algorithms to train effectively. These methods can be further classi-
fied into:

• Methods that remove samples from the majority class, i.e., undersampling, such as NearMiss
(Zhang & Mani, 2003), ENN (Wilson, 1972), Tomek link (Tomek, 1976).

• Methods that generate new samples for the minority class, i.e., oversampling, such as
SMOTE (Chawla et al., 2002), ADASYN (He et al., 2008), Borderline-SMOTE (Han
et al., 2005).

• Data Augmentation, which enhances the quantity and quality of original data without
substantially increasing the data, approaching the value generated by more data, thereby
improving the model’s learning effect. This includes sample transformation-based data
augmentation and deep learning-based methods such as Variational Auto-Encoding net-
work or VAE (Cinelli et al., 2021) and Generative Adversarial Network or GAN (Good-
fellow et al., 2014).

4. Algorithm-level methods focus on modifying existing standard machine learning algorithms
to correct their preference for the majority class. A popular branch within this category is
cost-sensitive learning (Freund & Schapire, 1997; Elkan, 2001), which assigns higher misclas-
sification costs to minority class samples and lower costs to majority class samples.

5. Ensemble learning methods focus on combining a data-level or algorithm-level method with
ensemble learning to obtain a powerful ensemble classifier. These methods are increasingly
popular in practice due to their outstanding performance in class imbalance tasks.

This thesis addresses two class-imbalance problems that fall under the category of absolute imbal-
ance, where the number of positive classes of interest is only in the decades, while the negative classes
number in the hundreds or even thousands. The thesis adopts a conservative approach to data-level
methods due to uncertainties regarding their impact on the original dataset distribution and to conserve
computational resources. For the binary classification problem in Chapter 6, where the imbalance is
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less severe, traditional ML algorithms such as Logistic Regression (LR) are employed, coupled with
changing evaluation metrics and algorithm-level methods. For the binary classification in Chapter
7, where the degree of imbalance is greater, a more innovative ANN-based Transfer Learning (TL)
method is used.

3.7 Sklearn and Pytorch

This thesis uses the machine learning library Sklearn developed based on the Python programming
language and the DL framework Pytorch to complete data preprocessing and classification tasks.

Sklearn (Pedregosa et al., 2011a; Buitinck et al., 2013), also known as scikit-learn, is a widely
acclaimed open-source machine learning library in Python. Initially developed by David Cournapeau
in 2007 as part of the Google Summer of Code project, Sklearn is renowned for its simplicity and
accessibility. It offers a comprehensive range of supervised and unsupervised learning algorithms,
including tools for model fitting, data preprocessing, model selection, and evaluation. Built upon
NumPy, SciPy, and matplotlib, Sklearn provides efficient tools for data mining and data analysis.

PyTorch, in contrast, is an open-source ML library based on the Torch library (Ketkar, 2017),
extensively used for applications such as computer vision and natural language processing. Developed
by Facebook’s AI Research lab, Pytorch offers two high-level features: Tensor computation with
strong GPU acceleration and Deep Neural Networks built on a tape-based autograd system. Known
for its flexibility and ease of use in building and training neural networks, Pytorch has become a
popular choice for researchers and developers in the field of DL.

Both Sklearn and Pytorch are integral components of the Python ecosystem for ML, each
offering unique advantages. While Sklearn is often the preferred choice for traditional ML algo-
rithms, Pytorch is favored for its dynamic computational graph and efficient memory usage, making
it particularly suitable for DL applications. The selection between Sklearn and Pytorch typically
depends on the specific requirements of the project, such as the complexity of the model, the size of
the dataset, and the need for GPU acceleration.



Chapter 4

Radio Dualism in in AGN: A Detailed
Study

As introduced in Chap. 1, AGN encompasses a variety of types, such as quasars, Seyfert galaxies,
BL Lacertae objects, Fanaroff-Riley (FR) classifications, and low-ionization nuclear emission-line
regions (LINERs). A key characteristic of AGNs is their division into two categories: radio-loud (RL)
AGNs (including broad-line radio galaxies, blazars, and both FR-I and FR-II types) and radio-quiet
(RQ) AGNs (such as Seyfert galaxies and LINERs). This categorization is based on numerous studies
(Strittmatter et al., 1980; Kellermann et al., 1989; White et al., 2000; Baloković et al., 2012; Cao,
2016; Zhang et al., 2021).

Initially, Strittmatter et al. (1980) observed a bimodal distribution in the radio-to-optical flux den-
sity ratio (RL, R = fr/ fo) among optically selected quasars, leading to the suggestion of two distinct
quasar populations: RL and RQ. Kellermann et al. (1989) analyzed 114 bright quasars using 5 GHz
and 4400 Å flux data, affirming the bimodal distribution of R and categorizing RQs and RLs based on
specific R value ranges. Shastri et al. (1993) later introduced a specific R = 10 value to differentiate
between RLs and RQs, using 5 GHz and optical B band data.

Subsequent research by various scholars (Ivezić et al., 2002; Zamfir et al., 2008; Zhang et al.,
2021) has supported the notion of this dichotomy. However, White et al. (2000) compiled a compre-
hensive sample of 636 quasars and found a significant number of intermediate radio-loudness sources,
challenging the bimodal distribution theory. This finding was corroborated by later studies (Lacy et al.,
2001; Calderone et al., 2013).

The dichotomy in radio loudness implies different fundamental properties for RLs and RQs, such
as variations in the origin of radio emission, black hole masses, accretion rates, and spins (McLure &
Jarvis, 2004; Sikora et al., 2007; Laor & Behar, 2008).

In examining the AGN radio dichotomy, it’s evident that the threshold value of R varies depend-
ing on the sample used. Zhang et al. (2021) utilized a dataset of 2419 sources from the thirteenth
quasar and AGN catalog (Véron-Cetty & Véron, 2010), proposing a division at logR = 1.26 to distin-
guish between RLs and RQs. This division was validated through statistical analysis, maximizing the
separation accuracy in a diagram comparing radio luminosity against radio loudness.

This study reexamines the AGN radio dichotomy using the Véron-Cetty & Véron (2010) catalog,
aiming to delve deeper into the underlying physical properties that differentiate these categories.

Throughout this paper, we have consistently used the following cosmological parameters: a Hub-
ble constant (H0) of 73 kilometers per second per megaparsec, a matter density parameter (Ωm) of
0.3, and a dark energy density parameter (ΩΛ) of 0.7.

105
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4.1 Samples

In this research, a comprehensive dataset of 2943 astronomical objects, encompassing 2120 quasars,
245 BL Lacs, and 578 other types of AGNs, was assembled. This dataset, detailed in columns (4),
(5), and (6) of Tab. 4.1, includes measurements such as radio flux density at 6 cm, apparent V band
magnitudes, and B − V color indices, sourced from the work of Véron-Cetty & Véron (2010).

To account for the reddening effect caused by interstellar dust and gas, which can alter the ob-
served spectrum of celestial objects, the study incorporates a correction for Galactic extinction. This
correction, based on the model by Schlegel et al. (1998), is denoted as EB−V and is listed in column
(7) of Tab. 4.1. The V band magnitude is adjusted using the formula AV = 2.742×EB−V, as suggested
by Zhang et al. (2021). This adjustment allows for the conversion of the V band magnitude to the B
band magnitude, using the known B − V color, and subsequently to the corresponding flux densities
fV and fB.

Furthermore, to derive the intrinsic intensity of the sources, a K-correction is applied to both the
radio and optical fluxes. This correction, represented as f

′

ν = fν(1 + z)αν−1, adjusts the observed flux
density fν at frequency ν for the effects of redshift z. The study adopts values of αν as 0.76 ± 0.54 for
the optical band and 0.25±0.52 for the radio band, following the methodology of Zhang et al. (2021).

The concept of radio loudness is central to this study. It is defined as the ratio of the intrinsic radio
flux density to the optical flux density, expressed as:

logR = log
f
′

r

f ′o
, (4.1)

where f
′

r and f
′

o are the intrinsic radio and optical flux densities, respectively. The study utilizes the
radio flux density at 6 cm and the optical flux density in the B band, as recorded in Tab. 4.1.

Additionally, the study calculates the monochromatic luminosity of the sources using the equation:

Lν = 4πd2
Lν f

′

ν , (4.2)

where dL represents the luminosity distance, calculated as dL = (1+ z) · c
H0
·
∫ 1+z

1
1√

ΩM x3+1−ΩM
dx. This

formula incorporates key cosmological parameters and the redshift of the objects.

4.2 Results

4.2.1 Distribution of Source Numbers vs. Redshift

Our sample spans a redshift range from 0 to 5.11, excluding 86 BL Lacs without available redshifts
and two radio galaxies (M31 and NGC3031) with zero redshifts. Fig. 4.1 illustrates the redshift bin
count distribution (bin width = 0.1) for all three source classes. Gaussian fits for quasar and BL Lac
distributions yield µQ = 1.24, σQ = 0.07 and µA = 0.25, σA = 0.26, respectively. However, Gaussian
fitting is not applicable for the other AGN distribution, as these AGNs predominantly lie within a
redshift range of 0 to 0.1, as indicated by the ’green square’ in the upper-left corner of Fig. 4.1.

4.2.2 Radio Loudness

Fig. 4.2 displays the radio loudness (logR) distribution of our sample. The logR spans over six orders
of magnitude, with quasars ranging from -0.9 to 5.271 (⟨logRQ = 2.81 ± 0.72⟩), BL Lacs from 1.131
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Figure 4.1: Redshift distribution of source numbers. Quasars (red dots), BL Lacs (blue triangles), and
other AGNs (green squares) are shown. Dashed curves represent Gaussian fits.
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Figure 4.2: Radio loudness distribution. Quasars (red), BL Lacs (blue), and other AGNs (green) are
represented.
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to 4.473 (⟨logRB = 2.66 ± 0.68⟩), and other AGNs from -2.329 to 5.712 (⟨logRA = 1.89 ± 1.62⟩).
Other AGNs exhibit the broadest range and lowest logR values, while quasars have the highest.

A clear dichotomy in the distribution is observed, with the lower logR bump primarily composed
of other AGNs and some quasars, and the higher bump mostly consisting of quasars. Scikit-learn
(also known as sklearn), an ML library for Python, offers a variety of algorithms for classification,
regression, and clustering. In this study, we use the GMM introduced in Chap. 3 to analyze the logR
distribution, as illustrated in Fig. 4.3. GMM is a probabilistic model that posits that all data points are
generated from a finite number of Gaussian distributions with unknown parameters. Based on prior
research (Shastri et al., 1993; White et al., 2000; Zhang et al., 2021), we postulate the presence of two
Gaussian components in the logR distribution.

The GMM procedure involves determining the proportions of each Gaussian component within
the overall distribution, as well as their respective means and standard deviations. This is achieved
through an EM algorithm (also see Chap. 3), an iterative process comprising two steps: ’E’ and ’M’. In
the ’E’ step, we use initial or previously iterated parameter values to compute the posterior probability
of hidden variables using the Bayesian formula. In the ’M’ step, we maximize the likelihood function
to estimate the means and standard deviations. These steps are repeated until the convergence of the
estimated parameters.

To enhance our model’s generalizability, we perform stratified sampling at an 80% scale and
repeat the entire GMM process 1,000 times. The outcome reveals a dichotomy represented by two
Gaussian components marked as Gaussian[0] and Gaussian[1], with weights of 11.7% for Gaussian[0]
and 88.3% for Gaussian[1]. The means and standard deviations of these components are µ[0] =
0.42 ± 0.03, σ[0] = 0.54 ± 0.03 for Gaussian[0], and µ[1] = 2.91 ± 0.01, σ[1] = 0.39 ± 0.01
for Gaussian[1]. Besides, the average log-likelihood of the GMM under the logR is -1.28. The
intersection of these curves at logR = 1.37 ± 0.02 is used as a threshold to categorize radio sources
into two groups: RL for logR ≥ 1.37 and RQ for logR < 1.37. Following this new classification,
our sample includes 2057 quasars, 238 BL Lacs, and 314 other AGNs identified as RLs, constituting
97.0%, 97.1%, and 54.3% of their respective totals.

4.2.3 Examining the Relationship Between Radio and Optical Luminosity

The observed dual-mode distribution of RL and RQ sources in terms of their logR values suggests
potential disparities in the relationship between radio and optical luminosities across these two radio
categories.

In our study, we examined the radio luminosity at 6 cm (denoted as log6cm) and optical luminosity
in the B band (represented as logB), employing linear regression analysis. For Radio-Loud sources,
the relationship is established as follows:

logL6cm = (1.09 ± 0.01)logLB − (6.40 ± 0.66), (4.3)

This is accompanied by a Pearson partial correlation coefficient of r = 0.95 and a remarkably low
chance probability of p < 10−10, after accounting for the uncertainty of data and redshift effects. In the

computation of logB and logL6cm, we employ the error propagation formula ∆ f =
√∑n

i=1

(
∂ f
∂xi
∆xi

)2

to transfer the uncertainties associated with the calculation of flux densities to the optical and radio
luminosities, where ∆ f and ∆xi stands for the uncertainty of dependent variables and independent
variables. The uncertainties in the optical and radio luminosities are denoted as ErrB and Err6cm,
respectively. The reciprocal of the total error, given by 1√

Err2
6cm+Err2

B

is utilized as the weight for each

data point in the calculation of the correlation coefficients r and p.
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Figure 4.3: Density probability distribution of radio loudness fitted with two Gaussian components.

In contrast, for Radio-Quiet sources, the regression equation is:

logL6cm = (1.19 ± 0.03)logB − (13.37 ± 1.47), (4.4)

Here, we observe a correlation coefficient r = 0.72 and a chance probability of p < 10−10, once again
after correcting for data error and redshift influences, as elucidated through Pearson partial analysis.
These findings are graphically represented in Fig. 4.4.

4.3 Discussion

4.3.1 Comparison of Source Distributions

Our study adopts a more flexible approach in source selection compared to the methodology used by
Zhang et al. (2021), resulting in an additional 524 sources. These extra sources comprise 232 quasars,
97 BL Lacs, and 196 other AGNs. We utilized the Kolmogorov–Smirnov (K-S) test to examine
potential discrepancies in redshift, f6cm.

The distribution patterns of three distinct classes of astronomical sources are illustrated in Fig 4.1.
Quasars are observed to have a notably higher mean redshift compared to BL Lacs and other AGNs,
which primarily include Seyfert galaxies and LINERs. The distribution of BL Lacs and other AGNs
largely falls within the redshift range of 0 < z < 1, with BL Lacs peaking at z = 0.25 and the majority
of other AGNs clustering in the 0 < z < 0.1 redshift bin. This pattern aligns with observations
indicating that BL Lacs, Seyfert galaxies, and LINERs are typically found at lower redshifts, a trend
attributed to their relatively lower optical luminosity compared to quasars.

Our sample, however, is not exhaustive, due to two primary limitations. Firstly, RLs are estimated
to constitute about 10% of all AGNs (Kellermann et al., 2016; Panessa et al., 2019), suggesting a larger
prevalence of RQs. However, our sample predominantly contains RL AGNs. Secondly, the redshift
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Figure 4.4: Radio luminosity versus B-band luminosity. RLs (circles and solid lines) and RQs (trian-
gles and dashed lines) are shown.

distribution of quasars, as reported in studies by the Sloan Digital Sky Survey (SDSS), indicates a
range from 0 to 3.5 with multiple peaks (Pâris et al., 2018). In contrast, our sample exhibits a singular
peak at z = 1.24 for quasars.

The limitations in our sample stem from our selection criteria, which focused on sources with
available data in both the B band (including V band and the color index B−V) and at a 6cm wavelength.
While sources are abundant with B band data, 6 cm radio observations are less commonly available,
particularly for quasars. Quasars are known for stronger radio emissions in comparison to the other
two classes (Kellermann et al., 2016; Radcliffe et al., 2021), making them more likely to be detected
due to the lower sensitivity requirements of radio telescopes. It is important to consider that such
sample incompleteness may impact the results concerning radio dichotomy. The primary effects on
our findings could be twofold: (1) The boundary for logR in our study might be underestimated due
to sample incompleteness, as the RQ peak, expected to be more dominant and widespread in the
bimodal logR distribution, is not fully represented (see Fig. 4.2). (2) The correlation between logL6cm
and logLB might differ significantly in a more complete sample. With a higher proportion of RQs,
typically found in the lower-left region of Fig. 4.4, the sample would include various AGN types,
each potentially exhibiting different radio-optical statistical relationships.

Despite these limitations, our study still encompasses the largest sample for analyzing logR bi-
modal distributions to date. Our findings on logR are in concordance with previous studies, as will be
discussed in the following section. This consistency lends credibility to our research on the topic of
radio dichotomy.
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4.3.2 Revisiting the Radio Dichotomy in Quasars: A Comprehensive Analysis

The phenomenon of radio dichotomy in quasars has been a subject of debate for over four decades,
with studies yielding varying conclusions (Strittmatter et al., 1980; Kellermann et al., 1989; White
et al., 2000; Baloković et al., 2012). A major factor contributing to these inconsistent findings is the
limited sample size in earlier research. This issue was addressed in a study by Zhang et al. (2021),
which utilized a larger sample of 2419 radio sources to affirm the existence of radio dichotomy. They
proposed a demarcation at reqrresultsRQR = 1.26 to distinguish between RLs and RQs quasars. Our
analysis, however, suggests a slightly higher boundary of logR = ⟨1.37±0.02⟩, deviating from Zhang’s
result. This discrepancy can be attributed to the variations in sample sizes. The traditional boundary
of logR = 1, as suggested by Shastri et al. (1993) through an analysis of 45 quasars, is notably lower
than both our findings and those of Zhang et al. (2021). An increasing trend in logR values with
larger sample sizes is observed. It is important to note that RLs exhibit radio intensities several times
stronger than those of RQs.

Multiple hypotheses have been proposed to explain the radio dichotomy (Kellermann et al., 1989,
2016). These include:

1. Intermittent Radio Activity: This theory posits that quasars are typically radio-silent, becom-
ing radio-emitters only during periods of unusual activity. However, this contrasts with the
observed variability time scales, which are typically months to years, not the 105 to 106 years
required for this hypothesis (Barvainis et al., 2005).

2. Absorption Mechanisms: The role of absorption by intervening plasma and synchrotron self-
absorption has been considered. Nevertheless, radio observations at lower bands, less affected
by opacity, do not significantly alter the RLs to RQs ratio (Strittmatter et al., 1980; Condon
et al., 1980; Ennis et al., 1982; Robson et al., 1985).

3. Geometric Effects: The possibility of relativistic beaming in a subset of quasars, where the jet
is aligned towards the observer, has been explored (Urry & Padovani, 1995; Fan et al., 2004,
2014; Xiao et al., 2015; Pei et al., 2016). While this model explains superluminal motions
observed in quasars (Kellermann et al., 2004; Xiao et al., 2019), the differential distribution
of 6 cm flux density in a sample of 75 sources contradicts this as a sole explanation for the
dichotomy (Kellermann et al., 1989; Scheuer & Readhead, 1979).

4. Host Galaxy Influence: Investigations into quasar host galaxies indicate that radio emission at
lower luminosities (1021 ≲ L6cm ≲ 1023 W/Hz) may primarily result from star formation within
the host galaxy (Kellermann et al., 2016). However, these conclusions are based on a limited
sample size and a narrow redshift range (0.2 < z < 0.3).

5. Stellar or Black Hole Properties: Factors such as black hole mass, accretion rate, outflow,
and spin have been implicated in discussions of radio dichotomy (Wilson & Colbert, 1995;
Dunlop et al., 2003; Ghisellini et al., 2004; Sikora et al., 2007; Gopal-Krishna et al., 2008; Best
& Heckman, 2012). For instance, Laor & Behar (2008) suggested a correlation between radio
and X-ray flux density, indicative of coronal activity in RQs. Cao (2016) proposed that the
dichotomy primarily stems from the angular velocity of circumnuclear gas in AGNs.

Despite these diverse interpretations, a consensus remains elusive. Our findings highlight a dis-
tinct separation between RL and RQ clusters at a luminosity of L6cm ∼ 1040 erg · s−1 (Stocke et al.,
1992), suggesting a significant disparity in radio and optical power dependencies between the two
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populations. Regression analysis reveals strong associations between logL6cm and logLB for both RLs
and RQs, with nearly identical slope values. This slope similarity indicates a potential commonality
in the radio-optical correlation across both categories. Considering that optical emission in both RLs
and RQs is predominantly driven by thermal radiation from accretion disks, it is plausible that their
radio emissions share a common origin. For RLs, this is widely accepted to be synchrotron emission
from relativistic electrons in jets. Consequently, we propose that RQs may exhibit a form of ’mini-jet’
or uncollimated outflow, similar to the ’aborted jet’ concept, which involves the intermittent ejection
of material at sub-escape velocities (Ghisellini et al., 2004). Collisions between infalling and outgoing
matter could generate high-energy emissions, such as X-rays.

4.3.3 Refined Classification of Radio Loud and Radio Quiet Sources

Previous research, including our study, confirms that RL and RQ in celestial sources can be distinctly
classified based on their radio loudness (logR). Nonetheless, relying solely on this criterion (logR)
leads to two potential misclassifications: (1) sources with high radio luminosity (Lr > 1043 erg/s)
but even higher optical luminosity, resulting in logR ≲ 1.37, are incorrectly categorized as RQ; (2)
sources with low radio luminosity (Lr < 1041 erg/s) coupled with lower optical luminosity, yielding
a logR > 1.37, are misclassified as RL. These classifications are misleading as it’s implausible for a
source with Lr > 1043 erg/s to be RQ and one with Lr < 1041 erg/s to be RL.

To address these inaccuracies, we propose an additional criterion: radio luminosity. As depicted in
Fig. 4.5, the diagram of radio luminosity at 6cm (logL6cm) versus radio loudness (logR) delineates RLs
in the upper-right and RQs in the lower-left. We aim to establish a boundary in this two-dimensional
parameter space, using radio luminosity as a function of radio loudness, to separate RLs from RQs
accurately.

For this purpose, we employ SVM from sklearn, a machine learning method well-suited for clas-
sification and regression challenges. SVM functions by identifying a hyperplane in an N-dimensional
space that maximizes the margin between two linearly separable sample sets. If the samples are non-
linearly separable, SVM maps them into a higher-dimensional space to locate the optimal hyperplane.
Our approach involves dividing our RL and RQ samples into a training set (70%) and a test set (30%),
utilizing the training set to determine the optimal hyperplane and the test set to assess its classification
accuracy.

In our two-dimensional space, represented by logR and logLR, we hypothesized the hyperplane as
a line, expressed as w1logR+w2logLR +m = 0. The parameters w1, w2, and m were deduced through
SVM training. We employed the svm.LinearSVR algorithm from sklearn for this task, iterating differ-
ent combinations of hyperparameters until convergence to the optimal values was achieved.

Our analysis yielded an optimal dividing line with an impressive classification accuracy of 99.0%:

logL6cm = −2.7 logR + 44.3. (4.5)

This line effectively segregates RLs (upper right region) from RQs (lower left region). This finding is
in contrast with the steep dividing line proposed by Zhang et al. (2021), who suggested a boundary of
logR = 1.26 for RL and RQ separation through analytical methods. Our approach, utilizing an SVM
methodology, results in a considerably flatter slope (-2.7) for the dividing line.

Therefore, we advocate for a dual-criterion approach, incorporating both radio loudness (logR =
1.37) and the SVM-derived dividing line (logL6cm = −2.7 logR + 44.3), to more accurately classify
radio sources as either RLs or RQs.
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Figure 4.5: Construct a diagram illustrating the relationship between radio luminosity and radio loud-
ness. In this diagram, represent RLs with circles and RQs with empty triangles. Include a black line
in the diagram to demarcate the dividing line between these two categories.

4.4 Summary

In this study, we have curated an extensive AGN dataset, comprising 2943 sources, to investigate the
bimodal distributions of log R and the dichotomy in radio emissions.

Utilizing SVM analysis, we scrutinized the log R distribution, successfully decomposing it into
dual Gaussian components using the Gaussian Mixture Model (GMM). We determined the intersec-
tion point of these Gaussian curves at log R = ⟨1.37 ± 0.02⟩, proposing this as a demarcation for
separating RL and RQ sources. Recognizing the potential for misclassification with a single criterion
for RL/RQ differentiation, we introduced radio luminosity as a pivotal factor in this segregation. Con-
sequently, we recommend a dual-criterion, defined as log R = 1.37 and log L6cm = −2.7 log R + 44.3,
for more accurate classification of radio sources into RLs or RQs.

Furthermore, our analysis reveals moderate correlations between log L6cm and log LB for both RLs
and RQs, with the correlations appearing consistent across both categories. This suggests a common
origin for radio emissions in both RLs and RQs, potentially attributable to jets and mini-jets, including
aborted jet or outflow mechanisms.
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Table 4.1: The radio sources of our sample.∗

Name Class Redshift f6cm Vmag B-V E(B-V) Radio Class
(1) (2) (3) (4) (5) (6) (7) (8)
SDSS J00037-1108 Q 1.57 0.118 19.93 0.33 0.0364 RL
FIRST J00051-1010 Q 1.3 0.043 19.21 0.42 0.0377 RL
UM 18 Q 1.9 0.257 16.21 0.35 0.0304 RL
BG CFH 17 Q 1.62 0.056 19.31 0.24 0.0361 RL
PKS 0003+15 Q 0.45 0.34 16.4 0.11 0.0491 RL
... ... ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... ...

The full details of this table can be found in the comprehensive listing provided in Xiao et al. (2022c), where all items
are thoroughly documented.



Chapter 5

The Jet Apparent Motion and Central
Engine Dynamics in Fermi Blazars

5.1 Introduction

The unique and striking observational characteristics of blazars, such as their rapid and extensive
variability, pronounced and fluctuating polarization, intense and irregular γ-ray emissions, and appar-
ent superluminal motion, have been extensively studied and documented in various scholarly works
(Wills et al., 1992; Urry & Padovani, 1995; Fan, 2002; Villata et al., 2006; Fan et al., 2014; Xiao et al.,
2015; Gupta et al., 2016; Xiao et al., 2019, 2020; Abdollahi et al., 2020; Fan et al., 2021b). These
extreme observational features are largely attributed to the presence of a relativistic jet, as proposed
by Blandford & Koenigl (1979), which is oriented towards the observer at a narrow-angle (ϕ), thereby
creating a Doppler beaming effect (Ghisellini et al., 1993; Fan et al., 2013; Pei et al., 2016; Xiao et al.,
2020). The Doppler factor (δ = [Γ(1 − βcosϕ)]−1, where Γ is the bulk Lorentz factor and β is the jet
speed in units of the speed of light, c) is a crucial parameter in jet analysis as it quantifies the extent
of flux amplification and timescale compression as observed from Earth. However, the determination
of δ is challenging as it relies on indirect measurements due to the unobservable nature of both β and
ϕ. Various indicators of the beaming effect, such as the core-dominance parameter (Pei et al., 2016,
2020) and the apparent superluminal motion of knots (Zhang & Fan, 2008; Xiao et al., 2019, 2020),
have been introduced in the literature to address this challenge.

The study of blazar jets, particularly their knots, has been a focus of Very Long Baseline Inter-
ferometry (VLBI) for many years. These knots, particularly those exhibiting superluminal motion,
are observable as localized intensity enhancements in radio images of jets. The heightened flux
corresponds to a significant brightness temperature, calculated as T = 2c

πk
S
θ2eqν

2 , where S represents
the flux at frequency ν, and θ is the angular diameter of a source (Readhead, 1994). Observations
often record brightness temperatures far exceeding the jet equipartition threshold of approximately
5 × 1010 K, where the powers of radiating particles and the magnetic field are comparable. Nonethe-
less, the brightness temperature is also constrained by the inverse Compton cooling effect, limiting it
to a maximum of 1.0 × 1012 K (Kellermann & Pauliny-Toth, 1969). While various authors have re-
ported differing maximum brightness temperatures in the rest frame (Readhead, 1994; Liodakis et al.,
2018), early VLBI observations generally align with the theoretical brightness temperature limit set
by inverse Compton cooling. However, Kellermann (2003) proposed that this agreement might be
coincidental, influenced by Earth’s size and the range of observed flux densities.

In addition to brightness temperature studies, the dynamics of knots also present compelling re-
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search avenues. The first observation of superluminal motion in blazar 3C 279 (Cohen et al., 1971)
corroborated the theoretical proposal of Rees (1966). Subsequent studies, such as those by Cohen
et al. (2007), have shown that the distribution of observed apparent velocity and luminosity is in line
with relativistic beaming models. This concept has gained wide acceptance in the research commu-
nity. The apparent velocity of blazar jet knots (βapp) is often used to estimate the Doppler factor and
viewing angle (Xiao et al., 2019, 2020), as both superluminal motion and Doppler boosting arise from
the same geometric orientation of the jet. Notably, Jorstad et al. (2001) and Kellermann et al. (2004)
observed that AGNs with γ-ray emissions, as detected by EGRET and later by Fermi, tend to exhibit
higher apparent velocities. Kellermann et al. (2007) also observed a correlation between luminosity
and apparent velocity, a finding supported by subsequent studies (Lister et al., 2009; Piner et al., 2012;
Xiao et al., 2019).

The relationship between blazar knots and γ-ray emissions was initially explored two decades
ago (Jorstad et al., 2001) and has been further affirmed in recent studies (Jorstad & Marscher, 2016;
Jorstad et al., 2017; Weaver et al., 2022) by the Boston University γ-ray Blazar Monitoring Program
and the MOJAVE project. These initiatives have significantly contributed to our understanding of ra-
dio brightness and polarization variations in AGN jets. The launch of the Fermi Large Area Telescope
(Fermi-LAT) has heralded a new era in blazar studies, with the release of multiple source catalogs,
including the fourth Fermi-LAT source catalog (4FGL DR2, Abdollahi et al., 2020), which lists 3511
blazars (4LAC DR2, Ajello et al., 2020). Xiao et al. (2019, 2020) utilized MOJAVE and Fermi-LAT
data to compare blazars with and without Fermi γ-ray detection, revealing that those detected by Fermi
exhibit larger apparent velocities, indicative of a stronger beaming effect. Lister et al. (2019) further
discovered a robust correlation between apparent jet velocity and synchrotron peak frequency, sug-
gesting that Fermi-LAT γ-ray associated AGNs in the MOJAVE sample tend to exhibit more variable
position angles than non-Fermi AGNs.

Despite extensive research, the direct connection between knot dynamics and the central engine
of blazars, as well as the formation and acceleration mechanisms of knots, remain topics of active
investigation. This study aims to delve deeper into the relationship between the apparent motion of
knots and the properties of the jet and accretion disk. Additionally, we seek to identify potential
candidates for future VLBI observations, thereby contributing to the ongoing exploration of these
enigmatic celestial phenomena.

5.2 Data Collection Methodology

In this study, we focus on investigating the properties of VLBI-detected blazars, specifically exam-
ining the relationship between their apparent motion, jets, and accretion disks. To this end, we have
curated a dataset of blazars, each with documented proper motion (µ) or apparent velocity (βapp),
sourced from a range of established studies (Vermeulen et al., 1994; Jorstad et al., 2005; Britzen et al.,
2008; Piner et al., 2007; Piner & Edwards, 2018; Lister et al., 2019) as detailed in Col. (4), (5), and
(6) of Tab. 5.1, where Col. (1) 4FGL name; Col. (2) B1959 Name; Col. (3) redshift; Col. (4) feature
identification number; Col. (5) angular proper motion measured in microarcseconds per year; Col. (6)
reference of proper motion; Col. (7) frequency; Col. (8) radio flux density Measured at the frequency
specified in Col. (7); Col. (9) reference of radio flux density; Col. (10) the dominance of the core at
a frequency of 5 GHz; Col. (11) the integral photon flux (1-100 GeV); Col. (12) the photon spectral
index; Col. (13) classification of blazars, ‘F’ represents FSRQs, ‘B’ stands for BL Lacs, and ‘U’ is
used to denote Blazar Candidates of Uncertain type (BCUs); Col. (14) the variability index; Col. (15)
mass of SMBH;
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Col. (16) luminosity of accretion disk; Col. (17) flux of IC peak; Col. (18) references to Col. (15),
(16), and (17). C99: Cao & Jiang (1999), C12: Chai et al. (2012) L18: Lister et al. (2018), L19: Lister
et al. (2019), P21: Paliya et al. (2021), P14: Piner & Edwards (2014), P18: Piner & Edwards (2018),
Sh12: Shaw et al. (2012), T96: Taylor et al. (1996), X91: Xie et al. (1991), Z12: Zhang et al. (2012b).
Our data collection adhered to two primary criteria:

1. For sources with multiple VLBI-detected components, the highest recorded apparent velocity,
denoted as βmax

app , was selected.

2. We prioritized sources from the MOJAVE program (Lister et al., 2019), given its status as
an ongoing monitoring initiative utilizing the VLBA, the world’s most advanced resolution
telescope. This preference led us to exclude duplicative sources from other literature.

We further augmented our dataset by cross-referencing these sources with the 4LAC DR2 cata-
log to incorporate spectral and variability data, as indicated in Col. (11) to (14) of Tab. 5.1. The
final dataset encompasses 407 Fermi blazars with available µmax, including 372 blazars with either
documented or calculable βmax

app values, derived using the equation:

βapp =
µ

H0

∫ 1+z

1

1√
ΩMx3 + 1 −ΩM

dx (5.1)

(Vermeulen et al., 1994; Zhang & Fan, 2008; Xiao et al., 2019).
Additionally, we collated radio flux density (S ν) data from various studies (Col. (7) to (9) of Tab.

5.1) and 5 GHz core dominance parameter (log R, Col. (10) of Tab. 5.1) from Pei et al. (2020). Data
pertaining to black hole mass (MBH, Col. (15) of Tab. 5.1) and accretion disk luminosity (log LDisk,
Col. (16) of Tab. 5.1) were also compiled from existing literature. Lastly, the intensity of the inverse
Compton peak (log FIC, Col. (17) of Tab. 5.1) information was sourced from Paliya et al. (2021).

For convenience, we refer to these VLBI-detected Fermi blazars as VFBs throughout our study.

5.3 Results

5.3.1 Association Between Maximum Apparent Velocity and Luminosity, Photon In-
dex, and Variability Index in Fermi GeV γ-ray Emission

We propose a model where γ-ray photons adhere to a power-law distribution, represented as

dN
dE
= N0E−αph , (5.2)

where αph denotes the photon spectral index. The coefficient N0 is defined as N0 = N(EL∼EU)( 1
EL
− 1

EU
),

for αph = 2, and alternatively, as N0 =
N(EL∼EU)(1−αph)

(E
1−αph
U −E

1−αph
L )
, for other values of αph. Here, N(EL∼EU) signifies

the integrated photon count in the range of 1 GeV to 100 GeV, expressed in photons · cm−2 · s−1.
The integral flux F, in GeV · cm−2 · s−1, is given by

F = N(EL∼EU)
EU − EL

EU × EL
ln

EU

EL
(5.3)

for αph = 2, and by

F = N(EL∼EU)
1 − αph

2 − αph

(E2−αph

U − E2−αph

L )

(E1−αph

U − E1−αph

L )
(5.4)
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otherwise. The γ-ray luminosity Lγ is calculated as

Lγ = 4πd2
L(1 + z)(αph−2)F, (5.5)

where dL represents the luminosity distance, defined in (Komatsu et al., 2011), and (1 + z)(αph−2)

accounts for the K-correction.
Our analysis involves calculating γ-ray luminosity for various blazar subclasses and exploring its

relationship with apparent velocity. The upper panel of Fig. 5.1 illustrates the correlation between
log Lγ and log βmax

app , yielding a linear regression

log Lγ = (1.68 ± 0.08)log βmax
app + (44.91 ± 0.06),

with a correlation coefficient r = 0.27 and a chance probability p = 7.1 × 10−8, determined through a
Pearson analysis.

The middle panel of Fig. 5.1 presents the relationship between αph and log βmax
app , resulting in the

linear regression
αph = (0.15 ± 0.02)log βmax

app + (2.22 ± 0.02),

with a correlation coefficient r = 0.33 and a chance probability p = 3.1 × 10−11.
Furthermore, the variability index (VI), an indicator of variability level as defined in (Nolan et al.,

2012b; Acero et al., 2015), is examined. The Fermi Collaboration introduced a correction term in the
variability index formula (Eq. 5.6) to reconcile the weights in full analysis and yearly intervals. This
index is calculated as

VI = 2
∑

i

log
[
Li(Fi)
Li(Fglob)

]
−max(χ2(Fglob) − χ2(Fav), 0), (5.6)

χ2(F) =
∑

i

(Fi − F)2

σ2
i

, (5.7)

where Fav is the average flux over one-year intervals, and Fglob is the flux from a global fit. A source is
deemed variably significant if VI > 18.48, corresponding to a 99% confidence level in a χ2 distribution
(Abdollahi et al., 2020). The bottom panel of Figure 5.1 demonstrates the correlation between log VI
and log βmax

app , leading to a linear regression

log VI = (0.32 ± 0.07)log βmax
app + (1.94 ± 0.07),

with a correlation coefficient r = 0.21 and a chance probability p = 2.7 × 10−5.

5.3.2 Correlation Analysis: Maximum Apparent Velocity, Black Hole Mass, Accretion
Disk Luminosity, and Normalized Accretion Luminosity

Several methodologies exist for estimating the mass of black holes (MBH). A prevalent approach
involves applying the virial theorem. This method approximates the mass of the central black hole via
the equation:

MBH ≈
rv2

G
, (5.8)

where v represents the velocity dispersion of matter at a distance r. The velocity dispersion is
ascertainable through spectroscopic analyses, denoted as v = f vFWHM, with vFWHM being the full
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Figure 5.1: the correlations of log Lγ, αph, and log VI with log βmax
app across different subclasses of
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width at half maximum of the broad emission line and f a factor contingent upon geometry and
kinematics, typically near unity (Peterson et al., 1999, 2000; McLure & Dunlop, 2001; Vestergaard,
2002). Reverberation mapping reliably determines the distance r, contributing to the ‘Size-Luminosity
Relation’ (Kaspi et al., 2000b). Consequently, the virial MBH is calculable using:

log
(

MBH

M⊙

)
= a + b log

(
λLλ

1044 erg · s−1

)
+ 2 log

(
FWHM
km · s−1

)
, (5.9)

with λLλ indicating the continuum luminosity at a specified wavelength (e.g., 5100 Å for Hβ,
3000 Å for Mg II, and 1350 Å for C IV). Coefficients a and b are sourced from McLure & Jarvis
(2004) and Vestergaard & Peterson (2006). Alternative methods, such as stellar velocity dispersion
and host galaxy bulge luminosity, also serve as estimators for MBH (Gültekin et al., 2009). Paliya et al.
(2021) employed these techniques to compute MBH for a selection of Fermi blazars, incorporating 269
sources from our sample.

The upper panel of Fig. 5.2 illustrates the linear relationship between log (MBH/M⊙) and log βmax
app ,

formulated as:

log (MBH/M⊙) = (0.12 ± 0.06)log βmax
app + (8.57 ± 0.06), (5.10)

with a correlation coefficient (r) of 0.12 and a probability value (p) of 0.05.
The luminosity of the accretion disk (LDisk) is typically derived from either SED modeling of the

blue bump or the broad emission-line luminosity (LBLR = 0.1LDisk), where 0.1 represents the BLR
covering factor. The computation of LBLR utilizes the equation:

LBLR =
∑

i

Li ·
⟨LBLR, rel⟩∑

i Li, rel
, (5.11)

where ⟨LBLR, rel⟩ = 556, Li is the observed line luminosity, and Li, rel is the relative line luminosity.
Given that the reference flux for Lyα contributes 100, the relative weights for Hα, Hβ, Mg II, and
C IV lines are 77, 22, 34, and 63, respectively, culminating in a total broad emission-line flux of
556 (Celotti et al., 1997; Francis et al., 1991; Paliya et al., 2021; Xiao et al., 2022a). Utilizing these
methodologies, Paliya et al. (2021) calculated LDisk or established 3σ upper limits for a sample of
Fermi blazars, inclusive of 254 sources from our collection.

Displayed in the middle panel of Fig. 5.2 is the positive correlation between log LDisk and log βmax
app ,

expressed as:

log LDisk = (1.59 ± 0.10)log βmax
app + (44.22 ± 0.08), (5.12)

with a correlation coefficient (r) of 0.32 and a chance probability (p) of 1.1× 10−7 after removing
the redshift effect.

The Eddington luminosity (LEdd) is a function of the Eddington accretion rate (ṀEdd) and is ex-
pressed as LEdd = ṀEddc2 = 1.26×1038(M/M⊙) erg · s−1. LEdd was calculated for sources with known
black hole mass in our sample. The correlation between log (LDisk/LEdd) and log βmax

app is depicted in
the lower panel of Fig. 5.2. The linear regression for this correlation is given by:

log (LDisk/LEdd) = (0.71 ± 0.11)log βmax
app − (1.88 ± 0.11), (5.13)

with a correlation coefficient (r) of 0.40 and a probability value (p) of 4.8 × 1010.
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5.4 Discussion

5.4.1 Apparent Motion and Central Engine in Blazars: A Correlational Analysis

In our investigation of the correlation between the maximum apparent velocity and GeV γ-ray lu-
minosity for the Variable Frequency Blazars (VFBs) in our sample, a positive correlation has been
observed between log Lγ and log βmax

app . It is crucial, however, to acknowledge a significant caveat
about the Doppler beaming effect, which is known to amplify blazar γ-ray emissions (Xiao et al.,
2015; Pei et al., 2016; Fan et al., 2016; Xiao et al., 2019, 2020; Zhang et al., 2020; Paliya et al., 2021).

To account for this effect, we recalculated the γ-ray luminosity (Lγ) by incorporating the Doppler
beaming influence as per the following formula:

Lin
γ = Lob

γ /δ
q+1, (5.14)

where δ represents the Doppler factor, computed using the methodology proposed by Zhang et al.
(2020). Here, q is defined as 2+α for continuous jet emissions (or q = 3+α for discrete jet emissions),
with α being the spectral index (αph − 1) where fν ∝ ν−α.

A linear regression analysis of the intrinsic γ-ray luminosity log Lin
γ against log βmax

app (illustrated in
Fig. 5.3) yields the following results:

*• For q = 2 + α, with the redshift effect negated, we obtain

log Lin
γ = (1.84 ± 0.10)log βmax

app + (41.72 ± 0.08),

accompanied by a correlation coefficient r = 0.26 and a p-value of 5.8 × 10−7.

• For q = 3 + α, again with the redshift effect negated, the regression gives

log Lin
γ = (2.02 ± 0.13)log βmax

app + (40.65 ± 0.10),

with a correlation coefficient r = 0.23 and a p-value of 1.0 × 10−5.

These positive correlations between log βmax
app and both log Lγ and log Lin

γ suggest a potential link
between the motion of jet knots and the activity of the blazar’s central engine.

In astrophysical jet studies, the total jet power, Pjet, is commonly decomposed into radiation
power, Prad, and kinetic power, Pkin. The former is linked to the jet’s nonthermal radiation, while
the latter relates to its propagation dynamics. A robust method to estimate these powers is through
broadband Spectral Energy Distribution (SED) fitting, particularly with simultaneous data, providing
insights into both kinetic and radiation components (Ghisellini et al., 2014; Tan et al., 2020).

Ghisellini & Tavecchio (2010) and Ghisellini et al. (2014) formulated the radiation power as

Prad = 2 f
Γ2Lbol

jet

δ4
, (5.15)

where the factor of 2 accounts for bi-directional jets. The parameter f varies with the emission
process, taking the value of 16/5 for the Synchrotron Self-Compton (SSC) process, predominantly
in BL Lacertae objects, and 4/3 for the External Compton (EC) process, usually in Flat Spectrum
Radio Quasars (FSRQs). Additionally, for the EC process, δ4 is modified to δ4(δ/Γ)2.

Two assumptions are pivotal in calculating Prad. Firstly, for blazars, the bulk Lorentz factor Γ is
approximated to be equal to the Doppler factor δ, owing to their small viewing angles (Ghisellini &
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Table 5.2: The correlation of log Prad and log Lext
5GHz against log βmax

app

Type class (a ± ∆a) (b ± ∆b) N r p

All 1.78 ± 0.12 43.62 ± 0.10 249 0.29 5.0 × 10−6

log Prad vs. log βmax
app FSRQs 1.34 ± 0.12 44.12 ± 0.11 207 0.19 6.9 × 10−3

BL Lacs 1.59 ± 0.19 43.20 ± 0.07 42 0.34 0.03
All 2.16 ± 0.12 40.97 ± 0.09 270 0.27 1.0 × 10−5

log Lext
5GHz vs. log βmax

app FSRQs 1.27 ± 0.15 42.10 ± 0.14 176 0.12 0.11
BL Lacs 1.91 ± 0.16 40.52 ± 0.07 88 0.25 0.02

Tavecchio, 2010; Ghisellini et al., 2014; Xiong & Zhang, 2014; Zhang et al., 2020; Xiao et al., 2022a).
Secondly, the bolometric jet luminosity Ljet

bol is represented by the inverse Compton peak luminosity
LIC instead of the gamma-ray luminosity Lγ, to avoid degeneracy between Lγ and δ in Eq. 5.15. LIC
is expressed as LIC = 4πd2

L FIC, with FIC being the inverse Compton peak flux obtained from Paliya
et al. (2021).

Cavagnolo et al. (2010) proposed that the kinetic power of jets, Pkin, can be gauged from the
energy required to inflate X-ray cavities in various astronomical systems, including giant elliptical
and cD galaxies. However, this method’s applicability is currently limited to a select number of
sources. An alternative approach links the extended region’s radio luminosity, less affected by Doppler
boosting, to the jet’s kinetic power (Rawlings & Saunders, 1991; Willott et al., 1999; Cavagnolo et al.,
2010; Meyer et al., 2011), as shown by

Prad = η (Lext
5GHz)κ. (5.16)

The parameters κ and η vary in the literature, reflecting differences in sample sizes and source types
(Cavagnolo et al., 2010; Meyer et al., 2011). Nevertheless, a logarithmic scaling between log Lext

5GHz
and log Prad is observed.

Radio flux densities at various frequencies (5 GHz, 8.4 GHz, and 15 GHz) are sourced from
literature (Taylor et al., 1996; Piner & Edwards, 2014; Lister et al., 2018) and converted to 5 GHz
using

S core
5GHz = S core

ν and S ext
5GHz = S ext

ν

(
ν

5 GHz

)αext

, (5.17)

where αext = 0.75 and αcore = 0 (Fan et al., 2011; Pei et al., 2016, 2019, 2020). Incorporating the
radio core dominance parameter at 5 GHz, collected from Pei et al. (2020),

R =
(
S core

S ext

)
(1 + z)αcore−αext , (5.18)

we deduce S ext
5GHz and subsequently compute log Lext

5GHz. Our analysis, as demonstrated in Fig. 5.4 and
Tab. 5.2, reveals positive correlations between log Prad and log βmax

app , as well as between log Lext
5GHz

and log βmax
app in blazars. These correlations hold individually for FSRQs and BL Lacs in the case of

log Prad versus log βmax
app , but only for BL Lacs in the case of log Lext

5GHz versus log βmax
app . This suggests

a significant correlation between jet knot motion and jet radiation power in both FSRQs and BL Lacs,
whereas a correlation with kinetic power is evident only in BL Lacs.

Our investigation explored the relationship between apparent motion and key astrophysical param-
eters: black hole mass, accretion disk luminosity, and normalized disk luminosity (see Fig. 5.2). The
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analysis revealed that the maximum apparent velocity logarithm (log βmax
app ) does not significantly cor-

relate with the black hole mass logarithm (log (MBH/M⊙), evidenced by a p-value of 0.05. However,
there are moderate positive correlations between log βmax

app and both log LDisk and log (LDisk/LEdd).
These correlations suggest that accretion disks with higher luminosity and accretion rates are asso-
ciated with faster apparent velocities in jet knots. Consequently, our findings imply that the mass of
the central black hole may not significantly influence the generation and acceleration of jet knots. In
contrast, the accretion disk’s power and rate appear more critical. Prior research has linked blazar knot
propagation disturbances with γ-ray flares and overall jet activity (Jorstad et al., 2001; Marscher et al.,
2010; Jorstad et al., 2013; Tanaka et al., 2015; Jorstad & Marscher, 2016; Jorstad et al., 2017), often
observing γ-ray outbursts concurrent with superluminal knot transits through the radio core (Jorstad
& Marscher, 2016). Our model proposes a mechanism whereby an abrupt increase in the accretion
rate of a potent accretion disk could generate and accelerate knots, thereby driving jet activities and
triggering outbursts.

5.4.2 Criteria for Selecting VFB Candidates from Fermi Blazars

Blazars exhibit a range of observational characteristics, notably high γ-ray luminosity. In the GeV γ-
ray band, the spectrum represents a composite of various radiation processes, including synchrotron
self-Compton scattering (SSC), scattering of seed photons from the accretion disk (Dermer & Schlick-
eiser, 1993c), ultraviolet seed photons from the BLR (Sikora et al., 1994d), and seed photons from the
dusty torus (DT) (Błażejowski et al., 2000c; Arbeiter et al., 2002; Sokolov & Marscher, 2005). These
processes are mediated by inverse Compton scattering by relativistic electrons. Consequently, blazars
should exhibit spectral differences depending on the dominant γ-ray emission mechanisms.

A study by Ackermann et al. (2015d) revealed that flat-spectrum radio quasars (FSRQs) demon-
strate higher γ-ray luminosity Lγ and a larger photon index αph compared to BL Lacs, based on
analysis of the third catalog of active galactic nuclei (AGNs) detected by Fermi-LAT (3LAC). Blazar
variability is another distinctive trait; Yang et al. (2022b) observed that FSRQs exhibit greater logVI
than BL Lacs. Our analysis indicates a positive correlation between log βmax

app and both αph and log VI,
as depicted in the middle and bottom panels of Fig. 5.1. This suggests that blazars with faster apparent
motion tend to have a softer γ-ray spectrum and higher variability magnitude.

In this study, we investigate the differences between VLBI-detected Fermi blazars and other Fermi
blazars, focusing on three parameters: log Lγ, αph, and log VI. Our findings indicate that VFBs exhibit
higher values in these parameters compared to other Fermi blazars.

Lister et al. (2015), using the complete MOJAVE 1.5 Jy sample of AGNs, found that 23% of
these AGNs were not detected by Fermi due to instrumental selection effects and lower Doppler
boosting factors. Xiao et al. (2019) proposed that blazars not detected by Fermi-LAT but having large
apparent velocities could be potential Fermi blazar candidates. This hypothesis was substantiated by
Xiao et al. (2020) following the release of the 4FGL. While VLBI-detected blazars are likely Fermi
γ-ray source candidates, the question remains whether additional Fermi catalog blazars are VLBI
candidates. Out of the 3437 identified blazars in 4FGL DR2, 407 (11.8%) are associated with VLBI
detections, primarily by the MOJAVE program. However, this number is likely an underestimate,
given MOJAVE’s focus on northern sky sources and Fermi-LAT’s all-sky observation capabilities.

To identify more VFB candidates, we explore criteria based on log Lγ, αph, and log VI. We employ
GMM from the sklearn machine learning library in Python (Fraley & Raftery, 2002) to decompose
the distributions of these parameters, as shown in the left panel of Fig. 5.5. The GMM, a probabilis-
tic model assuming data points are generated from a mixture of Gaussian distributions, uses the EM
algorithm (see Chap. 3) for parameter estimation. The algorithm iteratively performs ’E’ (Expecta-
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tion) and ’M’ (Maximization) steps until convergence of the estimated parameters. We implement
stratified sampling at a 95% scale and repeat the GMM process 100 times to enhance our model’s
generalizability. The Bayesian Information Criterion (BIC) is used to evaluate the GMM model and
determine the number of Gaussian components, with lower BIC values indicating preferred models
(Kass & Raftery, 1995).

The BIC analysis suggests a three-component GMM for log Lγ with the lowest BIC of 4943.0 and
∆BIC32 = 12.8, as illustrated in the top-right panel of Fig. 5.5. Similarly, a two-component model
is favored for both αph and log VI, with respective BIC values of 1370.1 (∆BIC32 = 35.) and 3585.0
(∆BIC32 = 17.4), as shown in the middle-right and bottom-right panels of Fig. 5.5.

The analysis demonstrates that Gaussian[1] and Gaussian[2] predominantly encapsulate the VFBs
for log Lγ. In contrast, Gaussian[0] almost exclusively encompasses the VFBs for αph and fully
envelops them for log VI. We postulate that the dotted-curve demarcates the ’VFB-like’ sources,
the dash-dotted curve delineates the ’transitional’ sources, and the dashed-curve encompasses the
’non-VFB-like’ sources. The intersection of the dotted and dashed curves is proposed as the bound-
ary for selecting VFB candidates. Our computations yield the coordinates of this junction point as
log Lγ = 45.40 ± 0.22, αph = 2.24 ± 0.01, and log VI = 1.71 ± 0.07. A total of 228 sources, surpass-
ing these boundary values in luminosity, photon index, and variability index, are predicted as VFB
candidates and enumerated in Tab. 5.3, where col.(1) presents the identifier as per the 4FGL catalog;
col. (2) details the type or category of the object; col. (3) lists the cosmic redshift value; col. (4)
enumerates the integrated photon flux ranging from 1 to 100 GeV; col. (5) records the γ-ray lumi-
nosity measurement; col. (6) denotes the index of the photon spectrum; col. (7) specifies the index
quantifying variability.

It is observed that 79 VFBs (19.4%) exhibit log Lγ < 45.40, 144 VFBs (35.4%) have αph < 2.24,
and 142 VFBs (34.9%) display log VI < 1.71, which corresponds to a VI of 51.29. Therefore, it is
imperative to acknowledge the considerable presence of VFBs with log Lγ, αph, and/or log VI below
the proposed boundary. Our methodology and criteria are intended to identify more promising VFB
candidates.

Of the 228 identified VFB candidates, 88 (38.6%) are located in the northern sky, while 140
(61.4%) are in the southern hemisphere. This distribution should assist VLBI facilities in locating
more blazars exhibiting jet ’knot’ structures and in monitoring their kinematics, particularly for the
MOJAVE program.

5.5 Conclusion

In this study, we employed a sample of VLBI-detected Fermi blazars to investigate the properties of
blazar jets and accretion disks. Our findings can be summarized as follows:

1. A significant correlation was observed between the maximum apparent velocity (log βmax
app ) and

the γ-ray luminosity (log Lγ). This correlation persisted even after removing the effects of
Doppler beaming, suggesting its intrinsic nature.

2. The relationship between log Lγ and log βmax
app indicates that the apparent motion of knots is

linked to jet power. A higher log βmax
app is indicative of a more potent jet. This correlation was

evident in both FSRQs and BL Lacs. However, only in BL Lacs was log βmax
app found to correlate

with the 5 GHz extended region luminosity (log Lext
5GHz), a proxy for jet kinetic power.

3. No correlation was found between log βmax
app and black hole mass (log(MBH/M⊙)). However,

moderate correlations were observed with the accretion disk luminosity (log LDisk) and the nor-
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Figure 5.5: Distributions for the parameters: γ-ray luminosity (denoted as log Lγ), photon index
(represented by αph), and the variability index (expressed as log VI), were modeled GMM. The VFBs
are depicted with blue bars, while the remaining Fermi blazars are illustrated using orange bars.
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Table 5.3: Potential Candidates of Superluminal Blazars Detected by Fermi

4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J0001.5+2113 fsrq 1.106 1.36E-09 46.74 2.66 1564.42
4FGL J0004.4-4737 fsrq 0.88 4.36E-10 45.99 2.37 139.12
4FGL J0010.6-3025 fsrq 1.19 3.49E-10 46.24 2.46 91.59
4FGL J0011.4+0057 fsrq 1.492 4.29E-10 46.60 2.33 71.98
4FGL J0016.2-0016 fsrq 1.57631 4.17E-10 46.68 2.74 82.14
... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

The full details of this table can be found in Tab. 9.1 (see Appendix 9).

malized accretion disk luminosity (log(LDisk/LEdd)). These results suggest that both the power
of the accretion disk and the accretion rate are crucial for generating and accelerating blazar
knots. We propose a mechanism where knots are formed by sudden increases in the accretion
rate of a potent accretion disk, leading to jet activities and observable outbursts.

Furthermore, our analysis revealed:

1. VLBI-detected Fermi blazars (VFBs) differ from the rest of the Fermi blazars in terms of γ-ray
luminosity (log Lγ), γ-ray photon index (αph), and variability index (log VI). The average values
for VFBs are ⟨log LVFB

γ ⟩ = 46.20 ± 1.07, ⟨αVFB⟩ = 2.33 ± 0.25, and ⟨log VIVFB⟩ = 2.14 ± 0.84,
while those for the rest of the Fermi blazars are ⟨log LR

γ ⟩ = 45.24 ± 1.42, ⟨αR⟩ = 2.21 ± 0.30,
and ⟨log VIR⟩ = 1.30 ± 0.50.

2. Employing a Gaussian Mixture Model (GMM) method, we established criteria for identifying
VFB candidates among other Fermi blazars. A blazar with log Lγ > 45.40, αph > 2.24, and
log VI > 1.71 is likely a VFB candidate. Utilizing this criterion, we identified 228 potential
VFBs.



Chapter 6

Investigating TeV blazar candidates of
Fermi blazars

6.1 Introduction

As discussed in Chap. 1, Blazars, including BL Lacertae objects, can be categorized based on the
peak frequency of their synchrotron peak frequency: HSP/HBL, ISP/IBL, LSP/LBL or LBL. HSPs
and HBLs are frequently identified as potential sources of very high energy (VHE, above 300 GeV)
emission. Notably, sources with smaller redshifts have a significant proportion of TeV photons observ-
able. The emission of VHE photons with energies > 300 GeV from blazars unveils novel phenomena.
Particularly, photons in the TeV band pose challenges to particle acceleration theories in jets. They
are also pivotal for indirectly measuring the extragalactic background light, estimating the intergalac-
tic magnetic field, and exploring the potential origins of high-energy extragalactic neutrinos (Foffano
et al., 2019). For example, observations from the Very Long Baseline Array (VLBA) have provided
23 images of 6 TeV blazars, demonstrating that apparent jet bending is a common characteristic of
TeV blazars (Piner et al., 2010).

The flux emitted from most astronomical sources in the TeV band is notably low. Additionally,
the extragalactic background light (EBL) significantly absorbs the most energetic γ-ray emissions
(Primack et al., 1999; Kneiske et al., 2004; Fermi-LAT Collaboration et al., 2018) through the inter-
action γ+ γ → e+ + e−. This interaction is fundamentally related to numerous astrophysical problems
(Domı́nguez et al., 2019). Consequently, observations at TeV energies necessitate large collection ar-
eas, achievable only with ground-based detectors such as atmospheric Cherenkov telescopes (IACTs)
and extended arrays of particle detectors (EAS arrays).

The detection techniques for γ-rays in IACTs and EAS arrays differ. IACTs detect Cherenkov
photons in the atmosphere, produced by the EAS of secondary particles initiated by primary γ-
rays. Prominent examples include the High Energy Stereoscopic System 1 (Aharonian et al. 2004,
H.E.S.S), the Major Atmospheric Gamma Imaging Cherenkov Telescopes 2 (MAGIC Collaboration
2000, MAGIC), the Very Energetic emission Imaging Telescope Array System 3 (VERITAS Collabo-
ration et al. 2005, VERITAS), and the next-generation IACT array: the Cherenkov Telescope Array
Observatory 4 (The CTA Consortium et al. 2011, CTAO). In contrast, EAS arrays detect secondary

1https://www.mpi-hd.mpg.de/hfm/HESS/
2https://magic.mpp.mpg.de/
3https://veritas.sao.arizona.edu/
4https://www.cta-observatory.org/
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particles from cosmic rays that reach the ground, such as the High Altitude Water Cherenkov Obser-
vatory 5 (Abeysekara et al. 2017b, HAWC), and the Large High Altitude Air Shower Observatory 6

(Cao et al. 2019, LHAASO).
As of August 2022, approximately 90 extragalactic TeV sources have been confirmed (Wakely

& Horan, 2008)7, among which 81 are TeV blazars. The identification of TeV blazar candidates
(TBCs) is both exciting and challenging, given the limitations imposed by the EBL and the sensitivity
of detectors, which restrict the number of high-redshift TeV sources. Improved sensitivity, within
the constraints of the EBL, will likely expand the sample of TeV blazars in terms of both quantity
and higher redshift sources. The current and next-generation IACTs and EAS arrays, sensitive to
photons at TeV energies, are expected to increase the population of TeV blazars, thereby enhancing our
understanding of this classification and the mechanisms of VHE emission (Costamante & Ghisellini,
2002; Massaro et al., 2013; Chang et al., 2017; Foffano et al., 2019).

Most TeV blazars are HSPs, predominantly BL Lacs, thus searches for TBCs are often focused
on HSPs/BL Lacs (Costamante & Ghisellini, 2002; Massaro et al., 2013; Chang et al., 2017; Foffano
et al., 2019; Chiaro et al., 2019). Typically, BL Lacs are HSPs, while FSRQs are mostly LSPs and
ISPs. LSP/ISP often exhibit EC components, where electrons encounter a strong, Doppler-shifted
photon field. This can lead to significant γ-ray emissions, occasionally reaching the VHE regime.
However, for LSP/ISPs, interactions frequently occur in the Klein-Nishina regime, and the same
strong photon field often results in substantial absorption of the produced γ-ray photons. In contrast,
the VHE emission of HSPs is believed to originate from low-energy photons produced by synchrotron
emission from ultrarelativistic electrons in the jet, as per the SSC process. Moreover, HSPs have
higher log νsp, facilitating the scattering of their synchrotron bump into the TeV band by relativistic
electrons. Nonetheless, it is not evident that extreme log νsp values alone lead to TeV γ-ray emissions,
as this also depends on various other properties of the emission region, such as electron distribution,
magnetic field strength, internal absorption, and the source’s redshift (Nievas Rosillo et al., 2022).

Lin & Fan (2016) collected a sample of 662 Fermi BL Lac objects, which included 47 TeV sources.
Their study involved a comparative analysis of the multiwavelength observational properties between
TeV and non-TeV sources. The findings indicated that TeV sources generally exhibit a lower average
redshift, higher flux density, and a harder γ-ray spectrum compared to their non-TeV counterparts.

It is well-documented that flux variability across all wavebands is a prevalent characteristic among
blazars (Fan et al., 2017; Majumder et al., 2019; Yang et al., 2022a,c). This variability ranges from
moderate to highly violent and occurs over diverse timescales, from hours to years. Notably, blazars
such as 1ES 0229+200 have been observed to exhibit moderate variability. Furthermore, there is a
proportional relationship between the log νsp and the variability of blazars.

In their analysis of 50 observations of 12 LSP blazars from XMM–Newton, Gupta et al. (2016)
discovered that LSP blazars exhibit slower variability in the X-ray bands compared to the IR/optical
bands. This phenomenon is attributed to the dominance of the IC mechanism in X-ray emission for
LSP blazars. Conversely, HSP blazars are anticipated to show more pronounced variability in the
X-ray bands. According to the SSC model, relativistic electrons upscatter X-rays into the TeV re-
gion. This correlation between X-ray and TeV emissions has been confirmed by various observations
(Costamante & Ghisellini, 2002; Singh et al., 2019; Osorio et al., 2019). For instance, during flares
observed in the TeV band, the synchrotron peak frequencies of Markarian 501 and 1ES 1959+650 in
the X-ray band shifted to higher energy regions (Sambruna et al., 2000; Kapanadze et al., 2018; Singh

5https://www.hawc-observatory.org/
6http://english.ihep.cas.cn/lhaaso/
7http://TeVCat.uchicago.edu

https://www.hawc-observatory.org/
http://english.ihep.cas.cn/lhaaso/
http://TeVCat.uchicago.edu
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et al., 2019). However, Foffano et al. (2019) presented a counterexample by observing two groups
of EHBLs with the same range of log νsp but opposite spectral slopes in the TeV band, suggesting
independence between log νsp and TeV emission.

Since its launch in 2008, the Fermi Large Area Telescope (Fermi-LAT) has significantly advanced
the study of blazars, progressively dominating the field of high-energy γ-ray astronomy. Fermi-LAT
has detected thousands of blazars and reported them in various publications (e.g.,Abdollahi et al.
2020). The Fermi-LAT 10-year source catalog (4FGL-DR2, Abdollahi et al. 2020; Ballet et al. 2020),
along with the Fermi-LAT 10-year AGN catalog (4LAC-DR2, Ajello et al. 2020; Lott et al. 2020),
listed 80 out of the 81 known TeV blazars (hereafter referred to as Fermi blazars). Consequently,
there is a strong basis to believe that the Fermi catalogs likely contain numerous TBCs.

From a broader perspective, this chapter endeavors to expand the pool of TBCs, transcending the
constraints of confining the search solely to High Synchrotron Peaked sources (HSPs). Employing
machine learning techniques, we aim to identify the physical characteristics that fundamentally dif-
ferentiate TeV blazars from their non-TeV counterparts. This involves quantifying the efficacy of the
demarcation criteria used to distinguish between these two categories. Furthermore, we calculate the
likelihood of a source being classified as a TeV source based on these physical attributes. This ap-
proach enables us to extract potential TBCs from a pool of non-TeV sources. The data for this analysis
have been collated from four comprehensive catalogs: the 4FGL-DR2 / 4LAC-DR2, the Third Cata-
log of Hard Fermi-LAT Sources (3FHL, Ajello et al. (2017)), the Third Catalog of High Synchrotron
Peaked Blazars (3HSP, Chang et al. (2019)), and the Second Brazil-ICRANet Gamma-ray Blazars
(2BIGB, Arsioli et al. (2020)). Subsequently, we assess the feasibility of detecting these candidates
using ground-based Cherenkov telescopes.

6.2 SML

In this chapter, binary labels are used to distinguish TeV blazars from non-TeV blazars. The model
is derived from training sets and applied to the entire dataset. As a result, non-TeV sources that
are assigned the same predicted labels as TeV sources are considered candidates for TeV blazars. A
candidate is deemed to be a high-confidence candidate if the probability of being a TeV source exceeds
80%.

6.2.1 Data Preprocessing

Refer to Chapter 1 for a detailed review of the data preprocessing employed. This process involves
transforming or modifying data to create a more suitable representation for downstream models. The
steps involved in data preprocessing include:

1. Data Discretization
This step involves breaking down a feature represented across multiple columns into distinct
components. For instance, in the 4FGL-DR2 dataset, the feature Fluxband is spread across
seven columns, each representing the integral photon flux in a specific spectral band. These are
discretized into individual features: Fluxband 1, Fluxband 2, ..., Fluxband 7.

2. Data Cleaning
This step addresses the removal or correction of erroneous or irrelevant data, which can neg-
atively impact model performance. It involves discarding features with errors, non-numeric
(string) features, and those with a significant number of missing values.
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3. Data Standardization
To eliminate the influence of different scales across features, data standardization is applied.
This process utilizes tools like sklearn. preprocessing.StandardScaler to transform the features
into a standard normal distribution, thereby making them dimensionless and comparable.

4. Data Partitioning
The dataset is randomly split into training and testing sets in a 4:1 ratio. This partitioning is done
using the StratifiedKFold.split method from the sklearn.model selection package in Python. The
process ensures that each set maintains a proportional representation of each class. This step is
repeated five times with different random seeds (0, 1, 2, 3, 4), resulting in five distinct pairs of
training and testing sets, labeled as training 1 / testing 1, training 2 / testing 2, and so on.

6.2.2 Selection of the SML model

In this study, we focus on the classification of TeV blazars versus non-TeV blazars using SML)methods.
Our choice of the SML model is guided by two primary considerations:

1. We require a model that provides high interpretability and operates efficiently without extensive
computational resources. The model should delineate a clear linear boundary in the feature
space to distinguish between TeV and non-TeV blazars.

2. Upon acquiring the physical properties (features) of a blazar, we aim to compute the conditional
probability that the blazar is a TeV one, given these features.

Several advanced SML classification methods exist, such as LR, SVM, ANN, and random forests
(RF) (Tin Kam Ho, 1995). Among these, we select the LR model for our analysis, primarily for two
reasons:

• Mathematical Rationale
We hypothesize that the binary labels of blazars follow a Bernoulli distribution. Given that the
logistic function is the expectation of a Bernoulli distribution, LR emerges as the most natural
method to map the linear combination of a blazar’s physical properties into this distribution.

• Algorithmic Simplicity
Compared to SVM, RF, and ANN, LR is less complex, leading to lower computational costs
and enhanced model interpretability. While SVM requires additional processing through an LR
model to yield conditional probabilities and ANN and RF lack guarantees for a linear boundary,
LR directly provides the desired output.

For the implementation, we utilized scikit-learn (sklearn, Pedregosa et al. (2011a)), a machine
learning library in Python known for its extensive range of tools. Specifically, we employed the
sklearn API (Buitinck et al., 2013), namely sklearn.linear model.LogisticRegression, which facilitates
the LR model. This model was instrumental in training our dataset.

Subsequently, we applied the LR model to classify the dataset. This involved computing the logit
values for each data point and determining the conditional probability denoted as logistic, which indi-
cates the likelihood of a source emitting TeV radiation. It is important to note that TeV sources are rel-
atively scarce in our sample. To address this imbalance and enhance the representation of TeV sources,
we adjusted the class weight parameter to balance within the sklearn.linear model.LogisticRegression
function.
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6.2.3 Evaluating performance

In the evaluation of model performance, accuracy, defined as T P+T N
FP+FN+T P+T N , is a commonly used

metric. However, this measure can be misleading in scenarios where there is a significant imbalance
between classes. In our context, non-TeV sources heavily outnumber TeV sources, influencing the
effectiveness of accuracy as a performance metric. To address these challenges, we propose the use
of the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve as a more
robust metric. The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR),
where T PR = T P

T P+FN and FPR = FP
FP+T N Fawcett (2006).

Additionally, we incorporate Youden’s J statistic, also known as Youden’s index Youden (1950),
defined as T PR − FPR. This index assists in identifying the optimal threshold value (pthre) for clas-
sification. The maximum Youden index corresponds to a scenario where, for a fixed TPR, the FPR
is minimized. This approach ensures a stringent screening process for identifyingTBCs. In prac-
tical terms, a non-TeV blazar is classified as a TeV source if its logistic score exceeds the optimal
pthre threshold. This method balances the need to identify as many TeV sources as possible while
minimizing the misclassification of non-TeV sources.

6.3 Optimization of Model Performance through Training and Tuning

• Training Models on Datasets

The process begins with training models on five distinct training sets. This phase is crucial for
establishing a baseline from which further optimization can be achieved.

• Enhancing Model Performance

Two primary strategies are employed to refine the model’s performance:

– Feature Selection

The phenomenon known as the curse of dimensionality (Taylor, 2019) suggests that using
all available features may impair model performance. This issue arises because high-
dimensional spaces tend to be sparse, making it challenging to find similarities between
data points and thus complicating data processing.

To address this, the SequentialFeatureSelector from python’s sklearn.feature selection
module (abbreviated as SFS) is utilized. SFS systematically eliminates non-essential
features until the remaining feature subset reaches the desired size.

– Hyperparameters Optimization

Certain model parameters, known as hyperparameters, cannot be derived directly from
training. These must be predefined before training.

For this purpose, sklearn.grid search.GridSearchCV (abbreviated as GS) is an effective
tool. It exhaustively searches through a predefined range of hyper-parameter values to
identify the optimal combination. In the context of sklearn.linear model.LogisticRegression,
six hyperparameters 8:are optimized: penalty, C, solver, tol, max iter, l1 ratio.

8https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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The optimization strategy is inspired by k-fold cross-validation, which involves dividing the
training set into k subsets. In each iteration, k - 1 subsets are used for training, and the remaining
subset serves as the validation set. This process repeats k times.

Building upon this, nested cross-validation (Raschka, 2015b; Varma & Simon, 2006) incorpo-
rates a two-loop system. In the outer loop, the dataset is split into training and testing sets.
Within the inner loop, GS conducts k-fold cross-validation to select optimal hyperparameters.
Subsequently, SFS in the outer loop identifies the best features, and the testing set evaluates the
model’s generalizability. This nested cross-validation is implemented on five dataset partitions,
yielding five models with optimal features and hyperparameters.

A common challenge in machine learning is overfitting, where models perform well on training
data but poorly on unseen data. This is often due to high variance. To mitigate this, for each of
the five dataset partitions, the gap between the training set’s AUC (Area Under the Curve) and
the testing set’s AUC is calculated. The model with the smallest positive gap is selected as the
optimal model, balancing performance and generalizability.

6.3.1 Constructing Linear Boundaries

In this phase, we establish linear boundaries to differentiate between TeV-emitting and non-TeV-
emitting sources. A logistic regression (LR) model is employed, where a source is classified as a
TeV source if its logistic value exceeds a certain threshold (pthre). Correspondingly, a threshold value
for the logit function, denoted as logitthre, is associated with pthre. Hence, we can represent the linear
boundary as logit′ = 0, where logit′ = logit − logitthre.

6.3.2 Predicting Labels

To enhance our understanding of the label prediction process for unknown datasets, we introduce
several transitional concepts. The dataset that has only undergone data discretization is termed the
initial set. In contrast, the learning set refers to the dataset that has completed the entire preprocessing
phase. The optimal model is derived from the learning set, and it also determines the optimal fea-
tures. Within the initial set, a subset containing these optimal features is referred to as the prediction
set. Unlike the learning set, which requires all features to be complete and without missing values,
the prediction set only necessitates the presence of the optimal parameters. This inclusion of more
samples in the prediction set aids in identifying additional high-confidence TBCs. Consequently, we
can compute the logistic value for each blazar in the prediction set. Non-TeV blazars with a logistic
value of ⩾ 80% are considered high-confidence TBCs.

6.4 LR Model for Distinguishing TeVs from Non-TeVs

6.4.1 Sample Data Sources

Our study utilized data from four catalogs: 4FGL-DR2 / 4LAC-DR2, 3FHL, 3HSP, and 2BIGB, to
distinguish between TeV-emitting and non-TeV-emitting blazars.

4FGL-DR2 / 4LAC-DR2. The 4FGL-DR2 catalog, based on a decade of Fermi-LAT observations,
includes over 5700 sources, of which 3511 are AGNs, with 3436 classified as blazars. The
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4LAC-DR2 catalog supplements 4FGL-DR2 with critical parameters like synchrotron peak fre-
quency (log νsp), peak intensity (log νsp f s

νp
), and redshift (z). The combined 4FGL-DR2 / 4LAC-

DR2 dataset comprises 3436 blazars, including 80 TeV blazars, with 88 features. For machine
learning, 861 blazars (71 TeV) with 32 features were used for training and testing, while 1459
blazars (73 TeV) with 5 features were set aside for prediction.

3FHL. The 3FHL catalog, derived from seven years of Fermi-LAT data, lists 1556 VHE sources. Our
study included 1207 blazars from this catalog, with 74 identified as TeV blazars. The learning
set comprised 506 blazars (63 TeV) with 18 features, and the prediction set included 540 blazars
(67 TeV) with 2 features.

3HSP. The 3HSP catalog contains 2013 high synchrotron peaked (HSP) blazars, with a unique fea-
ture: the peak flux normalized to the faintest HSP blazar detected in TeVCat. Our initial dataset
included 2013 blazars (57 TeV) with 13 features. The learning set had 1411 blazars (53 TeV)
with 5 features, and the prediction set included 1771 blazars (54 TeV) with 2 features.

2BIGB. The 2BIGB catalog, resulting from a gamma-ray likelihood analysis of 1160 3HSP sources,
provided photon flux data in the range of 500 MeV to 500 GeV. The initial dataset comprised
1160 blazars (57 TeV) with 31 features. The learning set included 1040 blazars (54 TeV) with
7 features, and the same set was used for prediction with 3 features.

6.4.2 TeV Source Identification

TeV sources were identified using the TeVCat, an online catalog of VHE sources, primarily detected
by IACTs and EAS arrays. As of the latest update, TeVCat lists 251 sources, including at least 91
extragalactic sources, with 80 blazars also detected by Fermi-LAT. This overlap was used to label
blazars in our datasets as TeV blazar (1) or non-TeV blazar (0).

6.4.3 Analysis of LR in IdentifyingTBCs

In this study, we applied SML methods to identify high-confidence TBCs. The LR models were eval-
uated based on their performance in classifying blazars from various catalogs. The primary condition
for selection was a logistic regression performance of at least 80%. This criterion led to the identifica-
tion of 40 high-confidence candidates from a pool of 150 candidates in the 4FGL-DR2 / 4LAC-DR2
catalogs. The main results of the LR approach are summarized as follows:

4FGL-DR2 / 4LAC-DR2 Candidates The logistic regression model for the 4FGL-DR2 / 4LAC-
DR2 candidates is given by:

logit′ = 4.808Γ + 2.809VF + 3.889 log f ph
7 − 3.34z + 0.857 log νsp + 20.244, (6.1)

where logit′ = 0 corresponds to an ideal threshold probability (pthre) of 40%. Based on the
training set 3, the optimal LR model achieved an Area Under the Curve (AUC) of 97% on
training and 96% on testing. The model identified 150 TBCs from 1459 blazars, with an AUC
of 98%, a False Positive Rate (FPR) of 11%, and a True Positive Rate (TPR) of 99%. Only one
TeV blazar was misclassified as a non-TBC.

3FHL Candidates The logistic regression model for the 3FHL candidates is described by:

logit′ = 0.116 log f ph
2 − 0.628z + 1.028, (6.2)
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with logit′ = 0 being ideal for a pthre of 52%. Based on the training set 5, the optimal LR model
achieved an AUC of 89% on training and 87% on testing. This model identified 126 TBCs from
540 blazars, with an AUC of 88%, FPR of 27%, and TPR of 88%. Only eight TeV blazars were
misclassified as non-TBCs.

3HSP Candidates The logistic regression model for the 3HSP candidates is given by:

logit′ = 0.306FOM − 3.861z − 0.173, (6.3)

where logit′ = 0 is ideal for a pthre of 61%. Based on the training set 5, the optimal LR model
achieved an AUC of 99% on training and 94% on testing. It identified 40TBCs from 1771
blazars, with an AUC of 98%, FPR of 2%, and TPR of 91%. Only five TeV blazars were
misclassified as non-TBCs.

2BIGB Candidates The logistic regression model for the 2BIGB candidates is:

logit′ = −0.016EP + 0.248FOM − 4.395z − 0.122 (6.4)

with logit′ = 0 being ideal for a pthre of 48%. The optimal LR model, based on training set
4, achieved an AUC of 97% on both training and testing. This model identified 83 TBCs from
1040 blazars, with an AUC of 97%, FPR of 8%, and TPR of 96%. Only two TeV blazars were
misclassified as non-TBCs.

We present a portion of our results through various figures:

• Fig. 6.1 illustrates the feature selection process.

• Fig. 6.2 displays the AUC for both training and testing datasets.

• Fig. 6.3 depicts the ROC curve, along with the AUC and the threshold probability (pthre) for the
prediction sets.

• Fig. 6.4 visualizes the linear boundary among 3FHL, 3HSP, and 2BIGB categories.

• Fig. 6.5 presents the confusion matrix.

6.5 Potential Targets for Ground-Based Cherenkov Detectors

Within the scope of this study, we have identified 40 high-confidence TBCs as potential targets for
IACTs and EAS arrays throughout the year 2023. The criteria for determining the detectability of a
source are twofold: (i) the source’s flux density must exceed the sensitivity threshold of the detector
at energy bands ⩾ 1TeV; (ii) the source must traverse the detectable sky region of the detectors.

6.5.1 SEDs Considering EBL Correction

Our approach involves initially correcting the data by accounting for the EBL and subsequently fitting
the SEDs to the intrinsic data. The SED characteristically exhibits two distinct peaks: a low-energy
bump spanning from the infrared to soft X-ray range, attributable to synchrotron emission, and a high-
energy bump ranging from hard X-ray to γ-ray, associated with IC emission. We utilized an online
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Table 6.1: Extraction of Features from Four Catalogs for Learning Sets.

Catalog Column Feature Unit Description
(1) (2) (3) (4) (5)

4FGL-DR2 / 4LAC-DR2

1 Pivot Energy (EP) GeV Energy at which error on differential flux is minimal
1 Flux (log Fph) cm−2 · s−1 Integral photon flux from 1 to 100 GeV
1 Energy Flux (log F) erg · cm−2 · s−1 Energy flux from 100 MeV to 100 GeV
1 PL Flux Density (log f1) cm−2 ·MeV−1 · s−1 Differential flux at Pivot Energy in PowerLaw fit
1 PL Index (α1) Photon index when fitting with PowerLaw
1 LP Flux Density (log f2) cm−2 ·MeV−1 · s−1 Differential flux at Pivot Energy in LogParabola fit
1 LP Index (α2) Photon index at Pivot Energy when fitting with LogParabola
1 LP beta (β) Curvature parameter when fitting with LogParabola
1 PLEC Flux Density (log f3) cm−2 ·MeV−1 · s−1 Differential flux at Pivot Energy in PLSuperExpCutoff fit
1 PLEC Index (Γ) Low-energy photon index when fitting with PLSuperExpCutoff
1 PLEC Expfactor (a) Exponential factor when fitting with PLSuperExpCutoff
1 PLEC Exp Index (b) Exponential index when fitting with PLSuperExpCutoff
7 Flux Band (log f1 ∼ log f7) cm−2 · s−1 Integral photon flux in each spectral band
7 nuFnu Band (log f ph

1 ∼ log f ph
7 ) erg · cm−2 · s−1 Spectral energy distribution over each spectral band

1 Variability Index (V) Likelihood difference between the flux fitted in each time interval and the average flux
1 Frac Variability (VF) Fractional variability computed from the fluxes in each year
1 Redshift (z) Redshift
1 nu syn (log νsp) Hz Synchrotron-peak frequency in observer frame
1 nuFnu syn (log νsp f s

νp
) erg · cm−2 · s−1 Spectral energy distribution at synchrotron-peak frequency

1 Highest energy (EH) GeV Highest energy among events probably coming from the source

3FHL

1 Pivot Energy (EP) GeV Energy at which error on differential flux is minimal
1 Flux Density (log f ) cm−2 · GeV−1 · s−1 Differential flux at Pivot Energy
1 Flux (log Fph) cm−2 · s−1 Integral photon flux from 10 GeV to 1 TeV erg cm−2 · s−1

1 Energy Flux (log F) erg · cm−2 · s−1 Energy flux from 10 GeV to 1 TeV
1 PowerLaw Index (α1) Photon index when fitting with power law
1 Spectral Index (α2) Photon index at Pivot Energy when fitting with LogParabola
1 beta (β) Curvature parameter when fitting with LogParabola
4 Flux Band (log f1 ∼ log f4) cm−2 · s−1 Integral photon flux in each spectral band
4 nuFnu Band (log f ph

1 ∼ log f ph
4 ) erg · cm−2 · s−1 Spectral energy distribution over each spectral band

1 HEP energy (EH) GeV Highest energy among events probably coming from the source
1 Redshift (z) Redshift
1 NuPeak obs (log νsp) Hz Synchrotron-peak frequency in observer frame

3HSP

1 radio flux density (log fR) mJy Radio flux density from the NVSS or FIRST catalog
1 X-ray flux flux density (log fX) µJy X-ray flux density at 1keV
1 nu syn (log νsp) Hz Synchrotron-peak frequency in observer frame
1 Redshift (z) Redshift
1 FOM (FOM) The figure of merit parameter, which is related to the likelihood of GeV / TeV detectability

2BIGB

1 N0 (log f ) cm−2 ·MeV−1 · s−1 Differential flux at Pivot Energy in PowerLaw fit
1 Gamma (α) Photon index when fitting with PowerLaw
1 F0.5−500GeV (Fph) Integrated photon flux from 500 MeV to 500 GeV
1 E0 (EP) GeV Energy at which error on differential flux is minimal
1 nu syn (log νsp) Hz Synchrotron-peak frequency in observer frame from 3HSP
1 Redshift (z) Redshift from 3HSP
1 FOM (FOM) The same as in 3HSP

Table 6.2: LR model and its performance on the 4FGL-DR2 / 4LAC-DR2 learning dataset

Partition AUC Overfitting pthre Features Hyperparameters
(1) (2) (3) (4) (5) (6)

1
96.9%

0.9% 53.6%
Ep, logFph

1 , logF1,Γ,V,Vf , log f ph
1 ,

log f ph
2 , log f ph

4 , log f ph
6 , log f ph

7 , z, logνsp

C: 1, max iter: 500,
penalty: l2, solver: sag, tol: 10−495.9%

2
97.2%

1.2% 53.5%
Ep, F1, α1,Γ,V,
Vf , f ph

7 , z, log νsp

C: 1, max iter: 100, penalty: l1,
solver: liblinear, tol: 10−696.0%

3
96.8%

0.8% 53.4% Γ,Vf , log f ph
7 , z, log νsp

C: 1, max iter: 500, penalty: l1,
solver: saga, tol: 10−696.0%

4
96.0%

-1.8% 53.0%
log F1, α1,Γ, a,Vf ,

log f7, log Fph
7 , z, log νsp

C: 0.1, max iter: 100, penalty: l2,
solver: newton-cg, tol: 10−698.0%

5
97.5%

5.0% 52.2%
Ep, α1, α3,Vf , log f3, log f5,

log f7, log f ph
7 , z, log νsp

C: 1, max iter: 100, penalty: l2,
solver: newton-cg, tol: 10−692.5%
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Table 6.3: LR model and its performance on the 3FHL learning dataset

Partition AUC Overfitting pthre Features Hyperparameters
(1) (2) (3) (4) (5) (6)

1
87.8%

-1.9% 53.6% log f ph
2 , z

C: 0.01, l1 ratio: 0.4, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−689.7%

2
88.0%

-7.4% 53.5% log f ph
2 , z

C: 0.01, l1 ratio: 0.3, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−695.5%

3
88.7%

5.5% 53.4% log f ph
2 , z

C: 0.01, l1 ratio: 0.4, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−683.1%

4
89.6%

3.6% 52.9% log f ph
2 , z

C: 0.01, l1 ratio: 0.2, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−686.0%

5
89.2%

2.3% 52.2% log f ph
2 , z

C: 0.01, l1 ratio: 0.4, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−687.0%

Table 6.4: LR model and its performance on the 3HSP learning dataset

Partition AUC Overfitting pthre Features Hyperparameters
(1) (2) (3) (4) (5) (6)

1
98.3%

-1.2% 46.9% log fX, log νsp, FOM, z C: 0.01, l1 ratio: 0.7, max iter: 100,
penalty: elasticnet, solver: saga, tol: 10−699.5%

2
98.4%

-0.5% 60.2% FOM, z
C: 0.01, max iter: 100,

penalty: l2, solver: liblinear, tol: 10−698.9%

3
98.6%

-0.5% 47.6% FOM, z
C: 0.001, max iter: 100,

penalty: l2, solver: newton-cg, tol: 10−699.1%

4
98.4%

-1.4% 58.2% FOM, z
C: 0.1, max iter: 100,

penalty: l2, solver: newton-cg, tol: 10−699.8%

5
99.2%

5.7% 60.8% FOM, z
C: 0.01, max iter: 100,

penalty: l2, solver: liblinear, tol: 10−693.5%

Table 6.5: LR model and its performance on the 2BIGB learning dataset

Partition AUC Overfitting pthre Features Hyper-parameters
(1) (2) (3) (4) (5) (6)

1
98.6%

0.2% 44.7% α, F, log νs
p, FOM, z

C: 0.01, max iter: 100, penalty: l2,
solver: newton-cg, tol: 10−698.4%

2
97.7%

6.0% 52.4% Ep, FOM, z
C: 0.01, max iter: 100, penalty: l2,

solver: newton-cg, tol: 10−691.7%

3
98.2%

6.3% 49.1% FOM, z
C: 0.01, max iter: 100, penalty: l2,

solver: newton-cg, tol: 10−691.8%

4
97.2%

0.1% 48.1% Ep, FOM, z
C: 0.01, l1 ratio: 0.1, max iter: 100,

penalty: elasticnet, solver: saga, tol: 10−697.1%

5
96.7%

-3.0% 50.3% FOM, z
C: 0.01, max iter: 100, penalty: l2,

solver: newton-cg, tol: 10−699.7%
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Figure 6.1: SFS analysis for Four Learning Sets. The graphs are structured with the number of
parameters on the X-axis and the concentration of AUC on the Y-axis. Each learning set is represented
in a separate panel, with five dotted lines in various colors indicating the training iterations from
Training 1 to Training 5. Top Left Panel: This panel illustrates the results for the 4FGL-DR2 / 4LAC-
DR2 data set; Top Right Panel: This panel shows the SFS analysis for the 3FHL data set; Bottom Left
Panel: In this panel, the results for the 3HSP data set are displayed; Bottom Right Panel: This panel
presents the analysis for the 2BIGB data set.
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Figure 6.2: The AUC values for four distinct learning sets are presented, each characterized by blue
histograms for training sets and orange histograms for testing sets. Top Left Panel: 4FGL-DR2 /
4LAC-DR2 - This panel likely represents data or results associated with the 4FGL-DR2 and 4LAC-
DR2 datasets; Top Right Panel: 3FHL - This panel is dedicated to the 3FHL dataset; Bottom Left
Panel: 3HSP - This panel focuses on the 3HSP dataset; Bottom Right Panel: 2BIGB - This panel
displays information related to the 2BIGB dataset.
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Figure 6.3: The analysis involves the ROC curve for four distinct prediction datasets, arranged as
follows: The 4FGL-DR2 and 4LAC-DR2 datasets are displayed in the top left panel; The 3FHL
dataset is shown in the top right panel; The 3HSP dataset is featured in the bottom left panel; The
2BIGB dataset is presented in the bottom right panel.
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Figure 6.4: Describe the classification and prediction data sets for 3FHL, 3HSP, and 2BIGB. In these
data sets, red triangles represent TeV blazars, blue circles indicate non-TeV blazars and the green
line or plane is the classification boundary. The arrangement is as follows: the top left panel shows
3FHL, the top right panel displays 3HSP, the bottom left panel presents 2BIGB from the perspective
of non-TeV blazars, and the bottom right panel illustrates 2BIGB as viewed along the edge of the
green classification plane.
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Figure 6.5: For each of the four learning sets, the confusion matrix is presented with the following
four panels. Top Left Panel: 4FGL-DR2 / 4LAC-DR2; Top Right Panel: 3FHL; Bottom Left Panel:
3HSP; Bottom Right Panel: 2BIGB. In the context of coordinate values, ‘T’ represents ‘True’, and ‘F’
signifies ‘False’.

tool9 provided by the Space Science Data Center (SSDC) of the Italian Space Agency to aggregate data
across a spectrum extending from radio to TeV frequencies, incorporating data from various missions,
experiments, catalogs, and archival sources (Aharonian et al., 2001; Giommi et al., 2002; Amenomori
et al., 2003; Aharonian et al., 2003, 2009b; Daniel et al., 2005; Schroedter et al., 2005; Acciari et al.,
2008, 2011; Godambe et al., 2008; Chandra et al., 2010, 2012; H. E. S. S. Collaboration et al., 2010;
HESS Collaboration et al., 2013; Aliu et al., 2011, 2015; Bartoli et al., 2011, 2012; Archambault et al.,
2013, 2014; Arlen et al., 2013; Abramowski et al., 2013, 2015; Biteau & Williams, 2015; Sharma et al.,
2015).

In the SED fitting process, we exclude data bins where the flux error exceeds the flux upper limits.
Notably, TeV photon data from TeV candidates, which exhibit zero error, are also omitted since these
photons are not verified by IACTs or EAS arrays (refer to Fig. 6.6). Additionally, data in the lower
radio energy spectrum, specifically below log ν (Hz) < 9, are disregarded due to observed asymmetries
in the synchrotron bump of some sources.

This study does not consider the simultaneity of data observations. The interaction of Extragalac-
tic Background Light (EBL) photons with Very High Energy (VHE) photons through pair production
leads to the attenuation of observed gamma-ray spectra from blazars at cosmological distances. This
interaction significantly affects the SED in the Inverse Compton (IC) bump.

Assuming that the EBL optical depth (τ(E, z)) varies with photon energy (E) and redshift (z),
Saldana-Lopez et al. (2021) provided a two-dimensional grid of τ(E, z), ranging from 0.001 TeV to
100 TeV for energy, and from 0 to 6 for redshift 10.

Following this, the dual bumps observed in the SED were independently fitted using a log-

9http://tools.asdc.asi.it/SED/
10https://www.ucm.es/blazars/ebl

https://www.ucm.es/blazars/ebl
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parabolic model as outlined by Fan et al. (2016):

log(ν fν) = c(log ν − log νp)2 + log νp fνp , (6.5)

where |2c| represents the spectral curvature, log νp denotes the logarithm of the peak frequency,
log νp fνp signifies the logarithm of the peak flux, and log(ν fν) corresponds to the flux density.

The synchrotron bump was successfully fitted for all 40 TBCs, while the IC bump was fitted for
20 candidates. The fitting errors for |2c|, log νp (in units of Hz), and log νp fνp (in units of erg cm−2 s−1)
were calculated. The fitting process was conducted using the scipy.optimize.curve fit function in
Python. The results are presented in Tab. 6.6, where Col. (1) lists the 4FGL names, Cols. (2) to
(4) detail the parameters and errors for the synchrotron bump fitting and Cols. (5) to (7) provide the
parameters and errors for the IC bump fitting. The right side of the slash represents data unabsorbed
by EBL. The SED fitting results for each high-confidence TBC are illustrated in Fig. 6.6.

Table 6.6: Results of SED fitting in the observed frame for candidates with an energy of 40 TeV.∗

4FGL name |cs | log νs
p log vs

p f s
p |cIC | logνICp log vIC

p f IC
p

(1) (2) (3) (4) (5) (6) (7)

J0037.8+1239 0.11 ± 0.02 15.35 ± 0.46 -11.17 ± 0.07 0.02 ± 0.02 23.15 ± 2.42 -11.74 ± 0.1
J0051.2-6242 0.16 ± 0.01 15.72 ± 0.06 -11.23 ± 0.03 0.08 ± 0.07 25.57 ± 1.2 -11.37 ± 0.13
J0110.1+6805 0.1 ± 0.01 14.99 ± 0.29 -10.89 ± 0.09
J0110.7-1254 0.05 ± 0.01 17.76 ± 1.09 -11.81 ± 0.22
J0115.8+2519 0.09 ± 0.01 15.67 ± 0.26 -11.54 ± 0.04

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

The full details of this table can be found in the comprehensive listing provided in Zhu et al. (2023).

6.5.2 Visibility Analysis ofTBCs for Ground-Based Telescopes

Ground-based telescopes, unlike space detectors with all-sky scanning capabilities, are limited in their
sky coverage due to geographical constraints. IACTs require dark skies for observations and have a
relatively narrow field of view (FoV) of 3◦ to 5◦. Additionally, their operational time is limited to
clear, moonless nights, and their sensitivity decreases with increasing zenith angle, which also raises
the energy threshold. Consequently, this restricts the sky area available for observation.

The CTAO, representing the next generation of IACTs, comprises two arrays situated in the North-
ern (28◦ 45′ N) and Southern (24◦ 41′ S) Hemispheres, aiming to cover a larger portion of the sky.
However, like current IACTs, CTAO’s observations are less effective at high zenith angles. In con-
trast, EAS arrays, such as LHAASO and HAWC, operate under various weather conditions and have
a large FoV (approximately 2 sr), enabling them to continuously monitor a substantial fraction of the
sky each day.

We have compiled sensitivity curves for various IACTs and EAS arrays from sources including
van Eldik et al. (2015); Aleksić et al. (2016); Cao et al. (2019); Abeysekara et al. (2017c); Abeysekara
et al. (2017) and online databases for CTAO11, H.E.S.S.12, and VERITAS13. The FoV parameters
for the sensitivity curves of various instruments are specified as follows: CTAO North (north site,
0◦ ≤ Z ≤ 20◦), CTAO South (south site, 0◦ ≤ Z ≤ 20◦), H.E.S.S. at zenith (Z ≈ 0◦), H.E.S.S. at

11https://www.cta-observatory.org/science/ctao-performance/
12chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/proposals/sc sens.pdf
13https://veritas.sao.arizona.edu/about-veritas/veritas-specifications.
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Figure 6.6: SEDs for candidates with energies around 40 TeV are presented, with only two items
displayed for brevity, the complete version can be found at(Zhu et al., 2023). A comprehensive version
of this figure is accessible in the online publication. Data points are denoted by grey error bars. It
is important to note that the photons in the TeV band have not been certified by IACTs and EAS
arrays. The optimal-fitting synchrotron and IC bumps are represented by red and solid blue curves,
respectively, while the black dash-dot curves illustrate the IC bumps absorbed by EBL. Three vertical
dash-dot lines correspond to log ν (Hz) at 1 TeV, 10 TeV, and 100 TeV. The sensitivities of various
observatories are indicated by different colored dotted curves: green for CTAO north (north site, 0◦ ≤
Z ≤ 20◦), magenta for CTAO south (south site, 0◦ ≤ Z ≤ 20◦), olive for H.E.S.S zenith (0◦ ≤ Z ≤ 5◦),
tan for H.E.S.S low (12◦ ≤ Z ≤ 22◦), blue for MAGIC low (0◦ ≤ Z ≤ 30◦), cyan for MAGIC medium
(30◦ ≤ Z ≤ 45◦), blue-violet for VERITAS (0◦ ≤ Z ≤ 20◦), red for LHAASO, and dark-orange for
HAWC. Additionally, the redshifts (z) for each source are also provided. Furthermore, data points
with flux errors exceeding flux upper limits are marked with pentagons, and crosses represent data in
the low radio energy range (log ν(Hz) < 9).
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medium zenith angles (12◦ ≤ Z ≤ 22◦), MAGIC at low zenith angles (0◦ ≤ Z ≤ 30◦), MAGIC at
medium zenith angles (30◦ ≤ Z ≤ 45◦), VERITAS (0◦ ≤ Z ≤ 20◦), LHAASO (−11◦ ≤ Dec ≤ 69◦),
and HAWC (−20◦ ≤ Dec ≤ 60◦). Regarding exposure times, HAWC is observed over 507 days,
LHAASO over one year, H.E.S.S. near the zenith for 25 hours, and the remaining instruments for 50
hours each.

To assess the visibility of a given source, we use two different approaches for EAS arrays and
IACTs. For EAS arrays, a source is considered observable if its declination falls within the most
observable sky region. For IACTs, we determine the observable months during dark skies using the
H.E.S.S. online visibility tool14 and the astroplan Python package. These tools provide visibility
information based on the source’s celestial coordinates and the IACTs’ observation parameters, as
illustrated in Fig. 6.7 and Tab. 6.7.

The observable months for 40 high-confidence TBCs, determined using these tools, are listed in
Tab. 6.7. The table includes the source name and observable months for IACTs and EAS arrays, with
months represented numerically (e.g., 1’ for January, 2’ for February, etc.).

6.5.3 High-confidence TBCs

We analyzed 40 potential TeV blazar candidates, examining their energy (E) range from 0.001 TeV to
100 TeV to determine their τ (E, z) values and the impact of EBL on their IC bumps. This analysis led
to the identification of 7 high-confidence TeV blazar candidates based on their detectability criteria in
comparison with the sensitivity curves of IACTs and EAS arrays within the 1 TeV to 100 TeV energy
range. The detection capabilities of various TeV facilities for these candidates are detailed in Tab. 6.8,
including 6 targets for both CTAO North and South, 2 for H.E.S.S, 5 for MAGIC, 1 for VERITAS, 1
for LHAASO, and none for HAWC.

The specifics of the 40 high-confidence TeV blazar candidates are presented in Tab. 6.8, organized
as follows:

Col. (1) the name of the source in the 4FGL catalog. Col. (2) and Col. (3) Galactic Coordinates
in degrees. Col. (4) synchrotron-Peak Frequency (log νs

p). Col. (5) redshift (z). Col. (6) flux Density
at 1 TeV ( f1:TeV): Calculated using the IC bump parameters and Formula. (6.5). Col. (7) to Col.
(10) logistic likelihood in 4 Catalogs: The probability of a source being a TeV candidate based on
its features. Col. (11) SED class in 4FGL-DR2 / 4LAC-DR2: Classifications include BL Lac (bll),
FSRQ (fsrq), and blazar candidate of uncertain type (bcu). Comparison with 3FHL, 3HSP, and 2BIGB
Catalogs: Indicated with ’Y’ for candidates in common. Col. (12) to Col. (14) comparison with Other
Literature: Including works by Costamante & Ghisellini (2002), Massaro et al. (2013), Foffano et al.
(2019), and Chiaro et al. (2019). Col. (15) detectability in TeV Range (1 TeV to 100 TeV): Indicated
for various IACTs and EAS arrays. Additionally, we sought to determine the maximum redshift at
which these sources remain detectable in the TeV energy band. This involved comparing the EBL-
absorbed IC bumps of 20 blazars with the sensitivity curves of detectors at 1 TeV, 10 TeV, and 100
TeV. The redshift upper limits for each IACT and EAS array are listed in Table 6.9, which includes:
Col. (1) 4FGL Name. Col. (2) to Col. (10) The redshift Upper Limits for Each Detector: Presented
at 1 TeV, 10 TeV, and 100 TeV. A value of ’0’ indicates non-detectability at the specified energy. Col.
(11) actual Redshifts. Col. (12) detectability for Cherenkov Detectors. This analysis demonstrates
that higher redshifts generally reduce the likelihood of a source being a TeV candidate, as indicated
by the inverse relationship between logistic likelihood and redshift in Formulas (6.1) to (6.4).

14https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/visibility/
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Table 6.7: Observation periods for IACTs and EAS arrays.∗

4FGL name CTAO North CTAO South H.E.S.S. zenith H.E.S.S. low MAGIC low MAGIC medium VERITAS
(1) (2) (3) (4) (5) (6) (7) (8)

J0037.8+1239 7, 8, ..., 12 1, 7, ..., 12 1, 6, ..., 12 7, 8, ..., 12
J0051.2-6242
J0110.1+6805 1, 7, ..., 12
J0110.7-1254 7, 8, . . . , 12 6, 7, ..., 12 1, 7, ..., 12
J0115.8+2519 1, 7, ..., 12 1, 7, ..., 12 1, 2, 6, ..., 12 1, 7, ..., 12

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

The full details of this table can be found in the comprehensive listing provided in Zhu et al. (2023).
‘h’ signifies that the month is exclusively observable using the H.E.S.S. instrument.
‘a’ signifies that the month is exclusively visible in the astroplan context.

Figure 6.7: In 2023, four sources including 4FGL J0123.7-2311 and 4FGL J0622.3-2605 will be
observable by H.E.S.S. near its zenith. Visibility details for other IACTs and EAS arrays are in the
online supplementary data. The H.E.S.S. online tool generated these visibility charts, where white
indicates daylight, grey shades represent different twilights, yellow marks moon presence or twilight,
and blue shows when the object is above certain altitudes. The RA/Dec coordinates are for the current
epoch, not the J2000 standard.
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6.6 Discussions and conclusions

6.6.1 Discussions

The SFS process identified five key features in the 4FGL-DR2 / 4LAC-DR2 datasets that are crucial
for differentiating TeV from non-TeV blazars. These features include flux density, FOM, synchrotron
peak frequency, redshift, spectral index, and variability. This aligns with the findings of Lin & Fan
(2016). Additionally, the potential influence of X-ray emissions and shifts in the synchrotron peak
frequency during flare events warrants further investigation, as blazars not typically detected at TeV
energies might become detectable during such flaring states.

This suggests the possibility that all blazars are capable of emitting TeV photons, with the de-
tection of TeV emissions being contingent on the flux density in the TeV band being sufficiently
high, particularly during flaring periods. Notably, the 4FGL-DR2 dataset includes features like
VariabilityIndex and FracVariability, which reflect flux variability over time and are integral to our
LR model. This ensures that our LR model is sensitive to sources experiencing shifts in their syn-
chrotron peak during flaring states.

Regarding the classification of blazars, according to Abdo et al. (2010b) or Fan et al. (2016),
sources with log νsp > 15 (or log νsp > 15.3) are categorized as High Synchrotron Peaked (HSP) blazars.
However, by focusing solely on HSP/HSP BL Lacs, we would overlook over 11% of TeV sources.
Our approach, which does not impose stringent initial filters based on SED class or other properties,
offers an alternative method.

To evaluate the effectiveness of two criteria – HSPs (log νsp ⩾ 15.3 Hz as per Fan et al. (2016))
and the LR model – we analyzed metrics and confusion matrices on the testing sets of 4FGL-DR2
/ 4LAC-DR2 and 3FHL. For 4FGL-DR2 / 4LAC-DR2, the AUC of 73% and TPR of 62% are both
lower than those predicted by the LR model, resulting in up to 27 TeV blazars being misclassified as
non-TeVs. Similarly, for 3FHL, excluding four sources without log νsp data, the AUC of 68% and TPR
of 63% are also lower than those of the LR model, leading to the misclassification of up to 25 TeV
blazars as non-TeVs. The confusion matrices for these comparisons are illustrated in Fig. 6.8 and Fig.
6.9. These results demonstrate the superior effectiveness of our selection criterion.

In our study, we shifted from the traditional approach of selecting TeV candidates based on their
high predicted TeV fluxes. Instead, we focused on identifying targets that, according to their broad-
band features, are likely to become promising TeV candidates in specific activity states. These targets
might have been overlooked due to their current status or the absence of suitable instruments and
observation strategies. Our method relies heavily on ML, which is inherently influenced by factors
such as the composition of the sample, the ratio of the training set to the test set, and the value of k in
cross-validation. Our goal is to ensure the generalizability of our results based on the available data.

However, there is a potential bias in our approach. A significant number of sources in TeVCat, a
catalog of TeV sources, are blazars detected by Fermi-LAT. This is because Fermi-LAT catalogs are
often used to identify potential candidates for Imaging Atmospheric Cherenkov Telescopes (IACTs),
and Fermi-LAT monitoring triggers Target of Opportunity programs. Additionally, our observation
proposal does not take into account factors like weather conditions or the availability of detectors.
A more practical observation proposal would require collaboration with observatories and consider a
broader range of influencing factors.

Detecting extragalactic photons in the TeV band is challenging due to two major limitations: the
Extragalactic Background Light (EBL) and the performance of detectors (sensitivity, effective area,
field of view, etc.). The relationship between improved detector sensitivity and the detection of more
TeV sources is complex. While better sensitivity does aid in detecting more sources, the attenuation of
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Figure 6.8: Two confusion matrices for SML and HSPs. The left panel uses data from the 4FGL-DR2
/ 4LAD-DR2 catalog with five FOFs: Γ, VF , log f ph

7 , z, log νsp, while the right panel focuses on sources
with log νsp ⩾ 15.3 Hz. Both matrices display true positives (TP), false negatives (FN), false positives
(FP), and true negatives (TN) in their respective quadrants.
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Figure 6.9: Two confusion matrices for SML and HSPs. The left panel uses data from the 3FHL
catalog with five FOFs: log f ph

2 , z, while the right panel focuses on sources with log νsp ⩾ 15.3 Hz.
Both matrices display true positives (TP), false negatives (FN), false positives (FP), and true negatives
(TN) in their respective quadrants.
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signals due to EBL increases with energy and redshift, leading to a modest overall effect (as discussed
in Gilmore et al. 2012).

For the 81 blazars listed in TeVCat, we obtained their redshifts from four catalogs and other
literature. Notably, for 4FGL J2243.9+2021 (or RGB J2243+203), we used the upper limit of the
redshift range (0.75 ≤ z ≤ 1.1) as reported by Sahu et al. (2019). We then calculated the optical depth
τ (E, z) at 1 TeV for each blazar and evaluated τ (E, z) 13.1 for all 81 blazars. These results are
detailed in Tab. 6.10, where Col. 1) and Col. 2) list the TeVCat and 4FGL-DR2 names, Columns
(3) and (4) provide the celestial coordinates, Col. 5) shows the redshift, and Col. 6) gives the τ (E, z)
values at 1 TeV, based on the model by Saldana-Lopez et al. (2021).

Table 6.10: Blazars at 81 TeV exhibit τ (E, z) when E equals 1 TeV.∗

TeVCat Name 4FGL Name Ra Dec z τ

(1) (2) (3) (4) (5) (6)

J0013-188 J0013.9-1854 3.47 -18.89 0.095 0.92
J0033-193 J0033.5-1921 8.4 -19.35 0.61 7.61
J0035+598 J0035.9+5950 8.82 59.79 0.467 5.7
J0112+227 J0112.1+2245 18.02 22.74 0.265 2.96
J0136+391 J0136.5+3906 24.14 39.1 0.75 9.35

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

The full details of this table can be found in the comprehensive listing provided in Zhu et al. (2023).

The validation of TeV candidates heavily relies on both IACTs and EAS arrays, each possessing
its own set of strengths and limitations. IACTs excel in terms of energy and angular resolution, and
they can detect energies in the GeV range. In contrast, EAS arrays typically become effective at
energies above approximately 10 TeV. However, at around 30 TeV, the sensitivity of the LHAASO
rivals that of the CTAO, and LHAASO demonstrates superior sensitivity at around 100 TeV.

EAS arrays also offer advantages in terms of observation time and FoV. Unlike IACTs, which
are limited to moonless nights, EAS arrays can operate continuously, resulting in significantly longer
exposure times. For example, while IACTs typically report exposure times of around 50 hours, EAS
arrays can accumulate data over periods spanning 1 to 5 years. Although IACTs are more adept at
capturing transient events, the extensive FoVs and prolonged observation periods of EAS arrays help
bridge this gap.

The complementary nature of IACTs and EAS arrays is further highlighted by their distinct op-
erational modes and performance characteristics. Furthermore, advancements in these technologies,
particularly with LHAASO and the next-generation CTAO, have improved sensitivity by an order of
magnitude compared to existing systems. These developments have extended the detectable range in
the TeV band to beyond 100 TeV, paving the way for a more comprehensive exploration of the TeV
sky in the future.

6.6.2 Conclusions

This study utilized a machine learning approach, specifically Logistic Regression, to identify potential
TeV blazar candidates from various catalogs including 4FGL-DR2 / 4LAC-DR2, 3FHL, 3HSP, and
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2BIGB. Additionally, this method aided in selecting prospective observational targets for Imaging
Atmospheric Cherenkov Telescopes (IACTs) and Extensive Air Shower (EAS) arrays. Key findings
are summarized as follows:

1. Application of Logistic Regression across the four catalogs yielded a formulaic approach for
pinpointing blazars likely to be observable at TeV energies, with a cutoff criterion of logit′ ⩾ 0.
For 4FGL-DR2 / 4LAC-DR2:

logit′ = 4.808Γ + 2.809VF + 3.889 log f ph
7 − 3.34z + 0.857 log νsp + 20.244,

showcasing an AUC of 98%, FPR of 11%, TPR of 99%, and a threshold probability (pthre) of
40%. Remarkably, 40 out of 150 non-TeV blazars were predicted with high confidence (⩾ 80%)
as TeV candidates.

For 3FHL:
logit′ = 0.116 log f ph

2 − 0.628z + 1.028,

with metrics indicating an AUC of 88%, FPR of 27%, TPR of 88%, and a pthre of 52%. 24 TeV
candidates were overlapping with the high-confidence group from 4FGL-DR2 / 4LAC-DR2.

For 3HSP:
logit′ = 0.306FOM − 3.861z − 0.173,

achieving an AUC of 98%, FPR of 2%, TPR of 91%, and a pthre of 61%. Eleven TeV candidates
were common with the high-confidence ones from 4FGL-DR2 / 4LAC-DR2.

For 2BIGB:
logit′ = −0.016EP + 0.248FOM − 4.395z − 0.122,

demonstrating an AUC of 97%, FPR of 8%, TPR of 96%, and a pthre of 48%. Fourteen TeV
candidates were shared with the high-confidence ones from 4FGL-DR2 / 4LAC-DR2.

2. Among the 40 high-confidence TeV blazar candidates, we performed independent fitting of the
Spectral Energy Distributions (SEDs) and evaluated their visibility for EAS arrays and IACTs
in 2023. This resulted in identifying 7 prime targets: 6 for CTAO, 2 for H.E.S.S, 5 for MAGIC,
1 for VERITAS, 1 for LHAASO, and none for HAWC.

3. Comparative analysis with previous studies revealed commonalities and distinct findings: 2
sources overlapped with Costamante & Ghisellini (2002), 9 with Massaro et al. (2013), 4 with
Foffano et al. (2019), and none with Chiaro et al. (2019).



Chapter 7

Chasing the neutrino candidates of Fermi
blazars

7.1 Introduction

In the realm of astrophysics, the study of neutrinos, first hypothesized by Wolfgang Pauli in 1930 dur-
ing his work on β decay, holds paramount importance. The continuous energy spectrum of electrons
produced in this decay hinted at the existence of a third, neutral, and nearly massless particle, later
termed the neutrino by Enrico Fermi. Investigating high-energy neutrinos is pivotal in understanding
the origins and acceleration mechanisms of high-energy cosmic rays. This is largely due to the isospin
symmetry between u and d quarks, leading to a similar symmetry between protons and neutrinos in
production.

Blazars are known for their ability to produce high-energy neutrinos, a process predominantly
governed by hadronic interactions within their relativistic jets. These jets, propelled by the accretion
disks surrounding supermassive black holes, are capable of accelerating particles to extremely high
energies. The primary mechanisms for neutrino production in blazars are as follows:

1. Proton-Photon Interactions (pγ interactions)

In this process, protons accelerated to high energies within the jet interact with photons (origi-
nating from the accretion disk, the jet itself, or external light sources). These interactions lead
to the production of charged pions (π+ and π−), which subsequently decay into neutrinos and
antineutrinos. For instance, a π+ decays into a positive muon and a muon neutrino, and the
positive muon further decays into a positron, an electron neutrino, and a muon antineutrino.

2. Proton-Proton Interactions (pp interactions)

Here, high-energy protons in the jet collide with protons in the surrounding medium, producing
pions. These pions also decay into neutrinos.

3. Decay of Neutral Pions

Alongside charged pions, neutral pions (π0) are also produced in pp and pγ interactions. These
neutral pions decay into high-energy gamma rays. Although this process does not directly
produce neutrinos, the presence of high-energy gamma rays is indicative of hadronic processes,
indirectly signaling neutrino production.

157
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These processes occur within the relativistic jets of blazars, where particle acceleration mecha-
nisms can boost protons to energies high enough to facilitate the aforementioned interactions. Neu-
trinos, being weakly interacting particles, can escape dense regions and travel across the universe,
eventually being detected by Earth-based observatories like the IceCube Neutrino Observatory.

Historically, extraterrestrial neutrino observations were confined to solar neutrinos and those from
supernova 1987A, detected by the Kamiokande II detector (Hirata et al., 1987). These neutrinos had
energies in the tens of MeV range. A breakthrough came in 2013 when the IceCube Neutrino Obser-
vatory, or IceCube (IceCube Collaboration, 2005), reported the discovery of extraterrestrial neutrinos
with energies surpassing 30 TeV, significantly higher than previous observations. Between May 2010
and May 2012, IceCube detected 28 events ranging from 30 TeV to 1.2 PeV, presenting an isotropic
distribution without significant clustering in time or space (IceCube Collaboration, 2013a).

Subsequent analyses of six years of IceCube data (Aartsen et al., 2016) negated the possibility of
atmospheric origins for these neutrinos and found no significant correlation with the Galactic Plane,
reinforcing the isotropic nature of the high-energy neutrino flux. Moreover, no correlation was ob-
served between the arrival directions of neutrinos with energies above 200 TeV and known γ-ray
sources, although this could be attributed to limited data.

The potential link between blazars and high-energy neutrinos gained traction when IceCube an-
nounced a high-energy neutrino event (IceCube-170922A) coinciding with a γ-ray flare from blazar
TXS 0506+056, observed by the Fermi Large Area Telescope (Fermi-LAT, Atwood et al., 2009b).
While the association had a significance of less than 3σ, it was somewhat supported by an excess of
neutrino events towards TXS 0506+056 detected between September 2014 and March 2015, with a
significance of 3.5σ (IceCube Collaboration et al., 2018a,b).

7.2 Neutrino Detection in IceCube

The IceCube Neutrino Observatory, located at the South Pole, marked a new era in high-energy neu-
trino astronomy with its first detection of extraterrestrial high-energy neutrinos in 2013 (IceCube Col-
laboration, 2013a). IceCube, a gigaton-scale neutrino detector, comprises over 5000 photomultiplier
tubes (PMTs) distributed across 86 strings within a cubic kilometer of ice, as depicted in Fig. 7.1.
Neutrinos passing through the detector may interact with atomic nuclei in the ice, producing charged
particles. The PMTs detect Cherenkov radiation emitted by these charged particles, indirectly captur-
ing information about the neutrinos. IceCube classifies neutrino events into two types: muon tracks
and showers. Muon tracks result from charged current interactions of (anti-)muon neutrinos, pro-
ducing muons with significant penetrating power due to their larger mass and lower bremsstrahlung
radiation efficiency. These muons travel considerable distances in the ice, emitting Cherenkov radia-
tion captured by the PMTs, as shown in Fig. 7.2 left panel. This allows for accurate reconstruction
of the neutrino’s arrival direction, with an error margin as small as one degree. Shower events, on
the other hand, are caused by charged current reactions of (anti-)electron or (anti-)tau neutrinos and
neutral current interactions of any neutrino type. Electrons, being less massive, lose energy rapidly
through bremsstrahlung, resulting in shallow penetration and electromagnetic cascades that form a
blob-like structure (middle panel of Fig. 7.2). While shower events provide less precise directional
information, they facilitate more accurate neutrino energy measurements as most of the neutrino’s
energy is deposited within the detector. The detection principle for (anti-)tau neutrinos, illustrated
in Fig. 7.2 right panel, involves the rapid decay of the produced tau particle into secondary charged
particles, triggering cascades and exhibiting a ”double-bang” structure. To date, (anti-)tau neutrinos
have not been detected.
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Fig. 7.3 shows the neutrino energy spectrum observed by IceCube in its first eight years of op-
eration for neutrinos above 60 TeV. The blue solid line represents the estimated flux of conventional
atmospheric neutrinos, produced by the decay of charged pions and kaons generated in cascades
initiated by cosmic rays interacting with atmospheric nuclei. The green solid line indicates the sub-
dominant component of predicted prompt neutrinos from the atmosphere, originating from the decay
of heavier mesons in atmospheric showers. The atmospheric neutrino flux decreases rapidly with in-
creasing energy, indicating that neutrinos above 300 TeV are of astrophysical origin (Aartsen et al.,
2013; IceCube Collaboration, 2013a).

Figure 7.1: Schematic of the IceCube detector. Image source:
https://icecube.wisc.edu/science/icecube/.

Blazars significantly contribute to the extragalactic γ-ray background (Ajello et al., 2015). If
hadronic interactions predominantly produce the emitted gamma-ray photons, blazars could also sig-
nificantly contribute to the diffuse neutrino background (Atoyan & Dermer, 2001a; Padovani et al.,
2016; Palladino et al., 2019a). The arrival directions of muon track neutrinos, which can be accurately
reconstructed, allow for the search of gamma-ray point sources correlated with neutrinos. As depicted
in Fig. 7.4, the arrival directions of muon neutrinos with energies above 200 TeV detected by IceCube
over eight years are approximately isotropic, suggesting an extragalactic origin for these high-energy
neutrinos. Despite the simultaneous emission of photons in the hadronic interactions that produce
neutrinos, there is no significant correlation between the arrival directions of these neutrinos and any
known gamma-ray point sources (Halzen, 2016; Haack et al., 2017a). Comparing the arrival loca-
tions of muon neutrinos with the positions of various types of high-energy astronomical objects can
effectively constrain their contribution to the diffuse neutrino background. Stacking analyses indicate
no apparent association between gamma-ray bursts (GRBs), star-forming galaxies, starburst galaxies,
tidal disruption events, and AGNs with the diffuse neutrino background (Stecker et al., 1991; Halzen
& Zas, 1997; Atoyan & Dermer, 2001a; He et al., 2013; Tamborra et al., 2014; Aartsen et al., 2017a;
Murase et al., 2020). For instance, blazars contribute at most 15% to the neutrinos detected by Ice-
Cube (Aartsen et al., 2017b; Hooper et al., 2019; Smith et al., 2021; Yuan et al., 2020). Zhou et al.

https://icecube.wisc.edu/science/icecube/
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Figure 7.2: Principles of detecting different flavors of neutrinos in IceCube. Image source: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www2.physics.ox.ac.uk/sites/default/files/2012-
03-27/antonin vacheret pdf 18644.pdf.

(2021) suggests that radio-bright AGNs contribute no more than 30% to neutrinos. Studies focus-
ing on multiple Fermi-LAT source catalogs, including 2LAC, 3FHL, the 12-year 4FGL, and 4LAC,
indicate that each catalog contributes no more than 36% to the neutrino background (Aartsen et al.,
2017b; Li et al., 2022a). These results imply that most neutrino events do not originate in radio-bright
AGNs or blazars.

Aartsen et al. (2020); Abbasi et al. (2021) searched a catalog of 110 strong gamma-ray sources
and identified four AGNs with a 3 σ level excess of neutrino flux: TXS 0506+056, NGC 1068, PKS
1424+240, and GB6 J1542+6129. Besides TXS 0506+056, which was the first confirmed neutrino
source, NGC 1068, PKS 1424+240, and GB6 J1542+6129 are also considered the most promising
neutrino emitters.

7.3 Neutrino Emission from Blazars and Seyfert Galaxies

• TXS 0506+056

On September 22, 2017, the IceCube Neutrino Observatory detected a muon neutrino event,
IceCube 170922A, with an energy of approximately 290 TeV. This track-like event coincided
spatially and temporally with a gamma-ray flare from the blazar TXS 0506+056, as observed by
the Fermi Large Area Telescope (Fermi-LAT). Following the IceCube alert, multi-wavelength
observations across radio, optical, X-ray, and very-high-energy (VHE) bands were conducted,
revealing significant flux increases in all bands (see Fig. 7.5). This event is considered the
first multi-messenger observation of high-energy neutrinos and photons from an astronomical
source, although the association’s significance was below 3 σ. Subsequent analysis of 9.5

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www2.physics.ox.ac.uk/sites/default/files/2012-03-27/antonin_vacheret_pdf_18644.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www2.physics.ox.ac.uk/sites/default/files/2012-03-27/antonin_vacheret_pdf_18644.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www2.physics.ox.ac.uk/sites/default/files/2012-03-27/antonin_vacheret_pdf_18644.pdf
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Figure 7.3: Neutrino energy spectrum observed by IceCube in its first eight years for muon neutrinos
above 200 TeV. Image source: (Haack et al., 2017a).
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Figure 7.4: Reconstructed arrival directions of muon neutrinos with energies above 200 TeV observed
by IceCube over eight years. Different colors represent different energies. The gray solid line indicates
the Galactic plane and the black dashed line represents the supergalactic plane (Haack et al., 2017a).

years of IceCube data in the direction of TXS 0506+056 revealed a neutrino burst during 2014-
2015, with 13±5 neutrinos exceeding atmospheric background (see Fig. 7.6). However, no
corresponding electromagnetic flare was detected during this period, challenging traditional
blazar jet models.

• NGC 1068

NGC 1068 was identified as a significant neutrino source in a 10-year survey by Aartsen et al.
(2020). The observed neutrino flux from NGC 1068 exceeded its GeV gamma-ray flux, suggest-
ing distinct origins and significant attenuation of GeV gamma-rays near the neutrino production
site. This implies a dense concentration of X-ray photons in the neutrino production region
capable of attenuating γ-rays above 100 MeV. Despite not being the brightest X-ray Seyfert
galaxy, NGC 1068’s obscured nature, due to materials including neutral hydrogen, suggests its
intrinsic X-ray power is considerably higher, potentially making it a prominent source of VHE
neutrinos.

• PKS 1424+240

PKS 1424+240, similar to TXS 0506+056, is considered a masquerading BL Lac object, in-
trinsically a flat-spectrum radio quasar with hidden broad lines and a standard accretion disc
(Padovani et al., 2019, 2022). It has been associated with IceCube Event 35, ”Big Bird”, due to
spatial and temporal alignment with a 2 PeV neutrino event and a significant gamma-ray flare
from PKS 1424-418. The energy output from PKS 1424-418’s flare could explain the neutrino
event, suggesting a direct physical link (Kadler et al., 2016; Gao et al., 2017).
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Figure 7.5: Light curves of TXS 0506+056 in various bands around the time of IceCube 170922A
detection (IceCube Collaboration et al., 2018a).

Figure 7.6: Neutrino burst from TXS 0506+056 during 2014-2015 (IceCube Collaboration et al.,
2018b).
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• GB6 J1542+6129

GB6 J1542+6129, like PKS 1424+240, is classified as a masquerading BL Lac object (Padovani
et al., 2022). Its radio properties, Doppler factor, and photon spectral index are similar to those
of NGC 1068 and PKS 1424+240, indicating comparable radio characteristics among these
sources (Shaw et al., 2013; Padovani et al., 2022).

Other blazars, such as PKS1502+106 and NVSSJ065844+063711, have also been associated with
neutrino alerts (Garrappa et al., 2022; de Menezes et al., 2022; Garrappa et al., 2021). Galván et al.
(2022) reported 23 neutrino blazar candidates (NBCs) by spatially correlating IceCube neutrino events
with γ-ray blazars from the Fermi-LAT catalog.

The debate on whether blazars contribute significantly to the high-energy neutrino diffuse flux and
the lepton-to-hadron ratio in blazar jets remains open. If neutrinos are indeed produced in blazar jets,
a stronger correlation between IceCube neutrinos and Fermi-LAT catalog sources could be expected,
potentially increasing the number of identified NBCs and supporting the hadronic scenario.

In the present study, we utilize the TL to identify high-energy NBCs within the 4FGL catalog. This
approach involves comparing known neutrino blazars (NBs) with other blazars listed in the 4FGL,
aiming to extract a subset of potential NBCs.

7.4 Methodology

In this study, we aim to develop an ANN model to transform the initial feature space of a dataset
into an embedding feature space, to segregate Non-Neutrino Blazar (non-NB) samples and NBCs
into two distinct clusters. This transformation is based on identifying inherent patterns or similarities
within the data. Our approach involves using a clustering algorithm to facilitate data exploration
and pattern recognition, thereby grouping samples into clusters. In the embedding feature space,
if a non-NB source falls within the 99% confidence error ellipse of the NB cluster, it is identified
as an NB candidate. This method allows for the effective identification of potential NBs based on
their proximity to the established NB cluster in the transformed feature space, thereby enhancing the
selection process for NBCs.

Clustering, an essential task in data analysis, lacks a universally defined algorithm and instead
encompasses a variety of methods. In this research, we employ DL techniques, particularly ANNs,
to execute the clustering task. The core principle of DL in clustering involves training the ANN
to discover a function that effectively maps input features to their corresponding output targets, as
elucidated in the works of Bengio (2009); LeCun et al. (2015); Ahmad et al. (2019).

ANNs, the backbone of DL, operate by introducing hidden layers between the input and output
layers. These hidden layers represent the input data through multiple levels of abstraction. Each layer
in the network abstracts and processes the information received from its preceding layer, thereby cre-
ating a hierarchical structure of data representation. The depth of these hidden layers, along with the
number of artificial neurons (ANs) in each layer, can be fine-tuned to achieve desired levels of data
abstraction. This hierarchical structure is often constructed using a greedy, layer-by-layer approach,
as highlighted in Bengio et al. (2006). This method has demonstrated superior learning capabilities
compared to other machine learning techniques (Bengio et al., 2013b). By identifying and empha-
sizing more impactful features from the original dataset, DL enhances the overall effectiveness and
efficiency of the machine learning process (Bengio et al., 2013b).

TL is an ML technique where knowledge gained while solving one problem is applied to a differ-
ent but related problem. As mentioned in Chap. 3, the formal definition of TL involves the concepts
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of domains and tasks:

• Domain

A domain D is defined by two components: a feature space X and a marginal probability
distribution P(X), where X = x1, x2, ..., xn ∈ X. Essentially, a domain represents the space in
which the input data resides, along with its distribution.

• Task

A task T , associated with a domain, consists of two elements: a label space Y and a predictive
function f (·). The function f : X → Y is learned from the training data, which includes pairs
of input and output (xi, yi), where xi ∈ X and yi ∈ Y. The task represents the specific problem
or learning objective within the domain.

• Transfer Learning Process

In TL, you have a source domain DS and a corresponding source task TS , as well as a target
domain DT and a target task TT . The key idea is to apply the knowledge (features, models,
patterns) learned in DS and TS to improve the learning of the predictive function fT (·) in DT

for TT . This is particularly useful when the target domain has limited labeled data.

Advantages in Imbalanced Clustering Tasks
TL is beneficial in scenarios where the target domain has insufficient or imbalanced data. By

leveraging the knowledge from a well-represented source domain, TL can enhance the learning pro-
cess in the target domain, aiding in tasks like classification, regression, or clustering, even when the
available data in the target domain is scarce or skewed.

7.5 Experiments

Blazars, recognized as intense extragalactic entities, are anticipated to be significant sources of neu-
trinos. The successful identification of neutrinos originating from these blazars offers profound impli-
cations for our understanding of astrophysical phenomena. It sheds light on the mechanisms at play
in these distant celestial objects and contributes to unraveling the mysteries surrounding the genesis
of cosmic rays. This detection not only enhances our comprehension of the energetic processes oc-
curring in blazars but also aids in piecing together the broader cosmic ray puzzle, which remains one
of the fundamental challenges in astrophysics.

7.6 Blazars as Neutrino Emitters

7.6.1 Sample Selection

• Blazar Samples

As delineated in Chapter 3, the Fermi-LAT collaboration has recently unveiled the incremental
version of the 12-year Fermi-LAT Gamma-ray Source Catalog (4FGL-DR3, Abdollahi et al.
2022). This latest edition of the catalog encompasses a total of 3743 blazars, referred to as
4FGL-DR3 blazars. This group includes 794 FSRQs, 1456 BL Lacs, and 1493 BCUs. The cat-
alog furnishes vital astrophysical data for each source, facilitating in-depth exploration of these
high-energy γ-ray sources. This compilation serves as a foundational resource for identifying
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NBCs within the blazar population. Additionally, the blazar samples are categorized into NB
samples and non-NB samples.

A series of studies have been undertaken to pinpoint blazar counterparts of neutrinos, primarily
utilizing the blazar catalogs provided by Fermi-LAT (Nolan et al., 2012a; Ackermann et al.,
2011; Ajello et al., 2017; Ajello et al., 2020; Lott et al., 2020; Abdollahi et al., 2020; Abdollahi
et al., 2022). Our analysis incorporates findings from eight significant publications (e.g., Kadler
et al. 2016; Garrappa et al. 2019, 2021, 2022; de Menezes et al. 2022; Galván et al. 2022; Liao
et al. 2022; Li et al. 2022b) that emerged from these investigations. These studies collectively
highlight 35 blazars from the 4FGL-DR3 catalog, exhibiting a pronounced temporal and spatial
association with neutrino events. These 35 blazars constitute our NB samples, and the 4FGL-
DR3 blazars closely resembling them are identified as NBCs. Tab. 7.1 presents the essential
information of this NB samples, where Column (1) lists the names in 4FGL-DR3, Column (2)
indicates the SED class, Column (3) shows the classification results of BCUs following Fan
et al. (2022), and Column (4) cites the relevant references. The remaining blazars in our study
are classified as non-NB samples.

• Non-Blazar Samples

Excluding the 3743 blazars from 4FGL-DR3 leaves 2916 sources. After further removing 2157
unassociated sources and 134 sources of unknown classification, we are left with 625 non-blazar
entities with definitive classifications. These non-blazars, detailed in Tab. 5 of Abdollahi et al.
2022, provide a contrasting dataset to the blazar samples.

7.6.2 Feature engineering

As discussed in Chapter 3, before the utilization of the samples mentioned earlier for TL, it is im-
perative to perform data preprocessing, commonly referred to as feature engineering. This process
transforms the original features of the samples into a format that is more suitable for TL. Feature
engineering encompasses the following steps:

1. Feature Discretization

Similar to 4FGL-DR2, a single feature in 4FGL-DR3 may be represented by multiple columns.
For example, in the case of Flux band, there are eight columns corresponding to the integral
photon flux within each spectral band. These columns are denoted as Flux band 1, Flux band
2, ..., Flux band 8.

2. Feature Cleaning

In cases where samples have missing values, we fill these gaps with the mean value of the feature
across similar samples. For example, if a BL Lac lacks a redshift (z) value, we substitute it with
the average z of other BL Lacs.

3. Feature Selection

Features presenting NAN values or string features are excluded. Additionally, features with
strong correlations are evaluated, and one is chosen for efficiency. For instance, in 4FGL-DR3,
integrated photon flux (Flux Band) and Spectral Energy Distribution (SED) (nuFnu Band) per
energy interval are closely related, with the latter being preferred despite 4FGL-DR3 offer-
ing three spectral types (PowerLaw, LogParabola, and PLSuperExpCutoff ), we standardize all
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Table 7.1: 35 NB samples in 4FGL-DR3.

4FGL Name Class Class in Fan 2022 Reference
(1) (2) (3) (4)

4FGL J0006.4+0135 BL Lacs Li et al. 2022b
4FGL J0118.7-0848 BCU FSRQ Li et al. 2022b
4FGL J0148.6+0127 BLL Galván et al. 2022
4FGL J0206.4-1151 FSRQ Garrappa et al. 2022
4FGL J0244.7+1316 BCU FSRQ Galván et al. 2022
4FGL J0258.1+2030 BLL Galván et al. 2022
4FGL J0420.3-3745 BCU BLL Galván et al. 2022
4FGL J0428.6-3756 BLL Galván et al. 2022
4FGL J0509.4+0542 BLL Galván et al. 2022
4FGL J0525.6-2008 BLL Galván et al. 2022
4FGL J0609.5+1402 BCU FSRQ Galván et al. 2022
4FGL J0649.5-3139 BLL Galván et al. 2022
4FGL J0658.6+0636 BCU BLL Galván et al. 2022, de Menezes et al. 2022, Garrappa et al. 2021
4FGL J0725.8-0054 BCU BLL Galván et al. 2022
4FGL J0738.1+1742 BLL Garrappa et al. 2021
4FGL J0946.2+0104 BLL Garrappa et al. 2022
4FGL J1003.4+0205 BCU BLL Garrappa et al. 2022
4FGL J1039.6+0535 BCU BLL Galván et al. 2022
4FGL J1040.5+0617 BLL Garrappa et al. 2019, Galván et al. 2022
4FGL J1043.6+0654 BLL Galván et al. 2022
4FGL J1210.3+3928 BLL Li et al. 2022b
4FGL J1220.1+3432 BLL Galván et al. 2022
4FGL J1231.5+1421 BLL Galván et al. 2022
4FGL J1342.7+0505 BLL Garrappa et al. 2022
4FGL J1359.1-1152 BCU BLL Galván et al. 2022
4FGL J1427.0+2348 BLL Li et al. 2022b
4FGL J1427.9-4206 FSRQ Kadler et al. 2016
4FGL J1504.4+1029 FSRQ Garrappa et al. 2022
4FGL J1505.0-3433 BLL Galván et al. 2022
4FGL J1543.0+6130 BLL Li et al. 2022b
4FGL J1744.9-1727 BCU BLL Galván et al. 2022
4FGL J1751.6-1750 BCU BLL Galván et al. 2022
4FGL J1808.8+3522 BLL Galván et al. 2022
4FGL J2113.9+1120 BCU FSRQ Liao et al. 2022
4FGL J2227.9+0036 BLL Galván et al. 2022
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samples to PowerLaw due to its superior fit to the γ-ray data. The selected features are detailed
in Tab. 7.2, with Column (1) listing the feature names, Column (2) the units, and Column (3)
providing descriptions.

4. Feature Normalization
To prevent the dominance of features with larger magnitudes in the model, all features are scaled
to a uniform range.

Table 7.2: The 14 selected features for TL.

Feature Unit Description
(1) (2) (3)

Pivot Energy (EP) GeV Energy at which error on differential flux is minimal
Energy Flux100 (log F) erg · cm−2 · s−1 Energy flux from 100 MeV to 100 GeV obtained by spectral fitting
PL Flux Density (log f ) cm−2 ·MeV−1 · s−1 Differential flux at Pivot Energy in PowerLaw fit

PL Index (α) Photon index when fitting with PowerLaw
Variability Index (V) Likelihood difference between the flux fitted in each time interval and the average flux
Frac Variability (VF) Fractional variability computed from the fluxes in each year

nuFnu Band (log F1 ∼ log F8) erg · cm−2 · s−1 Spectral energy distribution over each spectral band

7.6.3 Domains and Tasks

Based on the feature-engineered samples, we have identified distinct domains and tasks. The source
domain, denoted asDS , combines NB and non-blazar samples for the binary clustering task TS : dis-
tinguishing between NB cluster and non-blazar cluster. Conversely, the target domainDT comprises
NB and non-NB samples, tasked with TT : separating NB cluster from non-NB cluster. The source do-
main DS includes 660 sources, with 625 non-blazar samples and 35 NB samples. The target domain
DT , sharing the same features asDS , contains 3743 blazars, consisting of 3708 non-NB samples and
35 NB samples.

This structure ensures DS , DT or TS , TT . The target domain DT significantly mitigates the
issue of the small proportion of NB samples. Additionally, the commonality of features between DT

andDS facilitates the transition from TS to TT , enhancing the model’s credibility.

7.6.4 Transfer Learning Processing and Results

The TL process is executed through the following steps, culminating in the presentation of results:

1. Dataset Partitioning
The source domainDS is divided into three segments in a 6:2:2 ratio, serving distinct purposes:

• Training Set

Comprising 396 samples, including 21 NB samples, this set is utilized to train the Artifi-
cial Neural Network (ANN). The training process enables the ANN to learn patterns and
make predictions.

• Validation Set

Containing 132 samples with 7 NB samples, this set assists in fine-tuning the model’s
hyperparameters. These are adjustable settings chosen before training that influence the
model’s behavior.
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• Testing Set

Also including 132 samples with 7 NB samples, this set is used independently to evaluate
the model’s performance and its ability to generalize to new data. The partitioning is
illustrated in Fig.7.7.

4FGL
(6659)

training (375)

validation (125)

testing (125)

training (21)

validation (7)

testing (7)

non-Blazar
(625)

Blazar: Neutrino
(NB: 35)

Blazar: non-Neutrino
(non-NB: 3708)

training_set (396)

validation_set (132)

testing_set (132)

Other
(2291)

Figure 7.7: The datasets used to train or evaluate the ANN model.

2. ANN

An ANN consists of interconnected layers of ANs, facilitating information flow through input,
hidden, and output layers. The ANs across these layers are interconnected via activation func-
tions (Steele et al., 2001), enabling robust learning capabilities. The training process of the
ANN is illustrated in Fig. 7.8. The input layer of the ANN comprises 14 ANs, corresponding
to the 14 features of the dataset DS . For illustrative purposes, the output layer is configured
with 2 ANs, mapping the original 14 features into 2 embedding features. The ANN comprises
four hidden layersThe number of nodes per layer, the learning rate of the ANN, and the
activation functions between layers, among other hyperparameters, are detailed in Tab.
7.3.

The training set samples are fed into the model, with the loss function’s objective being to learn
embeddings where the anchor is closer to the positive example than to the negative example
by a margin value. Ultimately, this results in the NB samples and non-blazar samples being
classified into two distinct clusters. The triplet loss function (Schroff et al., 2015) is optimized
and formulated in Equation 7.1, where xa, xp, and xn denote the inputs of the anchor, positive,
and negative samples, respectively. The function f (·) represents the ANN model, and m is the
margin defining the distance between the two clusters.

L = max(0,m + || f (xa) − f (xp)||22 − || f (xa) − f (xn)||22) · wa. (7.1)

To enhance performance, several strategies were employed during training. For instance, in
Equation 7.1, a weight is assigned to the anchor sample if it is an NB, addressing the imbalance
issue (325 non-blazar samples vs. 21 NB samples). This approach is akin to class weighting
in deep learning, signaling the model to prioritize under-represented classes. Consequently,
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training_set Anchor
Pick one sample randomly

Positive

Negtive

Pick one sample with  the 
same label as Anchor

ANN 2D 
Embedding

Pick one sample with  the 
label different from Anchor

Figure 7.8: Training logic utilizing the triplet loss function.

wa = 1 for non-NB anchor samples. Additionally, the learning rate was linearly adjusted during
training, and Dropout (Srivastava et al., 2014) was utilized to mitigate overfitting. The hyper-
parameter details are summarized in Tab.7.3.

Table 7.3: The structure of ANN model and the hyper-parameters of the training process.

Parameters or Model Description Values
(1) (2) (3)

ANN model the units of each layer [14, 32, 16, 16, 8, 2]
normalization method fit on training set StandardScaler of sci-kit-learn (Pedregosa et al., 2011b)

batch size 128
learning rate initial 0.001

decay factor of learning rate 0.95
epochs 300
margin 1.0

drop out probability in each layer 0.3
wa weight of NB sample 8

activation function in each layer parametric relu

In the feature space of embeddings, we categorize clusters into NBs and non-NBs. Potential
NBCs are identified within the non-NB clusters, specifically, those falling within the 99% con-
fidence interval. The processes of training and evaluation are conducted using the well-known
open-source DL framework, PyTorch.

3. Results

The analysis of the training, verification, and testing sets in the embedding feature space demon-
strates the successful training of the Artificial Neural Network (ANN). The NB samples and
non-blazar samples are distinctly segregated into two separate clusters within this space. The
non-blazar cluster is predominantly located in the upper left corner, while the NB cluster is sit-
uated in the lower right corner, as depicted in Figure 7.9. The training set includes 3 out-cluster
NBs in the upper left corner. In contrast, the validation and testing sets contain 1 and 3 outliers,
respectively. Additionally, the blazar samples comprise 7 outliers.
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Utilizing this ANN, the datasetDT is projected into the embedding feature space. The 20 most
densely populated samples in the NB cluster are designated as the ”core.” Subsequently, non-NB
samples located within the 99% confidence level error ellipse are classified as our Non-Blazar
Candidates (NBCs). This process yields a total of 273 candidates, including 127 BL Lacs, 49
FSRQs, and 97 BCUs. These candidates are enumerated in Tab. 7.4. Here, Column (1) lists the
4FGL-DR3 names of the NBCs; Columns (2) and (3) provide the coordinates in the embedding
feature space; Column (4) indicates the source class in 4FGL-DR3, and Column (5) presents
the classification of BCUs according to Fan et al. (2022).

Table 7.4: 273 NBCs∗.

Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J0003.3-1928 -0.0345 -0.0297 BCU BLL
4FGL J0004.3+4614 -0.0346 -0.0283 FSRQ
4FGL J0019.3-8152 -0.0352 -0.0235 BLL
4FGL J0021.9-5140 -0.0337 -0.0313 BLL
4FGL J0022.5+0608 -0.0355 -0.0354 BLL

... ... ... ...
* The full details of this table can be found in 9.2 (see Appendix 9).

7.7 Discussion

The advent of high-energy neutrinos from extragalactic sources marks a significant milestone in neu-
trino astronomy (IceCube Collaboration, 2013b). It is generally accepted that these high-energy neu-
trinos are produced through the interaction of cosmic rays with matter or photon fields within their
source, leading to the formation of charged muons and their subsequent decay into neutrinos. Ex-
tragalactic entities such as starburst galaxies (Liu et al., 2014; Chang et al., 2015), tidal disruption
events (Lunardini & Winter, 2017; Senno et al., 2017), and AGN (Stecker, 2013; Murase et al., 2014;
Padovani et al., 2015) are considered potential sources of these high-energy neutrinos and cosmic
rays. Blazars, a primary source of the extragalactic diffuse gamma-ray background (Ajello et al.,
2015), could significantly contribute to the diffuse neutrino background if their emitted gamma-rays
are primarily from hadron interactions (Atoyan & Dermer, 2001b; Zhu et al., 2013; Padovani et al.,
2016a; Palladino et al., 2019b). The accurate reconstruction of neutrino arrival directions through
muon tracks enables the search for gamma-ray point sources associated with these neutrinos. The
isotropic distribution of high-energy neutrinos, as indicated by IceCube data, suggests their predomi-
nantly extragalactic origin. However, a lack of significant correlation between neutrino arrival direc-
tions and known gamma-ray point sources has been observed (Haack et al., 2017b; Halzen, 2017). By
comparing the arrival positions of high-energy neutrinos with those of various high-energy objects,
the contribution of each object type to the diffuse neutrino background can be constrained. Stack-
ing analyses have shown that gamma-ray bursts contribute at most 1% to the neutrino background
(Aartsen et al., 2017a), while blazars contribute less than 30% (Aartsen et al., 2017b).
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Figure 7.9: The clustering results are displayed across four panels, each representing a different
dataset. Top Left Panel: Clustering on the training set; Top Right Panel: Clustering on the valida-
tion set; Bottom Left Panel: Clustering on the testing set; Bottom Right Panel: Clustering on the
blazar samples. In these panels, the NB samples are represented by red circles, while the non-blazar
samples are denoted by blue triangles. The 20 core samples in the densest cluster of the NB samples
in the bottom right panel are highlighted by purple circles. Additionally, the non-NB samples are
illustrated by green rectangles.
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7.7.1 Statistical Analysis

Our study aimed to identify distributional differences in various features among three distinct non-
overlapping categories: 35 neutrino NBs, 3435 non-NBs, and 273 NBCs. Building on (Yang et al.,
2022b), which performed SED fitting for 2709 blazars from the 4FGL-DR3 catalog across radio to X-
ray wavelengths, we included key features like the synchrotron spectral component’s peak frequency
(log νsp) and peak luminosity (log Ls

p). Additionally, (Yang et al., 2023) determined the peak frequency
(log νICp ) and peak luminosity (log LIC

p ) of the IC component for 3743 blazars from the 4FGL-DR3.
By cross-matching samples from Abdollahi et al. 2022; Yang et al. 2022b, 2023, we compiled an
enhanced sample of 3734 4FGL-DR3 blazars with four novel features: DT : log νsp, log Ls

p, log νICp ,
and log LIC

p .
We employed the two-sample Kolmogorov-Smirnov test (KS test, Massey 1951) and t-test, setting

the significance level at α = 0.05. We also calculated the mean and standard deviation for each sample.
The p-values from the KS test and t-test, along with the mean and standard deviations of each feature,
are listed in Tab. 7.5. Column 1 lists the feature names; Columns 2 to 4 provide the p-values from
both tests, conducted pairwise across the three samples; Column 5 presents the mean and standard
deviation for each sample.

Table 7.5: Statistical results

Features NBs vs. non-NBs NBs vs. NBCs non-NBs vs. NBCs mean ± std (NBs, non-NBs, NBCs)
(1) (2) (3) (4) (5)

EP pKS = 0.75, pt = 0.67 pKS = 0.91, pt = 0.85 pKS = 0.48, pt = 0.6 2.8 ± 3.19, 2.6 ± 2.76, 2.69 ± 3.1
log F pKS = 0.11, pt = 0.0 pKS = 0.15, pt = 0.0 pKS = 0.39, pt = 0.41 -11.16 ± 0.72, -11.44 ± 0.44, -11.41 ± 0.42
log f pKS = 0.65, pt = 0.28 pKS = 0.58, pt = 0.23 pKS = 0.84, pt = 0.64 -12.73 ± 1.23, -12.92 ± 1.03, -12.95 ± 0.98
α pKS = 0.02, pt = 0.06 pKS = 0.28, pt = 0.39 pKS = 0.01, pt = 0.01 2.13 ± 0.25, 2.22 ± 0.3, 2.17 ± 0.28
V pKS = 0.21, pt = 0.03 pKS = 0.07, pt = 0.0 pKS = 0.0, pt = 0.23 1079.7 ± 3477.07, 243.65 ± 2316.15, 74.91 ± 146.74
VF pKS = 0.96, pt = 0.66 pKS = 0.03, pt = 0.03 pKS = 0.0, pt = 0.0 0.37 ± 0.32, 0.4 ± 0.39, 0.48 ± 0.26

log F1 pKS = 0.06, pt = 0.41 pKS = 0.06, pt = 0.72 pKS = 0.01, pt = 0.0 -12.97 ± 2.13, -13.23 ± 1.84, -12.87 ± 1.48
log F2 pKS = 0.03, pt = 0.02 pKS = 0.09, pt = 0.08 pKS = 0.03, pt = 0.0 -12.08 ± 1.21, -12.79 ± 1.74, -12.46 ± 1.18
log F3 pKS = 0.09, pt = 0.05 pKS = 0.1, pt = 0.06 pKS = 0.8, pt = 0.35 -12.03 ± 0.96, -12.38 ± 1.08, -12.32 ± 0.84
log F4 pKS = 0.1, pt = 0.0 pKS = 0.16, pt = 0.01 pKS = 0.48, pt = 0.26 -11.97 ± 0.76, -12.31 ± 0.6, -12.35 ± 0.84
log F5 pKS = 0.05, pt = 0.0 pKS = 0.11, pt = 0.0 pKS = 0.0, pt = 0.02 -12.06 ± 0.79, -12.45 ± 0.65, -12.35 ± 0.54
log F6 pKS = 0.0, pt = 0.04 pKS = 0.06, pt = 0.17 pKS = 0.06, pt = 0.02 -12.45 ± 1.55, -13.0 ± 1.54, -12.77 ± 1.28
log F7 pKS = 0.0, pt = 0.03 pKS = 0.01, pt = 0.09 pKS = 0.22, pt = 0.28 -13.23 ± 2.2, -14.07 ± 2.32, -13.91 ± 2.21
log F8 pKS = 0.08, pt = 0.09 pKS = 0.06, pt = 0.06 pKS = 0.72, pt = 0.25 -15.09 ± 3.0, -15.78 ± 2.37, -15.95 ± 2.43

log nusyn pKS = 0.36, pt = 0.74 pKS = 0.56, pt = 0.69 pKS = 0.18, pt = 0.04 14.36 ± 1.07, 14.28 ± 1.25, 14.47 ± 1.33
log Lp

syn pKS = 0.34, pt = 0.16 pKS = 0.46, pt = 0.22 pKS = 0.19, pt = 0.78 45.56 ± 0.86, 45.33 ± 0.85, 45.35 ± 0.86
log nuIC pKS = 0.05, pt = 0.12 pKS = 0.5, pt = 0.57 pKS = 0.03, pt = 0.01 23.16 ± 1.08, 22.81 ± 1.35, 23.04 ± 1.27
log Lp

IC pKS = 0.61, pt = 0.24 pKS = 0.29, pt = 0.08 pKS = 0.16, pt = 0.06 45.51 ± 1.2, 45.29 ± 1.12, 45.15 ± 1.11

Here we present a detailed statistical analysis of various features across different samples, includ-
ing NBs, non-NBs, and NBCs. The analysis employs both the Kolmogorov-Smirnov (KS) test and
the t-test. The following attributes exhibit notable differences:

• log F: Significant differences in means between NBs and non-NBs (pt = 0.0), and NBs and
NBCs (pt = 0.0) are observed. NBs show a higher mean (−11.16) compared to non-NBs
(−11.44) and NBCs (−11.41).

• α: The KS test reveals significant distribution differences between NBs and non-NBs (pKS =

0.02), and non-NBs and NBCs (pKS = 0.01). The t-test also indicates a significant mean
difference between non-NBs and NBCs (pt = 0.01).
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• V: Significant distribution differences between non-NBs and NBCs (pKS = 0.0) are noted. The
t-test shows significant mean differences between NBs and non-NBs (pt = 0.03), and NBs and
NBCs (pt = 0.0). NBs have a notably higher mean (1079.7) compared to non-NBs (243.65)
and NBCs (74.91).

• VF: The KS test indicates significant distribution differences between NBs and NBCs (pKS =

0.03), and non-NBs and NBCs (pKS = 0.0). The t-test also shows significant mean differences
between these groups.

• log F1: Significant distribution differences between non-NBs and NBCs are observed (pKS =

0.01, pt = 0.0).

• log F2: Both KS and t-tests suggest significant differences between NBs and non-NBs (pKS =

0.03, pt = 0.02), and between non-NBs and NBCs (pKS = 0.03).

• log F4, log F5, log F6, log F7: Significant differences are noted in these features as well, as
indicated by the KS and t-tests.

• log νIC: The KS test shows significant distribution differences between NBs and non-NBs
(pKS = 0.05), and non-NBs and NBCs (pKS = 0.03). The t-test also indicates significant
mean differences between non-NBs and NBCs (pt = 0.01).

In the γ-ray spectrum, our analysis reveals distinct characteristics for NBs and NBCs when com-
pared to non-NBs. Specifically, both NBs and NBCs exhibit a higher flux and flux density in this band.
Notably, NBs demonstrate a more pronounced variability in their emission. Furthermore, NBCs are
characterized by a marginally higher IC peak frequency. These observations collectively suggest that
NBs and NBCs are more active and emit more intensely in the gamma-ray spectrum than their non-NB
counterparts.

7.7.2 Single-Zone vs. Two-Zone Models

Extensive research has been conducted on the association of IceCube-170922A and TXS 0506+056,
primarily using the hybrid leptohadronic single-zone model, which combines leptonic processes with
pγ interactions (Ansoldi et al., 2018; Keivani et al., 2018; Cerruti et al., 2018; Gao et al., 2019). In
this model, the blazar’s multiwavelength spectrum is explained by the synchrotron and IC processes
of primary relativistic electrons within the radiation region. Neutrinos are produced through pp in-
teractions, and the decay of π0 mesons, along with high-energy photons from synchrotron and IC
scattering of secondary electron-positron pairs, can undergo γγ annihilation with soft photons in the
radiation region (Mannheim et al., 1992). This process transfers the energy of high-energy electrons
to the X-ray to TeV energy band (Petropoulou & Mastichiadis, 2014). Observations by Swift and NuS-
TAR provide strong constraints on the electromagnetic cascade (Keivani et al., 2018; Murase et al.,
2018). In the single-zone model, both the electromagnetic cascade and neutrino production occur in
the same photon field, leading to X-ray emission that limits the neutrino flux. Studies of IceCube’s
extremely high energy (EHE) track alerts suggest that the single-zone model predicts a maximum
annual detection rate of neutrinos of only 0.03 (IceCube Collaboration et al., 2018a; Gao et al., 2019;
Keivani et al., 2018), indicating a less than one percent probability of detecting neutrinos from this
months-long blazar flare with IceCube, challenging the single-zone model’s validity.

In response, a two-zone model was proposed by Zhang et al. (2019); Xue et al. (2019); Murase
et al. (2018). This model necessitates an external photon field, typically provided by the broad-line
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region (BLR), for neutrino production. The radiation region is thus divided into two zones: the inner
zone, located inside or near the BLR, and the outer zone, situated far from the BLR. In the inner
zone, relativistic protons in the jet interact with BLR clouds, using the BLR photons for both the pγ
process and IC scattering. Additionally, the BLR clouds may facilitate the pp process within the jet
(Sahakyan, 2018; Liu et al., 2019). The outer zone, lacking an adequate external photon field for the
pγ process and a sufficient supply of target protons for the pp process, presents challenges in neutrino
production. Thus, the two-zone model allows for separate radiation regions for the low-energy peak
in the SED of blazars and neutrino emission. The inner zone can produce a neutrino flux an order of
magnitude higher than the single-zone model, while the outer zone remains consistent with X-ray flux
observational constraints.

The pγ process necessitates an external photon field, a requirement irrespective of whether a
single-zone or two-zone model is employed. This criterion renders FSRQs, with their higher lumi-
nosity and external photon fields, more favorable as neutrino emitters compared to BL Lacs (Atoyan
& Dermer, 2003; Murase et al., 2014; Rodrigues et al., 2018). TXS 0506+056, typically classified as
a BL Lac due to the detection of weak broad emission lines in its spectral analysis, might be misclas-
sified. This misclassification could stem from the obscuration of the Broad-Line Region (BLR) by the
dominant non-thermal jet emission. Indeed, Padovani et al. (2019) suggested that TXS 0506+056 is a
masquerading BL Lac, harboring a concealed BLR with a luminosity of approximately 5 × 1043 erg/s
and a standard accretion disk. Despite this, BL Lacs have also been proposed as potential neutrino
emitters, primarily due to their lower energy requirements compared to FSRQs (Cerruti et al., 2015b,
2017; Zech et al., 2017). Several studies have supported the idea that bright, γ-loud BL Lacs could ac-
count for the observed IceCube neutrinos (Padovani & Resconi, 2014; Petropoulou et al., 2015; Righi
et al., 2017). In the context of a simplified blazar view, Padovani et al. (2015) concluded that BL Lacs
could explain approximately 10% of the neutrino background above a certain energy threshold, with
individual BL Lacs potentially contributing up to 20% at lower energies.

In our dataset comprising 35 NBs and 273 NBCs, the NB group includes 20 BL Lacs, 3 FSRQs,
and 12 BCUs. Among the 273 NBCs, there are 127 BL Lacs, 49 FSRQs, and 97 BCUs. Fan et al.
(2022) employed the SVM to categorize BCUs in the 4FGL-DR3 catalog. By combining three features
in pairs, they created three sets of feature spaces for BCU classification. BCUs meeting the criteria
in all three feature spaces were categorized as BL Lacs/FSRQs, while those satisfying the criteria in
only two feature spaces were considered possible BL Lacs/FSRQs (P-B/P-F). For our analysis, we
classified both as BL Lacs/FSRQs. Consequently, out of the 12 BCUs in the NB set, 8 were classified
as BL Lacs and 4 as FSRQs. Similarly, among the 97 BCUs in the NBC set, 62 were classified as
BL Lacs and 25 as FSRQs. The classification results of BCUs are detailed in Tab. 7.1 and 7.4. BL
Lacs dominate both the NBs and NBCs, accounting for 80% (28/35) and 69% (189/273) respectively,
underscoring their prominence as neutrino emitter candidates.

TL, as a data-driven algorithm, is influenced by various factors, including updates to the 4FGL
catalog, changes in hyperparameters, and different methods of training set partitioning. These factors
can lead to diverse clustering outcomes. Therefore, our methods and findings should be considered
heuristic. We present a novel and effective approach, distinct from traditional physical methods,
for employing AI techniques in the exploration of NBCs and other rare source candidates. Even if
future observations confirm blazars as sources of neutrino emitters, AI methods will continue to be
invaluable in identifying NBCs. The verification of the 273 NBCs identified in our study will depend
on observations from IceCube, as well as upcoming neutrino detectors like IceCube-Gen2 (Aartsen
et al., 2021) and KM3Net (Adrián-Martı́nez et al., 2016).
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7.8 Conclusion

In our exploration of the potential correlation between neutrino events detected by IceCube and elec-
tromagnetic flares from blazars, we encountered the inherent challenges associated with the limited
detection of neutrinos. Despite these obstacles, our analysis successfully segregated NBs and non-
blazars into distinct clusters within the embedding feature space. Utilizing TL, we effectively clus-
tered both NBs and non-NBs, demonstrating the robustness of TL in identifying NBs and showcasing
the potential of Artificial Intelligence in handling extensive astronomical datasets.

Our findings revealed that both NBs and NBCs typically exhibit higher flux values and flux densi-
ties in the γ-ray band compared to non-NBs. Specifically, NBs displayed a higher mean flux (log F) of
-11.16, surpassing the -11.44 mean flux of non-NBs. NBCs also showed a slightly higher mean flux of
-11.41. In terms of flux density across various γ-ray bands, from log F1 to log F8, NBCs had a higher
mean flux density in log F1 (-12.87) compared to non-NBs (-13.23). Furthermore, NBs consistently
demonstrated higher flux densities than non-NBs in bands such as log F4 (-11.97 vs. -12.31), log F5
(-12.06 vs. -12.45), log F6 (-12.45 vs. -13.0), and log F7 (-13.23 vs. -14.07). The variability (V)
observed in NBs, with a mean value of 1079.7, was significantly higher than the 243.65 observed in
non-NBs. Additionally, NBCs exhibited a marginally higher log νIC of 23.04, slightly exceeding the
22.81 of non-NBs.
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Conclusions and Prospect

AGN are cosmic entities characterized by their broad electromagnetic emissions spanning from radio
to γ-ray bands, playing a pivotal role in our understanding of galactic evolution. Blazars, a distinct
subset of AGN, stand out due to their rapid variability and pronounced polarization. Given their
unique attributes and significance, blazars have naturally become the focal point in AGN research.
This prominence is further underscored by the increasing deployment of sophisticated and sensitive
telescopes dedicated to their observations.

Thanks to the invaluable contributions of telescopes such as Fermi-LAT and VLBI, the number
of identified blazars has surged into the thousands. These observations have not only expanded the
catalog but also enriched it by revealing a plethora of physical attributes associated with blazars.
This expansive and information-rich sample has paved the way for the integration of data science,
particularly on a large scale, into blazar research. This thesis is dedicated to harnessing cutting-edge
data science methodology, specifically AI, to undertake the classification/clustering of blazars and
subsequently identify those with rare properties. The principal conclusions derived from this endeavor
are enumerated as follows:

• The debate surrounding the radio dichotomy in AGNs has been addressed by analyzing AGNs
with optical B band and radio 6 cm wavelength data. A clear division in radio loudness, denoted
as log R, was identified at log R = ⟨1.37 ± 0.02⟩, differentiating RL from RQ AGNs. A dual
criterion for AGN classification was proposed, merging radio luminosity and loudness. This
machine learning-derived relation is expressed as log L6cm = −2.7 log R + 44.3. Both RLs and
RQs appear to have analogous emission sources, such as jets and mini-jets.

• In our study of 407 VLBI-detected Fermi blazars, we found correlations between jet knot appar-
ent velocity and jet/accretion disc properties. γ-ray luminosity showed a positive relationship
with jet power. The apparent motion of knots correlated with jet radiation and kinetic power,
but not consistently for flat-spectrum radio quasars. Accretion disc luminosity and normalized
accretion rate appear crucial for knot generation and acceleration. VFBs have higher γ-ray
luminosity, photon index, and variability than other Fermi blazars. Using Gaussian mixture
models, we identified 228 potential VFBs from the remaining Fermi blazars.

• Employing an SML technique, specifically LR, potential TeV blazar candidates were identified.
The LR model, defined as LR(y) = 1

1+e−(β0+β1 x) , was applied to various catalogs, resulting in the
identification of 40 high-confidence TeV candidates. Subsequent analysis indicated that 7 of
these are probable detections for current IACT observatories.
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• The potential of blazars as neutrino emitters was explored, focusing on the 4FGL-DR3. Uti-
lizing the 4FGL-DR3 catalog, blazars’ potential as neutrino emitters were examined using TL,
leading to the identification of 273 NB candidates. This research underscores the relationship
between blazars and neutrinos, offering insights into cosmic ray mechanisms. Comparative
analyses revealed that both NBs and NBCs consistently exhibit higher log F and flux densities
in the γ-ray band than non-NBs. Notably, NBs display a significantly elevated V value, and
NBCs have a marginally higher log νIC, highlighting their distinct emission properties.

8.1 Prospect

As astronomy transitions into the era of big data, the voluminous observational data anticipated poses
challenges to traditional data processing and analytical methodologies. The pressing issue lies in
efficiently extracting valuable insights from this vast data pool, emphasizing the need for data mining
and automation. Data mining, often heralded as the fourth paradigm of scientific research (Hey et al.,
2009) following theory, experimentation, and computer simulation, has seen a surge in relevance. AI
offers a plethora of algorithms for data mining, aligning perfectly with the big data trend in astronomy.
In certain contexts, AI has demonstrated superior performance compared to traditional data analysis
techniques. For example, White et al. (2000) employed decision trees, an ML technique, to identify
quasar candidates from survey data, achieving an accuracy of 85% as opposed to the 60% accuracy of
conventional methods. Similarly, Huertas-Company et al. (2008, 2009) and colleagues utilized SVM
in the COSMOS survey, achieving early-late separation at KAB = 22 mag, twice as effective as the
concentration, asymmetry, and clumpiness system (CAS, Conselice 2003).

The applications of AI in blazar research, as showcased in this thesis, represent merely the tip
of the iceberg. There’s immense potential for AI’s integration into broader astronomical research
areas, such as real-time processing, the virtual observatory, and telescope scheduling. It is anticipated
that more advanced AI techniques will be incorporated into these domains in the future. While AI
practitioners or data scientists might lean towards employing more sophisticated algorithms, their
domain-specific knowledge might be limited. Hence, it’s imperative for astronomers to pose valuable
domain-specific questions and provide essential knowledge. The synergy between astronomy and AI
undoubtedly serves as a significant catalyst for astronomical research and is poised to be a dominant
trend in future astronomical endeavors.
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Appendix

Table 9.1: Potential Candidates of Superluminal Blazars Detected by Fermi∗.

4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J0001.5+2113 FSRQ 1.11 1.36E-09 46.74 2.66 1564.42
4FGL J0004.4-4737 FSRQ 0.88 4.36E-10 45.99 2.37 139.12
4FGL J0010.6-3025 FSRQ 1.19 3.49E-10 46.24 2.46 91.59
4FGL J0011.4+0057 FSRQ 1.49 4.29E-10 46.60 2.33 71.98
4FGL J0016.2-0016 FSRQ 1.58 4.17E-10 46.68 2.74 82.14
4FGL J0023.7+4457 FSRQ 1.06 5.47E-10 46.30 2.44 98.55
4FGL J0028.4+2001 FSRQ 1.55 6.05E-10 46.79 2.41 81.12
4FGL J0030.3-4224 FSRQ 0.50 1.03E-09 45.68 2.52 78.61
4FGL J0030.6-0212 BCU 1.80 1.53E-09 47.37 2.40 725.42
4FGL J0036.9+1832 BCU 1.60 2.76E-10 46.48 2.39 106.28
4FGL J0038.2-2459 FSRQ 1.20 1.45E-09 46.88 2.26 1644.31
4FGL J0045.1-3706 FSRQ 1.02 4.12E-10 46.11 2.59 102.67
4FGL J0047.9+2233 FSRQ 1.16 3.88E-10 46.25 2.51 125.62
4FGL J0050.0-5736 FSRQ 1.80 3.85E-10 46.79 2.62 65.86
4FGL J0050.4-0452 FSRQ 0.92 9.44E-10 46.37 2.38 206.62
4FGL J0058.0-0539 FSRQ 1.25 4.12E-10 46.36 2.46 55.40
4FGL J0058.4+3315 FSRQ 1.37 2.18E-10 46.20 2.34 79.39
4FGL J0102.4+4214 FSRQ 0.87 3.71E-10 45.88 2.68 136.28
4FGL J0104.8-2416 FSRQ 1.75 3.31E-10 46.69 2.59 82.03
4FGL J0113.1-3553 FSRQ 1.22 4.44E-10 46.37 2.40 161.09
4FGL J0117.8-2109 FSRQ 1.49 7.05E-10 46.81 2.38 139.06
4FGL J0126.0-2221 FSRQ 0.72 3.17E-10 45.59 2.59 114.90
4FGL J0133.1-5201 FSRQ 0.93 1.72E-09 46.65 2.32 1417.04
4FGL J0137.6-2430 FSRQ 0.84 9.40E-10 46.24 2.54 343.58
4FGL J0157.7-4614 FSRQ 2.29 5.20E-10 47.19 2.45 123.17
4FGL J0209.9+7229 BLL 0.90 7.78E-10 46.27 2.28 151.23

Continued on next page
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Table 9.1 – Continued from previous page

4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J0210.7-5101 FSRQ 1.00 5.29E-09 47.23 2.34 1486.40
4FGL J0221.1+3556 FSRQ 0.94 7.80E-09 47.33 2.29 3494.66
4FGL J0224.9+1843 FSRQ 2.69 1.70E-10 47.04 2.95 52.21
4FGL J0229.5-3644 FSRQ 2.12 7.02E-10 47.25 2.60 267.60
4FGL J0231.2-4745 FSRQ 0.77 3.14E-10 45.65 2.76 53.11
4FGL J0236.8-6136 FSRQ 0.47 9.44E-10 45.61 2.35 792.43
4FGL J0239.7+0415 FSRQ 0.98 3.81E-10 46.04 2.78 162.94
4FGL J0242.3+1102 FSRQ 2.68 4.86E-10 47.38 2.58 93.25
4FGL J0243.2-0550 FSRQ 1.81 1.66E-10 46.46 2.77 57.28
4FGL J0245.4+2408 FSRQ 2.24 3.81E-10 47.08 2.68 107.84
4FGL J0245.9-4650 FSRQ 1.39 2.65E-09 47.30 2.42 1149.33
4FGL J0253.2-5441 FSRQ 0.54 4.58E-10 45.42 2.53 176.19
4FGL J0253.9+5103 FSRQ 1.73 7.91E-10 47.04 2.47 111.14
4FGL J0303.6-6211 FSRQ 1.35 8.69E-10 46.78 2.45 153.06
4FGL J0309.9-6058 FSRQ 1.48 1.94E-09 47.24 2.49 781.66
4FGL J0312.8+0134 FSRQ 0.66 5.16E-10 45.75 2.33 84.17
4FGL J0315.9-1033 FSRQ 1.57 5.66E-10 46.78 2.48 123.41
4FGL J0325.7+2225 FSRQ 2.07 1.15E-09 47.45 2.65 176.59
4FGL J0342.2+3858 FSRQ 0.95 3.15E-10 45.94 2.26 97.20
4FGL J0343.2-2529 FSRQ 1.42 4.09E-10 46.52 2.54 194.48
4FGL J0350.6-3226 BCU 0.93 1.41E-10 45.56 2.31 94.64
4FGL J0401.7+2112 FSRQ 0.83 6.14E-10 46.07 2.42 122.28
4FGL J0407.0-3826 FSRQ 1.29 2.02E-09 47.09 2.36 343.00
4FGL J0413.1-5332 FSRQ 1.02 3.58E-10 46.07 2.41 161.40
4FGL J0416.5-1852 FSRQ 1.54 6.63E-10 46.82 2.39 159.13
4FGL J0433.6-6030 FSRQ 0.93 9.35E-10 46.37 2.44 175.02
4FGL J0440.3-4333 FSRQ 2.85 5.44E-10 47.53 2.64 626.21
4FGL J0451.8-4651 FSRQ 0.60 4.16E-10 45.52 2.45 174.41
4FGL J0455.7-4617 FSRQ 0.86 9.78E-10 46.29 2.52 167.05
4FGL J0505.8-0419 FSRQ 1.48 5.12E-10 46.66 2.40 62.17
4FGL J0507.7-6104 FSRQ 1.09 6.70E-10 46.41 2.52 69.84
4FGL J0509.4+1012 FSRQ 0.62 7.35E-10 45.81 2.41 80.22
4FGL J0526.2-4830 FSRQ 1.30 2.66E-09 47.23 2.30 731.63
4FGL J0529.3-7243 BCU 1.34 2.81E-10 46.29 2.37 57.47
4FGL J0536.4-3401 FSRQ 0.68 1.19E-09 46.10 2.62 422.54
4FGL J0539.9-2839 FSRQ 3.10 7.56E-10 47.80 2.73 107.26
4FGL J0540.8-5415 FSRQ 1.19 3.46E-10 46.23 2.63 115.19
4FGL J0601.1-7035 FSRQ 2.41 1.64E-09 47.75 2.42 578.06
4FGL J0608.9-5456 BCU 2.20 3.63E-10 47.03 2.68 76.69
4FGL J0620.5-2512 BCU 1.90 5.34E-10 47.00 2.58 96.88
4FGL J0633.4-2222 FSRQ 1.51 4.21E-10 46.61 2.60 99.51

Continued on next page
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4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J0635.6-7518 FSRQ 0.65 6.46E-10 45.77 2.70 448.18
4FGL J0641.7-0320 FSRQ 1.20 1.47E-09 46.87 2.68 357.07
4FGL J0643.3+0857 FSRQ 0.88 2.29E-09 46.69 2.55 366.73
4FGL J0648.0-3045 FSRQ 1.15 1.07E-09 46.69 2.49 422.16
4FGL J0648.4-1743 FSRQ 1.23 2.68E-09 47.16 2.45 1467.83
4FGL J0656.3-0322 FSRQ 0.63 2.23E-09 46.29 2.57 106.96
4FGL J0701.5-4634 FSRQ 0.82 1.26E-09 46.36 2.44 378.12
4FGL J0709.7-0255 FSRQ 1.47 2.21E-09 47.30 2.29 206.90
4FGL J0713.8+1935 FSRQ 0.54 1.44E-09 45.94 2.40 794.15
4FGL J0721.3+0405 FSRQ 0.67 1.05E-09 46.02 2.56 87.29
4FGL J0726.4-4727 FSRQ 1.69 1.02E-09 47.12 2.48 125.96
4FGL J0733.8+0455 FSRQ 3.01 4.66E-10 47.47 2.44 134.42
4FGL J0746.4+2546 FSRQ 2.99 2.39E-10 47.30 2.86 87.52
4FGL J0752.2+3313 FSRQ 1.94 1.22E-09 47.36 2.43 2114.82
4FGL J0805.2-0110 FSRQ 1.39 5.76E-10 46.64 2.48 92.96
4FGL J0809.5+5341 FSRQ 2.13 1.10E-09 47.42 2.29 407.46
4FGL J0823.1+4042 FSRQ 0.87 2.72E-10 45.75 2.46 58.80
4FGL J0824.4+2440 FSRQ 1.24 4.89E-10 46.43 2.53 196.86
4FGL J0850.1-1212 FSRQ 0.57 2.10E-09 46.18 2.30 644.25
4FGL J0857.9-1949 FSRQ 0.66 6.29E-10 45.79 2.52 73.90
4FGL J0904.9-5734 BCU 0.70 4.35E-09 46.73 2.28 767.83
4FGL J0909.7-0230 FSRQ 0.96 2.13E-09 46.78 2.29 151.09
4FGL J0910.6+2247 FSRQ 2.66 5.67E-10 47.40 2.34 151.02
4FGL J0912.2+4127 FSRQ 2.56 5.60E-10 47.37 2.46 356.20
4FGL J0916.7+3856 FSRQ 1.27 4.54E-10 46.43 2.46 66.22
4FGL J0922.6+0434 BCU 1.33 5.43E-10 46.56 2.49 157.60
4FGL J0923.5+3852 BCU 1.58 3.44E-10 46.59 2.69 91.15
4FGL J0924.0+2816 FSRQ 0.74 3.69E-10 45.70 2.51 95.94
4FGL J0939.3-1732 BCU 1.83 4.14E-10 46.82 2.26 67.54
4FGL J0943.7+6137 BCU 0.79 2.65E-10 45.62 2.71 59.01
4FGL J0946.6+1016 FSRQ 1.01 1.82E-09 46.76 2.43 291.94
4FGL J0957.3-1348 FSRQ 1.32 6.27E-10 46.62 2.47 115.00
4FGL J1001.1+2911 BLL 0.56 7.24E-10 45.71 2.27 211.58
4FGL J1006.7-2159 FSRQ 0.33 2.21E-09 45.61 2.35 1322.41
4FGL J1007.6-3332 FSRQ 1.84 1.17E-09 47.28 2.44 311.46
4FGL J1012.7+2439 FSRQ 1.81 2.02E-09 47.49 2.31 731.24
4FGL J1018.3-3124 FSRQ 0.79 9.90E-10 46.20 2.54 211.20
4FGL J1023.9-3236 FSRQ 1.57 7.28E-10 46.89 2.50 371.97
4FGL J1027.2+7427 BCU 0.88 7.52E-10 46.21 2.42 199.39
4FGL J1031.6+6019 FSRQ 1.23 5.22E-10 46.45 2.61 121.08
4FGL J1037.7-2822 FSRQ 1.07 1.55E-09 46.75 2.42 374.78

Continued on next page
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4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J1038.8-5312 FSRQ 1.45 9.25E-10 46.92 2.74 723.98
4FGL J1045.8-2928 FSRQ 2.13 3.37E-10 46.93 2.54 166.51
4FGL J1049.8+1429 BCU 1.63 6.22E-10 46.87 2.59 85.40
4FGL J1050.1+0432 FSRQ 1.22 5.90E-10 46.49 2.61 286.93
4FGL J1058.6-8003 BLL 0.57 1.95E-09 46.17 2.26 485.42
4FGL J1103.0+1157 FSRQ 0.91 1.22E-09 46.47 2.41 505.80
4FGL J1106.0+2813 FSRQ 0.84 7.74E-10 46.19 2.37 127.71
4FGL J1107.0-4449 FSRQ 1.60 6.43E-10 46.88 2.70 123.58
4FGL J1112.5+3448 FSRQ 1.95 7.78E-10 47.18 2.52 196.50
4FGL J1119.0+1235 FSRQ 2.13 4.09E-10 47.02 2.59 55.32
4FGL J1127.8+3618 FSRQ 0.88 1.08E-09 46.38 2.37 144.52
4FGL J1128.0+5924 FSRQ 1.80 3.96E-10 46.79 2.47 82.83
4FGL J1136.2+3407 FSRQ 1.34 3.57E-10 46.39 2.55 182.52
4FGL J1139.0+4033 BCU 2.36 1.97E-10 46.86 2.72 52.96
4FGL J1152.3-0839 FSRQ 2.37 8.54E-10 47.45 2.41 168.16
4FGL J1154.0+6018 FSRQ 1.12 2.65E-10 46.04 2.70 86.22
4FGL J1159.2-2227 BCU 0.57 8.31E-10 45.75 2.45 156.04
4FGL J1159.3-2142 FSRQ 0.62 1.43E-09 46.09 2.43 94.67
4FGL J1207.7-0106 FSRQ 1.01 3.57E-10 46.06 2.34 145.23
4FGL J1208.9+5441 FSRQ 1.35 1.12E-09 46.89 2.59 356.94
4FGL J1209.8+1810 FSRQ 0.85 5.80E-10 46.06 2.41 128.08
4FGL J1215.0+1656 FSRQ 1.13 6.50E-10 46.45 2.41 219.92
4FGL J1220.1+7105 FSRQ 0.45 2.03E-09 45.91 2.32 1132.39
4FGL J1223.9+5000 FSRQ 1.06 5.55E-10 46.30 2.54 148.27
4FGL J1225.0+0330 FSRQ 0.96 4.35E-10 46.06 2.63 235.11
4FGL J1228.7+4858 FSRQ 1.72 3.41E-10 46.67 2.56 87.10
4FGL J1238.5-1201 FSRQ 1.32 4.70E-10 46.50 2.66 138.06
4FGL J1257.8+3228 FSRQ 0.81 1.11E-09 46.30 2.32 362.65
4FGL J1258.6-1759 FSRQ 1.96 1.11E-09 47.33 2.39 208.44
4FGL J1258.8-2219 FSRQ 1.30 1.98E-09 47.10 2.39 508.70
4FGL J1311.0+3233 FSRQ 1.64 8.85E-10 47.02 2.40 96.70
4FGL J1312.8-0425 FSRQ 0.82 1.52E-09 46.45 2.40 573.55
4FGL J1317.6+3428 FSRQ 1.05 4.10E-10 46.15 2.53 118.94
4FGL J1322.6-0936 FSRQ 1.86 6.71E-10 47.08 2.62 371.39
4FGL J1324.9+4748 FSRQ 2.26 2.13E-10 46.83 2.67 99.02
4FGL J1326.9+2210 FSRQ 1.40 1.27E-09 46.99 2.49 178.39
4FGL J1332.6-1256 FSRQ 1.49 3.20E-09 47.47 2.42 670.33
4FGL J1333.7+5056 FSRQ 1.36 9.71E-10 46.85 2.34 340.38
4FGL J1339.0-2400 BCU 0.66 7.35E-10 45.89 2.30 61.17
4FGL J1340.4+6926 BCU 2.26 1.10E-10 46.52 2.53 139.49
4FGL J1341.8-2053 FSRQ 1.58 3.10E-10 46.55 2.73 106.78

Continued on next page



183

Table 9.1 – Continued from previous page

4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J1345.8+0706 FSRQ 1.09 6.57E-10 46.41 2.44 210.77
4FGL J1347.6-3751 FSRQ 1.30 6.27E-10 46.60 2.34 51.92
4FGL J1351.0+0029 FSRQ 2.08 2.51E-10 46.77 2.44 92.55
4FGL J1351.7-2912 BCU 1.03 4.54E-10 46.19 2.36 75.44
4FGL J1359.1+5544 FSRQ 1.01 6.47E-10 46.32 2.43 66.20
4FGL J1419.4-0838 FSRQ 0.90 2.51E-09 46.80 2.24 495.73
4FGL J1433.0-1801 FSRQ 2.33 3.17E-10 47.03 2.60 114.81
4FGL J1434.7+1950 FSRQ 1.38 1.96E-09 47.17 2.30 626.17
4FGL J1438.9+3710 FSRQ 2.40 1.04E-09 47.55 2.41 334.80
4FGL J1450.4+0910 FSRQ 2.61 3.13E-10 47.12 2.39 76.04
4FGL J1457.4-3539 FSRQ 1.42 3.49E-09 47.45 2.32 2853.58
4FGL J1513.4-3231 FSRQ 1.15 8.05E-10 46.56 2.46 147.72
4FGL J1514.8-4748 FSRQ 1.55 1.47E-09 47.18 2.39 61.42
4FGL J1553.6-2422 FSRQ 0.33 1.56E-09 45.48 2.30 215.51
4FGL J1617.3-5849 FSRQ 1.41 1.06E-09 46.93 2.54 117.21
4FGL J1617.9-7718 FSRQ 1.71 1.54E-09 47.33 2.61 361.51
4FGL J1618.0+5139 FSRQ 2.56 1.57E-10 46.86 2.67 90.73
4FGL J1628.8-6149 FSRQ 2.58 7.14E-10 47.52 2.64 87.52
4FGL J1632.8-1048 BCU 1.40 3.55E-10 46.44 2.63 153.51
4FGL J1635.6+3628 FSRQ 3.65 2.45E-10 47.50 2.67 175.36
4FGL J1639.2+4129 FSRQ 0.69 4.15E-10 45.68 2.43 62.66
4FGL J1648.2+4232 BCU 2.50 4.98E-10 47.28 2.43 148.05
4FGL J1656.3-3301 FSRQ 2.40 7.79E-10 47.50 2.79 131.51
4FGL J1703.6-6213 FSRQ 1.76 2.85E-09 47.61 2.43 379.79
4FGL J1717.6-5154 FSRQ 1.16 9.38E-10 46.63 2.59 286.08
4FGL J1722.6+6104 FSRQ 2.06 1.72E-10 46.66 2.84 57.70
4FGL J1759.1-4822 BCU 3.86 6.83E-10 47.90 2.32 201.91
4FGL J1802.6-3940 FSRQ 0.30 4.84E-09 45.83 2.37 3170.66
4FGL J1816.9-4942 FSRQ 1.70 8.14E-10 47.03 2.39 98.55
4FGL J1821.6+6819 BCU 1.69 5.52E-10 46.89 2.72 149.15
4FGL J1829.2-5813 FSRQ 1.53 2.42E-09 47.38 2.55 2352.28
4FGL J1833.6-2103 FSRQ 2.51 1.43E-08 48.76 2.53 2473.93
4FGL J1839.6-7107 FSRQ 1.36 2.00E-10 46.18 2.86 75.43
4FGL J1913.0-8009 FSRQ 1.76 1.43E-09 47.31 2.45 355.87
4FGL J1913.4-3629 BCU 0.80 8.40E-10 46.17 2.32 73.80
4FGL J1934.3+6541 FSRQ 1.69 2.51E-10 46.56 2.86 404.36
4FGL J1937.2-3958 FSRQ 0.97 6.07E-10 46.22 2.66 55.94
4FGL J1941.7+7218 BCU 1.10 1.77E-10 45.85 2.77 81.95
4FGL J1955.2+1358 FSRQ 0.74 9.29E-10 46.11 2.41 177.69
4FGL J1959.1-4247 FSRQ 2.17 8.01E-10 47.32 2.46 381.51
4FGL J2005.8+6424 FSRQ 1.57 4.47E-10 46.68 2.37 53.47
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4FGL Name Class z Flux1000 log Lγ αph VI
photon · cm−2 · s−1 erg · cm−2 · s−1

(1) (2) (3) (4) (5) (6) (7)

4FGL J2005.9-2309 FSRQ 0.83 9.53E-10 46.24 2.50 269.44
4FGL J2024.6-3252 FSRQ 1.47 8.17E-10 46.86 2.48 83.91
4FGL J2038.7+5117 FSRQ 1.69 1.08E-09 47.15 2.57 80.07
4FGL J2040.5-1705 BCU 2.00 4.11E-10 46.94 2.54 63.36
4FGL J2052.2-5533 BCU 1.50 1.09E-09 47.01 2.30 481.53
4FGL J2056.2-4714 FSRQ 1.49 4.66E-09 47.63 2.45 1325.44
4FGL J2110.3+0808 FSRQ 1.58 4.74E-10 46.71 2.40 79.11
4FGL J2119.6-1105 FSRQ 1.84 3.88E-10 46.80 2.37 145.17
4FGL J2126.3-4605 FSRQ 1.67 8.08E-10 47.01 2.55 625.13
4FGL J2135.3-5006 FSRQ 2.18 8.54E-10 47.35 2.43 59.93
4FGL J2141.7-6410 BCU 0.96 2.86E-09 46.91 2.33 1711.78
4FGL J2145.0-3356 FSRQ 1.36 1.39E-09 47.00 2.30 293.96
4FGL J2147.3-7536 FSRQ 1.14 4.47E-09 47.29 2.44 2763.30
4FGL J2151.8-3027 FSRQ 2.35 1.00E-09 47.60 2.85 963.78
4FGL J2153.8-1137 FSRQ 1.58 6.60E-10 46.86 2.55 51.98
4FGL J2156.3-0036 FSRQ 0.50 4.75E-10 45.40 2.25 65.22
4FGL J2157.5+3127 FSRQ 1.49 2.96E-09 47.43 2.31 1583.81
4FGL J2201.5-8339 FSRQ 1.87 1.53E-09 47.43 2.55 392.48
4FGL J2206.8-0032 BLL 1.05 8.77E-10 46.51 2.25 99.20
4FGL J2207.5-5346 FSRQ 1.22 6.30E-10 46.52 2.44 82.58
4FGL J2212.9-2526 FSRQ 1.83 5.42E-10 46.94 2.26 77.52
4FGL J2231.0-4416 FSRQ 1.33 4.47E-10 46.47 2.43 154.95
4FGL J2235.3-4836 FSRQ 0.51 7.49E-10 45.57 2.51 105.23
4FGL J2249.4-1300 BLL 0.50 8.22E-10 45.61 2.41 247.64
4FGL J2311.0+3425 FSRQ 1.82 4.11E-09 47.81 2.35 2009.58
4FGL J2311.7+2604 BCU 1.75 3.19E-10 46.66 2.43 63.17
4FGL J2318.2+1915 BCU 2.16 3.75E-10 47.02 2.67 55.20
4FGL J2323.6-0617 FSRQ 2.14 5.54E-10 47.14 2.40 195.63
4FGL J2325.4-3559 FSRQ 0.36 1.54E-09 45.55 2.32 162.47
4FGL J2328.3-4036 FSRQ 1.97 1.85E-09 47.56 2.38 246.80
4FGL J2329.3-4955 FSRQ 0.52 1.17E-08 46.84 2.28 13180.00
4FGL J2331.0-2147 FSRQ 0.56 1.00E-09 45.82 2.44 194.84
4FGL J2335.4-0128 FSRQ 1.18 4.00E-10 46.29 2.47 52.62
4FGL J2336.6-4115 FSRQ 1.41 7.87E-10 46.79 2.33 130.21
4FGL J2338.0-0230 FSRQ 1.07 7.92E-10 46.47 2.49 130.12
4FGL J2357.8-5311 FSRQ 1.01 3.91E-10 46.08 2.64 224.58
4FGL J2358.3-1021 FSRQ 1.64 6.09E-10 46.87 2.59 136.97
4FGL J2359.2-3134 FSRQ 0.99 1.74E-10 45.71 2.60 85.62
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Table 9.2: 273 NBCs∗.

Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J0003.3-1928 -0.03448 -0.02968 BCU BLL
4FGL J0003.3-1928 -0.03448 -0.02968 BCU BLL
4FGL J0004.3+4614 -0.03461 -0.0283 FSRQ
4FGL J0019.3-8152 -0.03521 -0.02351 BLL
4FGL J0021.9-5140 -0.0337 -0.03134 BLL
4FGL J0022.5+0608 -0.03553 -0.03535 BLL
4FGL J0028.9+3553 -0.03455 -0.02649 BLL
4FGL J0034.0-4116 -0.03506 -0.02822 BCU FSRQ
4FGL J0037.8+1239 -0.03539 -0.02864 BLL
4FGL J0043.5-0442 -0.0357 -0.02947 BLL
4FGL J0044.2-8424 -0.03359 -0.02494 FSRQ
4FGL J0045.1-3706 -0.03463 -0.02554 FSRQ
4FGL J0045.7+1217 -0.03607 -0.03239 BLL
4FGL J0054.7-2455 -0.03648 -0.02594 BLL
4FGL J0054.8-1954 -0.03333 -0.02309 BCU BLL
4FGL J0058.3+1723 -0.031 -0.02464 BLL
4FGL J0102.1+5846 -0.03504 -0.03366 BCU BLL
4FGL J0102.4+0942 -0.03527 -0.03135 BLL
4FGL J0102.4+4214 -0.03323 -0.02309 FSRQ
4FGL J0102.6-5639 -0.03516 -0.03384 BCU BLL
4FGL J0110.3-0431 -0.03393 -0.02522 BCU FSRQ
4FGL J0111.5-2546 -0.03347 -0.03319 BCU FSRQ
4FGL J0114.8+1326 -0.03456 -0.0289 BLL
4FGL J0116.2-6153 -0.03481 -0.03127 BLL
4FGL J0137.6-2430 -0.03318 -0.02532 FSRQ
4FGL J0137.9+5814 -0.03654 -0.03049 BLL
4FGL J0143.1-3622 -0.0353 -0.03531 BCU FSRQ
4FGL J0146.0-6746 -0.03667 -0.02896 BLL
4FGL J0153.9+0823 -0.0347 -0.03455 BLL
4FGL J0156.5+3914 -0.03496 -0.03065 FSRQ
4FGL J0156.8-4744 -0.03401 -0.03232 BLL
4FGL J0158.2+2515 -0.0371 -0.03026 BLL
4FGL J0158.5-3932 -0.0363 -0.03423 BLL
4FGL J0202.1+3939 -0.03492 -0.02316 FSRQ
4FGL J0204.8+1513 -0.03398 -0.02379 BCU FSRQ
4FGL J0207.5-2402 -0.03431 -0.02921 BCU BLL
4FGL J0207.9+0953 -0.03412 -0.02061 BCU FSRQ
4FGL J0208.6+3523 -0.03438 -0.02416 BLL
4FGL J0216.5+2313 -0.03676 -0.03679 BLL
4FGL J0223.5+3912 -0.03478 -0.02085 BCU BLL
4FGL J0226.3-1845 -0.03556 -0.03489 BCU FSRQ
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Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J0231.2-5754 -0.03642 -0.03296 BLL
4FGL J0232.5-1118 -0.03314 -0.03022 BLL
4FGL J0237.6+0923 -0.03523 -0.02259 BCU BLL
4FGL J0245.4-5950 -0.03472 -0.03035 BCU BLL
4FGL J0250.3-3422 -0.03339 -0.02396 BCU FSRQ
4FGL J0253.9+5103 -0.03338 -0.03324 FSRQ
4FGL J0259.4+0746 -0.0356 -0.02673 FSRQ
4FGL J0301.0-1652 -0.03356 -0.03004 BLL
4FGL J0303.6-6211 -0.03353 -0.02012 FSRQ
4FGL J0304.9-0606 -0.03391 -0.03146 BLL
4FGL J0305.1-1608 -0.03614 -0.02761 BLL
4FGL J0312.4-3221 -0.03281 -0.02445 BCU BLL
4FGL J0316.0-5626 -0.03261 -0.02684 BCU BLL
4FGL J0316.2-2608 -0.03454 -0.02463 BLL
4FGL J0322.4+6606 -0.03402 -0.02288 BCU FSRQ
4FGL J0332.1-1123 -0.03547 -0.02585 FSRQ
4FGL J0332.8+1557 -0.03328 -0.02795 BCU BLL
4FGL J0334.2-4008 -0.03423 -0.02902 BLL
4FGL J0349.4-1159 -0.03655 -0.03217 BLL
4FGL J0350.0+0640 -0.03608 -0.03332 BCU BLL
4FGL J0353.0+5654 -0.03607 -0.02655 BLL
4FGL J0354.4+4643 -0.03276 -0.02082 BCU FSRQ
4FGL J0357.6-4625 -0.03288 -0.03055 BLL
4FGL J0420.3-6016 -0.03495 -0.02578 BLL
4FGL J0425.3+6319 -0.03655 -0.0372 BCU BLL
4FGL J0438.4-1254 -0.03302 -0.03137 FSRQ
4FGL J0439.8-1859 -0.03439 -0.03462 BLL
4FGL J0450.4+7230 -0.03637 -0.02964 BCU BLL
4FGL J0451.8+5721 -0.03387 -0.02385 BCU BLL
4FGL J0458.6+5509 -0.03487 -0.02579 BCU FSRQ
4FGL J0500.6-4911 -0.03596 -0.03434 BLL
4FGL J0505.8-0419 -0.03522 -0.02716 FSRQ
4FGL J0510.4-1809 -0.03412 -0.03174 BCU FSRQ
4FGL J0516.7-6207 -0.03392 -0.02548 BLL
4FGL J0517.5+0858 -0.03203 -0.0303 FSRQ
4FGL J0525.6-6013 -0.03475 -0.0257 BCU BLL
4FGL J0529.1+0935 -0.03545 -0.03261 BCU BLL
4FGL J0536.4-3343 -0.03655 -0.03053 BLL
4FGL J0548.5-5218 -0.03311 -0.02478 BCU BLL

4FGL J0549.0+3258c -0.03279 -0.03157 BCU BLL
4FGL J0550.5-3216 -0.03648 -0.03288 BLL
4FGL J0552.8+0313 -0.03248 -0.0264 BCU FSRQ
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Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J0601.3+5444 -0.03685 -0.02521 BCU BLL
4FGL J0608.0+6721 -0.03448 -0.02123 FSRQ
4FGL J0614.8+6136 -0.03444 -0.03001 BCU FSRQ
4FGL J0617.2+5701 -0.03612 -0.02645 BLL
4FGL J0629.6+2435 -0.03411 -0.02397 BCU BLL
4FGL J0641.7-0320 -0.03283 -0.02447 FSRQ
4FGL J0643.3+0857 -0.03137 -0.02762 FSRQ
4FGL J0647.0-5138 -0.03589 -0.03514 BLL
4FGL J0647.7-6058 -0.03471 -0.03245 BLL
4FGL J0700.5-6610 -0.03501 -0.0322 BLL
4FGL J0712.5+3311 -0.03109 -0.02631 BCU BLL
4FGL J0715.3-6828 -0.03416 -0.02705 BCU BLL
4FGL J0723.5+2900 -0.03451 -0.02979 FSRQ
4FGL J0725.5+0216 -0.03488 -0.03461 BCU BLL
4FGL J0727.1+3734 -0.0336 -0.02298 BLL
4FGL J0739.8-6722 -0.03048 -0.01886 BCU BLL
4FGL J0744.1-6211 -0.03778 -0.02713 BCU BLL
4FGL J0749.9+1823 -0.03409 -0.03424 FSRQ
4FGL J0750.8+1229 -0.03441 -0.02863 FSRQ
4FGL J0754.7+4823 -0.03462 -0.02272 BLL
4FGL J0805.1+7744 -0.03461 -0.02533 BCU FSRQ
4FGL J0805.2-0110 -0.03286 -0.02466 FSRQ
4FGL J0812.5+0711 -0.03296 -0.02787 BCU FSRQ
4FGL J0812.6+2821 -0.03524 -0.02323 BCU BLL
4FGL J0812.9+5555 -0.03348 -0.0205 BLL
4FGL J0814.2-1013 -0.03638 -0.02606 BLL
4FGL J0814.5-2642 -0.03417 -0.03441 BCU BLL
4FGL J0816.7-2420 -0.03422 -0.03416 BCU FSRQ
4FGL J0820.9+2353 -0.03455 -0.03388 BLL
4FGL J0828.6-0747 -0.03482 -0.02635 BCU FSRQ
4FGL J0831.8+0429 -0.03428 -0.0236 BLL
4FGL J0835.7+0936 -0.03507 -0.03432 BLL
4FGL J0839.4+1803 -0.03485 -0.03406 BLL
4FGL J0843.0-0853 -0.0336 -0.03347 BCU FSRQ
4FGL J0845.4+0442 -0.03348 -0.02231 BCU BLL
4FGL J0858.0-3130 -0.03561 -0.02651 BLL
4FGL J0902.4+2051 -0.03547 -0.03471 BLL
4FGL J0920.9-2256 -0.03343 -0.02727 BLL
4FGL J0929.3+5014 -0.03577 -0.03349 BLL
4FGL J0930.3+8612 -0.03496 -0.03366 BLL
4FGL J0931.2-8533 -0.03296 -0.02316 BCU FSRQ
4FGL J0947.9+1121 -0.03492 -0.03199 BLL
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Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J1002.8+2140 -0.03554 -0.03633 BCU FSRQ
4FGL J1008.7-2909 -0.03397 -0.02555 BCU FSRQ
4FGL J1011.3-0427 -0.03374 -0.03155 FSRQ
4FGL J1015.6+5553 -0.03369 -0.03376 FSRQ
4FGL J1018.4+3540 -0.03438 -0.02499 FSRQ
4FGL J1028.3+3108 -0.03538 -0.03388 BLL
4FGL J1030.6-2028 -0.03489 -0.0337 BLL
4FGL J1032.7+6624 -0.03498 -0.03543 BLL
4FGL J1033.5+4221 -0.0333 -0.0283 BLL
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Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J1034.0-2547 -0.03314 -0.03153 BCU BLL
4FGL J1038.5+3926 -0.03389 -0.03305 BLL
4FGL J1041.5+0607 -0.03469 -0.03198 FSRQ
4FGL J1041.7+3902 -0.03322 -0.03185 BLL
4FGL J1051.9+0103 -0.03522 -0.03352 BLL
4FGL J1058.6+5627 -0.03587 -0.03017 BLL
4FGL J1059.5+2057 -0.03529 -0.02287 FSRQ
4FGL J1100.3+4020 -0.03473 -0.03354 BLL
4FGL J1106.2-1048 -0.03495 -0.03151 BCU BLL
4FGL J1118.2-4634 -0.03499 -0.02993 FSRQ
4FGL J1124.6-0809 -0.03501 -0.02187 BCU BLL
4FGL J1124.9+4934 -0.03359 -0.0338 BLL
4FGL J1127.8+3618 -0.03402 -0.02493 FSRQ
4FGL J1128.8+3757 -0.03474 -0.0307 BLL
4FGL J1130.5-7801 -0.03594 -0.02704 BLL
4FGL J1131.1-0944 -0.03703 -0.03137 BCU BLL
4FGL J1136.4+6736 -0.03614 -0.02792 BLL
4FGL J1136.4+7009 -0.03654 -0.03709 BLL
4FGL J1143.9+1558 -0.03356 -0.03094 BLL
4FGL J1147.2-2627 -0.03291 -0.02303 BCU FSRQ
4FGL J1148.6+1841 -0.03384 -0.02917 BLL
4FGL J1149.1+2819 -0.03388 -0.03048 BCU BLL
4FGL J1155.8+6137 -0.03418 -0.03294 BLL
4FGL J1201.1-0332 -0.0337 -0.02915 BCU BLL
4FGL J1202.5-0528 -0.03634 -0.03133 FSRQ
4FGL J1203.4-3925 -0.03643 -0.02704 BLL
4FGL J1209.7+2548 -0.0329 -0.02787 FSRQ
4FGL J1213.3-2618 -0.03325 -0.02524 BLL
4FGL J1221.3+3010 -0.03628 -0.02934 BLL
4FGL J1221.5+2814 -0.03537 -0.03105 BLL
4FGL J1223.5+0818 -0.03535 -0.03039 BLL
4FGL J1223.9+7954 -0.03443 -0.02176 BLL
4FGL J1225.5-2851 -0.03366 -0.03132 BCU FSRQ
4FGL J1231.6+6415 -0.03335 -0.02824 BLL
4FGL J1232.5-3720 -0.03671 -0.02672 BCU BLL
4FGL J1233.7-0144 -0.03569 -0.02624 BLL

Continued on next page
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Table 9.2 – Continued from previous page

Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J1238.5-1201 -0.03356 -0.02345 FSRQ
4FGL J1245.1+5709 -0.03309 -0.02866 BLL
4FGL J1246.7-2548 -0.03237 -0.02328 FSRQ
4FGL J1251.3-0201 -0.03488 -0.03163 BCU BLL
4FGL J1254.2-2205 -0.03602 -0.03554 BCU BLL
4FGL J1259.7-3223 -0.03272 -0.0255 BLL
4FGL J1259.8-3749 -0.03446 -0.02526 BLL
4FGL J1302.8+5748 -0.03327 -0.02385 BLL
4FGL J1310.6+2449 -0.03675 -0.0375 BLL
4FGL J1311.0+0034 -0.03507 -0.02549 BLL
4FGL J1315.9-6349c -0.03405 -0.02576 BCU FSRQ
4FGL J1321.1+2216 -0.034 -0.0273 FSRQ
4FGL J1322.6-1617 -0.03412 -0.03451 BCU BLL
4FGL J1324.9+4748 -0.03419 -0.03383 FSRQ
4FGL J1327.0+3154 -0.03452 -0.02631 BCU BLL
4FGL J1327.8+2522 -0.03411 -0.0292 BLL
4FGL J1336.2+2320 -0.03338 -0.02929 BLL
4FGL J1339.0-2400 -0.03617 -0.02749 BCU BLL
4FGL J1340.1+3857 -0.03321 -0.02225 BCU FSRQ
4FGL J1354.8-1041 -0.03485 -0.02575 FSRQ
4FGL J1400.6-5605 -0.03268 -0.02812 BCU FSRQ
4FGL J1410.1+0202 -0.03352 -0.02568 BLL
4FGL J1427.4-1823 -0.03549 -0.03637 BCU BLL
4FGL J1433.7-7304 -0.0305 -0.02153 BCU BLL
4FGL J1438.0-3128 -0.03294 -0.02179 FSRQ
4FGL J1439.3+3932 -0.03644 -0.02889 BLL
4FGL J1442.0+4348 -0.03353 -0.02275 BLL
4FGL J1442.2+0622 -0.03488 -0.03321 BCU FSRQ
4FGL J1446.7+1719 -0.03324 -0.02587 FSRQ
4FGL J1451.5+1415 -0.03476 -0.02335 BCU FSRQ
4FGL J1503.7-1540 -0.03413 -0.02694 BLL
4FGL J1509.7+5556 -0.03351 -0.03342 BLL
4FGL J1511.8-0513 -0.03487 -0.02827 BLL
4FGL J1514.7-3617 -0.03276 -0.02968 BCU FSRQ
4FGL J1516.9+1934 -0.03335 -0.02306 BLL
4FGL J1517.7+6525 -0.03592 -0.02736 BLL
4FGL J1529.7+6733 -0.03309 -0.02317 BCU BLL
4FGL J1530.5-3026 -0.03263 -0.02997 BCU BLL
4FGL J1533.2+3416 -0.03494 -0.02632 BLL
4FGL J1535.0+5320 -0.03436 -0.03429 BLL
4FGL J1558.8+5625 -0.03418 -0.02668 BLL

Continued on next page
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Table 9.2 – Continued from previous page

Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J1608.0-2038 -0.03636 -0.035 BLL
4FGL J1608.7+1029 -0.03225 -0.02562 FSRQ
4FGL J1612.4-3100 -0.0348 -0.03573 BLL
4FGL J1616.6+4630 -0.03609 -0.03529 FSRQ
4FGL J1616.7+4107 -0.03351 -0.02325 BLL
4FGL J1623.4+0858 -0.03247 -0.02797 BCU BLL
4FGL J1639.2+4129 -0.03539 -0.02587 FSRQ
4FGL J1640.3+6850 -0.03626 -0.03833 BCU BLL
4FGL J1648.0+2221 -0.0356 -0.02663 BCU FSRQ
4FGL J1649.4+5235 -0.03589 -0.03779 BLL
4FGL J1656.0+2047 -0.03339 -0.0296 BCU FSRQ
4FGL J1703.6-6213 -0.03286 -0.02955 FSRQ
4FGL J1717.5-8114 -0.0364 -0.02835 BLL
4FGL J1740.0+4737 -0.0345 -0.03264 FSRQ
4FGL J1742.5+5944 -0.03513 -0.03103 BLL
4FGL J1745.6+3950 -0.03399 -0.02175 BLL
4FGL J1756.9+1531 -0.03437 -0.0272 BCU BLL
4FGL J1814.0+3828 -0.03411 -0.01953 BLL
4FGL J1837.3+1052 -0.03279 -0.03069 BCU FSRQ
4FGL J1909.5+3511 -0.03382 -0.02533 BCU BLL
4FGL J1918.2-4111 -0.03597 -0.02512 BLL
4FGL J1924.8-2914 -0.03363 -0.03026 FSRQ
4FGL J1931.1+0937 -0.03591 -0.03285 BLL
4FGL J1945.1-4007 -0.03372 -0.03001 BCU BLL
4FGL J1950.0-7321 -0.03309 -0.02367 BCU BLL
4FGL J1955.1-1604 -0.03701 -0.02551 BLL
4FGL J2017.5-4113 -0.03456 -0.0328 BCU BLL
4FGL J2021.9+0629 -0.03376 -0.0271 BLL
4FGL J2024.7-2328 -0.03277 -0.02797 BCU BLL
4FGL J2040.1-4621 -0.03326 -0.03287 BCU BLL
4FGL J2040.5-1705 -0.0339 -0.0195 BCU FSRQ
4FGL J2053.8+2922 -0.03562 -0.03573 BLL
4FGL J2104.7+0108 -0.03371 -0.0297 BCU BLL
4FGL J2115.2+1218 -0.036 -0.02997 BLL
4FGL J2131.5-0916 -0.03646 -0.02864 BLL
4FGL J2134.2-0154 -0.03373 -0.03162 BLL
4FGL J2134.3-6511 -0.0339 -0.02375 BCU BLL
4FGL J2146.5-1344 -0.0359 -0.02806 BLL
4FGL J2151.8-3027 -0.03205 -0.01617 FSRQ
4FGL J2152.0-1205 -0.03331 -0.02061 BLL
4FGL J2153.1-0041 -0.03638 -0.03911 BLL

Continued on next page
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Table 9.2 – Continued from previous page

Source name x-axis y-axis Class Class in Fan 2022
(1) (2) (3) (4) (5)

4FGL J2158.5-7550 -0.03427 -0.0309 BCU BLL
4FGL J2158.8-3013 -0.03502 -0.02844 BLL
4FGL J2204.5+3634 -0.03553 -0.02239 BLL
4FGL J2207.1+4316 -0.03253 -0.02741 BCU BLL
4FGL J2211.4-7040 -0.03657 -0.02979 BLL
4FGL J2222.8+1209 -0.03405 -0.02072 BCU FSRQ
4FGL J2225.5-1114 -0.03319 -0.01832 BLL
4FGL J2226.6+0210 -0.03479 -0.02176 BCU BLL
4FGL J2230.9-7815 -0.03373 -0.03147 FSRQ
4FGL J2236.3+2828 -0.03328 -0.02517 FSRQ
4FGL J2239.5-2440 -0.03101 -0.02464 BCU BLL
4FGL J2241.1-4122 -0.03357 -0.02675 BCU BLL
4FGL J2243.9+2021 -0.03591 -0.02427 BLL
4FGL J2246.5-1204 -0.03393 -0.02195 FSRQ
4FGL J2325.2+3957 -0.03471 -0.02189 BLL
4FGL J2325.6+1644 -0.03211 -0.0287 BLL
4FGL J2328.3-4036 -0.03439 -0.03093 FSRQ
4FGL J2329.0+0832 -0.03374 -0.02114 FSRQ
4FGL J2330.4+1230 -0.03309 -0.03269 BCU BLL
4FGL J2336.5-7622 -0.0352 -0.02492 BLL
4FGL J2339.2-7403 -0.03666 -0.03107 BLL
4FGL J2359.3-2049 -0.03557 -0.02902 BLL
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Saldana-Lopez, A., Domı́nguez, A., Pérez-González, P. G., et al. 2021, MNRAS, 507, 5144, doi: 10.
1093/mnras/stab2393

Salpeter, E. E. 1964, ApJ, 140, 796, doi: 10.1086/147973

Sambruna, R. M., Maraschi, L., & Urry, C. M. 1996, ApJ, 463, 444, doi: 10.1086/177260

Sambruna, R. M., Aharonian, F. A., Krawczynski, H., et al. 2000, ApJ, 538, 127, doi: 10.1086/
309133

Sammut, C., & Webb, G. I., eds. 2017, Encyclopedia of Machine Learning and Data Mining, 2nd
edn., Springer Reference (New York: Springer), doi: 10.1007/978-1-4899-7687-1

Samuel, A. L. 1959, IBM Journal of Research and Development, 3, 210, doi: 10.1147/rd.33.0210

Sanchez Saez, P. 2022, in SciOps 2022: Artificial Intelligence for Science and Operations in
Astronomy (SCIOPS). Proceedings of the ESA/ESO SCOPS Workshop held 16-20 May, 17,
doi: 10.5281/zenodo.6563034

Sandage, A. 1961, The Hubble Atlas of Galaxies

Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K. 1989, ApJ, 347, 29,
doi: 10.1086/168094

Santosh, K., Das, N., & Ghosh, S. 2022, Deep learning models, 65–97, doi: 10.1016/
B978-0-12-823504-1.00013-1

Sarangi, S., Sahidullah, M., & Saha, G. 2020, Digital Signal Processing, 104, 102795, doi: https:
//doi.org/10.1016/j.dsp.2020.102795

Scheuer, P. A. G., & Readhead, A. C. S. 1979, Nature, 277, 182, doi: 10.1038/277182a0

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525, doi: 10.1086/305772

Schmidt, M. 1963, Nature, 197, 1040, doi: 10.1038/1971040a0

Schmidt, M., & Green, R. F. 1983, ApJ, 269, 352, doi: 10.1086/161048

Schölkopf, B., Smola, A., & Müller, K.-R. 1997, in Artificial Neural Networks — ICANN’97, ed.
W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Berlin, Heidelberg: Springer Berlin Heidel-
berg), 583–588

Schroedter, M., Badran, H. M., Buckley, J. H., et al. 2005, ApJ, 634, 947, doi: 10.1086/496968

Schroff, F., Kalenichenko, D., & Philbin, J. 2015, in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 815–823, doi: 10.1109/CVPR.2015.7298682

http://doi.org/10.1093/bioinformatics/btm344
http://doi.org/10.1093/bioinformatics/btm344
http://doi.org/10.3847/1538-4357/aadade
http://doi.org/10.3847/2041-8213/ab43c7
http://doi.org/10.3847/2041-8213/ab43c7
http://doi.org/10.1093/mnras/stab2393
http://doi.org/10.1093/mnras/stab2393
http://doi.org/10.1086/147973
http://doi.org/10.1086/177260
http://doi.org/10.1086/309133
http://doi.org/10.1086/309133
http://doi.org/10.1007/978-1-4899-7687-1
http://doi.org/10.1147/rd.33.0210
http://doi.org/10.5281/zenodo.6563034
http://doi.org/10.1086/168094
http://doi.org/10.1016/B978-0-12-823504-1.00013-1
http://doi.org/10.1016/B978-0-12-823504-1.00013-1
http://doi.org/https://doi.org/10.1016/j.dsp.2020.102795
http://doi.org/https://doi.org/10.1016/j.dsp.2020.102795
http://doi.org/10.1038/277182a0
http://doi.org/10.1086/305772
http://doi.org/10.1038/1971040a0
http://doi.org/10.1086/161048
http://doi.org/10.1086/496968
http://doi.org/10.1109/CVPR.2015.7298682


BIBLIOGRAPHY 223

Schwartz, D. A., Marshall, H. L., Lovell, J. E. J., et al. 2000, ApJ, 540, 69, doi: 10.1086/312875

Schölkopf, B., Smola, A., & Müller, K.-R. 1998, Neural Computation, 10, 1299, doi: 10.1162/
089976698300017467

Searle, J. R. 1980, Behavioral and Brain Sciences, 3, 417–424, doi: 10.1017/S0140525X00005756
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