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Abstract

The subject of Quantum Gravity and its effects on physical observables and effective field

theories remains one of the biggest challenges in theoretical physics. String Theory provides

a controlled framework in which we can hope to gather some evidence of general features of

Quantum Gravity, even if its large landscape of vacua seems to represent an obstacle to the

ability of formulating universal statements. The Swampland Program has emerged to try and

address such questions: by using consistency conditions coming from general considerations

about Quantum Gravity we can distinguish between effective field theories of gravity that

admit a UV completion and those that do not. In the first part of this thesis, we study the

conditions coming from the coupling of N = 1 effective theories of gravity in 4 dimensions to a

class of 2-dimensional extended object called EFT strings and derive non-trivial constraints on

the possible values of the (s)axionic couplings in the effective Lagrangian, in addition to upper

bounds on the relevant gauge group of the theory. In the second part, we study the problem

of the possible non-perturbative corrections from wormhole solutions and their relevance in the

light of the previously derived consistency bounds. In doing so, we stress the interplay between

EFT strings and the energy scale of validity of such solutions, represented by the species scale.
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Chapter 1

Introduction

Despite having being object of thorough research for the past 80 years, the topic of Quantum

Gravity remains one of the biggest challenges in modern Theoretical Physics. The questions

surrounding the topic are both conceptual and phenomenological in nature. From the con-

ceptual point of view, it would be interesting to understand the necessary conditions that an

effective quantum field theory coupled to gravity, i.e. General Relativity, has to satisfy in order

to admit a consistent embedding in a UV complete theory of Quantum Gravity. From the

phenomenological point of view, it would be thrilling if the very fact of coming from a fully

complete theory of Quantum Gravity implied the presence of some universal features imprinted

into the effective theory which could be observed experimentally in the near future, bypassing

the well-known difficulties of probing directly Planckian scales for signatures of quantum beha-

vior of gravity. The Swampland Program [1] began exactly to try and address those questions

(excellent reviews can be found in [2], [3], [4]). This line of research enjoyed a significant growth

in the last decade and resulted in a large and thriving field of study which touches manifold

branches of String Theory, Theoretical Physics and even pure Mathematics. The typical modus

operandi of research in Swampland is represented by trying and formulating general consistency

conditions coming from aspects of Quantum Gravity which are expected to be universal in all

its low energy effective realizations, then putting those under severe tests and checks in explicit

settings of effective theories of Quantum Gravity. The conditions take the form of Swampland

Conjectures for which evidence can be gathered, counterexamples found or, in very specific

scenarios, even formal proof be accomplished. The hope is that these conditions may help us

in distinguishing the effective field theories which can be consistently uplifted to full quantum

theories coupled to gravity, colloquially those belonging to the ”Landscape” of Quantum Grav-

ity, from those which cannot, populating the so-called ”Swampland”. It is not surprising that

for this purpose considerations about semiclassical gravity, black hole physics and holography

are crucial in order to identify putative general features shared by all the effective models of

Quantum Gravity, in addition to requirements of unitarity and low energy causality common

also in the framework of ordinary Quantum Field Theory. In all of this, String Theory plays a
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central role in being a perturbatively controlled theoretical playground from which we can both

take inspiration in formulating the consistency conditions, thanks to universal patterns observed

in the large set of String Theory low energy realizations, and providing concrete examples upon

which to test the various Swampland Conjectures. Among the most important Swampland

Conjectures enjoying a large amount of evidence we must recall the absence of global symmet-

ries [5–11] (and the closely related triviality of the Cobordism group of Quantum Gravity [12,

13]), the Weak Gravity Conjecture [14–20], the Completeness of the spectrum of charged states

under gauge symmetries [21] and the Distance Conjecture [22]. A wide sector of the research

in the Swampland Program is also focused on some less understood conjectures, among which

we can recall the instability of non-supersymmetric AdS vacua [23], the absence of scale sep-

aration [24] and the dS/TransPlanckian Censorship Conjecture [25–27]. Those enjoy a less or

more prescriptive degree of evidence but are nevertheless interesting subjects on their own and

capable, in theory, to give greater insights into phenomenological imprints of Quantum Gravity

effects in realistic effective models. In recent years, a greater and greater attention has been

dedicated by the Swampland community to a more phenomenological direction. Indeed, the

second soul of the Program is the hope that, by understanding the general features of quantum

systems coupled to gravity, we may predict their universal empirical signatures which should

be observable also in our Universe, allowing for indirect experimental detection of Quantum

Gravity consequences without relying on Planckian scale center of mass energies in particle

accelerators. It is promising for this hope that one of the traits of Quantum Gravity seems to

be the mixing of UV with IR energy scales, leading to possible upper bounds on the scale of new

Physics beyond the Standard Model and even putative explanations for the hierarchy problem

of particle physics. Recent developments in this direction are represented for example by the

so-called Dark Dimension Scenario, for which relevant references can be found in [28–31], by

attempts to constrain the parameter space of new Physics based on Swampland considerations

[32] and by new approaches to cosmological models informed by the same principles [33].

As the Swampland Program follows this twofold path, so this thesis too is organised in a

twofold way, based upon two works which can be seen as representing each one of the two souls

of the Swampland research line. The fil rouge connecting those two works is the tool which we

chose to study our problems: a peculiar class of axionic string-like extended objects dubbed

EFT strings. These are a privileged and interesting set of BPS objects because they cannot

be resolved by the field theory, hence they are natural candidates to probe Quantum Gravity

aspects of the theories, but at the same time their presence does not spoil the perturbative

regime in which we would like to remain in order to maintain a certain degree of control

over our calculations. This occurs because EFT strings carry axionic charges such that the

non-perturbative effects are highly suppressed along the flow towards their core. Such a flow

can also be interpreted as heading towards an infinite distance point in moduli space, opening

possibilities of studying topics related to the Swampland Distance Conjecture in these settings.

In addition, it was conjectured in [34] that this correspondence between infinite distance limits
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and EFT strings goes both ways, with recently [35] exploring the connections to the Tameness

Conjecture and the intriguing possibility of its use to completely classify such limits.

In Chapter 3 our main focus will be a more formal one and the question which we would like

to answer is the following: which consistency conditions can be derived from the very coupling

of these objects to four-dimensional effective theories of gravity with minimal supersymmetry?

The technique of extended objects as probes for the consistency of a gravity background is a

well-known and fruitful one which has already been exploited in several other cases in higher di-

mensions and/or with higher number of supercharges. Among the many results of this method

we cannot forget to mention the proof of the uniqueness of the set of consistent ten-dimensional

heterotic supergravity [36], the constraints to six-dimensional supergravity with abelian gauge

factors [37], the upper bound of the rank of the gauge group for theories with 16 supercharges in

various dimensions [38] and the bounds on effective five-dimensional supergravity theories [39].

The arguments for the correctness of this procedure come both from top-down and bottom-

up considerations. From the top-down point of view, we know String Theory provides for a

plethora of extended objects which have to be consistently coupled to the effective gravitational

backgrounds for the whole framework to make sense. But, even ignoring such top-down mo-

tivations, the presence of charged extended objects is to be expected in a theory capable of

consistent uplift to Quantum Gravity on the ground of the Swampland condition on Complete-

ness of the spectrum. This is one of the most solid Swampland Conjectures whose relationships

with the absence of global symmetries (both invertible and non-invertible ones), the triviality

of the Cobordism group of Quantum Gravity and the Weak Gravity Conjecture have been

appreciated and explored thoroughly in the literature [21]. Therefore, being the absence of

global symmetries or equivalently the Cobordism Conjecture deeply rooted in the holographic

principle and hence ultimately in the background independence which Quantum Gravity ob-

servables should display, we will be more than willing to take this assumption as verified and

analyse its consequences in the cases under our inquiry.

As we stated above, the setting for our exploration will be given by four-dimensional effective

theories of supergravity with minimal supersymmetry, i.e. four supercharges, for which a basic

introduction will be given in chapter 2 together with the definition of EFT string. Those

represent the most realistic models for which we retain an acceptable degree of control thanks

to the minimal supersymmetry. They also bring with them a series of technical complications

unknown to the cases in higher dimensions or with more supersymmetries. Just to begin, since

string-like objects in four dimensions have codimension equal to two, their role has weakly

coupled probes of the gravity background might be in jeopardy. Furthermore, we can no

longer ignore the effects of those higher derivative corrections to the effective action which are

identically vanishing in examples with larger supersymmetry. This adds up to the fact that

already at the 2-derivative level the constraints imposed by less supersymmetry are clearly

weaker, for example the kinetic term of the chiral multiplets is controlled by a non-holomorphic
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potential. EFT strings reveal themselves as the suitable candidates to address the former issue:

even if in general we can no longer apply a conformal fixed point argument for their worldsheet

theory, we will provide evidence that they can be described by a weakly coupled non-linear

sigma model in the perturbative asymptotic regime in which we are interested. In such limits,

an approximate axionic symmetry emerges, signalling their infinite distance nature, and the

presence of the string can be detected by the gauge and gravitational sector of the effective

theory through standard (s)axionic couplings. The form of those couplings can be seen as a

working assumption, being them the minimal ones, but it was also argued that they might be

necessary for the purpose of gauging otherwise global -1-form symmetries in the setting [40].

The mechanism with which those couplings can enforce consistency conditions is the anomaly

inflow. The mere presence of the string implies a tree level anomaly localised completely on its

worldsheet and hence, being it associated with local symmetries of the bulk effective theory,

it must be cancelled by an appropriate 1-loop anomaly generated by chiral matter living on

the worldsheet itself. Thanks to the residual supersymmetry on the string, and modulo some

reasonable assumptions, we were able to derive from this cancellation condition non-trivial

constraints for the parameters of the effective action, in particular discreteness and positive

bounds for (s)axionic coupling constants which confirm and extend already known results on

the topic. In addition, upper bounds on the gauge group of the gauge sector coupled to the

string can be calculated, all in agreement or strengthening expected conclusions.

After the derivation of these new consistency conditions, we proceeded to their extensive check

in various explicit String Theory constructions. Those include type IIB/F-theory on smooth

bases, SO(32) and E8 ×E8 heterotic backgrounds and M-theory on G2 manifolds. In all cases

we found perfect agreement and often these tests allowed for new unexpected insights. For

example, in the type IIB/F-theory setting with O3-planes and no O7-planes we were able to

obtain from our physical considerations a known mathematical theorem about the number of

O3-planes. Also the other type IIB/F-theory models unravelled a surprising interplay between

the geometrical nature of the chiral matter on the worldsheet of the EFT strings and our bounds,

showing the conditions under which a stronger version of our results may apply. The heterotic

compactifications on the other hand provided a rich playground in which the importance of

each subtle contribution and correction was manifest for arriving at satisfying our constraints

correctly.

This work also opened a lot of unexplored avenues which are worthy of future investigation.

The sector of complex structure moduli was left mainly unchecked. Similarly the questions

of what happens to our conclusions when the (s)axions gain mass and/or supersymmetry is

completely broken, even if extremely interesting on their own, have not been faced. We hope

to be able to delve into these and related topics in future work.
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In Chapter 4 we depart partially from the topic of constraints on the Quantum Gravity Land-

scape to enter the realm of the Swampland Program more adjacent to a phenomenological

direction. It is well known that String Theory compactifications often lead to effective field

theories boasting a large number of axion fields. This is due to the large number of real moduli

fields, or equivalently the large Hodge numbers of the chosen compact manifold, which have ax-

ionic fields as partners in complex supersymmetric multiplets. The addition of an axionic field

to the matter content of the Standard Model has been explored at long in the phenomenological

literature as a possible solution to the so-called strong CP problem of strong interactions [41,

42]. In addition, it has also been subject of thorough study for its role in inflationary models.

At a first glance, it would seem that a huge number of axions, when historically experiments

have not found empirical evidence of any of them so far, is phenomenologically not viable or at

least not favored. Nevertheless phenomenological models with many axions after moduli stabil-

ization, the so-called Axiverse Scenario [43], have seen a rising amount of interest recently, both

from the phenomenological and the formal community of Theoretical Physics. Among the pos-

sible issues of this scenario there is what is known as the Peccei-Quinn quality problem, a result

of the presence of multiple interacting axions and instantons which can easily spoil the nice

features of the PQ mechanism. Quite surprisingly, recent works seem to suggest that this is not

the case in a large class of String Theory compactifications, with the quality problem becoming

less and less relevant as the number of species increase thanks to the decreasing of magnitude of

non-perturbative corrections at the same time [44–46]. Intrigued by this results, we undertook

a careful study of gravitational non-perturbative effects in Axiverse-like string-inspired models.

We focused our effort mainly on (multi)saxionic Euclidean wormholes in four dimensions and

the non-perturbative corrections which they can generate in the effective action. In particular

we described a simple but wide class of homogeneous multi-saxionic wormholes supported by

axionic charges being dual to the ones which characterize EFT strings. For such solutions, which

carry intrinsically a length scale in them in the form of the parameter governing the size of the

throat, considerations about control are entwined with those about the energy scale where

gravity becomes strongly coupled. It is natural then that this exploration led us to delving

into the notion of species scale [47]. We dedicated some time to elucidate the connection

between the species scale and the energy scale defined by the tension of the EFT strings in

their asymptotic limits, providing examples from explicit String Theory constructions coming

from both type IIB/F-theory and heterotic models, and to discuss its role in the suppression

of the non-perturbative corrections generated by on-shell higher derivative terms, in particular

the Gauss-Bonnet contribution. In particular we argued for the species scale being always

equal to or bounded from above by the energy scale associated to the EFT string tensions, the

latter on the ground that such tension represents either that of a fundamental string or that

of an extended object whose excitations cannot be quantized within the ordinary framework of

perturbative String Theory.

To enlarge the ensemble of evidence, we did not limit ourselves to this special class of solutions,
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but we also performed numerical scans for finding similar wormholes in the neighbourhood of

the analytically known homogeneous ones. Whenever we were successful in finding them numer-

ically, their features confirmed a series of expectations which we were able to formulate through

perturbative expansion around the homogeneous wormholes. Another numerical analysis was

instrumental in gathering evidence in support of our arguments about the relationship between

the species scale and the EFT string tensions. For such a purpose, another numerical scan

was carried out over the Kreuzer-Skarke database thanks to the CYTools package [48] and the

results were all in agreement with our with our proposals.

Finally, we explored the limit case of extremal/marginally degenerate wormholes and their link

to extremal BPS instantons. We supported the idea that such configurations might represent

”ensembles” of extremal instantons due to the analogous corrections they give to the effective

action. We concluded with the remarks on such corrections and the physical consequences

which they imply to a large set of effective field theories with minimal supersymmetry.

1.1 About this Thesis

This is the thesis of Nicolò Risso, submitted as part of the requirements for the degree of PhD

in Physics at the Dipartimento di Fisica e Astronomia ”Galileo Galilei”, University of Padova,

Italy.

This thesis is based upon the content of the following publications:

• L. Martucci, N. Risso, and T. Weigand, ”Quantum Gravity Bounds on N=1 Effective

Theories in Four Dimensions”, JHEP 03 (2023) 197, arXiv:2210.10797 [hep-th];

• L. Martucci, N. Risso, A. Valenti and L. Vecchi, ”Wormholes in the axiverse and the

species scale”, To appear soon.

During my PhD, I also contributed to the following papers:

• M.B. Fröb, C. Imbimbo and N. Risso, ”Deformations of supergravity and supersymmetry

anomalies”, JHEP 12 (2021) 009, arXiv:2107.03401 [hep-th];

• I. Basile and N. Risso, ”Runaway behavior in scale separated Casimir vacua”, To appear.

However, we have eventually chosen not to cover such works in the content of this thesis.

1.2 Chapter List

The content of this thesis is organised as follows:

Chapter 1 Introduction. Here we present a general introduction to the motivations behind

and the content of this thesis.
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Chapter 2 The Setting: EFTs and EFT strings. Here we present a brief review of the funda-

mentals of the general setting of our study, that is N = 1 four dimensional effective theories of

gravity, and of the class of extended object which we call EFT strings.

Chapter 3 Quantum Gravity Bounds from EFT Strings. Here we present the results of our

study of consistency conditions coming from the coupling of EFT strings with effective minimal

supergravity models in four dimensions. We include both the derivation of the bounds, the

discussion of the subtleties present in such derivation and their check on various explicit String

Theory constructions.

Chapter 4 Wormholes in the axiverse and the Species Scale. Here we present the results

of our study of Euclidean wormhole contributions to String Theory inspired effective models.

We include an introduction to and the derivation of the wormhole solutions in which we are

interested, the discussion about the conditions for their existence and the relevant energy scales

of the problem, together with their links with the formalism of EFT string limits, and the

numerical evidence supporting our statements.

Chapter 5 Conclusion. Here the conclusions of this thesis are presented and summarised.
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Chapter 2

The Setting: EFTs and EFT strings

In this beginning chapter we will briefly recall the main relevant features of the setting that we

have chosen in our study, that is N = 1 supergravity theories in 4 dimensions, and of the class

of extended objects with codimension 2, called EFT strings, that are suitable to our purposes.

In particular, we will focus on the (s)axionic couplings in the theory to the gauge and higher

derivative gravitational sectors, in addition to provide motivations for why the EFT strings

represent a good candidate of probes for the consistency of effective theories of gravity. The

reasons for having chosen such framework are twofold: first, because the study of extended

objects as probes of the consistency of supergravity theories has proven fruitful in cases with

more dimensions and more supersymmetries in order to constrain, and sometimes get all, the

set of allowed effective theories (look for example at [36], [39] and [49]), it is then natural to

ask whether it is possible to extend such methods to other less symmetrical situation; and

second because it is a setting that is close to a realistic empirical model, with the remaining

unbroken supersymmetry to have at least a certain degree of control. A pedagogical review of

supergravity can be found in the evergreen [50].

2.1 Perturbative bulk EFT structure

In the standard Wilsonian interpretation, any effective field theory (EFT) is associated with a

given ultraviolet (UV) cut-off energy scale Λ. We will consider four-dimensional EFTs which

preserve minimal N = 1 supersymmetry for a sufficiently high cut-off energy scale Λ. This

minimal supersymmetry may be spontaneously broken at lower energy scales ΛSB ≪ Λ, but

this will not affect our conclusions as these regard the structure of the EFT defined at the scale

Λ.

We will be particularly interested in extracting some general constraints on the (massless) EFT

gauge sector that is weakly coupled at the UV cut-off scale Λ. The gauge couplings will be

regarded as determined by the vacuum expectation values (VEVs) of the scalar fields. This
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is common in string theory realizations and also expected from more general quantum gravity

principles, which forbid freely tunable parameters. It is then natural to associate any weakly-

coupled gauge sector with a certain region of the field space which identifies a given perturbative

EFT regime. In the sequel we will confirm this expectation and make it more precise.

In order to identify the possible perturbative EFT regimes, we will adopt the general prescrip-

tion provided in [34, 51], which was proposed to be valid for any four-dimensional N = 1 EFT

consistent with quantum gravity and tested in large classes of string theory models. Some of

its key ingredients will be reviewed below. Combined with additional quantum gravity criteria,

this framework will allow us to extract non-trivial information on the gauge sector and on some

higher curvature terms.

2.1.1 Gauge sector

Following [34, 51, 52], the perturbative regime of an N = 1 supersymmetric EFT in four

dimensions is characterized by the presence of a set of axions ai, with fixed periodicity

ai ≃ ai + 1 , (2.1.1)

and a corresponding set of saxions si. These pair up into a set of complex scalar fields

ti = ai + isi (2.1.2)

forming the bosonic components of N = 1 chiral superfields. Together with additional chiral

fields ϕα, they parametrize the Kähler field space M of the EFT.

The saxions in particular determine the exponential suppression factors of the BPS instantons

in the theory. In a more precise definition, a perturbative EFT regime is associated with a set

CI of non-vanishing BPS instanton charge vectors m = {mi}, and a saxionic cone

∆ = {s ∈ R#axions|⟨m, s⟩ > 0 , ∀m ∈ CI} . (2.1.3)

Here

⟨m, s⟩ ≡ mis
i (2.1.4)

is the natural pairing between instanton charges and saxions. In terms of this pairing, a BPS

instanton with charge vector m ∈ CI is suppressed as |e−2π⟨m,s⟩|.

We then say that the EFT is in the perturbative regime associated with CI, or equivalently ∆, if

the saxions lie sufficiently deep inside the saxionic cone ∆. In this regime the axionic shift sym-

metries are broken only by exponentially suppressed non-perturbative corrections dominated by

the BPS instantons, which have the form ∼ |e2πi⟨m,t⟩| = |e−2π⟨m,s⟩| ≪ 1 (with ⟨m, t⟩ ≡ mit
i).

This identifies the perturbative regime with a field space region M∆
pert. Note that for increas-

ing saxionic values inside the saxionic cone, the axionic shift symmetries are better and better
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preserved. The expected absence of (non-accidental) global symmetries in quantum gravity

implies that M∆
pert can be identified with the neighborhood of a field space boundary compon-

ent ∂M∆
∞ ⊂ ∂M which is at infinite distance. The by now well-tested Swampland Distance

Conjecture (SDC) [22] implies that one cannot really reach ∂M∆
∞ within the four-dimensional

EFT because of the appearance of infinite towers of new microscopic states which become light

exponentially fast in the field distance. This causes the EFT to break down as soon as the

corresponding tower mass scale m∗ becomes smaller than the cutoff Λ. As we will recall in the

sequel, [34, 51] identify a physically distinguished way to reach the infinite distance points of

∂M∆
∞ and to realize the SDC.

Consider now the gauge theory sector, with gauge group

G =
∏

A

U(1)A ×
∏

I

GI , (2.1.5)

where GI denote simple group factors. In the superspace conventions of [50], the associated

terms in the two-derivative effective action are

1

8πi

∫
d4xd2θ 2E fAB(t, ϕ)WAWB +

1

16πi

∫
d4xd2θ 2E f I(t, ϕ) tr(WW)I + c.c. , (2.1.6)

which includes the bosonic terms

− 1

4π

∫ (
ImfABFA ∧ ∗FB +RefABFA ∧ FB

)
− 1

8π

∫ [
Imf I tr(F ∧ ∗F )I +Ref I tr(F ∧ F )I

]
.

(2.1.7)

Here fAB(t, ϕ) and f I(t, ϕ) are holomorphic functions and we denote chiral superfields and

their bottom scalar components by the same symbols. In (2.1.7), the trace tr on the algebra g

of a simple group G is defined by tr ≡ 2
ℓ(r)trr, where trr is the standard trace in any unitary

representation r, and ℓ(r) is the Dynkin index.1

In (2.1.7) we assume that

ImfAB ≫ 1 , Imf I ≫ 1 , (2.1.8)

so that the gauge sectors can be considered weakly coupled at the cut-off scale Λ and the EFT

hence admits a sensible perturbative expansion in the gauge couplings. Since we would like to

focus on the asymptotic field space region M∆
pert defined above, we furthermore assume that

1We define the Dynkin index by trr tatb = ℓ(r)
2h(g)

tradj tatb, where h(g) is the dual Coxeter number of g. For

instance, ℓ(fund) = 1 and ℓ(fund) = 2 if g = su(n)/sp(n) and g = so(n), respectively, or ℓ(adj) = 60 for
g = e8. In this thesis we use hermitian gauge fields A = Aata and field strengths F = F ata, so that A† = A
and F † = F . The hermitian generators ta of the gauge algebra g can be normalised so that tr tatb = 2δab.
The instanton number can be identified with the integer n = − 1

16π2

∫
tr(F ∧ F ) ∈ Z, see for instance [53], and

n = 1
16π2

∫
tr(F ∧ ∗F ) > 0 for (Euclidean) anti-self-dual (F = − ∗ F ) instanton configurations. Note that in the

literature characteristic classes and anomaly polynomials are often expressed in terms of the anti-hermitian field
strength FAH ≡ −iF .
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the holomorphic gauge functions fAB, f I can be expanded as

fAB(t, ϕ) = ⟨CAB, t⟩+∆fAB(ϕ) + . . . , f I(t, ϕ) = ⟨CI , t⟩+∆f I(ϕ) + . . . . (2.1.9)

Here we are omitting exponentially suppressed non-perturbative terms ∼ O(
∣∣e2πi⟨m,t⟩∣∣) and we

are employing the same index-free notation as in (2.1.3) for ti = ai + isi, e.g.

⟨CAB, t⟩ ≡ CAB
i ti . (2.1.10)

From the expansion (2.1.9) we see that (2.1.7) contains in particular the (s)axionic couplings

− 1

4π
CAB
i

∫ (
si FA ∧ ∗FB + ai FA ∧ FB

)
− 1

8π
CI
i

∫ [
si tr(F ∧ ∗F )I + ai tr(F ∧ F )I

]
,

(2.1.11)

from which one can extract CAB
i and CI

i . Note that the form (2.1.11) for the (s)axionic couplings

is a non-trivial assumption which need not hold for every gauge sector. We will come back to

this caveat in the paragraph after (2.2.4).

Assuming that the gauge instanton configurations are defined on a Euclidean spin manifold, as

is natural in supergravity, the compatibility of the gauge instanton corrections with the axion

periodicity (2.1.1) requires the quantization conditions

CAB
i , CI

i ∈ Z . (2.1.12)

In the following we will provide complementary evidence in favor of (2.1.12), which holds

directly in Lorentzian signature.

For generic values of the fields ϕα, we expect ∆fAB(ϕ),∆f I(ϕ) ∼ O(1) in (2.1.9). Hence (2.1.8)

suggests that the constants (2.1.12) should obey the constraints

{⟨CAB, s⟩} ≥ 0 , ⟨CI , s⟩ ≥ 0 ∀s ∈ ∆ . (2.1.13)

The first condition means that ⟨CAB, s⟩ is a positive definite matrix, and we are again using the

index-free notation introduced above, e.g. ⟨CAB, s⟩ ≡ CAB
i si and ti = ai+isi. In other words, it

is natural to require thatCI ∈ CI, where we recall from the discussion before (2.1.3) that CI is the
cone of BPS instanton charges dual to the saxionic cone ∆, and that {CAB} ∈ CI in a matrix

sense. This is also consistent with the requirement that the perturbative gauge interactions

preserve the axionic shift symmetries, while gauge instantons break them by exponentially

suppressed non-perturbative corrections. To our knowledge the condition (2.1.13) is realised in

all string theory models and in the following we will assume that it should hold in any EFT

compatible with quantum gravity.
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2.1.2 Higher curvature terms

One can generically write down higher-derivative corrections to the leading two-derivative su-

pergravity. For our purposes it is sufficient to focus on the contribution

1

24πi

∫
d4x d2θ 2E f̃(t, ϕ)Y + c.c. , (2.1.14)

where f̃(t, ϕ) is another holomorphic function of the chiral multiplets and

Y ≡ WαβγWαβγ −
1

4

(
D2 − 8R

) (
aRR+ bGaGa

)
(2.1.15)

is a composite chiral superfield [54–56] constructed out of the chiral superfields Wαβγ , R and

the real superfield Ga of minimal N = 1 supergravity [50]. The superspace contribution (2.1.14)

includes in particular the curvature-squared terms [55, 56]

− 1

96π

∫
Im f̃ tr(R ∧ ∗R)− 1

96π

∫
Re f̃ tr(R ∧R) + . . . . (2.1.16)

Here tr denotes the standard trace on the free indices of the Riemann two-form Rm
n =

1
2R

m
npq dx

p ∧ dxq – see also [57] and [58] for some useful details on the necessary superspace

manipulations.2 In (2.1.16) we have omitted RmnR
mn and R2 terms, since their coefficients

depend on the constants a and b and then are not uniquely fixed by the Pontryagin term con-

taining tr(R ∧ R). On the other hand, the arbitrariness is uniquely fixed to a = 2 and b = 1

by requiring that the omitted RmnR
mn and R2 terms combine with the first term in (2.1.16)

to give the Gauss-Bonnet term 1
192π

∫
Im f̃ EGB ∗ 1, with

EGB ≡ RmnpqR
mnpq − 4RmnR

mn +R2 , (2.1.17)

which is not affected by ghost issues [59].

As for the gauge functions (2.1.9), under our general assumptions in the asymptotic field space

region M∆
pert the holomorphic function f̃ necessarily takes the form

f̃(t, ϕ) = C̃i t
i +∆f̃(ϕ) + . . . , (2.1.18)

where again we are omitting exponentially suppressed non-perturbative terms. In particular,

(2.1.16) contains the couplings

− 1

96π
C̃i

∫ [
si tr(R ∧ ∗R) + ai tr(R ∧R)

]
, (2.1.19)

from which one can extract C̃i.

2We thank Fotis Farakos for useful discussions about the necessary superspace gymnastics.
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According to the normalization of (2.1.14), the axion periodicity (2.1.1) is not broken by possible

gravitational instantons if we require that

2C̃i ∈ Z . (2.1.20)

This can be understood by recalling that the integral of the first Pontryagin class p1(M) =

− 1
8π2 tr(R∧R) over a Euclidean spin four-manifold M is always a multiple of 48. In the sequel

we will see that quantum gravity constraints require C̃i to be integral, rather than half-integral

as in (2.1.20).

Unlike for the analogous quantities discussed in the previous subsection, there is no obvious

reason to expect any definite sign of Im f̃ and ⟨C̃, s⟩ ≡ C̃is
i. On the other hand, various results

suggest that the positivity of the coefficient of the Gauss-Bonnet term may be a general feature

of EFTs consistent with quantum gravity. For instance this is necessary in order to suppress

problematic wormhole effects [7]. More recently, [60] provides an argument for positivity based

on unitarity in pure in pure d > 4 gravity, [61] discusses the implications of the sign on the non-

perturbative (in)stability of simple dilatonic models, [62] shows how Gauss-Bonnet positivity

follows from the WGC for certain black holes and [63] analyses constraints based on holography.

In our context this would mean that Im f̃ > 0 and then, as for the gauge theory sector, it would

be natural to require that

⟨C̃, s⟩ > 0 , (2.1.21)

or equivalently C̃ ∈ CI. (Here we are already using the integrality of C̃i, anticipated above but

not proven yet.) We will find that (2.1.21) follows, under certain additional mild restrictions,

from the quantum gravity arguments of the following sections.

2.2 EFT strings as quantum gravity probes

The perturbative EFT regimes of Section 2.1 can be characterised in terms of a specific class of

BPS axionic strings, called EFT strings in [34, 51] – see also [52]. In this section, after recalling

the main properties of such EFT strings, we will describe the anomaly inflow mechanism from

the four-dimensional bulk theory to the string worldsheet. We will then argue that the EFT

string worldsheet theory can be treated as a weakly coupled non-linear sigma model (NLSM)

and characterise the spectrum of its massless fields. This will form the basis for the derivation

of quantum gravity constraints for the four-dimensional field theory in Section 4.2.2.

2.2.1 Perturbative EFT regimes, dual formulation and EFT strings

The presence of the perturbative axionic shift symmetries (2.1.1) naturally leads one to consider

axionic strings in four dimensions, around which the axions undergo integral shifts

ai → ai + ei . (2.2.1)
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Here we assume that the EFT U(1) gauge fields do not acquire a Stückelberg mass by gauging

the axions ai. In this way we exclude axionic strings which can break by nucleation of monopole

pairs, leaving the investigation of this interesting generalization for future work.

In order to make contact with QG structures highlighted in [51, 64, 65], it is convenient to

recall the basic features of the dual formulation, in which the axions are traded for 2-form

potentials B2,i with corresponding field strengths H3,i = dB2,i = −M2
PGij ∗ dai. This duality

transformation can be completed into a full supersymmetric duality which trades the ti chiral

multiplets for corresponding linear multiplets [66].

The integers ei ∈ Z can be regarded as the magnetic axionic charges of the string, or as the

electric charges under the dual two-form potentials B2,i – see [34, 67] for more details on the

dualization. In the dual formulation, the strings contribute to the EFT by a localized term

ei
∫

W
B2,i , (2.2.2)

where W denotes the string world-sheet. Furthermore, imposing that these strings are compat-

ible with the bulk supersymmetry completely fixes [67] the additional contribution −
∫
W Te volW

to the effective action: The tension Te takes the form

Te ≡M2
P e

iℓi , (2.2.3)

in terms of the dual saxions ℓi. Together with B2,i, these form the bosonic components of the

linear multiplets dual [66] to the chiral multiplets ti and are defined by

ℓi ≡ −1

2

∂K

∂si
. (2.2.4)

Here K is the EFT Kähler potential K, which is assumed to be invariant under the axionic

shift symmetries. Note that the dual formulation in terms of Bi,e and ℓi, as well as the localised

terms (2.2.2) and (2.2.3), really make sense only if the axionic shift symmetries are preserved

at the perturbative level, as we are assuming.3

The kinetic terms are specified by the kinetic function

F = K + 2ℓis
i (2.2.5)

which must be considered as a function of the dual saxions ℓi (and of the spectator fields). The

leading order action can be equivalently re-written as

S(M) =
1

2
M2

P

∫
R ∗ 1− 1

2
M2

P

∫
Gijdℓi ∧ ∗dℓj −

1

2M2
P

∫
GijH3,i ∧ ∗H3,j + BT (2.2.6)

3In this dual formulation the non-perturbative corrections can be generated by the mechanism described in
[7].
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where

Gij ≡ −1

2

∂2F
∂ℓi∂ℓj

(2.2.7)

is the inverse matrix of the saxion kinetic matrix. Furthermore the inverse of the relation (2.2.4)

is given by

si =
1

2

∂F
∂ℓi

. (2.2.8)

At this stage it is important to stress that we are excluding possible monodromy transformations

of the U(1) vectors under the axionic integral shifts (2.2.1). For instance, if we focus on

two U(1) field strengths and one chiral field t = a + is, we could impose that the discrete

identification t ≃ t + 1 involves also a shift F1 ≃ F1 + F2. F1 can then enter the effective

Lagrangian only through the monodromy invariant combination F̂1 = F1 − aF2, which can be

completed into the super-field strength Ŵα
1 = Wα

1 − tWα
2 . These monodromy effects can be

immediately generalized to a larger number of U(1)s and axions, and allow for the appearance

of quadratic and cubic axion couplings to FA ∧ FB, rather than the standard linear coupling

(2.1.11). As an example of such non-standard couplings to the axions, Kaluza-Klein U(1)s have

been discussed in [68]. Such couplings obstruct the dualization of the axions to B2,i (as well as its

supersymmetric completion). Then the EFT contribution of the corresponding axionic strings

cannot be described as in (2.2.2) and (2.2.3). While these monodromy effects naturally appear in

extended four-dimensional supergravities, they look more exotic in a minimally supersymmetric

context, and we will henceforth only consider effective theories not exhibiting such subtle effects.

Let us come back to the dualization (2.2.4) and the fact that this procedure is possible only

in presence of a perturbative shift symmetry. This becomes crucial once combined with the

observation that the strings coupling to the two-form, being codimension-two objects, have a

strong backreaction. The backreaction may force the surrounding bulk scalar fields to flow

away from the asymptotic region M∆
pert associated with the perturbative regime. However,

as emphasised in [34, 51], this does not pose any problem at the EFT level: What one really

needs for consistency of the dualization and the description of the strings is that the bulk sector

is in the weakly coupled region in a small neighborhood of the string, of minimal radius of

order rΛ ≡ Λ−1. It is then sufficient to require that the string backreaction is under control in

this neighborhood. At such short distances, the string can be well approximated by a straight
1
2 -BPS string and its backreaction on the saxions is given by

s = s0 + eσ , σ ≡ 1

2π
log

r0
r
. (2.2.9)

Here r is the radial distance from the string and s0 = {si0} represents the initial saxionic values

at r = r0. Note that the additional chiral fields ϕα do not flow. Hence, if the charge vector e

belongs to

CEFT
S ≡ ∆|Z = {e ∈ Z#axions | ⟨m, e⟩ ≥ 0 , ∀m ∈ CI} , (2.2.10)
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a flow (2.2.9) starting from any s0 ∈ ∆ never exits the saxionic cone ∆ as one approaches the

string. Actually, the scalars are driven more and more inside the asymptotic weakly coupled

region M∆
pert as σ → ∞. This can be taken as the defining property of the EFT strings, which

hence admit a controlled weakly-coupled EFT description. Note that the EFT strings must be

considered as fundamental strings4, in the sense that they cannot be completed into smooth

solitonic objects within a four-dimensional EFT, say by adding a finite number of new degrees

of freedom.

In [34] it was shown how the validity of ‘weak gravity bounds’ [69] for instantons and strings

requires that in M∆
pert the Kähler potential receives a leading saxionic contribution of the form

K = − logP (s) + . . . , (2.2.11)

where P (s) is a homogeneous function of the saxions. This asymptotic structure of the Kähler

potential is indeed universally realised in all string theory models, in which the homogeneity

degree of P (s) turns out to be integral. In the following, whenever we will need it, we will

implicitly assume this asymptotic form of the Kähler potential. This in particular implies that

the EFT string flows (2.2.9) can be regarded as infinite field distance limits, and the Distant

Axionic String Conjecture (DASC) of [34] proposes that all infinite distance points of ∂M∆
∞

can actually be reached by an EFT string flow.

Another important property of the EFT strings is the following. It is not difficult to see that

the field-dependent tension Te of an EFT string decreases along its own saxionic flow (2.2.9), as

σ → ∞. On the other hand, since this is an infinite field distance limit the Swampland Distance

Conjecture implies that along the flow an infinite tower of microscopic massive modes appears,

at a characteristic mass scale m∗, which exponentially vanishes with the field distance. By

inspecting a large class of string theory models, in [34] it was found that along the EFT flows

m2
∗ scales to zero as an integral power of Te, in Planck units. This ‘experimental’ observation

was promoted to a possible universal property of EFT strings. In its stronger form proposed in

[52], this is the content of the Integral Weight Conjecture (IWC):

m2
∗ ∼M2

P

( Te
M2

P

)w

w ∈ {1, 2, 3} , (2.2.12)

where w is the ‘scaling weight’ associated with the EFT string. Note also that, according to

the Emergent String Conjecture (ESC) [70], in some duality frame an EFT string with w = 1

should coincide with a critical string, while EFT string flows with w = 2, 3 should correspond

to decompactification limits, as further characterised in [71].

In order to motivate our definition of (2.2.10) we used purely EFT arguments. However, as

we already mentioned, EFT strings are ‘fundamental’ and their existence depends on the UV

completion of the theory. In the following discussion we will need to assume that the EFT string

4This notion is not to be confused with that of a critical string such as the heterotic or Type II string.
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lattice CEFT
S is actually fully populated. This non-trivial assumption is certainly realized in the

large classes of string theory models considered in [34], and can be more generically motivated

by invoking an EFT string version of the Completeness Conjecture [72], which is one of the

better tested quantum gravity criteria.5

Note that the EFT strings make sense only in a gravitational context. Indeed, the analysis of

[34] implies that the vanishing of an EFT string tension Te = M2
Pe

iℓi identifies a component

of the infinite field distance boundary ∂M∆
∞. Hence there is no (finite distance) point in field

space at which Te/M2
P → 0 and one cannot decouple the string dynamics from the gravitational

sector. Furthermore, in all the string theory realizations considered so far, the EFT strings

uplift to brane configurations which can be continuously deformed through the entire internal

compactification space. In this sense, the EFT strings can ‘probe’ the entire UV completion

of the EFT. We will indeed see that their quantum consistency provides additional non-trivial

constraints on the EFT.

Note also that by consistency any BPS string tension must be positive in the interior of P ≡ ∆∨,

and the condition ⟨ℓ, e⟩ ≥ 0 for any ℓ ∈ P can be taken as defining condition of the BPS string

charges e ∈ CS, that is: CS ∈ P∨ ∩ V ∗
Z . This implies that different boundary components of

∂P can be associated with the vanishing of different BPS string tensions [64]. In particular,

components of ∂P which are at infinite field distance can be detected by the vanishing of some

EFT string tensions, i.e. corresponding to some e ∈ CEFT
S . On the other hand, finite distance

components of ∂P can be detected by tensionless non-EFT BPS strings, i.e. with e ∈ CS−CEFT
S .

In this latter case, one should keep in mind that these finite distance boundaries are not so

sharply defined, since around them both perturbative and non-perturbative corrections become

relevant and can for instance generate strong corrections to the ‘bare’ formula (2.2.3). Other

strongly coupled regions are reached by radially moving away from the tip of P along different

directions. If one insists in using the ‘bare’ kinetic potential (4.1.4), these are at infinite field

distance and not associated with any tensionless string. Rather, in this limit all the BPS tensions

(2.2.3) diverge, and then the above description breaks down since it assumes that Te ≲ 2πM2
P

in order for the string to have a weak gravitational backreaction [51]. This is again not the

end of the story, since one again expects strong corrections which may completely change the

nature of these limits. In any case, we see how the behavior of the BPS tension (2.2.3) can be

a useful proxy to qualitative characterize the different boundary components of P.

5Recently [73] has found examples of effective field theories in higher dimensions which violate the Com-
pleteness Conjecture for BPS strings; at the same time, there always exists another theory differing only at the
massive level which does satisfy the BPS Completeness Conjecture. For our purpose of constraining the massless
EFT spectra this would in fact be sufficient.
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Chapter 3

Quantum Gravity Bounds from EFT

Strings

An increasing amount of evidence suggests that to couple a gauge theory to gravity, severe con-

straints have to be fulfilled at the quantum level, many more than one would expect from those

coming from ordinary quantum field theory considerations. For example, while in quantum field

theory, any anomaly free spectrum, no matter how contrived, leads to a consistent quantum

gauge theory, it is widely believed that when quantum gravity is taken into account, the number

of degrees of freedom should remain finite, due to general expectations on black hole entropy.

Determining more generally which constraints a quantum gauge theory has to fulfill in presence

of gravity is one of the objectives of the Swampland program [1] as reviewed, for instance, in

[4, 18, 74].

A particularly fruitful idea that has emerged is to derive consistency conditions on an effective

field theory by examining the inclusion of higher dimensional defects as probes in the theory.1

For instance, if a quantum gravity theory contains higher p-form gauge fields, the Completeness

Conjecture [72] implies that the theory must contain all the p-dimensional objects charged

under this symmetry whose charges are compatible with Dirac quantization. Consistency of

the worldvolume theory of these objects poses novel constraints on the bulk effective field theory

which might go far beyond the usual cancellation of gauge and gravitational anomalies. This

approach has been successfully applied to minimally supersymmetric gauge-gravity systems in

ten [36], eight [49, 77], six [36, 37, 78–80], and five [39] dimensions, as well as to theories with

sixteen supercharges in various dimensions [38]. In this thesis we will present quantum gravity

bounds in four-dimensional theories with minimal N = 1 supersymmetry.

An N = 1 supergravity theory in four dimensions typically contains light complex chiral scalar

1As one of the earlier incarnations of this idea, [75] derived for instance the K-theory tadpole cancellation
conditions in D-brane models by requiring absence of Witten anomalies on probe branes. See furthermore [76]
and references therein for an analysis of the correspondence between spacetime and worldvolume physics.
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fields parametrizing the field space of the theory. In the weak coupling regime, a shift symmetry

arises in an emergent axionic sector of the theory, which is only broken by non-perturbative

effects. In the limit where the latter are sufficiently suppressed, the axions can be dualized

into two-form fields. By the Completeness Conjecture of quantum gravity, these must couple

to string-like objects, which in fact can be half-BPS in four dimensions. This places the theory

precisely into a context, similar to that of [36–39, 49, 77–79], in which consistency conditions of

these axionic strings can be turned into new constraints on the four-dimensional effective field

theory.

As a complication specific to four dimensions, however, string-like objects induce a non-

negligible backreaction on the fields in the two directions normal to the string. This is owed

to the fact that the string worldsheet is of real codimension two in spacetime [81]. For general

strings, the backreaction questions the validity of applying the probe approximation to the

string and of viewing it as weakly coupled. Interestingly, in [34, 51] it was understood that for

a certain class of half-BPS strings a perturbative treatment of the string worldsheet theory is

nonetheless justified. The strings in question were called ‘EFT strings’ and have the property

that their backreaction on the moduli of the theory is precisely such that close to the string

core, the effective theory becomes weakly coupled: More precisely, asymptotically close to the

string core, the axionic shift symmetries which are needed to dualize the axions to two-form

fields become exact because the instantons dual to the string become suppressed. As it turns

out, the strings with this property are precisely of the form that they cannot decouple from

the gravitational sector, making them ideal candidates to probe the quantum gravity nature

of the theory in those asymptotic limits. The original motivation in studying such strings was

the conjecture of [34, 51] that any infinite distance limit in four dimensions can be obtained as

the endpoint of an RG flow induced by the backreaction of an EFT string. This idea has been

investigated further in [35, 71, 82] from various perspectives.

In this chapter of the thesis, we will explore the role of EFT strings as weakly coupled probes of

the four-dimensional N = 1 supersymmetric gauge-gravity sector. In this way, we will be able

to constrain the input data of an effective N = 1 supergravity theory beyond the consistency

conditions from anomaly cancellation in the bulk alone.

The constraints which we will find should be valid for all such theories with a standard coupling

to the axionic sector: By this we mean theories in which the gauge field strength and the

curvature two-form couple to the axions ai via terms of the form2

SEFT ⊃ Ci

∫
ai trF ∧ F + C̃i

∫
ai trR ∧R . (3.0.1)

As we will see, such couplings induce an anomaly inflow from the four-dimensional bulk to the

string worldsheet. As in [83] and in the higher-dimensional gravitational theories treated in

2The precise normalisation factors will be given in Section 2.1.
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[36, 37, 39, 78], this anomaly inflow must be cancelled by the two-dimensional anomalies on

the string worldsheet resulting from the presence of chiral matter on it. Importantly, for EFT

strings in the sense of [34, 51], we can reliably compute this worldsheet anomaly in terms of

the 1-loop perturbative anomaly generated by the modes along the string because the theory

flows to weak coupling close to the core of the string. This eventually leads to constraints on

the four-dimensional bulk theory. A notable difference to the analysis in [36, 37, 39, 78] is that

we do not assume that the string worldsheet theory flows to a conformal field theory in the

infra-red. Indeed, in four dimensions this may a priori not be justified due to the peculiarities

of the string, but is also not required as long as the string worldsheet is weakly coupled. The

EFT strings are precisely of this type.

Our main results are two types of constraints: First, (3.2.3) and (3.2.4) constrain the quantiz-

ation and the signs of the axionic curvature couplings in (3.0.1). In particular, (3.2.3) fixes the

saxionic Gauss-Bonnet term in a large class of gravitational N = 1 supersymmetric effective

actions to be positive. Our EFT string analysis therefore complements previous arguments for

the positivity of these higher-derivative terms [7, 60–63]. Second, (3.2.26) bounds the possible

ranks of the gauge groups which can be coupled to an axionic sector as in (3.0.1).

Our derivation of these bounds is subject to certain assumptions on the spectrum of the world-

sheet theory of the EFT strings, which we motivate in Section 3.1.3. These are manifestly

realised in explicit string theoretic settings and moreover appear natural more generally. Mod-

ulo these assumptions, whenever the EFT string derived constraints, in particular the bounds

(3.2.26) on the ranks of a gauge sector, are violated in a consistent quantum gravity with

minimal supersymmetry, our analysis implies that the theory cannot exhibit standard axionic

couplings of the form (3.0.1). This is a rather non-trivial prediction from a purely effective field

theoretic point of view.

Our results can be compared with the concrete constraints imposed on effective field theories in

string theory compactifications. In the context of F-theory compactifications, we will confront

the EFT string bounds (3.2.26) with the geometric bounds from the construction of explicit

Weierstrass models. The latter have been analysed in a series of works [84–87] in various

dimensions to constrain the ranks and matter content of gauge-gravity theories in F-theory.3 In

fact, based on our knowledge of the worldsheet theory of the EFT strings in F-theory following

from [94], we propose (3.3.36) as a stronger bound on the rank of the gauge group, which

should be valid in geometric F-theory compactifications with a smooth base (and minimal

supersymmetry).

To test the EFT string bounds in the heterotic context, we will first have to extend the analysis

in [34] of EFT strings in such setups by including also higher curvature corrections to the

effective action. This part of our analysis is in fact interesting by itself and reveals an intriguing

3More recent examples of the rich corpus of studies investigating the constraints on gauge data imposed by
string theory in various dimensions include [88–93].
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modification of the structure of the cone of EFT strings due to said correction terms. We will

compare the structure of the heterotic cone of EFT strings with its F-theory dual and discuss

the bounds on the theory. Furthermore, we give a preliminary analysis of the EFT string

derived bounds in M-theory on G2 manifolds, which can serve as a starting point for a more

detailed investigation in the future.

The content of this chapter, based upon [65], is organized according to the following structure: In

Section 2.1 we have already reviewed and specified the structure of the four-dimensional N = 1

supersymmetric gauge-gravity theories for which we will derive quantum gravity constraints.

In particular, we will explain the assumption that the effective field theory enjoys axionic

couplings of the form (3.0.1). In Section 2.2 the reader can find the review of the main concepts

underlying the ideas of EFT strings from [34, 51]. We then derive the anomaly inflow from

the bulk to the string worldsheet induced solely by the axionic couplings (3.0.1), up to an

interesting subtlety discussed in Section 3.1.2. Finally, we specify the main ingredients of the

weakly coupled non-linear sigma-model governing the N = (0, 2) supersymmetry worldsheet

theory. Of key importance for us is a discussion of the worldsheet modes in Section 3.1.3,

including our assumptions on their charges. Section 4.2.2 contains our main results: We derive

the EFT string consistency conditions by demanding that the anomaly inflow be cancelled

by the anomalies (reviewed in Appendix A.1) of the weakly coupled worldsheet spectrum. In

Section 3.3.1 we show how these constraints rule out simple otherwise consistent supergravities

as theories with a quantum gravity completion.

In the second part of the chapter, we test and apply our general results in explicit string

theoretic frameworks. In Section 3.3.2, we apply our bounds to F-theory compactifications

to four dimensions. We will illustrate the validity of the assumptions made in the general

setting in Section 3.1.3, and in addition motivate a sharpened bound on the rank of the gauge

group, given by (3.3.36) in F-theory on smooth three-fold bases. As another application, we

will derive the constraint that in any Type IIB orientifold with O3-planes (and no O7-planes),

the number of O3-planes is quantized in units of 16, which represents on its own a physics

post-diction of a mathematical theorem. Section 3.3.3 analyses the intriguing structure of the

cone of EFT strings in heterotic string theory including higher derivative corrections. In the

interest of readability, we have relegated some of the technicalities to Appendix A.3 and A.4.

In Appendix A.2 we corroborate our claims that the EFT string can be described by a weakly

coupled non-linear sigma model, by analysing the EFT strings in F-theory and the heterotic

theory in more detail. In Section 3.3.5 we apply our EFT string constraints in the context of

M-theory compactifications on G2 manifolds. Our conclusions and a list of open questions are

presented in the chapter 5.
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3.1 Anomaly inflow

In this section, we will show how the mechanism of anomaly inflow in our setting leads to a

tree-level worldsheet anomaly on the probe EFT string, that must be compensated by a suitable

1-loop ’t Hooft anomaly from the chiral matter supported on the worldsheet itself. We will also

argue and provide motivations for the specific form of the worldsheet matter content in the

asymptotic regime, that should be given by a weakly coupled non-linear sigma model. In doing

so, we will underline some subtleties that arise, like the contribution from the non-vanishing

Euler class of the worldsheet normal bundle, that will be crucial for the successive discussion

about concrete checks in string theory examples.

3.1.1 World-sheet anomaly from anomaly inflow

It is well known that axionic strings can support chiral fermions whose anomaly must be

cancelled by a bulk anomaly inflow [83]. As in this reference, the axion couplings appearing in

(2.1.7) and (2.1.16) produce an anomaly inflow to the EFT strings. Taking into account (2.1.9)

and (2.1.18), the four-dimensional couplings can be written in the form

2π

∫
aiI4,i = −2π

∫
hi1 ∧ I(0)3,i . (3.1.1)

Here we have introduced the one-forms hi1 = dai, which are globally defined even in presence

of axionic strings, and

I4,i ≡ dI
(0)
3,i ≡ − 1

8π2
CAB
i FA ∧ FB − 1

16π2
CI
i tr(F ∧ F )I −

1

192π2
C̃i tr(R ∧R) . (3.1.2)

The anomaly inflow is generated by the term (3.1.1) since, in presence of an axionic string of

charges ei and world-sheet W , the one-forms hi1 are not closed, but rather satisfy

dhi1 = eiδ2(W ) . (3.1.3)

Under general gauge transformations and local Lorentz transformations we can write δI
(0)
3,i =

dI
(1)
2,i , and then (3.1.1) produces the following localized contribution to the corresponding vari-

ation of the bulk action:

δSbulk = −2πei
∫

W
I
(1)
2,i . (3.1.4)

The same result can be obtained in the dual formulation, by taking into account that the

couplings (3.1.1) modify the dual field strengths into H3,i = dB2,i + 2πI
(0)
3,i . Since H3,i must

be gauge invariant, under gauge and local Lorentz transformations B2,i must transform non-

trivially:

δB2,i = −2πI
(1)
2,i . (3.1.5)
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Hence (2.2.2) produces precisely the same localized contribution to the gauge variation of the

action found above.

Since a consistent EFT must be anomaly free, the localized contribution (3.1.4) must be can-

celled by a string world-sheet anomaly δSquantum
W = +2πei

∫
W I

(1)
2,i . Via the usual descent

equation, this worldsheet anomaly corresponds to the anomaly polynomial

eiI4,i = −⟨CAB, e⟩
8π2

FA ∧ FB − ⟨CI , e⟩
16π2

tr(F ∧ F )I −
⟨C̃, e⟩
192π2

tr(R ∧R) . (3.1.6)

The last term is proportional to the bulk first Pontryagin class p1(M) = − 1
8π2 tr(R∧R). Since

TM |W = TW ⊕NW , where NW is the normal bundle of W , p1(M) can be decomposed into

p1(M) = p1(W ) + c1(NW )2 = − 1

8π2
tr(RW ∧RW ) +

1

4π2
FN ∧ FN , (3.1.7)

where FN = dAN is the field strength of the U(1)N connection AN induced on the normal bundle

by the bulk Riemannian connection. The last term of (3.1.6) then democratically contributes

to the gravitational and U(1)N anomaly of the world-sheet theory.

There can occur an additional, and more subtle, contribution to the U(1)N anomaly inflow.

It is analogous to the additional contribution associated with the type IIA NS5-brane normal

bundle, discussed in [95]. Adapted to our context – see also [96] – the key observation is that

the pull-back to the string world-sheet W of the singular right-hand side of (3.1.3) gives a

non-vanishing finite term. Indeed, in cohomology

δ2(W )|W = χ(NW ) , (3.1.8)

where χ(NW ) is the Euler class of the normal bundle NW . Since we have a distinguished

connection AN on NW , it is natural to promote (3.1.8) to an equation for (distributional)

differential forms, by identifying

χ(NW ) =
1

2π
FN . (3.1.9)

The restriction of (3.1.3) toW then contains a finite contribution coming from the delta-source:

dhi1|W =
ei

2π
FN . (3.1.10)

Topologically, this equation implies that the normal bundle NW must be trivial. Hence, we

know that we can globally write FN = dAN. Following [95] we will consider (3.1.10) as part of

the definition of our axionic strings.

By adopting the ‘magnetic’ axionic formulation, we can now write down the following additional
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EFT term localised on the string:

SN = − 1

24
Ĉi(e)

∫

W
hi1 ∧AN . (3.1.11)

Here the normalization is chosen for later convenience and we assume that the constants Ĉi(e)

necessarily depend on e since otherwise the term (3.1.11) would be independent of the EFT

string charge, which does not seem physically reasonable. By recalling (3.1.10) it is easy to see

that (3.1.11) is not invariant under U(1)N a gauge transformations δAN = dλN:

δSN = − 1

48π
Ĉi(e)e

i

∫

W
λN FN . (3.1.12)

Again, we may obtain this anomalous contribution in the dual description, in which the term

(3.1.11) does not appear and is encoded in a modification of the H3,i Bianchi identities:

dH3,i = 2πI4,i +
1

24
Ĉi(e)FN ∧ δ2(W ) . (3.1.13)

This can be solved by setting

H3,i = dB2,i + 2πI
(0)
3,i +

1

24
Ĉi(e)AN ∧ δ2(W ) . (3.1.14)

It follows that, in addition to (3.1.5), under local Lorentz transformations the variation of B2,i

receives also the localised contribution

δNB2,i = − 1

24
λN Ĉi(e)δ2(W ) , (3.1.15)

which, applied to (2.2.2), precisely reproduces (3.1.12).

The anomalous contribution (3.1.12) must be cancelled by a contribution 2π
∫
W Î

(1)
2,N to the

world-sheet anomaly, corresponding to the anomaly polynomial

Î4,N =
⟨Ĉ(e), e⟩
96π2

FN ∧ FN , (3.1.16)

where as usual ⟨Ĉ(e), e⟩ ≡ eiĈi(e). Hence, to sum up, the cancellation of the anomaly inflow

requires that the world-sheet anomaly polynomial must be given by

Iws
4 e = eiI4 i + Î4,N

= −⟨CAB, e⟩
8π2

FA ∧ FB − ⟨CI , e⟩
16π2

tr(F ∧ F )I

− ⟨C̃, e⟩
192π2

tr(RW ∧RW ) +
⟨C̃, e⟩+ ⟨Ĉ(e), e⟩

96π2
FN ∧ FN .

(3.1.17)
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Note that this anomaly polynomial does not include possible mixed U(1)N-U(1)A anomalies.

Indeed, they can be assumed to be cancelled by terms of the form (3.1.11) involving the U(1)A

gauge fields AA instead of AN and can then be ignored.

With the exception of the additional terms in (3.1.16), the anomalies encoded in (3.1.17) are all

proportional to the pairing of the couplings CAB
i , CI

i and C̃i with the charges ei characterising

the EFT string. Recall that the presence of such a string induces a flow of the form (2.2.9) in the

saxionic moduli space. In view of the relations (2.1.9), we therefore conclude that precisely those

gauge sectors U(1)A and GI that become weakly coupled as a consequence of the backreaction

of an EFT string, as encoded in the flow (2.2.9), can be detected by its world-sheet anomalies.

Gauge sectors which stay strongly coupled in presence of an EFT string, on the other hand,

never induce an anomaly on its worldsheet, and more generally the EFT string in question

does not detect them via its world-sheet. In particular this applies to gauge sectors with non-

standard axionic monodromies of the form mentioned after (2.2.4), which fall outside the class

of theories which can be constrained by the analysis of EFT string anomalies as studied in the

present work.

The conditions (2.1.13) can be rewritten in terms of EFT string charges as

{⟨CAB, e⟩} ≥ 0 , ⟨CI , e⟩ ≥ 0 , ∀e ∈ CEFT
S , (3.1.18)

where the first inequality means that the matrix ⟨CAB, e⟩ is positive semi-definite. This implies

that the coefficients of the gauge world-sheet anomaly polynomial (3.1.17) have semi-definite

sign.

3.1.2 UV origin of the additional world-sheet contribution

As will be made more explicit in the next subsection, the constants Ĉi(e) introduced in (3.1.11)

must satisfy appropriate quantization conditions and should then be associated with some

additional discrete structure defining the EFT. In a generic N = 1 four-dimensional EFT there

is no natural candidate, but the more constrained higher dimensional supersymmetric theories

can indeed be characterized by additional discrete data. This suggests that the presence of

a term (3.1.11) may be interpreted as the manifestation of some hidden higher dimensional

structure which can be detected by the EFT string.

More concretely, consider a situation in which the axions ai come from the dimensional reduction

of the U(1) vectors Ai of an N = 1 five-dimensional supergravity. The latter is characterized

by a set of quantized constants [97]

Ĉijk ∈ Z , (3.1.19)

which are totally symmetric in the indices and in particular define the five-dimensional Chern-

Simons term

S5d =
1

6(2π)2
Ĉijk

∫
Ai ∧ F j ∧ F k . (3.1.20)

25



The four-dimensional axionic strings uplift to five-dimensional monopole strings. For such

monopole strings of charge vector e, the term (3.1.20) generates the inflow contribution [39, 96,

98, 99]

−2π

24
Ĉijke

iejek
∫

W
p
(1)
1 (N̂W ) (3.1.21)

to the SO(3) normal bundle anomaly of the monopole, where p
(1)
1 (N̂W ) is the descent two-

form associated with the first Pontryagin class of the normal bundle N̂W . Under dimensional

reduction to four dimensions the normal bundle splits as N̂W = NW ⊕ L, where L is a trivial

real line bundle, and then (3.1.21) precisely takes the form (3.1.12) with

Ĉi(e) = Ĉijke
jek . (3.1.22)

Hence, with this choice, (3.1.11) encodes the information on a microscopic five-dimensional

structure that can be detected by the EFT strings. One can also more directly reproduce

(3.1.11) from the dimensional reduction of (3.1.20), as in [96]. Since this effect is local, all that

is required is a five-dimensional EFT term of the form (3.1.20), without the need to assume

that the five-dimensional configuration globally preserves eight supercharges.4 Furthermore,

the reduction from five to four dimensions would imply a leading contribution to the Kähler

potential of the form (2.2.11) with P (s) = Ĉijks
isjsk, inherited by the five-dimensional super-

symmetric structure, which would correlate a world-sheet term of the form (3.1.21) to the bulk

EFT structure. In the sequel we will more explicitly illustrate these ideas in concrete string

theory realizations.

Let us now investigate if the term (3.1.11) can instead detect a six-dimensional minimally

supersymmetric structure. As reviewed for instance in [36], in six dimensions the N = (1, 0)

tensor multiplet sector is characterized by a symmetric matrix Ĉij and the strings act as both

electric and magnetic sources for the B2,i fields. The Green-Schwarz term produces an anomaly

inflow polynomial proportional to Ĉije
iejχ(N̂W ), where χ(N̂W ) is the Euler class of the string

normal bundle N̂W which has SO(4) ≃ SU(2)r × SU(2)l structure group. It would then be

natural to guess that in four dimensions this effect can again be captured by (3.1.11), by

choosing Ĉe ∝ Ĉije
j . However, this naive guess turns out to be wrong. Indeed, consider a

compactification from six to four dimensions. Since the string is point-like in the compact two

dimensions, its normal bundle splits into N̂W = NW ⊕ L⊕ L where L is again trivial real line

bundle. This implies that χ(N̂W ) = χ(NW )χ(L⊕L) = 0. Hence, even though Ĉi(e) ∝ Ĉije
j has

the right structure to be associated with a six-dimensional supergravity, apparently no anomaly

survives in the reduction to four dimensions. We are then led to exclude this possibility as being

physically irrelevant.

Supergravity theories in d > 6 dimensions are too rigid to allow for a choice of some discrete

4Note that a simple circle compactification from five to four dimensions would preserve eight supercharges
and contain a KK U(1) field. This KK U(1) would be afflicted by monodromy effects of the kind discussed in
the paragraph after (2.2.4) – see for instance [68] – which are not covered by our analysis.
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data, which could then enter Ĉi(e). For these reasons, in the rest of this thesis we will assume

(3.1.22) whenever we will need a more explicit form of Ĉi(e), otherwise keeping it generic.

3.1.3 EFT string as weakly coupled NLSM

The world-sheet anomaly polynomial (3.1.6) has been fixed by anomaly inflow arguments, a

procedure which basically uses only the axionic nature of the EFT strings. While EFT strings

naturally allow for a coupling to a weakly-coupled bulk sector at the EFT cut-off scale Λ,

they generically lead to infra-red divergences due to their large backreaction. In particular,

one cannot a priori assume that their world-sheet theory flows to a CFT, as was for instance

possible in the higher-dimensional context of [36, 39].

However, the analysis of explicit UV complete models carried out in Appendix A.2 provides

evidence that also the world-sheet sector supported by EFT strings can be considered weakly-

coupled at the EFT cut-off scale, and can then be described by a weakly-coupled non-linear

sigma model (NLSM). This can be understood as follows. In string theory models EFT strings

are microscopically associated to branes which can freely propagate in the internal compactific-

ation space, which then determines the geometry of the effective two-dimensional NLSM. One

may be worried that the string backreaction could obstruct the possibility to make its NLSM

weakly coupled. The key point is that for EFT strings this does not occur, and actually the

EFT string flow tends to render the NLSM more weakly coupled.

Recall the observation made after (2.2.12) and suppose first that w = 2 or 3. The Emergent

String Conjecture [70] implies that in some duality frame the EFT flow involves the decom-

pactification of some internal direction, as has been made more precise for the EFT string

limits in [71]. The string theory models of Appendix A.2 clearly indicate that this dynamical

decompactification makes the effective two-dimensional NLSM more and more weakly coupled.

If instead w = 1, then according to the Emergent String Conjecture there should exist a duality

frame in which the EFT string is a critical string whose flow drives the dilaton to infinity (i.e.

weak coupling) [34]. The remaining moduli do not flow and we may rescale them in order

to make the compactification space arbitrarily large, at least if the dual description admits a

geometric phase. In this regime the string certainly admits a weakly-coupled NLSM description.

In the non-generic cases in which the large volume regime does not exist, as for instance the

rigid Landau-Ginzberg-like theories of the type considered in [100], the string is critical in the

deep UV and then it should - and can - instead be directly treated as a CFT.

Motivated by these observations, we propose that the world-sheet sector supported by EFT

strings generically admits a weakly-coupled NLSM description and we will proceed with this

working assumption.5 Precisely in the non-generic cases in which this is not possible, one can

rephrase the following discussion in CFT terms (along the lines of [38]) and arrive at the same

5More precisely, some EFT string may host a ‘spectator’ strongly coupled subsector, which does not participate
in the cancellation of the anomaly inflow and does not interfere with the weakly coupled NLSM dynamics.
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results. Hence in the following we will focus on the NLSM description.

The NLSM includes the universal ‘center of mass’ sector, which is described by the Green-

Schwarz (GS) formulation of [67]. We can use this formulation to make it clear why these strings

locally preserve N = (0, 2) supersymmetry. Besides the world-sheet embedding coordinates, the

GS-string [67] supports a GS fermion Θα, transforming as a four-dimensional chiral spinor. The

preserved supersymmetry is determined by the kappa-symmetry δΘα = κα with κα = Γα
βκβ .

Here we are using the index notation of [50] and Γα
β is the kappa symmetry operator, which

can be identified with a two-dimensional chiral operator. In a locally adapted reference frame in

which the string is locally stretched along the (x0, x3)-directions, we have that Γα
β = (σ3)α

β . As

in [101], we can relabel the bulk spinor components as two-dimensional chiral components, e.g.

Θα = (Θ−,Θ+) and Θα = (Θ−,Θ+) = (Θ+,−Θ−). The projection condition on κα = (κ−, κ+)

imposes that κ+ = 0 and the kappa-symmetry then implies that ρ+ ≡ Θ+ is the physical

right-moving component of Θα, while Θ− is pure gauge and can be set to zero. We can also use

local static gauge and combine the transversal embedding coordinates into u = x1 + ix2. Then

u and ρ+ can be reorganized into the ‘universal’ N = (0, 2) two-dimensional chiral superfield

U = u+
√
2θ+ρ+ − 2iθ+θ̄+∂++u . (3.1.23)

We follow the conventions of [101, 102] – see also [103] for an extensive introduction toN = (0, 2)

two-dimensional models. The components u and ρ+ have charges 1 and 1
2 , respectively, under

a U(1)N rotation. We can then interpret U(1)N as an R-symmetry which acts also on θ+ with

charge JN[θ
+] = 1

2 , so that JN[U ] = 1.

The N = (0, 2) NLSM [104, 105] supported by an EFT string generically includes also an ‘in-

ternal’ sector. In particular, it can include nC additional ‘non-universal’ scalar chiral multiplets

Φ = φ+
√
2θ+χ+ − 2iθ+θ̄+∂++φ , (3.1.24)

where φ is a complex scalar and χ+ is a right-moving fermion. (For simplicity, in (3.1.24)

we are suppressing indices running from 1 to nC, since we will not need them.) The bosonic

components φ parametrize the ‘internal’ NLSM target space MNLSM (while (3.1.23) has the

‘external’ four-dimensional spacetime as its target space), and the fermions χ+ take values

in the corresponding tangent bundle TMNLSM. Representing internal degrees of freedom, the

chiral superfields Φ are neutral under the normal U(1)N rotational symmetry: JN[Φ] = 0. Since

JN[θ
+] = 1

2 , the right-moving fermions χ+ therefore have U(1)N charge JN[χ+] = −1
2 .

Due to the minimal amount of supersymmetry, some of the directions in the NLSM moduli

space may be obstructed at higher order.6 The obstructed directions should be specified by

the vanishing of nN holomorphic superpotentials Ja(ϕ) in the N = (0, 2) theory. In order to

6In the presence of such obstructions, it is clear that only (some of) the unobstructed directions may admit
a gauged axionic shift symmetry, see again Section 3.2.2 for details.
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implement these constraints, we must include a corresponding number nN of neutral Fermi

multiplets Λa
− = λa− + . . ., and add the superpotential term

∫
dθ+Λa

−Ja(Φ) + c.c. . (3.1.25)

Here λa−, the lowest component of the Fermi superfield Λa
−, is a left-moving chiral fermion. For

such a superpotential to exist, the Fermi multiplets Λa
− must carry U(1)N charge JN[Λ

a
−] =

1
2 .

Furthermore we require Λa
− and Ja(Φ) to be uncharged under the spacetime gauge group. This

requirement is motivated by our experience with explicit string theory models – see in particular

Section 3.3.2 – and comes from the microscopic Green-Schwarz origin of the fermions λa−.

Indeed, EFT strings typically uplift to ‘movable’ brane configurations supporting corresponding

Green-Schwarz fermions, which are neutral under the bulk gauge symmetries.7

A priori, the number of U(1)N charged Fermi multiplets Λa
− and the number of unobstructed

moduli of the NLSM might be uncorrelated. However, we propose that the NLSM should obey

a certain minimality principle: The number of Fermi multiplets Λa
−, nN, should be given by the

minimal number needed in order to account for the potential higher order obstructions in the

target space of the NLSM. In other words, at the generic point of the moduli space the number

of unobstructed directions should correspond to

neffC := nC − nN . (3.1.26)

In the sequel, we will assume this principle to hold at least for generators of the cone CEFT
S of

EFT strings. The intuition between this non-trivial assumption is that the U(1)N charged Fermi

multiplets Λa
− pair up with obstructed gauge-neutral chiral multiplets to form the analogue of

a ‘vector-like pair’, i.e. an N = (2, 2) chiral multiplet, leaving behind a collection of nC − nN

genuinely chiral N = (0, 2) supermultiplets associated with the unobstructed directions in

the moduli space of the NLSM. The minimality principle then states that there are no extra

unpaired U(1)N Fermi multiplets left.

In particular, the minimality principle implies that nC − nN ≥ 0, at least for genuinely (0, 2)

EFT strings.8 On the other hand, in some cases the EFT string may support an enhanced UV

N = (2, 2) or higher non-chiral supersymmetry. For this to be possible, the Fermi multiplets

Λa
− necessarily pair with all the nC + 1 chiral multiplets, including the universal one (3.1.23).

As a result, a minimal non-chiral N = (2, 2) symmetry requires that nC−nN = −1 and nF = 0.

Hence, in general

nC − nN ≥ −1 , (3.1.27)

7In the Green-Schwarz formulation, branes are described by their embedding in the bulk superspace, whose
odd coordinates correspond to the brane fermions.

8Actually, we generically expect that nC − nN ≥ 1, since generic EFT strings are associated with ‘movable’
internal configurations, whose deformations should be represented by unobstructed chiral multiplets. The extreme
case nC − nN = 0 should instead be associated with the non-generic purely stringy rigid w = 1 EFT string flows
mentioned above.
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where the bound is saturated in presence of enhanced non-chiral world-sheet supersymmetry,

while nC − nN ≥ 0 for strictly chiral world-sheet supersymmetry.

The subset of the bosonic fields φ corresponding to the unobstructed moduli of the NLSM can

enjoy an axionic shift symmetry which can be gauged by the bulk gauge fields. We will describe

this effect in Section 3.2.2. In principle, some of the chiral multiplets might also carry a linear

realization of the bulk gauge algebra.

Finally, the internal world-sheet sector can include also nF chiral Fermi multiplets Ψ− = ψ−+. . .

which are neutral under U(1)N, taking values in some vector bundle defined on the NLSM target

space [103–105]. This type of Fermi multiplets can be charged under the four-dimensional gauge

symmetry and couple to the corresponding gauge vectors.

To sum up, we will henceforth assume that an EFT string supports a weakly-coupled N = (0, 2)

NLSM, described by nC+1 chiral multiplets, nN U(1)N charged Fermi multiplets as well as nF

U(1)N neutral Fermi multiplets. The relevant possible charges of the corresponding world-sheet

fermions are summarized in the following table:

Fermion # U(1)N charge U(1)A charge GI repr. (0,2) multiplet

ρ+ 1 1
2 0 1 chiral U

χ+ nC −1
2 ∗ ∗ chiral Φ

ψ− nF 0 qA rI Fermi Ψ−
λ− nN

1
2 0 1 Fermi Λ−

(3.1.28)

3.2 Anomaly matching and quantum gravity constraints

We are now in a position to derive in this section the main results of this chapter, the quantum

gravity bounds (3.2.4) and (3.2.26). The strategy is to use that the ’t Hooft anomaly associated

with the world-sheet theory supported by the EFT string must match the expression (3.1.6),

which was obtained by requiring the cancellation of the anomaly inflow contribution from the

four-dimensional N = 1 supersymmetric theory.

3.2.1 Gravitational/U(1)N anomalies and curvature-squared bounds

Let us start with the gravitational and U(1)N anomalies. From the fermionic charges (3.1.28)

the corresponding anomaly polynomial is [106]

Iws
4 e|grav+U(1)N = −nF − nC + nN − 1

192π2
tr(RW ∧RW ) +

nC − nN + 1

32π2
FN ∧ FN . (3.2.1)

Our conventions for the computation of the anomaly polynomial are summarised in Appendix

A.1.

The ’t Hooft anomaly (3.2.1) must match the third line of (3.1.17). We then arrive at the
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identifications

⟨C̃, e⟩ = nF − nC + nN − 1 , (3.2.2a)

⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ = 3(nC − nN + 1) . (3.2.2b)

Note that, according to the above characterization of the world-sheet spectrum, an enhanced

non-chiral world-sheet supersymmetry precisely corresponds to the separate vanishing of ⟨C̃, e⟩
and ⟨Ĉ(e), e⟩.

Since by the assumed EFT string completeness the EFT string charges should generate the

entire lattice of string charges, (3.2.2a) implies that

⟨C̃, e⟩ ∈ Z ∀e ∈ CEFT
S , (3.2.3)

which refines the EFT quantization condition (2.1.20). Furthermore, by combining the matching

condition (3.2.2b) with (3.1.27) we deduce the bound

⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ ∈ 3Z≥0 ∀e ∈ CEFT
S , (3.2.4)

which should be saturated for enhanced non-chiral world-sheet supersymmetry. The equations

(3.2.2) also imply that

4⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ = 3nF , (3.2.5)

from which, since nF ≥ 0, we can then extract another similar bound:

4⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ ∈ 3Z≥0 ∀e ∈ CEFT
S . (3.2.6)

We observe that (3.2.6) follows from (3.2.4) if ⟨C̃, e⟩ ≥ 0, and vice versa if ⟨C̃, e⟩ ≤ 0.

If Ĉ(e) is non-trivial, in principle (3.2.4) and (3.2.6) allow for negative ⟨C̃, e⟩, for some e ∈ CEFT
S .

On the other hand, in the explicit string theory models that we consider in this thesis, this

does not occur. It is then tempting to promote this observation to a general property of

quantum gravity models and, in this sense, we can regard (3.2.4) as the strongest bound. It

would certainly be more satisfactory to derive this additional condition from a self-contained

quantum gravity argument, but we leave this interesting question to the future.

3.2.2 Gauge anomalies and rank bound

We now turn to the world-sheet ’t Hooft gauge anomalies, whose polynomial should match the

second line of (3.1.17). The positive semi-definite coefficients ⟨CAB, e⟩ and ⟨CI , e⟩ appearing

in (3.1.17) – see (3.1.18) – identify the gauge sector that ‘interact’ with the EFT string, in the

sense that the corresponding (s)axionic couplings in (2.1.11) change along the EFT string flow
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(2.2.9). In the sequel we will focus on the rank of this gauge sector, which is identified as

r(e) ≡ rank{⟨CAB, e⟩}+
∑

I|⟨CI ,e⟩>0

rk(gI) , (3.2.7)

as one can easily realize by going to a basis of U(1) gauge fields in which the symmetric matrix

⟨CAB, e⟩ is diagonalized.9 In particular, we aim at deriving an upper bound on r(e) from the

anomaly matching.

First of all, the Fermi multiplets in (3.1.28) yield the following contribution to the anomaly

polynomial Iws
4 e|gauge:

− 1

8π2
kAB
F (e)FA ∧ FB − 1

16π2
kIF(e)tr(F ∧ F )I , (3.2.8)

with

kAB
F (e) ≡

∑

q∈Fermi

qAqB , kIF(e) ≡
∑

rI∈Fermi

ℓ(rI) . (3.2.9)

The anomaly matching condition implies that these coefficients provide positive semi-definite

contributions to the total anomaly coefficients ⟨CAB, e⟩ and ⟨CI , e⟩ appearing in (3.1.17). In

particular

rF(e) ≡ rank{kAB
F (e)}+

∑

I|kIF(e)>0

rk(gI) (3.2.10)

can be regarded as the contribution of the Fermi multiplets to r(e).

Since we are interested in the rank of the gauge algebra, we can actually focus on the Cartan

sub-algebra hI ⊂ gI of each simple gauge factor. On each hI we can pick a basis HI
α, where

α = 1, . . . , rk(gI), normalised so that tr(HI
αH

I
β) = 2δαβ . If we turn off all the non-Cartan field

strength components in (3.2.8), the remaining purely U(1) anomaly polynomial is

− 1

8π2
kAB
F (e)FA ∧ FB , (3.2.11)

where FA = (FA, FIα) collectively represent the remaining U(1) field strengths, and the sym-

metric matrix kAB
F has block-diagonal entries given by kAB

F and kIF(e)δIα,Iβ . The rank of the

matrix kAB
F can be identified with rF(e) as defined in (3.2.10). On the other hand we can still

apply the first formula in (3.2.9) to this extended abelian sector and write

kAB
F =

∑

q∈Fermi

qAqB . (3.2.12)

Hence, the matrix kAB
F is the sum of nF matrices of the form qAqB, which have either rank 0

9More explicitly, one can always diagonalize the matrix ⟨CAB , e⟩ by means of an orthogonal matrix OA
B .

Then ÂA ≡ OA
BAB have diagonal (s)axionic contributions to the kinetic terms couplings, with rank{⟨CAB , e⟩}

non-vanishing positive diagonal entries.
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or 1, if either all the qA charges are vanishing or not, respectively. We can now use the general

property

rank(M1 +M2) ≤ rank(M1) + rank(M2) , (3.2.13)

which holds for any pair of matricesM1,M2. Repeatedly applied to (3.2.12) and combined with

(3.2.5), it leads to

rF(e) ≤ nF =
4

3
⟨C̃, e⟩+ 1

3
⟨Ĉ(e), e⟩ . (3.2.14)

Consider next the anomaly contribution associated with the chiral multiplets Φ. If some of

these multiplets carry a linear realisation of the gauge group, the charged chiral fermions χ+

yield a negative definite contribution to the anomaly polynomial. One can convince oneself that

this cannot increase the bound on the total rank of the gauge algebra. We therefore turn to the

remaining possibility that some of the chiral fields φ corresponding to the unobstructed moduli

enjoy an axionic shift symmetry which is gauged by the four-dimensional gauge symmetry.

According to the minimality principle of the previous section, the number of unobstructed

directions is neffC := nC − nN. One can then introduce a set of ‘axionic’ N = (0, 2) chiral

multiplets τr ≃ τr + 1, with r = 1, . . . , nA ≤ neffC , which transform as

τr → τr +
1

2π
Nr

AλA (3.2.15)

under the bulk U(1) gauge transformations AA → AA + dλA. Note that the fermions in the

chiral multiplets τr do not transform under (3.2.15) and then do not contribute to the quantum

anomaly. On the other hand, following [107, 108] one can write down the following Green-

Schwarz-like contributions to world-sheet effective action,

−MAr

∫

W
Reτr FA − 1

8π
QAB

∫

W
AA ∧AB , (3.2.16)

with

QAB = −QBA ≡ (MN)AB − (MN)BA , (3.2.17)

where (MN)AB ≡ MArNr
B. Note that the term (3.2.16) admits a supersymmetric extension

in terms of N = (0, 2) world-sheet vector multiplets [107, 108], while it cannot be added to an

N = (2, 2) theory [109].

From (3.2.15) we see that the variation of (3.2.16) under a gauge transformation AA → AA+dλA
gives

− 1

4π
kAB
C (e)

∫

W
λA FB , (3.2.18)

where we have introduced the symmetric matrix

kAB
C (e) ≡ (MN)AB + (MN)BA . (3.2.19)
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This classical violation of the gauge symmetry has the form of an anomaly associated with the

polynomial

− 1

8π2
kAB
C (e)FA ∧ FB . (3.2.20)

In particular, we can define a corresponding rank

rC(e) ≡ rank{kAB
C (e)} . (3.2.21)

Note that the rank of the matrix (MN)AB, as well as its transposed, cannot exceed nA ≤ neffC =

nC − nN. Hence applying the property (3.2.13) to (3.2.19) and the identity (3.2.2b), we obtain

the upper bound

rC(e) ≤ 2neffC =
2

3
⟨C̃, e⟩+ 2

3
⟨Ĉ(e), e⟩ − 2 . (3.2.22)

By combining (3.2.11) and (3.2.20) we arrive at the maximally abelian anomaly polynomial

− 1

8π2
kAB(e)FA ∧ FB (3.2.23)

with

kAB(e) ≡ kAB
F (e) + kAB

C (e) . (3.2.24)

By anomaly matching, this matrix must be positive semi-definite and its rank provides an upper

bound for (3.2.7).10 Hence, by recalling (3.2.14) and (3.2.22) and applying again (3.2.13), we

can conclude that

r(e) ≤ rF(e) + rC(e) ≤ nF + 2neffC . (3.2.25)

In view of (3.2.14) and (3.2.22), we can rewrite this in its final form

r(e) ≤ r(e)max ≡ 2⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ − 2 ∀e ∈ CEFT
S . (3.2.26)

The bounds (3.2.4), (3.2.6) and (3.2.26) are the main results of this chapter. In particular,

(3.2.26) encodes a correlation between the ranks of the EFT gauge group and higher curvature

corrections which is completely unexpected from a purely low-energy EFT viewpoint. We will

illustrate the power of these bounds in Section 3.3.1. We stress that the bounds only apply

to gauge sectors exhibiting a coupling of the form (2.1.11) and (2.1.19), from which they were

derived. Furthermore, the bound (3.2.26) (but not (3.2.4) and (3.2.6)) relies on our assumption

that the number of unobstructed moduli of the NLSM is given by (3.1.26).

We expect the bound (3.2.26) to be rather conservative because in many situations only a

subset nA of the neffC unobstructed chiral multiplets enjoy gauged axionic shift symmetries and

10Possible charged chiral multiplets would provide negative semi-definite contributions, which can only lower
this upper bound.
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hence participate in the anomaly matching. This will be elucidated further in concrete F-

theoretic realisations in Section 3.3.2. Based on our explicit knowledge of the nature of the

chiral multiplets in the NLSM of the EFT strings in F-theory, we will in fact propose the

stronger bound (3.3.36) on the rank of the four-dimensional gauge group, which is expected

to hold in F-theory compactifications on smooth geometric backgrounds not admitting extra

isometries. In other cases, however, such as toroidal heterotic orbifolds commented on after

(3.3.104), the bound (3.2.26) can in fact be saturated. Hence, even though in many instances

the actual gauge group is of considerably smaller rank than the bound in (3.2.26), we have to

content ourselves with this constraint in a general setting.

3.2.3 Some comments

So far we have been agnostic about the contribution Ĉ(e) to the anomaly inflow and the

resulting quantum gravity bounds. In order to extract more precise information from (3.2.4),

(3.2.6) and (3.2.26), we now analyse the possibilities identified in Section 3.1.2 in more detail,

that is, either vanishing Ĉ(e) or a contribution of the form (3.1.22). Let us first assume that

Ĉ(e) ≡ 0. In this case (3.2.4) and (3.2.6) reduce to

⟨C̃, e⟩ ∈ 3Z≥0 ∀ e ∈ CEFT
S . (3.2.27)

This shows that not only are the constants C̃i integral, rather than half-integral as in (2.1.20),

but actually ⟨C̃, e⟩ should be a non-negative multiple of 3. Hence either C̃ is vanishing or

it lies in the cone CI. Recalling the definition (2.1.3) of the saxionic cone, we therefore see

that (3.2.27) implies ⟨C̃, s⟩ ≥ 0 (with equality only for C̃ = 0), which then follows from the

quantum consistency of EFT strings, at least if Ĉ(e) ≡ 0. Note that the inequality (3.2.27)

should be saturated precisely by the EFT strings with enhanced non-chiral supersymmetry,

while for strict chiral world-sheet supersymmetry we should actually have ⟨C̃, e⟩ ≥ 3.11

Consider next an anomaly contribution of the form (3.1.22). This implies that

⟨Ĉ(e), e⟩ = Ĉ(e, e, e) ≡ Ĉijk e
iejek , (3.2.28)

where Ĉijk ∈ Z are associated with some underlying five-dimensional N = 1 structure which

can be detected by the EFT string. Since the EFT string charges form the cone CEFT
S , if the

condition (3.2.4) holds for a given string charge vector e ∈ CEFT
S , then it should also hold for

e′ = Ne, where N > 0 is any positive integer. If Ĉ(e, e, e) ̸= 0, by imposing the condition

(3.2.4) for e′ = Ne with N → ∞, we obtain N3
[
Ĉ(e, e, e) +O(1/N2)

]
≥ 0 and then

Ĉ(e, e, e) ≥ 0 . (3.2.29)

11If one considers models admitting a geometric higher dimensional UV-completion, by recalling (3.2.2b) and
footnote 8 this bound could be further restricted to ⟨C̃, e⟩ ≥ 6.
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We furthermore observe that the condition (3.2.29) follows also from the five-dimensional ar-

guments of [39], and should then hold for our setting as well.

Note that (3.1.22) and (3.2.29) also imply that ⟨Ĉ(e), e⟩ ≤ ⟨Ĉ(Ne), Ne⟩ if N ≥ 1. Since the

rank of the gauge group interacting with an EFT string does not change if we rescale the string

charge vector, that is r(Ne) = r(e), we deduce that the strongest bounds (3.2.26) on the gauge

group rank are obtained by using primitive EFT charge vectors. Of course this is also true if

Ĉ(e) ≡ 0. Furthermore, applying (3.2.13) to the matrix ⟨CAB, e1 + e2⟩, we obtain

r(e1 + e2) ≤ r(e1) + r(e2)

≤ 2⟨C̃, e1 + e2⟩+ ⟨Ĉ(e1), e1⟩+ ⟨Ĉ(e1), e2⟩ − 4

≤ 2⟨C̃, e1 + e2⟩+ ⟨Ĉ(e1), e1⟩+ ⟨Ĉ(e1), e2⟩ − 2 .

(3.2.30)

Now, a convexity property of the form

⟨Ĉ(e1), e1⟩+ ⟨Ĉ(e2), e2⟩ ≤ ⟨Ĉ(e1 + e2), e1 + e2⟩ (3.2.31)

would guarantee that, if e1 and e2 satisfy (3.2.26) then e1 + e2 satisfies (3.2.26) too. Hence,

in this case the strongest constraints would be obtained by considering the generators of the

cone CEFT
S of EFT string charges, that is, the elementary EFT string charges. This property

has a clear physical interpretation. One can think of any EFT string as a (possibly threshold)

bound state formed by recombining elementary EFT strings. According to this property, if

these elementary strings are separately consistent, then their bound state should be consistent

too.

The condition (3.2.31) is trivially satisfied if Ĉ(e) ≡ 0. If instead (3.1.22) holds, (3.2.31) is for

instance guaranteed if

Ĉ(e1, e2, e3) ≥ 0 ∀e1, e2, e3 ∈ CEFT
S . (3.2.32)

In [39] an analogous property has been proposed to hold for general N = 1 five-dimensional

supergravities compatible with quantum gravity. This property would descend to (3.2.32) in

our four-dimensional EFTs. We will see that (3.2.32), and hence (3.2.31), indeed holds in the

explicit string models that we will consider.

Note also that these results trivialize in the case of enhanced non-chiral world-sheet supersym-

metry, since in this case ⟨CAB, e⟩ = ⟨CI , e⟩ = ⟨C̃, e⟩ = ⟨Ĉ(e), e⟩ = 0.

Finally, according to the general formulation with three-form potentials of [67], the two-form

potentials B2,i could be gauged under some two-form gauge transformations. This effect makes

some axionic strings ‘anomalous’, forcing them to be the boundary of membranes. It would be

interesting to extend the above arguments to these kinds of strings.
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3.3 Test of the quantum gravity bounds

After having derived the bounds in the previous sections, we now turn to checking them in

explicit models. Those will be effective N = 1 theories of gravity in 4 dimensions coming from

string theory compactifications and include examples from type IIB/F-theory on smooth bases,

heterotic models and M-theory on G2 manifolds. In all cases we will find agreement with our

most conservative bounds and in some of them also in their stronger form. We will motivate why

this is to be expected by using geometric considerations in the F-theory models. In addition,

we will underline links with known and conjectured geometric results. In the heterotic models,

it will be stressed the interplay among different contributions to the effective action, whose

presence is necessary for satisfying our proposed consistency conditions.

3.3.1 Simple examples

In this section we illustrate the implications of the quantum gravity constraints found in Section

4.2.2 for simple EFT models.

Let us start with the most basic possible example: The gauge group G consists of a simple

gauge group factor and the perturbative EFT regime is associated with a single chiral field

t = a+is, whose saxion s parametrizes the one-dimensional saxionic cone ∆ = R>0, plus possible

additional chiral ‘spectators’ ϕ. According to the general definition (2.2.10), CEFT
S = Z≥0 then

represents a single tower of EFT strings, labeled by the charge e ∈ Z≥0.

By supersymmetry, the relevant structure is specified by the saxionic couplings appearing in

(2.1.7) and (2.1.16). Let us assume that these take the form

− 1

8π

∫
(Cs+ . . .) tr(F ∧ ∗F )− 1

192π

∫
(C̃s+ . . .)EGB ∗ 1 , (3.3.1)

where EGB is the Gauss-Bonnet combination (2.1.17) and the ellipses represent possible addi-

tional constant and ϕ-dependent terms. As discussed in the previous sections, in general this

is a non-trivial assumption about the EFT.

Furthermore we first suppose that the coupling (3.1.11) is vanishing. According to the discussion

in Section 3.1.2, this means that we are considering models which do not have a hidden five-

dimensional structure. At the low-energy EFT level the constants C and C̃ should just satisfy

the quantization conditions (2.1.12) and (2.1.20) and could otherwise be chosen quite arbitrarily.

On the other hand, the constraints derived in Section 4.2.2 imply that this is not true for EFTs

admitting a quantum gravity completion. First of all, by (3.2.3) we must have C̃ ∈ Z, rather

than just 2C̃ ∈ Z. Furthermore, since (3.1.11) is vanishing, (3.2.4) and (3.2.6) reduce to (3.2.27)

and then

C̃ = 3k ≥ 0 with k ∈ Z≥0 . (3.3.2)

We could actually be more precise: either C̃ = 0, which means that the EFT strings should
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support an enhanced non-chiral supersymmetry, or otherwise C̃ = 3k̃ + 3 with k̃ ∈ Z≥0.

Consider then the bound (3.2.26). In the present single saxion example, if C > 0 we can simply

set r(e) = rk(g) and (3.2.26) reduces to the bound

rk(g) ≤ 2C̃ − 2 = 6k̃ + 4 , k̃ ∈ Z≥0 (3.3.3)

on the rank of the Lie algebra associated with the gauge group G.

Let us now allow for a non-trivial coupling (3.1.11) which, in view of (3.1.22), takes the form

− 1

24
Ĉe2

∫

Σ
h1 ∧AN , (3.3.4)

where Ĉ ∈ Z by (3.1.19). Now (3.2.4) and (3.2.6) require that

C̃e+ Ĉe3 ∈ 3Z≥0 , 4C̃e+ Ĉe3 ∈ 3Z≥0 ∀e ∈ Z≥0 . (3.3.5)

The conditions can be solved by setting

{
C̃ = 3k − k̂

Ĉ = k̂ , k̂ = 0, . . . , 3k
(case I) or

{
C̃ = −k̃
Ĉ = 3k + 4k̃

(case II), (3.3.6)

for all k, k̃ ∈ Z≥0. The bound (3.2.26) reduces to rk(g) ≤ 2C̃ + Ĉ − 2 and from (3.3.6) we then

get

rk(g) ≤
{

6k − k̂ − 2 (case I)

3k + 2k̃ − 2 (case II)
. (3.3.7)

The above analysis can be immediately generalized to a non-simple gauge group, with saxionic

couplings

− 1

4π

∫
(CABs+ . . .)FA ∧ ∗FB − 1

8π

∫
(CIs+ . . .) tr(F ∧ ∗F )I , (3.3.8)

where by (2.1.13) we must impose that CI ∈ Z≥0 and CAB ∈ Z is a positive semi-definite

matrix. Now r(e) is the total rank of the linearly independent gauge fields which interact with

the saxion s, and it is bounded as in the case of a simple gauge group discussed above.

Note that the mere presence of some gauge sector coupling to the (s)axion as in (3.3.8) implies

that, necessarily, the higher derivative couplings appearing in (3.3.1) and (3.3.4) cannot be both

trivial and the EFT string cannot exhibit enhanced N = (2, 2) supersymmetry. Suppose for

instance that, at the UV cut-off scale Λ, our EFT describes an G = SU(5). Then in case I

we must necessarily have either (k, k̂) = (1, 0) and then (C̃, Ĉ) = (3, 0), or k ≥ 2, with any

k̂ = 0, . . . , 3k. In case II we must instead impose 3k+2k̃ ≥ 6, which for instance implies Ĉ ≥ 6.

If we consider instead a G = SO(10) supersymmetric GUT model, then in case I we must

necessarily have either (C̃, Ĉ) = (6 − k̂, k̂) with k̂ = 0, . . . , 5 (and k = 2), or the other values
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corresponding to k ≥ 3. In case II one must impose 3k+2k̃ ≥ 7, which also implies that Ĉ ≥ 7.

According to the proposal of Section 3.1.2, the non-vanishing of (3.3.4) should practically mean

that the strict weak coupling limit of the gauge theory is an at least partial decompactification

limit to five dimensions.

Consider next a model with two saxions s1, s2 with a general gauge group (2.1.5). One can

choose a basis in which (s1, s2) parametrize the saxionic cone ∆ = R2
>0. In this basis, the

EFT strings have charge vectors e = (e1, e2) ∈ CEFT
S = Z2

≥0. By (3.1.18) the components of

CAB = (CAB
1 , CAB

2 ) are positive semi-definite integral matrices, and CI = (CI
1 , C

I
2 ) ∈ Z2

≥0.

Imposing for simplicity that the coupling (3.1.11) vanishes, (3.2.4) and (3.2.6) require that

C̃ = (C̃1, C̃2) = (3k1, 3k2), with k1, k2 ∈ Z≥0. Hence the EFT contains the Gauss-Bonnet term

− 1

64π

∫
(k1s

1 + k2s
2 + . . .)EGB ∗ 1 . (3.3.9)

The values of k1, k2 constrain the ranks of the gauge groups coupling to the axions as in (2.1.11).

The stricter bounds are obtained by setting e = e1 ≡ (1, 0) and e = e2 ≡ (0, 1) in (3.2.26), and

read

r(e1) ≤ 6k1 − 2 , r(e2) ≤ 6k2 − 2 . (3.3.10)

Here r(e1) and r(e2) can be identified with the rank of the gauge sector which interact with

the saxions s1 and s2, respectively, through couplings of the form (3.3.8). If for instance all

gauge group factors interact with both saxions, we get a bound on the total rank rk(g) ≤
min{6k1 − 2, 6k2 − 2}. Otherwise, we can only say that rk(g) ≤ 6(k1 + k2) − 2, which is what

one gets by applying (3.2.26) to e = e1+e2. In any event, a non-trivial gauge group implies that

k1 + k2 cannot vanish, and hence C̃ ̸= 0 (where we recall that we have assumed for simplicity

that Ĉ = 0).

We could systematically proceed by considering more complicated bottom-up EFTs. Instead,

we turn to analyzing how our quantum gravity bounds are realised in large classes of N = 1

compactifications of string or M-theory to four dimensions.

3.3.2 Microscopic checks in IIB/F-theory models

We begin our string theoretic tests of the quantum gravity bounds with IIB/F-theory models.

Not only will this provide a microscopic confirmation of the general bounds derived so far, but

we will also find a stronger version of these bounds which is valid for minimally supersymmetric

F-theory compactifications on a smooth three-fold base.

F-theory models

Let us first analyse the large volume perturbative regime of F-theory compactifications to four

dimensions. Our primary interest is in the part of the four-dimensional gauge theory sector

that is supported by 7-branes, postponing a discussion of the D3-brane sector to Section 3.3.2.
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The 7-brane gauge sector can be weakly coupled, for large volumes of the wrapped four-cycles,

even if we relax the ten-dimensional weak string coupling condition. In this way one can also

obtain more general gauge groups, including exceptional ones – see e.g. [86, 110] for reviews.

We then consider a generic F-theory compactification defined by an elliptically fibered Calabi-

Yau four-fold Y with three-fold base X. For the time being we assume that the bulk and

7-brane gauge fluxes vanish and comment on the validity of this assumption in Section 3.3.2.

The type IIB axio-dilaton profile is geometrized into the non-trivial elliptic fibration π : Y → X,

described by the Weierstrass model

y2 = x3 + fxz4 + gz6 , (3.3.11)

where [x : y : z] ∈ P2
(2,3,1) and

f ∈ Γ(K
4
X) , g ∈ Γ(K

6
X) , ∆ ≡ 4f3 + 27g2 ∈ Γ(K

12
X ) . (3.3.12)

In our notation a line bundle – e.g. the anti-canonical bundle KX – and the corresponding

divisor are denoted by the same symbol. The anti-canonical class is required to admit an

effective representative in order for the Weierstrass model to exist. The non-abelian gauge

theory sectors are supported on irreducible effective components DI of the discriminant locus

∆ ≃ 12KX . Hence, we can write

∆ = nIDI +D′ ≃ 12KX with nI ≡ ord(∆)|DI , (3.3.13)

where D′ is an effective divisor not supporting any gauge sector. According to Kodaira’s

classification [111–113] summarized in Table 3.3.1, the non-abelian gauge algebra GI along

each component DI is determined by the vanishing orders ord(f, g,∆) on DI .12

Abelian gauge algebra factors, on the other hand, are generated by rational sections SA of the

elliptic fibration independent of the zero-section S0. As reviewed e.g. in [110, 114], given a

rational section SA, one defines the Shioda map

σ(SA) = SA − S0 − π∗(D(SA)) + ℓAIαE
Iα , (3.3.14)

where the divisor class D(SA) on the base X is chosen such that σ(SA) is orthogonal to the

push-forward of all curve classes on X to the total space Y .13 The U(1)A gauge potential is

then obtained, in the dual M-theory, by expanding the M-theory three-form C3 in terms of the

12The actual gauge algebra in four dimensions may be even smaller due to gauge flux and monodromies that
would lead to non-simply laced algebras.

13Furthermore, the exceptional divisors EIα are the blowup divisors associated with the resolution of the
singularities induced in the Weierstrass model of Y by the appearance of the non-abelian gauge algebra GI . The
coefficients ℓAIα ∈ Q are determined by requiring that σ(SA) has vanishing intersection with the generic rational
fiber of each EIα .
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ordD(f) ordD(g) ordD(∆) singularity

I0 ≥ 0 ≥ 0 0 none

In, n ≥ 1 0 0 n An−1

II 1 1 ≥ 2 none

III 1 ≥ 2 3 A1

IV ≥ 2 2 4 A2

I∗0 ≥ 2 ≥ 3 6 D4

I∗n, n ≥ 1 2 3 6 + n D4+n

IV∗ ≥ 3 4 8 E6

III∗ 3 ≥ 5 9 E7

II∗ ≥ 4 5 10 E8

Table 3.3.1: Kodaira’s classification of fiber degenerations.

two-forms dual to the classes σ(SA).

The rank of the non-abelian subsector of the gauge group is constrained geometrically by the

so-called Kodaira bound analysed in [84–87], which study its consequences for the effective

theory that can be obtained from F-theory. From Table 3.3.1, the rank rI = rank(GI) of the

non-abelian gauge group GI on the divisor DI satisfies the bound

rI < nI ≡ ord(∆)|DI . (3.3.15)

This bound is an actual inequality which is never saturated. It can be translated into a bound

on the total rank of the non-abelian part of the gauge group as follows: Consider a curve Σ on

X with the property that Σ ·Deff ≥ 1 for all effective divisors Deff . Then the rank of the total

non-abelian gauge sector is constrained by

rk(Gnon−ab) ≤
∑

I

rk(GI)(Σ · DI) ≤
∑

I

nI(Σ · DI) + Σ ·D′ = Σ ·∆ . (3.3.16)

We will compare this geometrical Kodaira bound coming from the UV complete description of

the model with the EFT string bounds. The rank of the abelian sector, on the other hand, is

unconstrained by the Kodaira bound (3.3.16), while it also enters the EFT string constraints.

The latter therefore contain valuable new information which cannot immediately be deduced

from the Kodaira bound alone. This was already observed in F-theory compactifications to six

dimensions in [37] and translated into a bound on the rank of the Mordell-Weil group on elliptic

Calabi-Yau three-folds.

To complete the description of the EFT data, note that the relevant saxions sa coupling to

these gauge sectors can be defined as

sa =
1

2

∫

Da

J ∧ J , (3.3.17)

where J is the Einstein frame Kähler form on X in string units ℓs = 1 and Da is a basis of

divisors. In Type IIB language, the corresponding axions are then given by aa = −
∫
Da C

RR
4 ,
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where CRR
4 is the R-R four-form potential. Let us also introduce a dual basis of two-cycles Σa,

such that Da ·Σb = δab . In the weak string coupling limit, the coupling to the non-abelian gauge

sector appearing in (2.1.7) can be obtained by expanding the D7-brane CS term, leading to

CI
a = DI · Σa . (3.3.18)

This result is usually extrapolated to configurations involving regions on X where the string

coupling is non-perturbative.

Similarly the couplings CAB
a between the abelian field strengths and the (s)axions can be

identified geometrically as the intersection product

CAB
a = bAB · Σa , (3.3.19)

where

bAB = −π∗(σ(SA) · σ(SB)) (3.3.20)

is known as the height-pairing associated with the rational sections underlying the definition

of the abelian gauge group factors U(1)A and U(1)B, see (3.3.14). In particular, the (effective)

divisors bAA can be viewed as the analogue, for abelian gauge groups, of the divisor DI wrapped

by a stack of 7-branes supporting the non-abelian gauge group GI .

It will be crucial for us that the anti-canonical divisor determines the couplings (2.1.19) [87].

By borrowing formula [94, Eq. (5.15)], we obtain

C̃a = 6

∫

Σa

c1(B) = 6Σa ·KX . (3.3.21)

The results of [87, 94] confirm that this formula (3.3.21) holds for general F-theory compacti-

fications even if it was identified starting from the weak string coupling limit.

EFT strings

The BPS instanton cone CI characterizing the above perturbative regime can be identified with

the cone of effective divisors Dm = maD
a ∈ Eff1(X). Hence, the associated saxionic cone ∆ is

defined by the conditions

⟨s,m⟩ = 1

2

∫

Dm

J ∧ J > 0 . (3.3.22)

The physical interpretation of this condition is clear: Any instanton charge vector m ∈ CI
corresponds to a Euclidean D3-brane wrapping an effective divisorDm and (3.3.22) just requires

that its volume is positive.

As discussed in [34], the corresponding EFT string charges e ∈ CEFT
S can be identified with

(effective) movable curves Σe = eiΣi ∈ Mov1(X). Indeed, movable curves are characterized by

a non-negative intersection with effective divisors [115] and then ⟨m, e⟩ = Dm · Σe ≥ 0. The
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associated EFT strings are obtained from D3-branes wrapping these movable curves. A refined

classification of the types of movable curves and their associated EFT string limits in F-theory

has been obtained in [71].

By definition, a movable curve can sweep out the entire space X. The bosonic fields of the

associated NLSM therefore have a clear geometric interpretation: they parametrize the moduli

space Me of Σe inside X, including directions which are possibly obstructed at higher order.

Its tangent space TMe can be identified with the cohomology group H0(NΣe), where NΣe is

the Σe normal bundle. The metric on TMe is inherited from the components of the metric

on X which are orthogonal to Σe. These are precisely the directions which are stretched by

the flow (2.2.9) generated by the EFT string, suggesting that the EFT string NLSM can be

assumed to be weakly coupled.

Indeed, the volume of any effective divisor Vol(Dm) changes as follows under (2.2.9):

Vol(Dm) =
1

2

∫

Dm

J ∧ J = ⟨m, s0⟩+ ⟨m, e⟩σ . (3.3.23)

Hence we see that it increases precisely if ⟨m, e⟩ = Dm · Σe > 0, i.e. if the effective divisor

Dm transversely intersects the generic curve Σe. In this case Vol(Dm) provides a measure

of the directions transversal to Σe, and then of the metric on the moduli space Me. Hence

these directions are stretched as we approach the string. From the RG viewpoint, this implies

that the EFT string RG-flow scales up the NLSM metric as we move to the UV, in agreement

with our general expectation of a weakly-coupled NLSM. In the non generic case in which

⟨m, e⟩ = Dm · Σe = 0, Vol(Dm) remains constant but can anyway be assumed to be large,

hence justifying again the weakly-coupled world-sheet description. A more precise justification

of these claims is provided in Appendix A.2.

This expectation is further supported by the anomaly and central charge computations of [94].

Indeed, by using anomaly inflow arguments, it was found that the world-sheet anomaly and

central charges precisely match what one gets from a massless spectrum obtained by geometrical

arguments, combined with the topological duality twist of [116].14 This is only possible if the

world-sheet sector admits a weakly coupled NLSM description. Furthermore, the anomaly

matching of [94] uses only bulk terms of the form (3.1.2), while it does not require any world-

sheet term of the form (3.1.11). This further confirms that for these EFT strings we can set

Ĉi(e) = 0, as suggested by the absence of an apparent five-dimensional bulk supersymmetric

structure.

More precisely, by using the topological duality twist of [116], the spectrum of massless fields of

the N = (0, 2) worldsheet theory was obtained by dimensional reduction of the N = 4 Super-

Yang-Mills theory of a single D3-brane wrapping the curve Σe. Apart from one universal chiral

14The analysis of [94] assumes that Σ · KX ≥ 0, which is indeed satisfied by our EFT strings since KX is
effective.
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multiplet U associated with the center-of-mass motion of the string in four dimensions, there

are two types of extra chiral multiplets, Φ(1) and Φ(2), of respective multiplicity

n
(1)
C = h0(Σe, NΣe/X) , n

(2)
C = KX · Σe + g − 1 ,

nC = n
(1)
C + n

(2)
C ,

(3.3.24)

where g denotes the genus of the curve Σe. These are accompanied by two types of Fermi

multiplets, Λ
(1)
− and Λ

(2)
− , uncharged under the gauge group on the 7-branes, which are likewise

obtained from reduction of the fermionic fields on the D3-brane world-volume and which come

with multiplicities

n
(1)
N = h1(Σe, NΣe/X) = h0(Σe, NΣe/X)−KX · Σe , n

(2)
N = g ,

nN = n
(1)
N + n

(2)
N .

(3.3.25)

The uncharged (with respect to the 7-brane gauge group) Fermi multiplets Λ− are to be con-

trasted with the

nF = 8Σe ·KX (3.3.26)

charged Fermi multiplets Ψ− localised at the intersection points of Σe with the divisors wrapped

by the 7-branes. According to the logic of Section 3.2.2, only nC − nN many chiral multiplets

can potentially contribute to the gauge anomalies on the worldsheet via anomalous couplings

of the form (3.2.16). From the above multiplicities one finds that

n
(1)
C − n

(1)
N = KX · Σe , (3.3.27a)

n
(2)
C − n

(2)
N = KX · Σe − 1 , (3.3.27b)

and hence

nC − nN = 2KX · Σe − 1 . (3.3.28)

Note that n
(1)
C − n

(1)
N agrees with the number of unobstructed complex geometric deformation

moduli of the curve Σe inside the Kähler 3-fold X (see e.g. [117] for details on how to compute

these). In particular, the subtraction of n
(1)
N accounts for the obstructions of some of the

naive h0(Σe, NΣe/X) many geometric moduli. In this sector, therefore, the minimality principle

invoked in Section 3.1.3 is manifestly realised.

The interpretation of the bosonic components of the chiral multiplets Φ(2), on the other hand, is

rather as a certain type of ‘twisted’ Wilson line moduli of the topologically twisted SYM theory

reduced on Σe. The nature of these fields becomes clearer by realising the strings in the dual

M-theory compactified on the elliptic Calabi-Yau four-fold Y [94]. In this picture, the strings
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appear as MSW strings [118] obtained by wrapping an M5-brane on the surface Σ̂e which is

given by the restriction of the elliptic fibration to Σe. The expansion of the chiral two-form

on the M5-brane in terms of a basis of primitive (1, 1) closed forms leads to left-moving chiral

scalar fields on the string worldsheet. Of these, n
(2)
C many combine with the right-moving scalars

obtained from the reduction of the chiral two-form in the (0, 2) and non-primitive (1, 1) closed

forms on the M5-brane into the bosonic components of the chiral superfields Φ(2), while the

remaining chiral scalars can be dualized into the nF Fermi multiplets charged under the bulk

gauge group [94]. This suggests that it is the left-moving scalars of the bosonic components of

the fields Φ(2) which can enjoy an axionic shift symmetry that can be gauged by the part of the

four-dimensional gauge group from the 7-brane sector in F-theory and which can participate in

the anomaly cancellation. More precisely, taking into account the potential obstructions, the

number nA of such axionic moduli is bounded by

nA ≤ n
(2)
C − n

(2)
N = KX · Σe − 1 (3.3.29)

rather than by nC−nN = 2KX ·Σe−1. Indeed, the unobstructed complex geometric deformation

moduli counted by n
(1)
C − n

(1)
N should not exhibit a gauged shift symmetry as long as we are

considering F-theory over a smooth three-fold base X with vanishing isometries. By contrast,

if the three-fold base X does admit isometries, these can manifest themselves in additional

contributions to the gauge anomaly also from the fields of type Φ(1). This, however, either

requires that X is not smooth, for instance of toroidal orbifold type, or that the theory exhibits

enhanced supersymmetry. In both scenarios, the additional gauge anomaly contributions from

the Φ(1) sector correspond to Kaluza-Klein gauge symmetry factors in F-theory rather than to

the sector from 7-branes.

Microscopic realization of EFT predictions

We are now ready to test our EFT predictions.

Observe first that from (3.3.18) it obviously follows that

⟨CI , e⟩ = DI · Σe ≥ 0 , (3.3.30)

for any e ∈ CEFT
S , as in (3.1.18), because DI is effective. The second constraint in (3.1.18)

implies that

{⟨CAB, e⟩} = {bAB · Σe} ≥ 0 , (3.3.31)

in the sense of being a positive semi-definite symmetric matrix. As discussed in [119], it follows

from [120] that the diagonal components of the height-pairing bAB can in general be written

as the sum of effective divisors and hence the diagonal entries of the matrix in question are

guaranteed to be positive. More generally, ⟨CAB, s⟩ coincides with the kinetic matrix for the

abelian gauge sector (see e.g.[110]) and must therefore indeed be positive definite, and hence
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⟨CAB, e⟩ should be positive semi-definite.

The confirmation of the EFT string bounds on the curvature-squared couplings is immediate.

Indeed from (3.3.21) we obtain

⟨C̃, e⟩ = 6Σe ·KX ≥ 0 ∀e ∈ CEFT
S . (3.3.32)

This shows that (3.2.27), or equivalently (3.2.4) or (3.2.6) with Ĉ(e) = 0, is manifestly realized

in these F-theory models. Note also that, in fact, ⟨C̃, e⟩ is a multiple of 6, which is in agreement

with the refined bound which one would get from (3.2.2b) by imposing nC − nN ≥ 1 rather

than (3.1.27) – see footnote 8 – to strings with genuinely N = (0, 2) supersymmetry. Indeed,

the EFT strings with enhanced non-chiral spectrum correspond to D3-branes not intersecting

the bulk 7-branes, that is, for which Σe ·KX = 0.

Turning to the bound (3.2.26) on gauge group ranks, we expect it to be related to the Kodaira

bound (3.3.15). To address this point, notice first that the rank of the part of the gauge group

which is probed by the EFT string of charge vector e takes the form

r(e) =
∑

I|DI ·Σe ̸=0

rI + rank(bAB · Σe) . (3.3.33)

On the other hand, from (3.3.32) and (3.3.13) we see that (3.2.26) becomes

r(e) ≤ r(e)max ≡ 2⟨C̃, e⟩ − 2 = 12Σe ·KX − 2 = ∆ · Σe − 2 . (3.3.34)

Recall from the discussion in Section 3.2.2 that this bound includes the contribution to the

anomaly polynomial both from the charged Fermi multiplets Ψ− and from the nC − nN un-

obstructed chiral multiplets, whose bosonic components may in principle transform via a shift

under the four-dimensional gauge symmetry, i.e.

r(e)max = rF(e)max + rC(e)max , (3.3.35a)

rF(e)max =
4

3
⟨C̃, e⟩ = 8Σe ·KX =

2

3
∆ · Σe , (3.3.35b)

rC(e)max =
2

3
⟨C̃, e⟩ − 2 = 4Σe ·KX − 2 =

1

3
∆− 2 . (3.3.35c)

As an important consistency check, note that the value rF(e)max is given by nF = 4
3⟨C̃, e⟩ =

8Σe · KX identified by (3.2.5), which perfectly agrees with the microscopic counting (3.3.26)

of left-moving Fermi multiplets charged under the gauge group supported by 7-branes, while

rC(e)max agrees with 2(nC − nN) as computed in (3.3.28).

However, the discussion at the end of Section 3.3.2 suggests that the conservative bound (3.3.34)

can in fact be sharpened in minimally supersymmetric F-theory models over smooth threefold

bases. The point is that at best the unobstructed scalars of type Φ(2) can contribute to the GS
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anomaly and hence to the bound on the rank. With this logic, we arrive at a stricter bound in

F-theory given by

r(e)strictmax = rF(e)max + r
(2)
C (e)max =

5

3
⟨C̃, e⟩ − 2 = 10Σe ·KX − 2 , (3.3.36)

where

r
(2)
C (e)max = 2(n

(2)
C − n

(2)
N ) =

1

3
⟨C̃, e⟩ − 2 = 2Σe ·KX − 2 (3.3.37)

denotes the contribution to the anomaly polynomial from the unobstructed scalars of type Φ(2),

see (3.3.27b).

Let us stress that the bound (3.3.36) refers to the gauge subsector which couples to the EFT

string of charge e. To bound the rank of the gauge group supported by all 7-branes, we need

to take Σe to lie strictly in the interior of the movable cone Mov1(X) so that it has non-zero

intersection with all non-abelian divisors DI and height-pairing divisors. The strictest bound

is then obtained as the minimal possible value r(e)strictmax with Σe in the interior of Mov1(X).

With this understanding, we propose (3.3.36), rather than (3.3.34), as a bound on the gauge

group rank of minimally supersymmetric F-theory compactifications over smooth threefold base

spaces, as these do not admit isometries acting on the internal geometric space. We now proceed

to compare these quantum gravity bounds with the geometric bounds on the gauge group rank

in F-theory.

Example 1: X = P3

We begin with the simple choice X = P3. The one-dimensional group of effective divisors

Eff1(X) is spanned by the hyperplane class H, in terms of which KX = 4H. This implies that

the sections (3.3.12) defining the Weierstrass model correspond to the classes

∆ ≃ 48H , f ≃ 16H , g ≃ 24H . (3.3.38)

In this case the saxionic cone is one-dimensional and CEFT
S ≃ Mov1(X)Z = Eff1(X)Z is generated

by the curve H ·H ≡ H2. To obtain the strongest quantum gravity bounds from the EFT string,

we can take Σe = H2. Since this curve class intersects all possible divisor classes DI , (3.3.34),

and its proposed stronger version (3.3.36), constrains the total rank rtot of abelian and non-

abelian gauge algebra factors supported by all 7-branes, which can be detected by the EFT

string associated with Σe:

rtot ≤




r(e)max = 12Σe ·KX − 2 = 46 from (3.3.34) ,

r(e)strictmax = 10Σe ·KX − 2 = 38 from (3.3.36) .
(3.3.39)
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We can use (4.3.18) to bound the maximal possible SU(N) gauge algebra supported on any

irreducible divisor DSU(N) appearing in the decomposition (3.3.13) as

SU(NEFT
max) = SU(rmax + 1) =




SU(47) from (3.3.34) ,

SU(39) from (3.3.36) .
(3.3.40)

The first line is only slightly stronger than the naive Kodaira bound in its simple form (3.3.15),

which together with Table 3.3.1 would give SU(NKod
max ) = SU(NKod

max ) = 49, as pointed out

already in [85]. However, as stressed above, we in fact propose the stricter of the two bounds

to hold in F-theory on a smooth base threefold X.

To compare this to actual realisations in F-theory, note first that the Kodaira upper bound

cannot be saturated because this would require that all branes are mutually local. In fact,

by an explicit analysis of the Weierstrass model, [85] showed that the maximal possible value

which can be realised in F-theory on P3 corresponds to NF
max = 32. Consistently, this is within

the stricter of the two bounds in (3.3.40) based on (3.3.36).

The EFT string bounds are potentially very far-reaching when it comes to constraining the

maximal rank of abelian gauge group factors [37]. From (4.3.18) we immediately constrain the

maximal number of abelian gauge algebra factors as

nEFT
max(U(1)) =




46 from (3.3.34) ,

38 from (3.3.36) .
(3.3.41)

A comparable bound cannot be deduced in a straightforward manner from the Kodaira bound

since the abelian gauge group factors are generated by extra rational sections of the elliptic

fibration. While to each such section one can associate a divisor class on the base via the

height-pairing, there does not exist any obvious constraint that forces this divisor class to be

bounded by the class of the discriminant. Bounding the number of abelian gauge group factors

is equivalent to finding an upper bound for the rank of the Mordell-Weil group of an elliptically

fibered Calabi-Yau fourfold, which is an open problem in arithmetic geometry.15

For the special example of an SU(N) gauge group, an interesting phenomenon occurs: The

geometric bound NF
max = 32 established in [85] is in fact only marginally stricter than the EFT

string bound which one would deduce by taking into account, in the computation of the bound

(3.3.35), only the contribution from the charged localised Fermi multiplets: This would give

r ≤ rF(e)max = nF = 8Σe · KX = 32. However, it would be incorrect to conclude from this

that rF(e)max, rather than the weaker bound r(e)strictmax , represents the upper bound on the rank

of the gauge group more generally.

15The upper bound (3.3.41) is the analogue, on fourfolds, of the bound n(U(1)) ≤ 32 for F-theory compacti-
fications to six dimensions on an elliptic three-fold over base P2 [37]. The highest Mordell-Weil rank obtained so
far for elliptic threefolds is rmax = 10 [121].
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Indeed, it is certainly possible to violate the bound set by rF(e)max in explicit Weierstrass

models.16 For example, consider the maximal possible gauge group of type En1
6 × En2

7 by

engineering the various gauge group factors on separate divisors in class H. Compatibil-

ity with the (incorrect) bound rF would give that 6n1 + 7n2 ≤ 32, with maximal solu-

tions (n1, n2) ∈ {(0, 4), (1, 3), (2, 2), (3, 2), (4, 1), (5, 0)}. In actuality, a Weierstrass model

allows for the construction of a gauge algebra En1
6 × En2

7 with maximal values given by

(n1, n2) ∈ {(0, 4), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)} (again on separate gauge divisors of class H).

This follows from the vanishing orders of Table 3.3.1 that need to be engineered in the Weier-

strass model. The two configurations E6 × E4
7 and E2

6 × E3
7 hence overshoot the bound from

rF(e)max by 2 and 1, respectively, while they respect the weaker bound from r(e)strictmax , which

we propose as the correct bound.

Two warnings concerning the validity of these examples are in place: First, even if all individual

exceptional gauge groups are localised on 7-brane stacks wrapping separate divisors in class H,

every pair of them intersects in a curve of class H2. Along this curve, non-Kodaira type

singularities appear because the vanishing orders of (f, g) are equal to or bigger than (4, 6)

and hence non-minimal. These non-minimalities in codimension-two arise at finite distance

in the complex structure moduli space. Extrapolating from the analogous phenomenon in F-

theory compactifications on elliptic Calabi-Yau threefolds [122], one expects a genuinely strongly

coupled sector localised at the non-minimal loci. To reliably analyse the dynamics one must

first remove the non-minimalities by blowing up the intersection loci, thereby separating the

exceptional brane stacks. However, this will most likely not affect the original exceptional gauge

group factors.

Another concern is pertinent, in fact, to all examples discussed in this section: Since the minimal

gauge divisor of class H is non-spin, the Freed-Witten quantization condition [98] requires a

half-integer quantized gauge flux in order for the model to be consistent. Depending on the

nature of the available flux, the gauge background may reduce the rank of the four-dimensional

gauge group or at least break the simple gauge group factors to a group involving abelian factors.

Even if the rank were not reduced in this way, the U(1) may become massive via a Stückelberg

mechanism. If this is the case, the axion obtained by reducing the RR four-form field on P3

would likewise acquire a mass - a scenario which we excluded in our derivation of the quantum

gravity bounds. To explicitly analyse the types of fluxes available and whether or not they

necessarily induce a Stückelberg mass for the axion, one must resolve the fibral singularities of

the Weierstrass model17 and hence, in view of the non-minimalities in codimension two, first

16We thank Wati Taylor for pointing this out to us.
17In the dual M-theory description, the gauge fluxes are encapsulated in four-form fluxes on the resolved

four-fold Ŷ which take values in the vertical component of H2,2(Ŷ ) and must be quantized in such a way that
G4 + 1

2
c2(Ŷ ) ∈ H4(Ŷ ,Z). For details we refer to [110] and references therein. Admissible fluxes in F-theory

are subject to two transversality conditions and after implementing these it remains to be seen whether fluxes
different from the so-called Cartan fluxes are available, which would break the simple gauge group factor. Fluxes
which leave the gauge group intact are dual to the matter surfaces [123], but their explicit existence can only be
determined after performing the resolution steps.
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blow up the base. This involved surgery is beyond the scope of this thesis, but we stress that

from the Weierstrass model alone it not yet clear which part of the gauge group survives in the

four-dimensional effective theory after taking the flux background into account.

Let us take the optimistic point of view and assume that none of these technicalities undermines

the validity of the models with a rank overshooting the stricter bound from rF(e)max. In this

case, our analysis shows that some of the chiral multiplets, according to our proposal in fact

the ones of type Φ(2), indeed contribute to the anomaly matching. We will develop a better

intuition behind this in the following section.

Example 2: P1 →֒ X → B

Consider next an F-theory model in which the base X is a P1-fibration over a complex surface

B. This example will be particularly illuminating for the interpretation of the scalar field

contributions to the anomaly matching on the worldsheet and hence to the bound on the gauge

group rank.

Quite generally, the twist of a rational fibration p : X → B is specified by a line bundle T on

the base B,18 in terms of which the anti-canonical class of X can be written as [124]

KX = 2S− + p∗c1(T ) + p∗c1(B) . (3.3.42)

Here S− denotes the exceptional section of the rational fibration with the property

S− · S− = −S− · p∗c1(T ) . (3.3.43)

The cone CI ≃ Eff1(X) of effective divisors of X is generated by S− together with the pullback

of the generators of the effective cone of B.

Another section, S+, of the fibration is related to S− as S+ = S− + p∗c1(T ). It satisfies the

relations S+ · S+ = S+ · p∗c1(T ) and S− · S+ = 0. This section S+ generates the Kähler cone

of X together with the pullback of the Kähler cone generators of B to the rational fibration.

Under F-theory/heterotic duality, this class of theories is dual to the heterotic string compac-

tified on an elliptic fibration over the same base B. The gauge groups from 7-branes wrapped

along the two sections S− and S+ map to perturbative heterotic gauge groups in either of the

two E8 factors, while gauge groups from 7-branes wrapping divisors pulled back to X from B

are of non-perturbative nature in the heterotic frame.

For definiteness, let us specify now to B = P2 and adopt the notation of [34, p. 53],

D1 = p∗(H) , D2 = S+ , (3.3.44)

18The threefold X is constructed as the projectivised bundle X = P(O ⊕ T ).
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where H is the hyperplane class of P2. Parametrizing furthermore the twist of the fibration as

c1(T ) = nH, the general formula (3.3.42) becomes

KX = (3− n)D1 + 2D2 . (3.3.45)

According to the above discussion, D1 and D2 generate the Kähler cone of X. The dual curves

Σ1 = S− · p∗(H) = (D2 − nD1) ·D1, Σ2 = p∗(H) · p∗(H) = D1 ·D1 (3.3.46)

(such that Da · Σb = δab ) are effective and generate the Mori cone. In particular, Σ1 can be

identified with a P1 in the P2 base, while Σ2 can be regarded as the P1 fibre of X.

The cone CI ≃ Eff1(X) of effective divisors is generated by D1 = p∗(H) and S− = D2 − nD1.

The dual cone CEFT
S ≃ Mov1(X) of movable curves Σe = eaΣa is given by

CEFT
S = {e ∈ (e1, e2) ∈ Z≥0|e2 ≥ ne1} (3.3.47)

and is generated by the charges

e1 = (1, n) , e2 = (0, 1) . (3.3.48)

Note that CEFT
S is smaller than the cone of possible BPS strings, which can be identified with the

Mori cone of effective curves. In particular, the elementary BPS charge e = (1, 0) corresponding

to a curve on the base alone does not give rise to an EFT string for n ≥ 1, but it must be

combined with n copies of the charge of an EFT string associated with the rational fiber.

To evaluate the bound (3.3.34), we compute the intersection number

Σe ·KX = (3− n)e1 + 2e2. (3.3.49)

The bound (3.3.34) and the proposed stronger form (3.3.36) then become

r(e) ≤




r(e)max = 12(3− n)e1 + 24e2 − 2 from (3.3.34) ,

r(e)strictmax = 10(3− n)e1 + 20e2 − 2 from (3.3.36) ,
(3.3.50)

which constrains the rank of the gauge group that can be detected by an EFT string with charge

e. The strongest constraints are obtained by applying this bound to e1 and e2. Specifying

directly to the proposed stronger bound, one finds

r(e1) ≤ 28 + 10n , r(e2) ≤ 18 . (3.3.51)

Suppose first that the semi-simple gauge sector is supported on effective divisors DI = mI
1D

1+

mI
2(D

2 − nD1) ⊂ {∆ = 0} with mI
1,m

I
2 > 0. In this case both r(e1) and r(e2) correspond to
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the rank of the total semi-simple gauge algebra, since it is entirely detected by both elementary

EFT strings. Since n ≥ 0 we obtain the bound

rk(Gsemi-simple) ≤ 18 . (3.3.52)

We could instead assume that the discriminant locus splits in disconnected effective components

∆ = n1D1 + n2D2 +D′ , (3.3.53)

where D1 = D1 and D2 = D2 − nD1 support different semi-simple gauge groups, G1 and G2

respectively. Then r(e1)
strict
max bounds the rank of G1 and r(e2)

strict
max bounds the rank of G2 as

detected by the EFT strings. In this case we obtain

rk(G1) ≤ 28 + 10n , rk(G2) ≤ 18 . (3.3.54)

We furthermore note that as in the case of P3, the contribution to the bound from the axionic

sector is indeed needed - taking into account only the charged Fermi multiplets in (3.3.35) would

lead to the (incorrect) bounds

rk(G1) ≤ 24 + 8n , rk(G2) ≤ 16 based on Fermi multiplets only, (3.3.55)

which are easily violated for instance in Weierstrass models with exceptional gauge group

factors.

Indeed, for simplicity take n = 0, so that X = P1 × P2. One can overshoot the first constraint

in (3.3.55) for instance by realising a configuration with gauge group G1 = E3
6 × E7 and

rk(G1) = 25, or G1 = E2
6 ×E2

7 and rk(G1) = 26, where the simple gauge factors are supported

on four separate (but intersecting) divisors in class D1. These examples are analogous to the

ones discussed in the previous section for the base X = P3, and the same remarks concerning

the viability of these models apply.

More illuminating for us is the second bound in (3.3.55) compared to (3.3.54). It is violated

(again for n = 0) for instance by a configuration of three simple gauge group factors along three

separate divisors in class D2 such that G2 = E3
6 or G2 = E2

7 ×SO(8) or G2 = E8×E6×SO(8).

The non-abelian gauge divisors can be separated along their common normal direction on the

P1-fiber; nonetheless, there appear non-minimal Kodaira type fibers in codimension two or

three, or both.19 For example, the most general way to engineer the model with gauge group

19Also the second complication encountered already on P3 persists, namely that the gauge divisor D2 is non-
spin and gauge flux must be included to cancel the Freed-Witten anomaly; however we expect that this is possible
without affecting the rank of the gauge group.
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G2 = E3
6 is to set, in the Weierstrass equation,

f ≡ 0 , g = p41(u, v) q
4
1(u, v) r

4
1(u, v) s18(u1, u2, u3) , (3.3.56)

where [u1 : u2 : u3] and [u : v] denote homogeneous coordinates on P2 and P1, respectively, and

p1, q1, r1, s18 represent generic homogeneous polynomials of indicated degrees in the coordinates

in brackets. Note that ∆ = 4f3 + 27g2 = 27g2 because we were forced to set f ≡ 0 to

accommodate the E3
6 factor. As a result, over the divisor s18 = 0, the fiber enhances to

Kodaira Type II with ord(f, g,∆) = (∞, 1, 2). At the intersection locus of s18 = 0 with any

of the three E6 divisors p1 = 0 or q1 = 0 or r1 = 0, the fiber enhances to Kodaira Type II∗,

but at the s18 · s18 = 182 points on P2 given by the self-intersection of s18 = 0, there occurs

a non-minimal fiber with vanishing orders ord(f, g,∆) = (∞, 6, 12). To reliably analyse the

model, this non-minimal singularity would first have to be removed via a blowup in the base.

Interestingly, however, the codimension-three non-minimalities can be avoided by replacing the

base P2 by a rational elliptic surface dP9, which is an elliptic fibration over P1 with generically

12 singular fibers. In this case, the section s18(u1, u2, u3) in (3.3.56) is replaced by a general

section s ∈ Γ(6K̄dP9). The anti-canonical class of dP9 coincides with the class of the elliptic

fiber and hence has vanishing self-intersection, K̄dP9 · K̄dP9 = 0. As a result, there appear no

codimension-three non-minimal fibers since s · s = 0. For the sake of simplicity we will focus

on this geometric example in the sequel. Clearly, the change of basis from P2 to dP9 does not

affect the second bound in (3.3.54) or (3.3.55), which only involves the EFT string with charge

e2 associated with the P1-fiber of X (while the first bound in both equations changes).

Focusing on this second bound, to understand why (3.3.54), rather than (3.3.55), gives the

correct bound, recall that the EFT string with charge e2 is the critical heterotic string of the

dual compactification of the heterotic theory on an elliptic fibration over the base B of X. As

discussed at the end of Section 3.3.2, there are two types of chiral scalar fields, Φ(1) and Φ(2),

in the NLSM of this string. Since the genus of Σe2 = P1 vanishes, n
(1)
N = 0 = n

(2)
N and hence

both types of scalars correspond to unobstructed moduli directions. The n
(1)
C − n

(1)
N = n

(1)
C =

K̄X · Σe2 = 2 complex moduli of the first type parametrize the motion of the heterotic string

along the base of the dual elliptic fibration, while n
(2)
C − n

(2)
N = n

(2)
C = K̄X · Σe2 − 1 = 1 counts

the complex modulus of the dual heterotic string along the heterotic torus fiber. As long as the

base of X admits no isometries - as is the case whenever X is smooth and the theory minimally

supersymmetric - the scalars encoded in the chiral fields of type Φ(1) cannot participate in

the gauge anomaly cancellation in F-theory. Indeed, they are geometric moduli in a geometry

without extra shift symmetries. By contrast, the two real scalars encoded in Φ(2) can enjoy a

gauged shift symmetry: They parametrize the motion of the heterotic string along the torus

fiber of the dual heterotic geometry, which is responsible for the difference between the two

bounds (3.3.54) compared to (3.3.55).
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The rationale behind this claim is completely analogous to the simpler setup of F-theory com-

pactified on an elliptic K3 surface to eight dimensions.20 In such models, a D3-brane wrapped

along the P1 base of the K3 surface is known to be dual to a heterotic F1 string in 8d. The

zero mode spectrum of the N = (0, 8) supersymmetric worldsheet theory can be derived by

dimensional reduction, as e.g. in [94]. It consists of one N = (0, 8) hypermultiplet (8 real

scalars in the 6 of SO(6)T and two SO(6)T singlets accompanied by 8 fermions in the 4 + 4̄)

as well as 16 left-moving fermions transforming as SO(6)T singlets and organising into Fermi

multiplets. The scalars in the 6 of SO(6)T parametrize the center-of-mass motion of the string

in eight dimensions and must therefore be uncharged under the gauge group. The only charged

fermions are then the 16 = 8deg(K̄P1) unpaired left-moving fermions. Taking only these into

account would suggest a maximal rank for the gauge group of rmax = 16, while in fact the max-

imal rank is known to be rK3
max = 18. This of course matches the counting in the dual heterotic

theory compactified on a torus T 2, where the gauge group comprises the ten-dimensional rank

16 gauge group together with 2 Kaluza-Klein U(1) factors. The Fermi multiplets are charged

under the part of the gauge group inherited from the ten-dimensional gauge group (in fact, the

left-moving fermions generate the rank 16 current algebra present already in ten dimensions),

but do not detect the KK U(1)s. To see these, one must allow for the two left-moving scalars

in the N = (0, 8) hypermultiplet to shift under the associated gauge transformation and in

this way to contribute to the worldsheet anomalies. At special points in moduli space, the KK

U(1)s are indistinguishable from the Cartan U(1)s inherited from ten dimensions and combine

with part of them into higher rank non-abelian group factors. Examples include the rank 18

exceptional gauge group configurations of the form E3
6 , E

2
7 ×SO(8) or E8×E6×SO(8) studied

in F-theory on K3 in [125]. More generally, the classification of maximal non-abelian gauge

enhancements for the heterotic string on T 2 in [89] includes many configurations with rank 17

or 18 for the non-abelian sector.

Coming back to the bounds for the four-dimensional F-theory model on X, we see that the

contribution to the anomaly from the chiral multiplets of type Φ(2) is analogous to the way

how the heterotic string detects the two KK U(1)s in eight dimensions. However, in order for

such an interpretation to be possible, the dual heterotic compactification space, which is the

target space of the NLSM, must be degenerate such as to admit isometries in two directions

while at the same time preserving minimal supersymmetry. In general the dual heterotic string

is compactified on an elliptic fibration over the base B. If this elliptic three-fold were smooth,

there would be no room for an interpretation in terms of geometric KK U(1)s, not even from

the elliptic fiber.21 The way out is that whenever the bound on r(e2) ≤ 18 is saturated, the

dual elliptic fibration must degenerate to an orbifold such that the two KK U(1)s from the

elliptic fiber can survive the projection. In the present example with base B = dP9, the dual

20Recall that D2 is a copy of P2 and intersects the P1 fiber of X in a point; similarly, in F-theory on K3, the
7-branes are points on the base of the K3.

21While the generic elliptic fiber contains two 1-cycles, these do not survive as 1-cycles of the elliptic threefold
due to monodromies, as required by the (strict) Calabi-Yau condition.
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heterotic elliptic fibration is a Schoen manifold [126], which can be viewed as a fiber product

dP9 ×P1 dP9. Schoen manifolds admit degenerations to toroidal orbifolds [127] (see also [128]).

We propose such orbifolds as the heterotic duals of the F-theory models with r(e2) = 18. The

orbifold must act in such a way that only two of the generally possible six KK U(1)s survive

the projection.22

It would be desirable to explicitly construct the heterotic duals, also for the blowups of the F-

theory models with base B different from dP9, whenever the rank bound r(e2) ≤ 18 is saturated.

More ambitiously, we leave it for future work to determine the structure of the NSLM target

space for non-heterotic EFT strings in models saturating the bounds (3.3.36) and to check it

for isometries.

Perturbative IIB models with O3-planes

The EFT strings considered in Section 3.3.2 do not detect possible gauge sectors supported by

D3-branes. The corresponding complexified gauge coupling can be identified with the type IIB

axio-dilaton. Hence this gauge sector is fully perturbative in the ten-dimensional weak coupling

limit, in which the compactification space is well described by a Calabi-Yau orientifold.

For simplicity, we will focus on the simpler compactifications with O3-planes only, but more

general configurations with O3/O7 planes can be discussed along the same lines. The relevant

chiral field associated with this regime is the type IIB axio-dilaton: t = a+is ≡ τ = CRR
0 +ie−ϕ.

The saxionic cone is one-dimensional and CEFT
S = Z≥0. An EFT string of charge e ∈ Z≥0

corresponds to e D7-branes wrapping the internal space. Note that the associated EFT string

flow drives the bulk sector to a strongly non-geometric regime in which the string frame volume

of the compactification space naively goes to zero [34]. On the other hand, according to the

estimate of [34] the scaling weight is w = 1 and then the Emergent String Conjecture suggests

the existence of a weakly coupled dual description in terms of F1 strings.23

Without any additional assumption on the Kähler moduli, in this limit the only weakly coupled

gauge sector is the one supported by D3-branes, and the total rank of the gauge group is simply

given by the number nD3 of D3-branes. Taking the gauge group to be completely higgsed to

U(1)nD3 , corresponding to non-coinciding D3-branes, one can expand the standard DBI action

and identify the terms

− 1

4π

nD3∑

A=1

∫
sFA ∧ ∗FA . (3.3.57)

22Heterotic orbifolds with 2+n KK U(1)s cannot be dual to elliptic fibrations over a smooth base X in F-theory.
The additional n KK U(1)s must correspond to KK U(1)s, rather than 7-brane U(1)s, also on the F-theory side
and be encoded in gauged shift symmetries of the scalars of type Φ(1). Our assumption of a smooth base B of the
rational fibration X excludes such situations in the minimally supersymmetric case. If for instance X = T 4×P1,
the bulk theory preserves sixteen supercharges and the n

(1)
C = 2 unobstructed Φ(1) scalars describing the position

of Σe2 = P1 in the T 4 direction enjoy shift symmetries. The corresponding contribution to the anomaly raises
the rank bound from r(e2)

strict
max = 18 to r(e2)max = 22, matching the bound found in [38].

23For example, D7 strings in the toroidal models – see for instance [75] for a discussion in a similar spirit –
can be T-dualized to a D1-string and S-dualized to an F1-string.
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By comparison with (2.1.11), we see that

CAB = δAB (3.3.58)

and CI = 0.

The higher curvature terms (2.1.19) come from both the D3-brane and O3-plane higher

curvature couplings. The D3-brane contribution stems from the action [129–131]

−2πnD3

∫

D3
CRR
0

√
Â (R) =

2πnD3

48

∫
CRR
0 p1(M) + . . . , (3.3.59)

where Â is the A-roof genus and we are simplifying the formulas by setting ℓs ≡ 2π
√
α′ = 1.24

The O3-planes instead contribute the terms [132]

2πnO3

4

∫
CRR
0

√
L

(
1

4
R
)

=
2πnO3

4 · 96

∫
CRR
0 p1(M) , (3.3.60)

where L is the Hirzebruch L-polynomial. By using the identification CRR
0 = a and the D3

tadpole cancellation condition

nO3 = 4nD3 , (3.3.61)

we then obtain the total contribution

2π(8nD3 + nO3)

4 · 96

∫
a p1(M) = − 3

16

nO3

96π

∫
a tr(R ∧R) . (3.3.62)

By matching with (2.1.19) we conclude that

C̃ =
3

16
nO3 . (3.3.63)

Note that these models do not encode any five-dimensional structure and indeed the D7-brane

string does not give rise to effective couplings of the form (3.1.11). Hence we can set Ĉ = 0.

We can now compare these results with our quantum gravity constraints. Note that the positiv-

ity constraints (3.1.18) are obviously satisfied. On the other hand, (3.2.3) requires that C̃ ∈ Z.

This is possible only if

nO3 ∈ 16N . (3.3.64)

This non-trivial prediction in fact agrees with Theorem 1.5 of [133], which implies that nO3 = 16

for all (strict) Calabi-Yau covering spaces. This mathematical result can also be explicitly

24Note that the sign is fixed by requiring that the internal cycles wrapped by mutually supersymmetric D-
branes are calibrated by −eiJ so that, for instance, D7-branes would be calibrated by 1

2
J ∧ J and then would

wrap internal holomorphic cycles. With this choice supersymmetric space-filling D3-branes must be calibrated
by −1 and may be considered as anti D3-branes.
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checked in all the models of the database of [134].25

The bound (3.2.26) on the rank of the gauge group detected by the EFT strings becomes

r(e) ≤ 3

8
nO3 − 2 , (3.3.65)

where we used (3.3.63) and Ĉ = 0 and the r.h.s. is integral by (3.3.64).

From the explicit string theory model, however, we know that the gauge group probed by the

EFT strings in question comes from the perturbative D3-brane sector and its rank is therefore

bounded by nD3 = 1
4nO3. Interestingly, this actual bound coincides with the stronger bound

obtained by taking into account only the contribution (3.2.14) from the charged localised Fermi

multiplets in (3.2.25), i.e.

rF(e) ≤
4

3
C̃ =

1

4
nO3 . (3.3.66)

This match seems to be characteristic of the perturbative (with respect to the SL(2,Z) duality

group of Type IIB string theory) nature of the D3-brane sector.

In these models the stricter bound set by (3.2.25) is always saturated, see (3.3.61). However, it

is microscopically clear that it remains valid even in presence of internal supersymmetric three-

form fluxes, which contribute positively to the D3 tadpole condition and then reduce the number

of D3-branes. From the four-dimensional viewpoint, the introduction of these fluxes makes

the EFT string ‘anomalous’: The string is forced to be the boundary of a membrane, which

microscopically corresponds to a D5-brane ending on the D7 string. We leave for future work

the extension of our four-dimensional quantum gravity arguments to these kinds of anomalous

strings.

Complex structure EFT strings

The third qualitatively different gauge sector in F-theory is associated with the R-R four-form

CRR
4 expanded in terms of non-trivial elements of H3(X,Z). The gauge kinetic function and

hence also the characteristic couplings (2.1.7) in this sector depend on the complex structure

moduli of the four-fold Y [135]. Correspondingly, the weak coupling limits are attained in large

complex structure limits on Y . An explicit description of the EFT strings associated with this

sector is an interesting challenge for future work.

Suffice it here to mention that under heterotic/F-theory duality the R-R gauge sector is expected

to map to the abelian gauge sector from heterotic 5-branes wrapped along curve classes of genus

g ≥ 1 [95] in the base of the dual heterotic elliptic fibration [136, 137]. This implies a duality

between the EFT strings associated with this heterotic 5-brane sector and the complex structure

EFT strings in F-theory.

25We thank X. Gao and in particular F. Carta and R. Valandro for discussions on the available examples
of Calabi-Yau orientifolds with just O3 planes. We also thank F. Carta for helping us in checking (3.3.64) by
scanning the database [134], and for pointing out to us reference [133].
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3.3.3 Microscopic checks in E8 × E8 heterotic models

We now turn to compactifications of the E8 × E8 heterotic theory on Calabi-Yau three-folds

X, and their M-theory uplift. We will discuss the SO(32) case instead in Section 3.3.4, but the

following initial considerations apply to both.

In order to understand how our quantum gravity bounds on the gauge sector and the curvature-

squared terms are realized, we need to revisit and complete the discussion presented in [34],

which neglects corrections coming from higher derivative terms in ten/eleven dimensions. In-

deed, we will see that these corrections modify the structure of the saxionic cone and of the

corresponding EFT string spectrum in a non-trivial manner. We will also allow for possible

background NS5/M5-branes, not considered in [34], which significantly broaden this class of

vacua and enrich the structure of their EFT in an interesting way.

In the heterotic picture, we focus on the chiral fields (t̂, ta) where ta = aa + isa appear in the

expansion

taDa = aaDa + isaDa ≡ B2 + iJ (3.3.67)

and

t̂ = â+ iŝ ≡
∫

X
B6 + ie−2ϕVX . (3.3.68)

Here Da is Poincaré dual to a basis of H4(X,Z), B6 is the electromagnetic dual of the NS-NS

B2 and

VX =
1

3!

∫

X
J ∧ J ∧ J =

1

3!
κabcs

asbsc , κabc ≡ Da ·Db ·Dc (3.3.69)

is the string frame volume of X measured in string units ℓs = 2π
√
α′ = 1.

If we neglect higher derivative corrections as in [34], the saxionic cone described by (ŝ, sa)

can simply be identified with R>0 ⊕ K(X), where K(X) is the Kähler cone of X. It will be

important for us to understand how the higher derivative corrections affect this naive result.

To this end we will collect the relevant threshold corrections to the gauge couplings of the four-

dimensional EFT, and then argue how these corrections are compatible with a corresponding

modification of the relevant sets of BPS instanton and EFT string charges. As we will see,

the saxionic cone will also be enlarged into directions corresponding to the moduli of the

possible background NS5/M5-branes. We will then check that the curvature-squared terms

obey the expected quantum gravity constraints and microscopically verify the corresponding

upper bounds on the ranks of the gauge group.

The EFT terms

As a first step, we need to identify the couplings (2.1.11), including possible contributions com-

ing from heterotic higher derivative corrections. All the relevant complexified gauge couplings

may be extracted directly from [138], and from various previous partial results cited therein such

as [139–141]. However, in order to render the discussion more self-contained and to carefully
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pin down the possible convention ambiguities, in Appendix A.3 we will briefly go through the

main steps of the derivation. Furthermore, we will similarly derive also the curvature-squared

terms, which were not explicitly considered in [138].

The two heterotic E8 sectors can have a non-trivial bundle structure along the internal space.

Let us denote by F̂1 and F̂2 the corresponding fields strength. For simplicity, we assume that

F̂1,2 take values in semi-simple sub-algebras of e8. This in particular allows us to avoid possible

Stückelberg masses and non-trivial kinetic mixing between the U(1) factors.26 We also allow for

possible NS5-branes wrapping irreducible holomorphic curves Ck, k = 0, . . . , NNS5. The internal

gauge bundles and the curves Ck enter the cohomological tadpole condition

λ(E1) + λ(E2) + [C] = c2(X) , (3.3.70)

where [C] is the Poincaré dual of the two-cycle C ≡∑k Ck and

λ(E) ≡ − 1

16π2
tr(F̂ ∧ F̂ ) , (3.3.71)

with the trace defined as in Section 2.1.1.

The background NS5-branes support additional (s)axionic fields. These can be more easily

identified by considering the Hořava-Witten (HW) M-theory uplift of the heterotic theory [142,

143], compactified over I × X, where I = S1/Z2 is the HW interval. In the upstairs picture,

we parametrize the M-theory circle by the coordinate y ≃ y + 2, on which we impose the

Z2 identification y ≃ −y. The E8 sectors are then supported on the walls {y = 0} and

{y = 1 ≃ −1}, and we can parametrize I = S1/Z2 by y ∈ [0, 1]. The background NS5-branes

uplift to M5-branes sitting at points ŷk along the HW interval I. Their worldvolume supports

a self-dual two-form B̃k
2 . This sector hence gives rise to NNS5 additional axions

ãk ≡
∫

Ck

B̃k
2 , (3.3.72)

By supersymmetry the axions pair up with the saxions [138]

s̃k =

(
ŷk − 1

2

)∫

Ck

J =

(
ŷk − 1

2

)
mk

as
a , (no sum over k) , (3.3.73)

where

mk
a ≡ Da · Ck . (3.3.74)

By dimensionally reducing the bulk action, including the Green-Schwarz anomaly cancelling

term as well as certain terms supported on the M5-branes, one obtains the following contribution

26A (partial) verification of our quantum gravity constraints in presence of kinetic mixing of U(1) factors can
be obtained by duality to other corners of the string landscape considered in this thesis.
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to the four-dimensional axionic couplings:

− 1

8π

∫ (
â+

1

2
paa

a − 3

8
qaa

a − 1

2

∑

k

ãk
)
tr(F1 ∧ F1)

− 1

8π

∫ (
â− 1

2
paa

a +
1

8
qaa

a +
1

2

∑

k

ãk
)
tr(F2 ∧ F2) .

(3.3.75)

Here F1,2 denote the field strengths of the four-dimensional gauge sectors coming from the two

heterotic E8 sectors, respectively, and

pa ≡ −
∫

Da

[
λ(E2)−

1

2
c2(X)

]
, qa ≡ Da · C =

∑

k

mk
a . (3.3.76)

We furthermore recall the definition of the axions in (3.3.68), (3.3.67) and (3.3.72). The cor-

responding saxionic couplings are fixed by supersymmetry.

As discussed in detail in Appendix A.3, one can similarly compute the relevant curvature-

squared terms. By focusing again on the axionic couplings, the final result is

− 1

96π

∫ (
12â+ naa

a − 3

2
qaa

a
)
tr(R ∧R) , (3.3.77)

where

na ≡ 1

2

∫

Da

c2(X) . (3.3.78)

By applying the Hirzebruch-Riemann-Roch theorem to a line bundle OX(Da) one can easily

conclude that na ∈ Z. Since
∫
Da
λ(E2) is an instanton number, pa ∈ Z as well.

Note that the constants appearing in both (3.3.75) and (3.3.77) do not satisfy the naively

expected quantization conditions (2.1.12) and (2.1.20), respectively. This signals the presence

of a rational mixing of the axionic periodicities induced by the higher derivative corrections. In

other words, the axions (â, aa, ãk) defined in (3.3.68), (3.3.67) and (3.3.72) do not satisfy the

integral periodicity ai ≃ ai + 1 assumed here. This issue can be solved by passing to a better

axionic basis, obtained from a rational linear redefinition of the axions. For instance, we can

replace the axions â and ãk with the linear combinations

a0 = â+
1

2
paa

a − 3

8
qaa

a − 1

2

∑

k

ãk , ak = ãk +
1

2
mk

aa
a . (3.3.79)

In this way the sum of (3.3.75) and (3.3.77) can be rewritten as

− 1

8π

∫
a0 tr (F1 ∧ F1)−

1

8π

∫ (
a0 − paa

a +
∑

k

ak
)
tr (F2 ∧ F2)

− 1

96π

∫ (
12a0 − 6paa

a + naa
a + 6

∑

k

ak
)
tr(R ∧R) .

(3.3.80)
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In the axionic basis ai = (a0, aa, ak), these terms indeed have the form of the axionic terms

appearing in (2.1.11) and (2.1.19) and then determine the corresponding constants

C1 = (C1
0 , C

1
a , C

1
k) = (1, 0⃗, 0⃗) , C2 = (C2

0 , C
2
a , C

2
k) = (1,−pa, 1⃗) ,

C̃ = (C̃0, C̃a, C̃k) = (12,−6pa + na, 6⃗) .
(3.3.81)

The saxionic couplings appearing in (2.1.11) and (2.1.19) are completely fixed by supersymmetry

and involve the saxions si = (s0, sa, sk), with

s0 ≡ ŝ+
1

2
pas

a − 3

8
qas

a − 1

2

∑

k

sk , (3.3.82a)

sk ≡ s̃k +
1

2
mk

as
a = ŷkmk

as
a (no sum over k) . (3.3.82b)

Note that sk = 0 if the k-th M5-brane sits on the HW wall y = 0 and sk = mk
a if the k-th

M5-brane sits on the HW wall y = 1. We also observe that the microscopic symmetry under

the exchange of the two HW walls, together with the coordinate change y ↔ 1− y, descends to

the invariance of the four-dimensional action under exchange of the two gauge sectors F1 ↔ F2,

together with

pa ↔ qa − pa , s0 ↔ s0 − pas
a +

∑

k

sk , sk ↔ mk
as

a − sk , (3.3.83)

plus similar transformations for the axions. This may be regarded as a discrete Z2 gauge

symmetry of the theory, since it describes the same microscopic configuration.

From (3.3.81) we note that the saxions sk enter the EFT terms (2.1.11) and (2.1.19) in the

combination

pas
a −

∑

k

sk . (3.3.84)

Interestingly, this combination is continuous under ‘small instanton transitions’ [144] in which

some M5-brane is absorbed or emitted by the HW walls. As an example, take the limit ŷk → 1

in which all M5-branes are moved on top of the second HW wall, and are then absorbed by

a small instanton transition in which λ(E2) → λ(E′
2) = λ(E2) + [C] and then pa → p′a =

pa −
∑

km
k
a = pa − qa. Along this process, pas

a −∑k s
k first becomes pas

a −∑km
k
as

a, which

is indeed equal to p′as
a. The combination (3.3.84) is also continuous under a small instanton

transition in which all M5-branes are absorbed by the first HW wall, which is simply described

by the limit sk → 0. Clearly (3.3.84) is also continuous under more general small instanton

transitions.

Note that the M5-branes can provide an additional gauge sector, coming from the expansion

of the M5 self-dual two-form potentials in harmonic one-forms of Ck, as in [145]. However, the

corresponding gauge couplings are controlled by the complex structure of the curves Ck, rather
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than by their volume. Hence, this sector is generically strongly coupled in the perturbative

regime considered here, and one should consider some large complex structure limit in order

to identify corresponding axionic strings. The F-theory dual sector was briefly mentioned in

Section 3.3.2.

Saxionic cone

The saxionic cone is determined by the set of possible BPS instantons, as in (2.1.3). In order

to clarify its global structure, it is convenient to work in the M-theory frame. There are three

types of BPS instantons to consider for us: Heterotic worldsheet instantons, open membrane

instantons ending with one or both ends on an M5-brane, or M5-brane instantons.

Consider first the heterotic world-sheet instantons, which in M-theory are represented by Euc-

lidean open M2-brane wrapping some effective curve Σ ⊂ X and stretching between the two HW

walls. Their action is given by 2πma(Σ)s
a, with ma(Σ) = Da · Σ. The condition ma(Σ)s

a > 0

defines the standard Kähler cone K(X).

If in particular we choose Σ = Ck, we obtain the condition mk
as

a > 0. Hence, by using the

restriction y ∈ (0, 1) in (3.3.82b) we deduce that sk must satisfy the condition

0 < sk < mk
as

a . (3.3.85)

This condition guarantees the exponential suppression of instanton contributions coming from

the second type of instantons, Euclidean open M2-branes stretched between the background

M5-branes and the HW walls [146–148]. For instance, consider an M2-brane along the curve

Ck wrapped by the k-th M5-brane and connecting the HW wall at y = 0 with the k-th M5-

brane. Its action is given precisely by 2πsk, which is indeed positive by (3.3.85). If instead

the M2-brane connects the k-th M5-brane to the HW wall at y = 1, then its action is given

by 2π(1 − ŷk)mk
as

a = 2π(mk
as

a − sk), which is again positive by (3.3.85). One can similarly

consider an open Euclidean M2-brane stretching between two background M5-branes.

It remains to discuss the more subtle BPS instantons corresponding to Euclidean M5-branes

wrapping the entire Calabi-Yau X. A crucial role will be played by the internal M-theory G4

flux, which is generically non-vanishing. In the downstairs picture of the HW orbifold, the

internal G4 flux must satisfy specific boundary conditions [142, 143]. In our setting, these read

lim
y→0+

G4|{y}×X = ℓ3M

[
λ(E1)−

1

2
c2(X)

]
, (3.3.86a)

lim
y→1−

G4|{y}×X = −ℓ3M
[
λ(E2)−

1

2
c2(X)

]
, (3.3.86b)

where ℓM is the M-theory Planck length, which we choose to coincide with ℓs under dimensional

reduction.
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Figure 3.1: BPS instantons in E8×E8 heterotic models. The internal seven-dimensional space is a
fibration of the Calabi-Yau X over the horizontal M-theory interval I = {0 ≤ y ≤ 1}. The vertical brown and
blue lines denote the HW walls and a background M5-brane wrapping the internal curve CM5, respectively. The
picture includes a Euclidean M5/M2-instanton: The light blue Euclidean M5-brane (E5) sits at a given position
yE5 along I and wraps the entire internal Calabi-Yau space. It is connected to the left HW wall by two purple
Euclidean M2-branes (E2) wrapping CE2 and C′

E2 respectively, such that C′
E2 ≃ CE2 + CM5, which reconnect on

the bulk M5-brane. See also Appendix A.4 for further explanations.

Inside the HW interval G4 must satisfy the Bianchi identity

dG4 = ℓ3M
∑

k

δ(y − ŷk)dy ∧ δ4X(Ck) . (3.3.87)

This implies that the cohomology of G4 jumps by ℓ3M[Ck] as one crosses the k-th M5-brane. The

combination of (3.3.86) and (3.3.87) indeed implies the consistency condition (3.3.70).

As first discussed in [149], this non-trivial flux and the HW walls induce a non-trivial deform-

ation of the internal geometry. Furthermore, the presence of a non-trivial G4 implies that

a Euclidean M5 wrapping the entire Calabi-Yau X and sitting at an intermediate position

0 < yE5 < 1 is not consistent by itself, because of the world-volume tadpole condition. Rather,

one must add Euclidean open M2-branes ending on the M5-brane and must then consider a

composite M5/M2-instanton – see Figure 3.1. All this complicates the direct computation of

the instanton Euclidean action and of the corresponding saxionic conditions. However, we can

deduce this information by indirect arguments, exploiting the holomorphy of the BPS instanton

corrections.

We devote Appendix A.4 to a detailed discussion of these arguments and here present only the

final result. Namely, the positivity of the action of any possible BPS M5 instanton (including

possible open M2-brane insertions) is guaranteed if we impose the conditions s0 > 0 and
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s0 − pas
a +

∑
k s

k > 0. This allows us to complete our identification of the saxionic cone:

∆ =
{
s = (s0, sa, sk) | saDa ∈ K(X) , s0 > 0 , s0−pasa+

∑

k

sk > 0 , 0 < sk < mk
as

a
}
. (3.3.88)

Note that this saxionic cone is indeed invariant under (3.3.83).

Recalling (3.3.81), one immediately checks that the combinations ⟨C1, s⟩ and ⟨C2, s⟩, which
define the gauge couplings, are positive within the saxionic cone, as expected. Furthermore, a

theorem [150] guarantees that

nas
a =

1

2

∫

X
J ∧ c2(X) > 0 (3.3.89)

if J = saDa belongs to the Kähler cone. Recalling (3.3.81), it follows that ⟨C̃, s⟩ > 0 within

the saxionic cone.

EFT strings

We now come to specifying the cone of EFT strings. There are three types of BPS strings dual

to the three types of BPS instantons discussed in the previous section: The critical heterotic

string, i.e. an F1 string, corresponding to an open M2-brane stretched between the two HW

walls, furthermore the strings obtained by wrapping an M5-brane along an effective divisor on

X, and finally open M2-branes stretched between two M5-branes or between an M5-brane and

an HW wall. The cone of EFT string charges, (2.2.10), can be identified with the help of the

saxionic cone (3.3.88) as follows:

CEFT
S =

{
e = (e0, ea, ek) | De ≡ eaDa ∈ Nef1(X) ,

e0 ≥ 0 , e0 − pae
a +

∑

k

ek ≥ 0 , 0 ≤ ek ≤ mk
ae

a
}
.

(3.3.90)

Recalling (3.3.74) and (3.3.76), we note that mk
ae

a = Ck · De ≥ 0 if De is nef, and then

qae
a =

∑
k Ck · De ≥ 0 as well. CEFT

S has a richer structure than the cone identified in [34],

not only because of the additional charges ek associated with the presence of background M5-

branes, but also because of the additional condition involving the background constants pa,

which come from 10d/11d higher derivative corrections. As a result, the analysis of section 6.1

of [34] must be updated.

A charge vector e = (e0, 0⃗, 0⃗) corresponds to e0 F1 strings and, as in [34], is associated with an

EFT string flow along which the ten-dimensional string coupling vanishes, eϕ → 0, while the

string frame Kähler moduli and the M5 positions ŷk remain fixed. As noted already, from the

M-theory viewpoint, these EFT strings correspond to M2-branes stretching between the two

HW walls.
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A choice e = (0, 0⃗, ek) corresponds to ek M2-branes filling two external directions and stretching

between the k-th background M5 and the second HW wall (at y = 1). From the ten-dimensional

viewpoint, they appear as ‘fractional’ F1 strings bound to the NS5. However the condition

0 ≤ ek ≤ mk
ae

a appearing in (3.3.90) excludes a charge vector of the form e = (0, 0⃗, ek) from

CEFT
S , and hence these strings are not EFT strings. Note that indeed such strings cannot explore

the entire internal space, as would be characteristic for an EFT string. Rather, such BPS strings

can become classically tensionless [151] at finite distance in the moduli space, where the theory

develops a strongly coupled sector in which the open M2-brane instantons discussed in the

previous section become unsuppressed.

In order to interpret the condition 0 ≤ ek ≤ mk
ae

a, we must then turn on the charges ea,

associated with a string obtained from an M5-brane along a nef divisor eaDa. Assume first

that ea(pa − qa) ≥ 0 (and thus eapa ≥ 0 as well) and suppose that the M5-string wrapping

De sits on top of the second HW wall at y = 1. From (3.3.76) and (3.3.86b) we know that

pae
a = 1

ℓ3M
limye→1

∫
{ye}×De

G4. In order to move the M5 string away from the HW wall, there

must therefore be pae
a M2-branes ending on it from the left (to solve the world-volume tadpole

condition along the M5-brane). If ek = 0 for any k, all these M2-branes must originate on

the first HW wall, and hence initially there must be e0 ≥ pae
a M2-branes connecting the two

HW walls, which is precisely the content of (3.3.90). Now start moving the M5 string to the

left, along the y direction. When it crosses the k-th bulk M5, the G4-flux across De jumps by

−mk
ae

a. Hence, at a more general point ye the number of M2 strings ending on the M5 string

from the left is given by

1

ℓ3M

∫

{ye}×De

G4 = pae
a −

∑

k|ŷk>ye

mk
ae

a , (3.3.91)

while the remainingmk
ae

a M2 strings stretch between the first HW wall and the k-th background

M5-brane with ŷk > ye – see Figure 3.2 for an example with one background M5-brane.

More generically, if ek ̸= 0, then initially, when the M5 string is at ye = 1, there are ek open M2-

branes connecting the second HW wall to the k-th background M5-brane. This implies that in

order to allow the M5 string to move away from ye = 1 it is sufficient to take e0 ≥ pae
a−∑k e

k,

which is indeed one of the conditions appearing in (3.3.90). Moreover, the last condition

0 ≤ ek ≤ mk
ae

a appearing in (3.3.90) implies that, after the M5 string crosses a background

M5-brane, there remain no open M2-brane ending on it from the right. In the extreme case in

which ek = mk
ae

a and e0 = (pa− qa)ea, when the M5 string arrives at ye = 0, no M2 strings are

left in the bulk.

The case pae
a ≤ 0 can be treated in complete analogy, being related to the case (pa− qa)ea ≥ 0

by the Z2 symmetry (3.3.83) which swaps the role of two HW walls. One may similarly discuss

some intermediate case with pae
a ≥ 0 and (qa − pa)e

a ≥ 0.

As reviewed in Section 2.2, the EFT strings are associated to an infinite distance limit. In the
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Figure 3.2: EFT strings in E8×E8 heterotic models. The bulk sector is as in Fig. 3.1, but now the
picture includes two EFT strings: an orange M2-brane stretching between the HW walls, which descends to the
critical heterotic string in ten dimensions; a bound state of (pa −ma)e

a = 2 green open M2-branes and a purple
M5-brane wrapping the nef divisor De ⊂ X and sitting at y = ye. There also appear mae

a = C ·De = 3 green
open M2-branes, connecting the left HW wall with the background M5-brane, which tie to the purple M5-brane
if we move it to ye > ŷ.

present model, the physical properties can be analysed by slightly adapting the discussion of [34],

taking into account two important differences. First, as highlighted by the above discussion,

the flows corresponding to NS5/M5 strings can generically involve also the dilaton s0 and the 5-

brane moduli sk, in addition to the Kähler moduli sa. Furthermore, the identifications (3.3.82)

complicate the microscopic interpretation of the various EFT string flows and in general affect

also the value of the corresponding scaling weight. However, a conclusion of [34] still holds: the

EFT string flows such that

κ(e, e, e) ≡ κabce
aebec = D3

e > 0 (3.3.92)

lead to a rapid growth of the HW interval, so that we have a dynamically generated sharp

hierarchy between its length and the length scale of the internal Calabi-Yau. Hence, close to

the string, one internal direction opens up, and the 4d string uplifts to a string/membrane

bound state in an HW-like 5d theory on M4 × I, where I = S1/Z2. In particular, the string

probes a local N = 1 5d supergravity, whose 8 supercharges are spontaneously broken to 4 by

the presence of the HW walls. These types of EFT have been studied for instance in [152] but

the relevant term can be quite easily obtained by reducing on the Calabi-Yau X the M-theory

CS term (in upstairs picture). By using the decomposition

C3 =
ℓ3M
2π
Aa ∧Da (3.3.93)
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one obtains the five-dimensional CS term

S5d
CS =

π

6(2π)3
κabc

∫

M4×S1

Aa ∧ F b ∧ F c with κabc ≡ Da ·Db ·Dc , (3.3.94)

in the upstairs picture, in which y ∈ [−1, 1]. Note that C3 is odd under parity. Hence the

five-dimensional U(1) gauge fields Aa are odd under the Z2 parity ι : y 7→ −y. The S1/Z2

orbifold projection then imposes that ι∗Aa = −Aa. If we restrict to zero modes along S1, we

are then forced to set Aa = 2πaady, where aa are our 4d axions. This in particular implies that,

from the 4d viewpoint, the 5d gauge fields Aa contain a finite number of massless axions plus

an infinite tower of massive vectors and pseudoscalars. Furthermore, the restriction of (3.3.94)

to the zero modes identically vanishes.

On the other hand, as in Section 3.1.2 this additional CS term produces an extra world-sheet

term of the from (3.1.11), with

Ĉi(e) = δai κabce
bec . (3.3.95)

This provides an explicit microscopic realization of effect described in Section 3.1.2, with

Ĉijk =

{
κabd if (i, j, k) = (a, b, c)

0 otherwise
. (3.3.96)

Microscopic check of quantum gravity bounds

We are now ready to test our EFT quantum gravity constraints. From (3.3.81) we obtain the

relations
⟨C1, e⟩ = e0 , ⟨C2, e⟩ = e0 − pae

a +
∑

k

ek ,

⟨C̃, e⟩ = 6⟨C1, e⟩+ 6⟨C2, e⟩+ nae
a .

(3.3.97)

First of all, the positivity bounds (3.1.18) are satisfied by definition of (3.3.90). It follows that

not only is (3.2.3) obeyed, but actually ⟨C̃, e⟩ ∈ Z≥0, since (3.3.89) implies that

nae
a =

1

2

∫

De

c2(X) ≥ 0 (3.3.98)

for any nef divisor De. In turn, this guarantees that the combinations appearing in (3.2.4) and

(3.2.6) are non-negative, since

⟨Ĉ(e), e⟩ = Ĉ(e, e, e) = κ(e, e, e) = D3
e (3.3.99)

and the triple self-intersection of a nef divisor is non-negative.

On the other hand (3.2.4) makes the stronger prediction that ⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ should actually

be a (positive) integral multiple of 3. The contributions to ⟨C̃, e⟩ + ⟨Ĉ(e), e⟩ coming from
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the first two terms appearing in the second line of (3.3.97) clearly satisfy this property, being

positive multiples of 6. It then remains to check that

nae
a + ⟨Ĉ(e), e⟩ = 1

2

∫

De

c2(X) +D3
e ∈ 3Z≥0 . (3.3.100)

In order to prove it, it is sufficient to prove that D3
e −

∫
De
c2(X) is a multiple of 3. The latter

statement follows from the index theorem applied to the signature complex twisted by the line

bundle OX(De) – see for instance [153] – which implies that27

∫

X
L(X) ∧ c̃h(OX(De)) =

2

3

∫

De

p1(X) +
4

3
D3

e =
4

3

(
D3

e −
∫

De

c2(X)

)
∈ Z . (3.3.101)

SinceD3
e−
∫
De
c2(X) is guaranteed to be integral, this result confirms the quantization condition

(3.2.4) (and then (3.2.6)).

Let us now test (3.2.26), which bounds the rank of the gauge group detected by an EFT string

of charge e and presently takes the form

r(e) ≤ 2⟨C̃, e⟩+D3
e − 2 . (3.3.102)

As explained in Section 4.2.2, the strongest bounds are obtained by picking the generators of

CEFT
S . First of all, we can consider

e = (1, 0⃗, 0⃗) , (3.3.103)

which corresponds to the saxionic direction s0 and ‘detects’ all perturbative gauge groups. With

such a choice D3
e = 0 and ⟨C̃, e⟩ = 12 and then the bound (3.3.102) gives

r(e) ≤ 22 . (3.3.104)

Here r(e) includes the rank of the perturbative E8 × E8 gauge group present already in ten

dimensions plus a maximal extra contribution of six to the total rank as encoded in the chiral

superfields. In the following we will refer to this gauge sector as the ‘perturbative’ one. As

we will see more explicitly at the end of Section 3.3.3, compactifications on singular Calabi-

Yau three-folds can host also ‘non-perturbative’ gauge sectors, which are not accounted for by

(3.3.104). The bound (3.3.104) agrees with expectations from heterotic compactifications for

instance on toroidal orbifolds, which can admit a maximum of six additional U(1) group factors

associated with the six KK U(1) gauge fields [154].28

On the other hand, the bound (3.3.104) does not include possible U(1)s coming from the M5-

branes, whose gauge coupling is of order one for generic complex structure, or more generally

27Here L(X) is the Hirzebruch L-polynomial and c̃h(V ) is the Chern character in which one replaces the
curvature F of V by 2F in all expressions.

28In such situations, all of the chiral superfields can contribute in the anomaly cancellation, showing that the
bound (3.2.26) can indeed be saturated.
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any other gauge factors which avoid a coupling of the form (2.1.11) to the axion associated with

the fundamental heterotic string.

Assume next that there exists a nef divisor De = eaDa such that pae
a = 0 and qae

a = 0, so that

e = (0, ea, 0) belongs to the cone CEFT
S . In this case ⟨C1, e⟩ = ⟨C2, e⟩ = 0.29 The corresponding

EFT string does not interact with the heterotic gauge bundles and does not provide any bound

on their rank.30

More generally, let us assume that (pa − qa)e
a > 0. Then we can pick

e = ((pa − qa)e
a, ea,mk

ae
a) . (3.3.105)

In this case ⟨C1, e⟩ = (pa − qa)e
a and ⟨C2, e⟩ = 0, where we recall (3.3.97) and (3.3.76).

Hence, as far as the perturbative gauge group is concerned, r(e) is sensitive to the rank of the

gauge sector coming only from the first HW wall. Since ⟨C̃, e⟩ = 6(pa − qa)e
a + nae

a, with

nae
a = 1

2

∫
De
c2(X), (3.3.102) yields the bound

r(e) ≤ 12(pa − qa)e
a +

∫

De

c2(X) +D3
e − 2 . (3.3.106)

This bound is clearly satisfied by the pertubative gauge sector supported on the first HW wall,

since we know from the microscopic uplift that its rank is at most 8, and can provide a non-

trivial bound on the non-perturbative gauge sector. By applying the Z2 symmetry (3.3.83), we

obtain an analogous bound for the second gauge sector if pae
a < 0.

If we specialise to models with standard embedding λ(E1) = λ(X), from (3.3.76) and (3.3.78)

we read off that pa = na and qa = 0 (i.e. there are no background M5s).31 Noting that in this

case pae
a ≥ 0, we could pick e as in (3.3.105) and the bound (3.3.106) becomes

r(e) ≤ 7

∫

De

c2(X) +D3
e − 2 . (3.3.107)

We now turn to discuss some concrete models. As we will see, at least in these models, the

bounds on the perturbative gauge sector coming from M5 strings are always weaker than

(3.3.104).

Example 1: The quintic

The quintic three-fold X is defined as the vanishing locus of a section of OP4(5) inside P4.

In this case the effective divisor De generating the (1-dimensional) nef cone is obtained by

29These strings are related to the (0, 4) supergravity strings in five dimensions discussed in [39] by dimensional
reduction on the HW interval. If in addition D3

e = 0 and nae
a = 0, then they support an enhanced (4, 4) or

(8, 8) non-chiral supersymmetric spectrum.
30By contrast, based on duality with F-theory, we will argue at the end of this section that EFT strings with

ea ̸= 0 detect a certain non-perturbative gauge sector of the heterotic compactification.
31The case λ(E2) = λ(X) can again be obtained by applying (3.3.83).
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restricting the hyperplane H ⊂ P4 to the hypersurface. Hence D3
e = 5H4 = 5, and by using

the adjunction formula one obtains c2(X) = 10[H2]|X and then
∫
D c2(X) = 50. Hence, if we

consider a standard embedding, the bound (3.3.106) becomes r(e) ≤ 353 which, if applied to

the perturbative gauge sector, is clearly much weaker than (3.3.104).

Example 2: Elliptically fibered CYs and duality with F-theory

Consider a smooth CY three-fold X which is given by an elliptic fibration π : X → B over some

weak-Fano two-fold B and which is described by a smooth Weierstrass model. The weak Fano

condition implies that c1(B) = c1(KB) is Poincaré dual to an effective nef divisor.

One can compute the second Chern class of X as

c2(X) = π∗c2(B) + 12S · π∗KB + 11π∗K
2
B , (3.3.108)

where Poincaré duality is implicit, KB is identified with its divisor and S denotes the divisor

associated with the global section of the Weierstrass model. The effective curves are generated

by the elliptic T 2 fibre and the push forward σ∗(c) of the base effective curves c ⊂ B. The nef

cone is generated by the vertical divisors V = π∗j which project to a nef divisor j of the base

and the ‘horizontal’ divisor H = S + π∗KB.

Notice that, if we pick an EFT charge vector e = (e0, ea, ek) with ea such that De = eaDa = V ,

then Ĉ(e) = D3
e = 0 and – see (3.3.97) –

⟨C̃, e⟩ = 6⟨C1, e⟩+ 6⟨C2, e⟩+ 6 j ·KB . (3.3.109)

Heterotic compactifications on such threefolds are dual to F-theory compactified on an elliptic

four-fold whose base is a P1-fibration over the same weak-Fano two-fold B, blown up in the

fiber over curves on B wrapped by heterotic 5-branes. To avoid confusion we call this F-theory

threefold base XF in this section. In the notation of Section 3.3.2, the anti-canonical class of

XF is32

KXF
= 2S− + p∗c1(T ) + p∗c1(B)−

∑

k

Ek . (3.3.110)

Here the twist bundle T characterising the rational fibration is related to the heterotic invariants

pa as

pa =

∫

da

c1(T ) , (3.3.111)

with da a basis of divisors on B. In particular, for a positive bundle, i.e. c1(T ) effective, the

gauge sector on the second HW wall maps to the gauge theory on a stack of 7-branes wrapping

32For simplicity we are considering single blowups over separate curves.
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the exceptional section S− in the F-theory base XF .
33 Furthermore Ek denotes a blowup divisor

on XF over the curve Ck wrapped by the k-th M5-brane. Under the duality, an EFT string with

charges e = (e0, ea, ek) in the heterotic theory maps to an EFT string obtained by wrapping a

D3-brane along the curve

Σe = e0F0 + eaS− · p∗(da) + ekFk , (3.3.112)

where F0 denotes the generic rational fiber of XF , da continues to denote a basis of divisors

on B and Fk is the rational fiber of the exceptional divisor Ek with Ei · Fj = −δij . The

inequalities (3.3.90) translate into the condition for the curve Σe to lie inside the movable cone.

For instance, in the simple example discussed in Section 3.3.2 (with all ek = 0), the EFT string

condition (3.3.47) maps to the condition (3.3.90) once we identify pa with the positive integer

n defining the twist. With these identifications, one can convince oneself that (3.3.109) agrees

with the dual expression (3.3.21), more precisely with 6K̄XF
· Σe, in F-theory.

Let us now turn to the bounds: By assuming for instance a standard embedding, the bound

(3.3.107) resulting from a charge (3.3.105) with qa = 0 and pa = na and with De = V = π∗(j)

becomes

r(e) ≤ 7c2(X) ·De − 2 = 84j ·KB − 2 . (3.3.113)

This bound does not contain any new information. If j ·KB = 0 then ⟨C1, e⟩ = ⟨C2, e⟩ = 0,

because in the charge vector (3.3.105) the F1 component vanishes for the standard embedding:

pae
a = nae

a = 1
2

∫
π∗(j) c2(X) = 0; in this case we already know that r(e) = 0. If j ·KB ≥ 1 and

we focus just on the perturbative gauge sector, we arrive at a bound much weaker than (3.3.104).

As another example, pick a charge of the form (3.3.105) but with De = H = S + π∗(K̄B), still

assuming a standard embedding. Then the bound (3.3.106) becomes

r(e) ≤ 7χ(B) + 78KB ·KB − 2 . (3.3.114)

For B a weak-Fano space, KB ·KB ≥ 1, and then again this bound does not improve the bound

(3.3.104) for the perturbative gauge sector.

We have emphasized that these bounds test the perturbative part of the heterotic gauge group

probed by the EFT string with charge e as given. In F-theory this gauge sector corresponds to

gauge symmetry from 7-branes on the two sections S− and S+ of XF . On the other hand, on

the F-theory side there can also be non-abelian gauge groups supported on a vertical divisor

DV = p∗d with d an effective divisor on the base B of XF . Note that such gauge sectors are

independent of the existence of blowup divisors in F-theory, which map to the background M5-

branes in heterotic M-theory whose gauge coupling is controlled by the complex structure of the

heterotic theory. An example of such a vertical gauge sector was discussed in Section 3.3.2 by

33Consistently, for bigger and bigger effective twist class c1(T ), or larger positive values of pa, the gauge flux
on the second HW wall becomes smaller and smaller, as follows from the definition (3.3.76). This eventually
results in a non-Higgsable remnant gauge group, which in F-theory must be localised on the rigid section S−,
with negative self-intersection (3.3.43), rather than on S+.
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taking the 7-branes in class D1. The vertical gauge sector in F-theory must be dual to a non-

perturbative gauge sector in the heterotic theory which arises when the elliptic fibration becomes

singular over the divisor d ⊂ B. The EFT strings detecting the vertical part of the gauge group

in F-theory map to heterotic EFT strings with non-vanishing charges ea. By duality, therefore,

such heterotic EFT strings must contain information about the non-perturbative sectors in

question. It would be very interesting to study this effect further from the heterotic point of

view.

3.3.4 SO(32) heterotic/Type I models

The SO(32) heterotic models can be discussed in a similar manner, but are somewhat simpler

and so we will be brief. We first assume that there are no background NS5-branes. The relevant

EFT terms can be derived as in the E8 ×E8 case. The details are provided in Appendix A.3.2.

Assume an internal gauge bundle and suppose for simplicity that it takes values in a semi-simple

sub-algebra g ⊂ so(32) with vanishing forth order Casimir. Then the four-dimensional EFT

contains the terms

− 1

8π

∫
s0 tr(F ∧ ∗F )− 1

96π

∫
(12s0 + 3nas

a) tr(R ∧ ∗R) , (3.3.115)

where F takes values in the commutant of g ⊂ so(32), na is defined as in (3.3.78), and

s0 = ŝ− 1

6
nas

a , (3.3.116)

with ŝ as in (3.3.68). Hence

C = (C0, Ca) = (1, 0) , C̃ = (C̃0, C̃a) = (12, 3na) . (3.3.117)

One can also discuss the instanton corrections and the saxionic cone as in Section 3.3.3. In this

case the ten-dimensional curvature corrections do not affect the form of the saxionic cone, but

only the microscopic definition (3.3.116) of s0. The saxionic cone is simply given by R>0⊕K(X),

where R>0 is parametrized by s0. Correspondingly the EFT string charges are given by CEFT
S =

{e = (e0, ea)|e0 ≥ 0 , De ≡ ea[Da] ∈ Nef1(X)}. It is then easy to see that (3.1.18) and our

quantum gravity constraints (3.2.4) and (3.2.6) are satisfied.

In particular, by picking eF1 = (1, 0⃗) ∈ CEFT
S in (3.2.26) we obtain r(eF1) ≤ 22, correctly

reproducing the rank of the ‘perturbative’ gauge sector detected by the perturbative heterotic

string: the so(32) sector explicitly appearing in (3.3.115), plus the up to six possible additional

KK U(1)s, depending on the type of background. (As before, potential gauge group factors

whose axionic couplings are not of the form (2.1.11) cannot be detected in this manner.)

One may equivalently start from the S-dual Type I description of these backgrounds. In par-

ticular, the EFT string charge eF1 = (1, 0⃗) corresponds to a D1-brane. However, as discussed
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in [34], the D1-brane string flow drives the Type I dilaton to +∞, and then the heterotic for-

mulation is better suited for describing the UV completion of the corresponding perturbative

regime.

We next consider EFT strings of charges eNS5 = (0, ea), which correspond to NS5-branes wrap-

ping internal nef divisors De ≡ ea[Da] ∈ Nef1(X). These EFT strings can detect the ‘non-

perturbative’ gauge sector supported by bulk NS5-branes, which is not included in (3.3.115).

These NS5-branes can appear through small instanton transitions [155] and correspond to D5-

branes in the dual Type I description. In fact, as in the E8 × E8 case, the heterotic dilaton

e2ϕhet = 6(κabcs
asbsc)/ŝ generically diverges along the flows of these EFT strings. Hence the

type I description is better suited.34

The bound (3.2.26) now takes the form

r(eNS5) ≤ 3

∫

De

c2(X)− 2 (3.3.118)

In order to show that this bound is indeed satisfied, recall the SO(32) counterpart of the tadpole

condition (3.3.70):

λ(E) + [C] = c2(X) . (3.3.119)

Here λ(E) is defined as in (3.3.71) and

C = NACA , (3.3.120)

where NA > 0 counts the NS5-branes wrapping the irreducible curve CA. The supersymmetry

condition on the internal bundle implies that
∫
De
λ(E) ≥ 0. Hence from (3.3.119) we get

C ·De ≤
∫

De

c2(X) . (3.3.121)

We can now use the dual type I description to compute the rank of r(eNS5), which just counts

the bulk D5-branes which intersect the nef divisor De:

r(eNS5) =
∑

A|CA·De ̸=0

NA . (3.3.122)

Since De is nef, we know that CA ·De ≥ 0 and then

r(eNS5) ≤
∑

A

NA(CA ·De) = C ·De ≤
∫

De

c2(X) , (3.3.123)

where in the last step we have used (3.3.121). The microscopic bound (3.3.123) implies our

34The microscopic description of these infinite distance limits can be done as in [34], but should be revised by
taking into account the curvature correction entering (3.3.116).
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quantum gravity bound (3.3.118) (in the non-trivial case ⟨C̃, eNS5⟩ = 3
2

∫
De
c2(X) > 0), which

is then always satisfied.

3.3.5 Microscopic checks in G2 M-theory models

As a last class of models, we consider M-theory compactified on a G2-manifold X. In this

case, the 4d U(1) gauge sector comes from the expansion of the M-theory three-form C3 into

a basis of integral harmonic two-forms [ΓA]harm ∈ H2(X,Z), where ΓA ∈ H5(X,Z) denotes the

Poincaré dual basis:

C3 =
ℓ3M
2π
AA ∧ [ΓA]harm . (3.3.124)

One can also have non-abelian gauge sectors localised at singularities, whose U(1) Cartan

sector can be identified by resolving the singularity. Our EFT constraints should also hold in

the singular case, but in order to check them we will assume that all these singularities have

been resolved.

The (s)axions are obtained from the expansion

C3 + iΦ = ℓ3M(a
i + isi)[Πi]harm , (3.3.125)

where Πi ∈ H4(X,Z) is a basis of 4-cycles, [Πi]harm ∈ H3(X,Z) is the Poincaré dual basis

of harmonic representatives, and Φ is the associative three-form. As a key property of G2

manifolds, any harmonic two-form ω satisfies the relation [156]

∗Xω = −Φ ∧ ω , (3.3.126)

where ∗X is the Hodge star associated with the internal G2 metric. By expanding the eleven-

dimensional terms

− π

ℓ9M

∫
G4 ∧ ∗G4 +

2π

ℓ9M

∫
C3 ∧G4 ∧G4 (3.3.127)

one obtains the four-dimensional terms of the form (2.1.7), with CAB
i = −Πi · ΓA · ΓB and

CI
i = 0. Note that (3.3.126) implies that the matrix

⟨CAB, s⟩ = −
∫

X
Φ ∧ [ΓA] ∧ [ΓB] (3.3.128)

is positive definite.

Consider now the eleven-dimensional term

1

192(2π)3ℓ3M

∫
C3 ∧

[
trR4 − 1

4
(trR2)2

]
, (3.3.129)

where R is the eleven-dimensional curvature two-form. By splitting R = R + R̂ according to
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the 4 + 7 split, one finds an axionic coupling of the form appearing in (2.1.19), with

C̃i = −1

4

∫

Πi

p1(X) . (3.3.130)

A four-dimensional BPS axionic string of charges ei is obtained by wrapping an M5-brane along

a coassociative 4-cycle Π = eiΠi. Imposing that this string is EFT, e ∈ CEFT
S , corresponds to

requiring that the Poincaré dual three-cocycle [Π] can be represented by an associative three-

form Φe, or a limit thereof reached by approaching the boundary of the corresponding saxionic

cone [34]. From the positive-definiteness of (3.3.128), we conclude that ⟨CAB, e⟩ is positive

semi-definite, hence realizing (3.1.18). Furthermore an argument of footnote 2 of [157] and

Lemma 1.1.2 of [158] implies that

⟨C̃, e⟩ = −1

4

∫

X
Φe ∧ p1(X) ∈ Z≥0 . (3.3.131)

By splitting TX|Π = TΠ⊕NΠ and using the identifications NΠ ≃ Λ2
+Π (the bundle of self-dual

two-forms) and p1(Λ
2
+Π) = p1(Π) + 2e(Π) [159]35, we can rewrite ⟨C̃, e⟩ = −1

4

∫
Π p1(X) in the

form

⟨C̃, e⟩ = b−2 (Π)− 2b+2 (Π) + b1(Π)− 1 . (3.3.132)

By the anomaly matching argument, this formula should agree with (3.2.2a). We can indeed

check this result microscopically, following [160]. More precisely, the numbers of massless fields

on the string are counted by

nC = b+2 (Π) , nF = b−2 (Π)− b+2 (Π) , nN = b1(Π) . (3.3.133)

To see this, note first that the world-sheet theory contains b+2 (Π) massless real scalars, which

parametrize the geometric deformations of Π [159]. Furthermore, by dimensionally reducing the

self-dual M5 two-form on Π one obtains b+2 (Π) right-moving plus b−2 (Π) left-moving real chiral

scalars. Supersymmetry then fixes the orientation of Π so that b−2 (Π)− b+2 (Π) ≥ 0 and we can

combine the above modes into the b+2 (Π) complex scalars. These form the scalar components

of nC = b+2 (Π) chiral multiplets, whose b+2 (Π) right-moving fermions should come from the

reduction of the M5 fermions. The remaining b−2 (Π)− b+2 (Π) ≥ 0 left moving real chiral bosons

can be fermionized and, completed by b−2 (Π)−b+2 (Π) left-moving fermions coming from the M5-

brane fermions, form nF = b−2 (Π)− b+2 (Π) ≥ 0 Fermi multiplets. Furthermore, reducing the M5

self-dual two-form on the harmonic one-forms yields b1(Π) U(1) vectors, which are completed

into vector multiplets by a corresponding number of left-moving fermions λ− with charges as in

Table (3.1.28). The corresponding nN = b1(Π) Fermi superfields Λ− can be identified with the

super field strengths of the vector multiplets, which contribute to our anomaly matching in the

35Our self-dual forms corresponds to the anti-self-dual ones of [159], and viceversa.
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same way as fundamental Fermi multiplets.36 Altogether, we have therefore derived the values

of nC, nF and nN in (3.3.133), which together with (3.2.2a) reproduce the geometric prediction

(3.3.132).

From (3.2.25) and with the help of (3.3.133), the bound on the rank of the gauge group detected

by the EFT string is given by37

r(e) ≤ nF + 2(nC − nN) = b2(Π)− 2b1(Π). (3.3.134)

On the other hand, (3.2.26) and (3.3.132) give

r(e) ≤ 2⟨C̃, e⟩+ ⟨Ĉ(e), e⟩ − 2 = 2b2(Π)− 6b+2 (Π) + 2b1(Π)− 4 + ⟨Ĉ(e), e⟩ . (3.3.135)

These two bounds must coincide and their difference can therefore be read as an equation for

⟨Ĉ(e), e⟩.

As an example, we may assume that Π has trivial normal bundle NΠ ≃ Λ2
+Π as in [162]. In

this case p1(NΠ) = 0 and then Π is spin [162]. Hence by Rochlin’s theorem
∫
Π p1(Π) ∈ 48Z and

⟨C̃, e⟩ = −1
4

∫
Π p1(X) ∈ 12Z. For instance, one can consider a so called ‘Twisted Connected

Sum’ G2 manifold [163], which can be viewed as a coassociative K3-fibration over an S3. By

fiber-wise duality it should be dual to a heterotic compactification on a Calabi-Yau three-fold –

see for instance [164]. More precisely, the M5-brane wrapping the K3 fiber is the dual heterotic

fundamental string and our quantum gravity bounds derived from this string must therefore

coincide with the bounds obtained in the heterotic case. Indeed,
∫
Π p1(X) = −48 and then

⟨C̃, e⟩ = 12, as found for the heterotic fundamental string in Section 3.3.3. Furthermore, by

comparing the bounds (3.3.134) and (3.3.135) and using the K3 Betti numbers b+2 (Π) = 3,

b−2 (Π) = 19 and b1(Π) = 0, one gets ⟨Ĉ(e), e⟩ = 0 as expected. The bound (3.3.135) – or

equivalently (3.3.134) – then gives

r(e) ≤ 2⟨C̃, e⟩ − 2 = 22, (3.3.136)

which reproduces the general bound (3.3.104) on the rank of a heterotic perturbative gauge

group in four dimensions.

In the large volume heterotic regime, we have encountered EFT strings corresponding to NS5-

branes wrapping nef divisors. These should also correspond to M5 EFT strings in the M-theory

picture. This in particular implies that there should exist EFT strings with non-vanishing

36In two dimensions a U(1) gauge field does not carry propagating degrees of freedom and, in absence of
charged matter, its field strength can be traded for the auxiliary field of the Fermi multiplet. This is the two-
dimensional counterpart of the relation between three-form multiplets and chiral multiplets in four-dimensions
discussed in [67, 161].

37Recall that the subtraction of the nN Fermi multiplets accounts for potential obstructions of the scalar moduli.
In the present situation, these would have to be due to non-perturbative effects from M2-brane instantons ending
on the M5-brane, since the b+2 massless modes describing the geometric deformations of a coassociative cycle are
classically unobstructed [159].
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Ĉi(e) = Ĉijke
jek. At a first sight, this may appear in contradiction with our general ex-

pectation that such a Ĉi(e) should be associated with some hidden five-dimensional structure,

since apparently no such structure is present. However, the strings with non-trivial Ĉi(e) may

dynamically generate a preferred fifth direction along their flow.

In order to support this proposal, let us consider an M-theory compactification admitting a

weakly-coupled type IIA limit, in which the G2 manifold X becomes the orbifold [165]

X◦ = (Y × S1)/(σ,−1) . (3.3.137)

Here Y represents a Calabi-Yau three-fold admitting an O6-plane involution σ : Y → Y . In

this limit, each irreducible component of the fixed locus of σ is occupied by one O6-plane and

four D6-planes. Furthermore the associative three-form becomes Φ = ReΩ + dy ∧ J , where J
and Ω are respectively the Kähler form and (appropriately normalized) holomorphic (3, 0) form

of Y . Then the coassociative four-cycles are calibrated by ∗X◦Φ = 1
2J ∧ J + dy ∧ ImΩ. Note

that (J,Ω) must satisfy the orientifold projection σ∗J = −J and σ∗ReΩ = ReΩ.

Let us then focus on those coassociative four-cycles Π in X◦ which are calibrated by 1
2J ∧ J .

These can be regarded as orientifold-even effective divisors D in Y . In this case, an M5-brane

wrapping Π reduces to an NS5-brane wrapping D and represents an EFT string if D is a nef

divisor. The analysis of these EFT strings is completely analogous, mutatis mutandis, to the

analysis carried for the E8×E8 models in Section 3.3.3 (and in [34]), without the complications

due to the higher derivative corrections discussed therein. In particular, the EFT strings should

support a term of the form (3.1.11) with Ĉi(e) as in (3.3.95), where κabc now denotes the triple

intersection number defined on H2
−(Y,Z).

Now the key point is that, along the string flows associated with the EFT strings with non-

vanishing Ĉi(e), the M-theory circle decompactifies much faster than the Calabi-Yau Y . So,

even if one starts from a more generic field space point, in which the factorized geometry of the

form (3.3.137) is not manifest, a preferred fifth direction would dynamically emerge.

In type IIA language, up to U(1) mixing effects [166], these EFT strings more naturally detect

the R-R U(1) gauge sectors, while the EFT strings corresponding to D4-branes on appropriate

special Langrangian three-cycles detect the D6 gauge sectors. The M-theory analysis nicely

unifies these sectors. The corresponding EFT constraints may be tested as already done above

in other models but, since X◦ is not complex, in this case it is harder to both extract further

general results or perform a case by case analysis. We leave this interesting task for future

explorations.
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Chapter 4

Wormholes in the axiverse and the

Species Scale

Wormholes are a deeply studied subject in scientific literature, nevertheless so far no clear

consensus has been reached on their physical relevance as quantum gravity effects. Arguments

both for or against the necessity of their non-perturbative contributions have been formulated,

with recently the so-called factorization problem in holography and the conjecture about Baby

Universes sparking new discussions around the topic [13, 167]. Here, we will conservatively

assume that such objects can contribute to the Euclidean path integral and, when charged, can

account for a violation of global symmetries. Subsequently we will discuss the consequences of

this assumption.

The global symmetries we are interested in are the shift symmetries associated to axions, and

the explicit breaking effect expected to be induced by wormholes is materialized at low energies

in an axion potential. Quantifying these effects is especially relevant in the context of models

of inflation and the QCD axion solution to the strong CP problem, where even small symmetry

breaking effects can have important phenomenological consequences.

It is worth briefly reviewing how this phenomenon might manifest itself in this context. This is

best understood via an effective field theory defined at distances much larger than the worm-

hole throat L. In that regime, and working for now in a dilute instanton gas approximation,

wormholes are described by bi-local corrections to the action [168, 169]

Svert. =
∑

IJ

∫
d4x

∫
d4y CIJO†

I(x)OJ(y), (4.0.1)

with CIJ = C∗
JI constant parameters proportional to the amplitude of wormhole production

and OI local gauge-invariant operators. Consider for concreteness the effect of wormholes

carrying charge under a global U(1) realized non-linearly via a compact axion θ in the EFT.

By assumption wormholes subtract charge from x and posit it in y. Accordingly, the bi-local
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action of eq. (4.0.1) must be written in terms of operators OI , OJ with equal and opposite

charges (qI = −qJ). An observer around x would thus experience a local violation of charge

conservation. This is signaled by an anomaly in the Noëther current:

∂µJ
µ = i

∑

IJ

qJCIJ

[(∫
O†

I

)
OJ −O†

I

(∫
OJ

)]
. (4.0.2)

Globally, though, charge is conserved. Because wormholes act as conduits of charge, there

is vanishing charge flowing from or outside any region that encompasses both the origin and

the end of the wormhole. The anomaly in eq. (4.0.2), when integrated over the whole space-

time, vanishes identically. This conclusion continues to hold when corrections to the dilute

instanton gas approximation, in the form of wormhole and instanton interactions as described

in [169], are included. If wormholes are mere charge carriers, at distances ≫ L these corrections

are parametrized by multi-local vertices involving operators OI with constant coefficients and,

crucially, vanishing overall charge. None of these interactions can break charge globally by

assumption, nor generate an effective potential for the axion. In order to induce such effect,

the anomaly should have an overlap with the vacuum and a state of n axions at rest, and this

cannot certainly happen here because the right-hand side of (4.0.2) is always completely neutral

under the U(1), as so does Svert. or its multi-local generalization. How can wormholes generate

an axion potential, then?

It seems that the only logical possibility is that for some reason some of the charged wormholes

do not bring charge back to our Universe. Wormholes should swallow charge and seclude it

into another world. Effectively, one end of the wormhole should disappear, so that from our

perspective charge would be badly violated both locally and globally.

One may gain some insight as to how this possibility might be realized by reformulating this

story in the language of the famous α-parameters of Coleman [170]. The bi-local vertex (4.0.1)

can be equivalently written as a sum of local interactions −∑IJ α
∗
IC

−1
IJ αJ+

∑
I

∫
d4x α∗

IOI(x)+

hc provided we integrate also over constant α-parameters. The main effect of wormhole and

instanton interactions is to turn the Gaussian distribution of the αI ’s into a more involved one

[169]. Within the α-parameters language, wormholes are thus conjectured to renormalize the

couplings of the theory via α-dependent terms. In addition, by opening up gateways to otherwise

disconnected geometries, they introduce new (α-dependent) contributions to the path integral

[171]. After having summed over all allowed geometries, the partition function describing our

Universe at length scales ≫ L (where physics in the absence of wormholes would be captured

by fields Φ with action S[Φ]) is determined by the effective action S[Φ]−∑I

∫
d4x α∗

IOI(x)+hc

weighted with a complicated distribution P(α, α∗) for the α-parameters — one that takes into

account both the existence of a priori disconnected Universes communicating to ours only via
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wormholes as well as corrections to the dilute instanton gas approximation [168, 169]:

Z =

∫
dα

∫
dα∗ P(α, α∗)

∫
DΦ e−S[Φ]−[

∑
I

∫
d4x α∗

IOI(x)+hc]. (4.0.3)

While locality seems to be restored by the introduction of α parameters, the cluster decom-

position principle is in general badly violated by the presence of an integral over α, α∗ [14].

A possible way out is that for some reason P is sharply peaked at specific values αI = αI

[171] (see also [172, 173] for more recent considerations). A (not necessarily sharp) peak at

some non-trivial value also seems to be necessary for the production of an axion potential.

In fact, with fixed αI = αI our effective field theory includes new symmetry-breaking terms∑
I

∫
d4x α∗

IOI(x)+hc, and a potential for θ is generated provided OI has a non-trivial charge

and a non-trivial expectation value:

Vwh(θ) =
∑

I

α∗
I⟨OI⟩eiqIθ + hc = 2

∑

I

|α∗
I⟨OI⟩| cos (qIθ +Arg[α∗

I⟨OI⟩]) . (4.0.4)

The physical implications of wormholes therefore crucially depend on the unknown distribu-

tion P(α, α∗). The naive symmetry around αI = 0, or between wormholes swallowing charge

and spitting it back, must be broken in order to generate measurable U(1)-violating effects.

Throughout the discussion we will assume that such asymmetry in fact is present and in par-

ticular that wormholes can generate an axion potential.

It is useful for what follows to have at least a rough idea of the size of this potential. On purely

dimensional grounds α∗
I⟨OI⟩ is expected to be proportional to some dimensionless number times

1/L4, namely four powers of the inverse wormhole length. The estimate of the dimensionless

number is a bit subtle. Because by OI we denote any allowed operator with the appropriate

charge, it is natural to conservatively take ⟨OI⟩ ∼ 1/LdI , with dI its engineering dimension.

To make an educated guess of the size of the dimensionless number αIL
dI−4 we go back to

eqs.(4.0.1). In a semi-classical description of wormholes we have CIJ ∝ e−SI,wh , with SI,wh the

Euclidean classical action of a wormhole of charge qI . By defining αI ≡ α′
Ie

−SI,wh/2 the α′
I

distribution is controlling by order one numbers in natural units. Hence one anticipates that

α′
I ∼ 1 and finally

αI ∝ e−SI,wh/2. (4.0.5)

The exponential of half-wormhole is therefore a measure of the strength of the effective wormhole

interactions appearing in (4.0.3), and thus of the axion potential shown in eq. (4.0.4).

In this Chapter, based upon the upcoming paper ”Wormholes in the axiverse and the species

scale”, we will provide a detailed study of a particular class of homogeneous multi-saxionic

wormholes, some of their limit cases and generalizations, and their contributions to low energy

effective theories. The main aspects of the theoretical setting, N = 1 supergravity in four

dimension, are collected in chapter 2, but we will anyway begin with some essential remarks
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and recall for the reader about models with many saxions in Section 4.1. In doing so, we will

stress the role of the Gauss-Bonnet correction to the 2-derivative action as the relevant one for

our purposes.

Before diving into the wormholes themselves, in Section 4.2 we will first address the issue of

the perturbative control and of the important energy scales involved in the problem. We will

be able to identify a specific perturbative domain in saxionic space where the bounds derived

in Chapter 3 lead to a suppression of the higher derivative corrections. In addition we will

explore the interplay of the notion of energy scale of strong coupling for gravity with those of

EFT string limits and their role as natural cut-offs for the wormhole solutions. There we will

argue on general grounds for the strongly coupled gravity scale to be always controlled from

above by the square root of the EFT string tensions in asymptotic limits.

Those statements will be made more manifest with explicit examples from String Theory in

Section 4.3. There we will briefly review some F-theory constructions and apply, to both them

and heterotic models, the previously discussed arguments about the relevant energy scales,

finding agreement with our expectations.

In Section 4.4 we will show the possibility of sub-extremal and extremal Euclidean wormhole

solutions in our setting. We will provide explicitly the equations of motion, solve them through

a SO(4)-symmetric ansatz and compute the on-shell action associated to these configurations.

In the extremal case we will delve into the possible connection to fundamental instantons with

analogous instanton charges and present a peculiar BPS bound on the on-shell action of sub-

extremal wormholes.

In Section 4.5 we will introduce a class of homogeneous multi-saxionic wormholes, made possible

by the homogeneity of the intersection polynomial controlling the kinetic terms of the saxions

in our concrete examples, and provide arguments for the interplay between their instanton

charges and the set of charges which characterize BPS and EFT strings. In particular we will

be able to associate the subset of BPS instanton charges, which we will call EFT instanton

charges, characterizing controlled configurations with those that have a non-negative pairing

with BPS string charges, in an analogous way as EFT strings are defined within the set of

BPS strings. We will consider the non-homogeneous generalizations and discuss some of their

expected features. For such scope, a perturbative analysis in the space of solutions around the

analytically controlled ones will be necessary and fruitful. A marginally degenerate case, that

with generating polynomial of degree 3, will appear and spawn an in-depth discussion all on

its own, where the connection to BPS fundamental instantons will be highlighted. Finally, in

absence of analytical control, a numerical scan will give us further evidence of the existence and

confirmation of the features of the space of non-homogeneous solutions close to the universal

ones.

The main conclusions and a set of open questions are presented in chapter 5.
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4.1 Saxions and semitopological higher derivative terms

The basic assumption underlying our work is the existence of an effective four-dimensional field

theory (EFT) with a large number N of light axions. We will focus on fundamental axions,

namely periodic axions that originate from string theory, as opposed to quantum field theory.

Because in quantum gravity (QG) global symmetries are expected to be at most approximate,

the global shift symmetries that prevent our axions to acquire large masses must ultimately be

broken. It is then crucial to identify a concrete and realistic framework in which the axionic shift

symmetries can be considered exact up to small corrections dictated by QG. Such a framework

is provided by the N = 1 setup outlined in [51, 52, 64]. The associated EFTs emerge from large

classes of string theory models and naturally take into account the relevant QG constraints.

Our basic setup, analogous to the one presented in [51, 52, 64], is essentially the same as the

one setting the stage for the previous chapter and we recommend the reader for Section 2 for

a quick review. Here we will just recall some very basic features of such setting, mostly to

set the conventions. We focus on the leading 2-derivative approximation but, for reasons that

will become clearer later, also keep an eye on the (semi-)topological couplings to gravity, and

in particular the Gauss-Bonnet interaction, for which we will provide a deeper introduction.

In Section 4.2.1 we provide an unambiguous definition of the domain of validity of our EFT

and quantify the size of the QG effects that violate the axionic shift-symmetry. Remarkably,

within this perturbative domain the coefficient of the Gauss-Bonnet interaction will be shown

to be subject to an interesting lower bound (see Section 4.2.2). We point to the reader Section

2.2.1 for the basics in the reformulation of the EFT in a dual 2-form language in preparation of

the subsequent sections. An explicit connection between our four-dimensional EFT and several

string theory models is given in Section 4.3.

4.1.1 The two-derivative theory

The exact shift symmetry combined with supersymmetry constrain significantly the EFT. The

only manifestly supersymmetric non-derivative couplings of the axions can be either topolo-

gical or functions of e2πit
iqi with qi ∈ Z, and so exponentially suppressed by the saxions. We

will discuss the topological couplings shortly and postpone an analysis of the exponentially sup-

pressed instanton-like corrections to a following subsection, where we also provide a quantitative

definition of the perturbative regime in which such corrections can be considered small.

Up to topological couplings and instanton-like effects, the EFT is accidentally invariant under

arbitrary constant shifts of the axions. At the 2-derivative level the most general shift-symmetric

Minkowskian action involving gravity and ti is

S(M) =
1

2
M2

P

∫
R ∗ 1− 1

2
M2

P

∫
Gij(s)

(
dsi ∧ ∗dsj + dai ∧ ∗daj

)
+ BT (4.1.1)

where Gij(s) is a symmetric positive matrix function of the saxion fields and BT denotes the
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appropriate Hawking-Gibbons boundary term. By supersymmetry, the kinetic terms of the

scalars are specified by a Kähler potential K. Within our perturbative regime that depends on

the complex fields ti only through their saxionic component si = − i
2(t

i − t̄i), i.e. K = K(s) (a

possible dependence on spectator chiral multiplets is ignored), via the relation

Gij ≡
1

2

∂2K

∂si∂sj
. (4.1.2)

We can actually say more about our EFT if we take into account additional non-trivial inputs

from the UV completion. Indeed, within the perturbative regime we are considering (to be

rigorously defined later), for a large class of string theory models the Kähler potential reads

K(s) = − logP (s) , (4.1.3)

where P (s) is a positive homogeneous function, P (λs) = λnP (s) and n is an integer ranging

from 1 to 7. As discussed in [51, 64] the perturbative structure (4.1.3) conforms with various

formulations of the weak gravity conjecture [69] and the distance conjecture [22] in the present

setting. The homogeneity of P and the relation (4.1.3) will play a crucial role in some of the

subsequent sections.

Note that by the homogeneity of P (s) we have ℓis
i = n

2 and then the dual saxion kinetic

function (2.2.5) takes the form

F(ℓ) = n+ log P̃ (ℓ) , (4.1.4)

where n always turns out to be an irrelevant constant factor whereas

P̃ (ℓ) ≡ 1

P (s(ℓ))
(4.1.5)

is a homogeneous function of degree n:

P̃ (λℓ) = λnP̃ (ℓ) . (4.1.6)

Similarly, the (semi-)topological couplings to gravity can be written as in (4.1.10) provided we

interpret si as a function of the dual saxions, as dictated by (2.2.8).

4.1.2 (Semi-)Topological couplings to gravity

Eq. (4.1.1) just represents the leading 2-derivative term in our EFT. In general one should also

allow the presence of higher dimensional interactions suppressed by the UV cutoff Λ. Restricting

our EFT considerations to energy scales satisfying E ≪ Λ one may naively presume that the

effect of higher dimensional operators can be safely neglected. But how can we know what

Λ is from the EFT point of view? We will come back to this important question in Section

4.2.3. For the moment we observe that a very special class of higher-dimensional operators
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are not suppressed at low scales. These are the topological operators . Indeed, while topological

operators do not affect the equations of motion nor induce particle vertices, they can contribute

to the on-shell action and therefore impact semiclassical calculations. It is therefore important

to investigate what operators belong to this class in our EFT. Even if we have introduced those

higher derivative terms already in chapter 2, let us delve a bit deeper into them here, since they

will become important for the successive discussion.

In a gravitational theory there are two potentially topological terms, associated to the Gauss-

Bonnet operator

EGB ≡ 1

32π2

(
RabcdR

abcd − 4RabR
ab +R2

)
(4.1.7)

and the Pontryagin operator EP ≡ ϵcdefRa
befR

b
acd. In an N = 1 SUSY framework these are

described by

S(M) ⊃
∫

1

96π
Re[F (t)] tr(R∧R) +

∫
1

96π
Im[F (t)]

[
tr(R∧ ∗R) +O(R2

ab, R
2)
]
+ BT

=

∫
d4x

√
|g| 1

384π
(Re[F (0)] + C̃ia

i)EP

+

∫
d4x

√
|g| π

6
(Im[F (0)] + C̃is

i)
[
EGB +O(R2

ab, R
2)
]
+ BT (4.1.8)

and originate from the superspace F-term
∫
d4x d2θ E F (t)WαβγWαβγ + c.c., where F (t) is

a holomorphic function of ti, see [54–57]. The topological charge
∫
tr(R ∧ R) is quantized in

multiples of 192π2. Therefore, the basic assumption (2.1.1) forces F (t) to be of the form F (t) =

F (0) + C̃it
i with F (0) an arbitrary constant and C̃i ∈ Z, modulo exponentially suppressed

instanton-like corrections. Perturbatively, the quantized linear coupling is thus exact, whereas

the contribution proportional to F (0) may receive at most 1-loop corrections ∝ N ln ΛUV in a

manifestly supersymmetric framework. 1 The first line in eq. (4.1.10) includes an axion coupling

to the Pontryagin operator tr(R∧R) = 1
4d

4x
√
|g|EP and a coupling of the saxions to the Weyl

density, which we write as tr(R ∧ ∗R) + O(R2
ab, R

2) = 1
2d

4x
√
|g|RabcdR

abcd + O(R2
ab, R

2) =

d4x
√

|g|
[
16π2EGB +O(R2

ab, R
2)
]
. Neglecting O(R2

ab, R
2) terms, therefore, we find that the

coefficient of the Gauss-Bonnet operator is π
6 (Im[F (0)] + C̃is

i), up to non-perturbative effects.

We have been intentionally sloppy about the coefficients of the non-derivative saxions coupling

to RabR
ab and R2 because these can also receive contributions from superspace D-terms. Hence,

in general those interactions can contain more complicated functions of ti, and moreover be

1In complete analogy, anomalous couplings of axions to vector fields are described by

S
(M)
top−gauge =

∫
1

8π
Cia

i tr(F ∧ F) +

∫
1

8π
Cis

i tr(F ∧ ∗F), (4.1.9)

and originate from a supersymmetric F-term of the form
∫
d4x d2θ f(t)WαWα + c.c., where f(t) = f(0) + Cit

i

with f(0) an arbitrary constant and Ci ∈ Z, modulo exponentially suppressed instanton-like corrections. We will
study only solutions with trivial gauge configurations, and so the above couplings are not of primary interest
here. See section 2 of [65] for a more detailed discussion of the topological terms in the present setting.
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affected by radiative corrections. Supersymmetry is not enough to provide robust information

about them. Fortunately, the latter terms are also basis-dependent, in the sense that re-defining

the metric one can always trade them for operators involving derivatives of ai and si. Hence,

without loss of generality, we can choose a field basis in which the non-derivative saxions

couplings to curvature squared operators reduce to the Gauss-Bonnet term with the coefficient

given in eq. (4.1.10).

We have been a bit cavalier in writing (4.1.10), though, because strictly speaking the manifestly

supersymmetric formulation adopted there (see [50]) is not automatically in the Einstein frame,

which instead we used in (4.1.1). In order to pass to the Einstein frame a Weyl rescaling

Φ → eβKΦ of all fields, with β some number, is necessary. Such transformation is anomalous

and brings a non-manifestly supersymmetric correction to the coefficient of the Gauss-Bonnet

term of the parametric form ∼ N ln eβK = βNK. 2 Including the 1-loop renormalization

discussed earlier, of order F (0) ∼ N ln Λ, we conclude that in our perturbative regime, and

working in the Einstein frame, the potential topological couplings of ti to gravity are described

by

S
(M)
top−gravity ≡

∫
d4x

√
|g| [δtot(a)EP + γtot(s)EGB] + BT (4.1.10)

with

γtot(s) = c0 + c1NK(s) + c2N ln Λ +
π

6
C̃is

i (4.1.11)

δtot(a) = c′0 + c′2N ln Λ +
1

384π
C̃ia

i. (4.1.12)

Here c1,2, c
′
2 are order one coefficients calculable within the EFT. Despite their ∝ N nature, we

will see in Section 4.2.2 that the terms proportional to c1,2 are subleading compared to

γ(s) ≡ π

6
C̃is

i (4.1.13)

in any tractable framework. The constants c0, c
′
0, however, are UV sensitive and incalculable

within our N = 1 description. Yet, there is no reason for them to be sensitive to the number of

UV degrees of freedom, especially in view of the fact that the UV completion of our EFT features

an extended supersymmetry that is expected to protect γtot, δtot from radiative corrections. In

the following we will thus assume that c0 = c′0 = 0, consistently with the explicit N = 2 models

discussed in [174].

In summary, the Pontryagin and Gauss-Bonnet combinations are singled out from the infinite

2Similarly, the re-definition of the metric necessary to remove the saxion couplings to RabR
ab and R2 may

induce a Weyl anomaly, but that does not carry an ∼ N enhancement and is hence parametrically smaller.
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set of higher-derivative interactions for two important reasons. The first one is their quasi-

topological nature (note that the boundary Hawking-Gibbons terms are essential for this prop-

erty to hold). After stabilization of the saxions, for example, the GB operator in (4.1.10)

becomes a purely topological term that does not alter the axions’ equations of motion but

nevertheless contributes to the on-shell action of topologically non-trivial space-times. In par-

ticular it plays an important role in wormhole physics, as we will see. At the perturbative level,

the topological nature of these terms is connected to the absence of ghosts, which is why string

theory effective actions of any dimension seem to favor, say, the Gauss-Bonnet combination over

other higher curvature terms [59]. The second reason that make the Pontryagin and Gauss-

Bonnet terms special is that their coefficients are significantly constrained by supersymmetry

and more generally by the string theory models they emerge from, as we have just shown. This

information will provide very useful in the sections that follow.

4.2 Regime of validity of the EFT

4.2.1 Perturbative domain and saxionic cones

The EFT described in our discussion assumes the existence of a perturbative saxion do-

main in which the axionic shift symmetries are broken only by exponentially suppressed non-

perturbative corrections. We already introduced the topic of the perturbative saxionic domain

in Chapter 2, anyway in this section we would like to better refine such definition by identifying

it with what we call α-saxionic convex hull ∆̂α. The reasons for that will be manifest in the

successive discussion about consistency bounds on the coefficient of the Gauss-Bonnet term.

We begin making a few basic considerations about power-counting. As usual, the 2-derivative

action (4.1.1) remains perturbative as long as the UV cutoff Λ of the EFT is not too large

Λ ≤ Λstrong,EFT ≡ 2πMP√
N

. (4.2.1)

The reason is that the effective coupling of ti to gravity, namely g2EFT ≡ p2/M2
P with p2 < Λ2

the typical momentum transfer, must satisfy g2EFTN/(2π)
2 ≪ 1 in order to retain perturbative

control. This consistency requirement translates into (4.2.1). We may call Λstrong,EFT the

“strong EFT scale”, as it only depends on the degrees of freedom appearing in the EFT, as in

[175]. This is to be distinguished from the “strong-coupling scale” that contains information

about the tower of states beyond the 4-dimensional effective field theory, which will be discussed

in Section 4.2.3. The constraint (4.2.1) also ensures that the radiative corrections to the non-

linear sigma model describing the leading saxions dynamics be small.

The quantity p2N/(2πMP)
2 is not the only small parameter characterizing the domain of validity

of our EFT, though. To appreciate this important point it is sufficient to make a simple

consideration based on dimensional analysis. If we momentarily restore the powers of ℏ while
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keeping the speed of light equal to one, and insist that C̃i in (4.1.10) (see also Ci in (4.1.9)) be

truly dimensionless integers, one infers that ai has units [ai] = ℏ and similarly [si] = ℏ. Because

quantum corrections come with powers of ℏ, one realizes that 2πℏ/si must represent some sort

of “hidden” dimensionless loop counting parameter. 3 Consistently, besides (4.2.1), the other

necessary condition for our EFT to make sense is given by a relation of the form

1/(2πsi) ≪ 1 (or ℓi/(2π) ≪ 1). (4.2.2)

That a relation like (4.2.2) is a necessary requirement in any perturbative low energy description

of string theory is hardly news. For example, eq. (4.1.9) identifies the gauge coupling ggauge

with 1/g2gauge = Cis
i/4π and so, up to numerical factors, the perturbative regime for the gauge

theory (g2gauge ≪ (2π)2) is set by 2πCis
i ≫ 1. What the effective field theorist cannot know,

however, is that the large saxions limit is in fact instrumental in reproducing the EFT from a

string theory model, where (4.2.2) is often disguised as a large volume expansion. In particular,

of crucial importance for the present discussion is that the large-saxions regime is essential to

derive eq. (4.1.1) (see Section 4.3). Sub-leading corrections to that expression consistently

appear as terms in P (s) with a smaller order of homogeneity. Said differently, the EFT per se

does not appear to have any pathology when violating (4.2.2); it is the UV completion from

which it is derived that becomes intractable in that limit, and the very notion of EFT comes

into question.

In view of our dimensional analysis argument it should not come as a surprise that the non-

perturbative effects that break the axionic shift symmetries also turn out to be suppressed in

the semi-classical regime by a requirement of the form (4.2.2). Non-perturbative effects may be

due to fundamental instantons beyond the EFT or by physics within the EFT, e.g. wormholes.

The latter will be analyzed in the following, here our main concern is understanding when

the former can be considered small. The contribution of point-like fundamental instantons are

ubiquitous in string theory compactifications, in which they are associated to Euclidean branes

wrapping internal cycles – see for instance [176] for a review. Their effects show up in the four-

dimensional EFT defined at its highest possible UV cutoff as shift-symmetry breaking local

operators. Imposing that these are sufficiently small is what defines our perturbative regime.

Among all fundamental instantons, the BPS ones — preserving 1
2 of the bulk supersymmetry

— are expected to be the most relevant. 4 These carry a set of quantized axionic charges qi ∈ Z

3The factor of 2π arises because of our normalization (2.1.1). Also, the analogous combination 2πℏ/ai simply
cannot appear because of the approximate shift symmetry.

4Experience with supersymmetric instantons suggests that the action Sinst of a possible non-BPS fundamental
instanton carrying charges qi obeys a BPS bound ReSinst > 2π⟨q, s⟩. On the other hand, the axion form of the
weak gravity conjecture [69] suggests the possible existence of non-BPS instantons violating such bound – see for
instance [177, 178] and appendix B of [45] for for related discussions in string theory contexts. We nevertheless
expect the violation of the BPS bound not to be large and then not to substantially affect our characterization
of the perturbative regime in terms of BPS instantons.
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and their contribution to the path-integral is forced by (2.1.1) to be of the form

e−2π⟨q,s⟩ (4.2.3)

where we have introduced the definition

⟨q, s⟩ ≡ qis
i. (4.2.4)

In our notation ⟨ . , . ⟩ is the canonical pairing between the elements of dual vector spaces

VR and V ∗
R , and corresponding dual lattices VZ ⊂ VR and V ∗

Z ⊂ V ∗
R . One can introduce an

integral basis {vi}Ni=1 of generators of VZ and the dual basis {wi}Ni=1 of generators V ∗
Z , such

that ⟨wi,vj⟩ = δij . The saxions si and the charges qi are the components of the vectors

s = sivi ∈ VR and q = qiw
i ∈ V ∗

R respectively. The set of all BPS instanton charges is denoted

by

CI = {set of BPS instanton charges q} ⊂ V ∗
Z . (4.2.5)

Given two BPS instantons of charge vectors q1 and q2, being mutually BPS, they can be

superimposed to form a BPS instanton of charge vector q1 + q2. Hence CI can be regarded as

discrete convex cone, generated by a set of ‘elementary’ BPS instanton charges.5

The combination 2π⟨q, s⟩ appearing in (4.2.3) represents the real part of the BPS instanton

Euclidean action, and must be positive. Hence the saxions necessarily take values in the saxionic

cone:6

∆ ≡ {s ∈ VR|⟨q, s⟩ ≥ 0, ∀q ∈ CI} . (4.2.6)

This is a convex cone, which we will assume to be polyhedral, that is, to be generated by a finite

number of vectors – see [64] for a more detailed discussion on this assumption. The prototypical

example of such saxionic cone is provided by the Kähler cone in heterotic or type IIA string

compactifications on Calabi-Yau spaces, where CI represents the cone of effective curves which

can be wrapped by world-sheet instantons.

The realization that saxions must necessarily belong to ∆ is bringing us closer to a rigorous

definition of the domain of validity of our EFT. Unfortunately, s ∈ ∆ is not sufficient to suppress

instantons nor to ensure the perturbativity requirement suggested in eq. (4.2.2) holds. Actually,

it is not even clear how to assign a rigorous meaning to (4.2.2) since, as written, it represents

a basis-dependent statement. To make some progress we identify a preferred saxion basis in

which our perturbative domain can be unambiguously defined. A natural choice is provided by

the magnetic axionic charges ei ∈ Z of the strings, as they specify an element e = eivi of VZ.

5For each BPS instanton of charge vector q there exists an anti-instanton of charge vector −q preserving
the opposite 1

2
supersymmetry and contributing to the effective action by the anti-holomorphic combination

(e2πiqit
i

), and then by the same real exponential factor (4.2.3).
6The definition of saxionic cone of [51, 64] slightly differs from (4.2.6), in that it does not include the boundary

faces at which ⟨q, s⟩ = 0 for some q, and then some instanton action degenerates. We include these faces since
we will anyway restrict ourselves to more interior regions – see subsection 4.2.1.
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As it was presented in Chapter 2, EFT strings are those axionic strings associated to charges

e ∈ CEFT
S , where the latter domain is obtained restricting VZ to the saxionic cone [51, 52, 64]

CEFT
S = VZ ∩∆ . (4.2.7)

According to this definition, one may regard the saxionic cone ∆ as being generated by the

EFT string charges. We thus propose to define the perturbative saxions domain in the basis

defined by the charges ei of the EFT strings.

More precisely, consider the set of all the elementary generators7 {eA}A∈J of CEFT
S , where J

denotes the corresponding set of indices. Take any subset Jσ ⊂ J of N elements, such that the

corresponding elementary charges {eA}A∈Jσ are linearly independent. Each of these subsets is

associated to a regular simplicial cone

σ = {
∑

A∈Jσ

λAeA|λA ≥ 0}. (4.2.8)

For each of these cones we construct a corresponding “α-stretched” cone

σ̃α = {
∑

A∈Jσ

λAeA|λA ≥ 1

α
} (4.2.9)

with 0 < α ≪ 1 some arbitrary number which plays a role analogous to α = g2gauge/4π in

gauge theories. The α-saxionic convex hull ∆̂α anticipated at the beginning of this subsection

is defined as the convex hull of all the stretched sub-cones σ̃α, that is

∆̂α =
{
s =

∑

σ

λσsσ ∈ ∆
∣∣∣ λσ ≥ 0,

∑

σ

λσ = 1, sσ ∈ σ̃α

}
. (4.2.10)

The perturbative domain for the saxions is now rigorously identified by the requirement s ∈
∆̂α. This definition simultaneously formalizes the perturbativity requirement (4.2.2) as well

as guarantees the suppression of non-perturbative corrections. More explicitly, in the domain

∆̂α the saxion components measured in units of the EFT strings charges satisfy sA ≥ 1/α.

The condition (4.2.2) is thus reduced to an upper bound on α, and perturbative corrections

to our EFT (say to the relation (4.1.3)) are suppressed by powers of α. Furthermore, for any

s ∈ ∆̂α the BPS action must be larger than 2πα. Indeed, by definition ∆̂α ⊂ ∆ and so the

positivity of the BPS instantons action is obviously ensured; but because our σ̃α are subsets of

the saxionic analogue of the stretched Kähler cones introduced in [44], namely the α-stretched

saxionic cone8

σ̃α ⊂ ∆̃α ≡ {s ∈ ∆|⟨q, s⟩ ≥ 1

α
, ∀q ∈ CI} (4.2.11)

7A charge vector e ∈ CEFT
S is ‘elementary’ if it cannot be written as the sum of other elements of CEFT

S .
8We are adapting the terminology of [44] which may be misleading, since ∆̃α is generically not a cone, but

rather a convex polyhedron.
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by convexity the same inclusion extends to the entire saxionic convex hull, so that:

∆̂α ⊂ ∆̃α ⊂ ∆ . (4.2.12)

Hence the condition s ∈ ∆̂α is stronger, though qualitatively similar, to the condition s ∈ ∆̃α.

(Clearly ∆̂α = ∆̃α if ∆ is a simplicial cone.) As a result, the non-perturbative corrections to

our EFT are at least suppressed by e−2π/α when s ∈ ∆̂α.
9

The perturbative saxionic regions ∆̃α, ∆̂α ⊂ ∆ are associated to corresponding dual saxionic

regions P̃α, P̂α ⊂ P through the map (2.2.4). In particular, we can consider the saxionic domain

P dual to ∆:

P =
{
ℓ = ℓiw

i ∈ V ∗
R

∣∣∣ℓi = −1

2

∂K

∂si

∣∣∣
s∈∆

}
. (4.2.13)

While the general structure of P can be a priori complicated, if K takes the form (4.1.3) then

P becomes conical. Indeed, if ℓ ∈ P is the image of s ∈ ∆, λℓ is the image of λ−1s then for any

λ > 0. Since also λ−1s belongs to ∆, then λℓ belongs to P.10 In the case of Kähler potential of

the form (4.1.3) the regions dual to ∆̃α, ∆̂α are neighborhoods of the dual saxion origin ℓ = 0.

To summarize, by assuming s ∈ ∆̂α (or ℓ ∈ P̂α) we are certain that our EFT (4.1.1) with

(4.1.3) provides a reliable low-energy description of a large class of string theory models up to

controllable powers of α≪ 1 and e−2π/α. In the following we will therefore assume that s ∈ ∆̂α

and for concreteness have in mind α ∼ 0.1 as benchmark value. Indeed, α ∼ 1 might already

be enough to sufficiently suppress non-perturbative effects. However, such values of α do not

necessarily ensure the reliability of the leading order expression (4.1.3). Concretely, in the case

of the Kähler cone of heterotic compactifications, setting α ∼ 1 allows for string-size internal

cycles, which cast doubts on the geometric formula corresponding to (4.1.3) – see Section 4.3

for more details. From these consideration α ∼ 0.1 seems a more appropriate choice.

4.2.2 Quantum gravity bounds

In Chapter 3 it was shown how quantum consistency in the presence of EFT strings imposes

strong constraints on the structure of the bulk theory. These constraints crucially involve the

constants C̃i appearing in (4.1.13). In particular C̃i must satisfy the quantization condition

⟨C̃, e⟩ ∈ Z, for any string charge vector e ∈ ZN . More importantly for us, in [65] it was argued

that ⟨C̃, s⟩ enter some positivity bounds which, in their weakest form, imply that

⟨C̃, e⟩ ≥ 0 ∀e ∈ CEFT
S (4.2.14)

9Note that, given a saxionic cone ∆, its boundary can be regarded as the union of conical faces ∆′ ⊂ ∂∆ of
various codimensions. These may be associated with corresponding perturbative domains ∆̃′

α or ∆̂′
α (which are

not subsets of ∆̃α or ∆̂α).
10On the other hand, P is not necessarily convex.
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Recalling (4.1.13) and the fact that the EFT string charges generate the saxionic cone, (4.2.14)

has as a consequence that γ(s) > 0 for any s ∈ ∆.

In order to get a stronger lower bound for γ(s) we observe that ⟨C̃, e⟩ is proportional to the

two-dimensional gravitational anomaly of the EFT string of charge vector e. Since such strings

break half of the bulk supersymmetry and support a chiral (0, 2) world-sheet, they generically

have a chiral spectrum with non-vanishing gravitational anomaly. This means that (4.2.14)

generically translates into the stricter bound

⟨C̃, e⟩ ∈ Z≥1 ∀ generic e ∈ CEFT
S . (4.2.15)

Note that in many models (4.2.15) can be strengthened to ⟨C̃, e⟩ ∈ 3Z≥1. This stronger

bound holds if the world-sheet normal bundle U(1)N symmetry is classically preserved (though

generically anomalous at the quantum world-sheet level). This is a conceivable expectation,

which is indeed realized in large classes of string theory models, such as the F-theory/type

IIB ones of subsection 4.3.1. On the other hand, in [65] it was pointed out that in addition

to the standard quantum U(1)N anomaly there could be classical Green-Schwarz-like terms on

the world-sheet, which signal the existence of an intermediate microscopic description in terms

of a five dimensional N = 1 supergravity (in presence of possible supersymmetry breaking

defects). The five-dimensional arguments of [39] hence lead to (4.2.14), and then also (4.2.15).

For instance, this weaker bound can hold in the E8 × E8 heterotic models of subsection 4.3.2,

when De has non-vanishing triple intersection number.

In our models there are N ≫ 1 (s)axions and an even larger number of elementary EFT string

charge vectors {eA}A∈J (since these generate ∆). We can then assume (4.2.15) to be satisfied

for all eA, since for N ≫ 1 any non-generic violation of this assumption would affect our

conclusions by negligible corrections. Hence we will assume that

⟨C̃, eA⟩ ∈ Z≥1 , (4.2.16)

for any elementary eA ∈ CEFT
S . Take now any regular simplicial sub-cone (4.2.8) and an element

sσ of the corresponding α-stretched cone: sσ ∈ σ̃α. We can write sσ = 1
α

∑
A∈Jσ

eA+vσ, where

the first contribution represents the tip of sσ and vσ is an element of σ. As a consequence, the

lower bounds (4.2.16) imply that

⟨C̃, sσ⟩ =
1

α

∑

A∈Jσ

⟨C̃, eA⟩+ ⟨C̃,vσ⟩ ≥
1

α

∑

A∈Jσ

⟨C̃, eA⟩ ≥
N

α
. (4.2.17)

Consider next a more general point s of the saxionic convex hull (4.2.10). By definition, we

can write it as s =
∑
λσsσ, with

∑
σ λ

σ = 1 and λσ ≥ 0. According to (4.2.17) we thus have

⟨C̃, s⟩ = ∑
σ λ

σ⟨C̃, sσ⟩ ≥ N
α

∑
σ λ

σ = N
α . Hence we conclude that for s ∈ ∆̂α the part of the
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coefficient of the Gauss-Bonnet term defined in eq. (4.1.13) satisfies the lower bound

γ(s)|∆̂α
≥ Nπ

6α
. (4.2.18)

This bound may receive 1/N corrections due to non-generic violations of (4.2.16), but in the

large N regime these can be safely neglected. We also observe that, as stressed above, in many

models we could alternatively adopt ⟨C̃, eA⟩ ∈ 3Z≥1 instead of (4.2.16), obtaining a slightly

stronger lower bound γ(s)|∆̂α
≥ Nπ

2α .

In eq. (4.1.11) we collected all contributions to the coefficient γtot of the Gauss-Bonnet operator.

Within the perturbative regime α≪ 1 the radiative effects controlled by c1,2 are parametrically

smaller than the one in (4.2.18). We can thus conclude with confidence that in the class of

theories under consideration the calculable part of the Gauss-Bonnet coefficient γtot ≈ γ(s)

satisfies a universal lower bound of order Nπ
α . Note that while this result was derived by

restricting s to the α-stretched saxionic convex hull, we expect it to qualitatively hold (up to a

possible overall constant) also if we consider the stretched saxionic cone. We will provide some

numerical evidence of this claim in Section 4.3.2, where we will show that (4.2.18) is actually

very conservative in a set of concrete UV completions.

4.2.3 The UV cutoff

Any EFT is associated with a cutoff energy Λ, and an important question regards the iden-

tification and interpretation of the possible UV energy scales at which the EFT description

breaks down. In our quantum gravity context, we can identify at least two important universal

energy scales: the tower scale m∗ and the species scale ΛQG [47, 179]. The tower scale m∗
represents the mass of the lightest particle appearing in the towers of massive single particle

states that populate the UV completion of the EFT. When Λ ≥ m∗ the four-dimensional EFT

does not make sense anymore, but may admit another weakly coupled higher dimensional EFT

description. On the other hand, at Λ ≥ ΛQG the (semi-)classical geometrical description of the

gravitational interactions breaks down.

In the perturbative four-dimensional framework outlined in the previous sections the zero-

coupling limit α→ 0 corresponds to an infinite distance limit in field space. The presence of UV

towers of massive states is then predicted by the Swampland Distance Conjecture (SDC) [22].

Even if in general m∗ can be precisely determined only by knowing the EFT UV completion, in

[52, 64] it was pointed out that in a large class of string theory models there is a direct relation

between m∗ and the tension associated with EFT strings. Namely, each EFT string charge

e ∈ CEFT
S identifies an infinite distance saxionic flow s = s0+eσ, with σ → ∞, and is associated

with an integral scaling weight we ∈ {1, 2, 3}. Along this EFT string flow Te ∼ M2
P/σ and the
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scaling weight relates this asymptotically vanishing tension to m∗ as follows:

m2
∗ ∼

( Te
M2

P

)we

M2
P . (4.2.19)

The Integral Weight Conjecture (IWC) [52, 64] proposes that this relation holds in any quantum

gravity model of the type considered in the present thesis.

The combination of the IWC with the Emergent String Conjecture (ESC) [70] gives further

important information on the UV nature of the EFT strings and of the corresponding infinite

distance limits. First of all, any we = 1 EFT string must be dual to a critical heterotic string

(or a type II string in higher supersymmetric settings). This in turn implies that any we = 1

EFT string flow11 is dual to a ten-dimensional weak string coupling limit gs → 0, along which

the tower scale m∗ can be identified with the mass of the first excited string mode and (4.2.19)

can be actually promoted to the identitym2
∗|we=1 = 2πTe. On the other hand, EFT strings with

we ≥ 2 cannot be identified with critical strings, and the corresponding infinite distance limits

must correspond to decompactification limits along which m∗ corresponds to a Kaluza-Klein

(KK) mass scale.

Regarding the species scale, perturbative as well as non-perturbative arguments [47, 179] lead

to the formula Λ
(d)
QG ≃M

(d)
P /N

1
d−2

tot valid in a generic d-dimensional theory, where Ntot represents

the total number of species with mass lower than Λ
(d)
QG. A priory this formula holds only at

the parametric level and neglects possible numerical factors. Hence, in our four-dimensional

axiverse setting we can roughly split Ntot = N +NUV and write

Λ2
QG ≃ M2

P

Ntot
=

M2
P

N +NUV

, (4.2.20)

where N counts the number of axionic species and NUV the total number of UV species of mass

smaller than ΛQG. We clearly have Λ2
QG ≤ ΛEFT

sp , where ΛEFT
sp was introduced in (4.2.1).

Assuming the ESC, the species scale should be determined by KK and/or string modes. In

the cases in which the dominant contribution to Ntot comes a KK tower, then Λ2
QG can be

identified with the higher dimensional Planck scale. On the other hand, in an emergent string

theory limit Λ2
QG should dominated by the excitation modes critical string itself, which should

hence correspond to some EFT charge e∗ with we∗ = 1. Note that at energy-squared larger

than T∗ ≡M2
P⟨ℓ, e∗⟩, the EFT description breaks-down and should be replaced by a superstring

perturbation theory. The identification of what is the relevant species scale is then less obvious.

By applying black-hole arguments [180, 181] one gets the estimate Λ2
QG ≃ T∗ (see also [182]),

while from the QFT-based formula (4.2.20) one gets logarithmic corrections thereof as in [183,

184], – see also related discussions in [185, 186]. For most of our purposes we could remain

agnostic about the precise form of the stringy species scale. So, for concreteness we will mostly

11If the we = 1 string is dual to an E8 × E8 string, then this limit corresponds to s0 ∼ σ → ∞, with fixed sa

and s0 as in (4.3.28).
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adopt the first one, but we will also discuss how to adapt our discussion in order to make it

compatible with the second choice.

As the tower scale, also the species scale ΛQG is generically expected to have a non-trivial field

dependence, which has been intensively studied in the last year [174, 187–192]. In particular,

in [174] it is proposed that coefficients of higher-curvature terms of the form (curvature)n

protected by supersymmetry should provide upper bounds on ΛQG – see also [186, 189, 190,

193] for further discussions. Applying this proposal to our GB term (4.4.2), one then gets the

following upper bound on the species scale set by the GB term (4.4.2):

Λ2
QG ≲

2πM2
P

γ(s)
, (4.2.21)

where we have fixed the somewhat arbitrary 2π-factor in order to better realize some of the

following properties. This also implies the bound 2πNtot > γ(s) from the combination of

(4.2.20) and (4.2.21).

As a simple check for this bound, we can combine (4.2.21) with (4.2.18), and just require that

α ≲ 0.1, to get an upper bound on ΛQG:

Λ2
QG ≲

12αM2
P

N
≲
(
ΛEFT
sp

)2
. (4.2.22)

The upper bound (4.2.22) is fully consistent with the identification (4.2.20) of ΛQG. The bound

(4.2.22) is consistent with the expectation that ΛQG should be smaller than ΛEFT
sp , and actually

much smaller if NUV ≫ 1.

The bound (4.2.21) provides useful information which can be extracted from the EFT. On the

other hand, as emphasized in [189], nothing prevents the right-hand side of (4.2.21) to be much

larger than ΛQG. In such cases, other protected higher-curvature couplings would be needed

to get a better estimate of ΛQG. It can then be useful to have alternative/complementary

constraints on ΛQG. Fortunately, in our framework additional information on ΛQG can be

identified by recalling the implications of the IWC and ESC discussed above.

Take the set of EFT string charges (4.2.7). As emphasized above, if an EFT charge e has scaling

weight we ≥ 2 then the corresponding string is not a fundamental critical superstring. In other

words, one should not be allowed to quantize it. By investigating EFT strings in F-theory

models, the authors of [71] observed that this is indeed the case because for such strings the

EFT string tension Te is larger than Λ2
QG. We promote this observation to a general principle,

requiring that Λ2
QG ≤ Te, for any EFT string charge with we ≥ 2. Furthermore, according to

the above discussion in an emergent string limit the species scale should be the stringy one,

Λ2
QG ≃ T∗, while away from it we expect Λ2

QG ≤ Te for any charge with scaling weight we = 1

as well. In conclusion, everywhere in our perturbative regime the species scale should satisfy
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the upper bound:

Λ2
QG(ℓ) ≤ Λ2

max(ℓ) ≡ min
{
Te(ℓ) | e ∈ CEFT

S

}
, (4.2.23)

where Te(ℓ) is as in (2.2.3) and we have emphasized the dependence of ΛQG and Λ2
max on the

dual saxions ℓi. Note that in order to compute the upper bound (4.2.23) it is sufficient to

restrict to the generators of CEFT
S , compute the corresponding tensions and identify the lowest

one. Of course, the charge corresponding to the lowest tension generically changes as we move

in the saxionic domain. Hence Λmax(ℓ) will be a continuous but possibly non-smooth function

of the dual saxions. Furthermore, in an emergent string limit the bound should be saturated

by Λ2
max = T∗.

The bound (4.2.23) scales as (4.2.21) under an overall constant rescaling of the saxions. On the

other hand, it is determined just by data characterizing the two-derivative EFT, and moreover

with an unambiguous overall coefficient. Once one knows the Kähler potential and the saxionic

cone, and then the dual saxions ℓi and the set of EFT string charges (4.2.7), at each point of

the perturbative region one can in principle compute (4.2.23).

Let us finally discuss how possible logarithmic corrections to the species scale may require a

modification of the bound (4.2.23). In order to have some control over this possibility, one

should be able to isolate the elementary EFT string charge e∗ with we∗ = 1 by using just EFT

data. Luckily, this is possible by applying the following criterion [194]: we = 1 if and only if the

Kähler potential along the associated flows s = s0+eσ behaves asymptotically as K ≃ − log σ

for σ → ∞. Hence e∗ can be identified with the smallest EFT string charge satisfying this

condition. As we will review in subsection (4.3.2), the corresponding flow s = s0 + e∗σ, with

σ → ∞, corresponds to an emergent string limit, along which gs = eϕ → 0 and T∗ → 0,

while the other tensions Te|we≥2 remain finite [64]. In this regime, at energies of order
√T∗ the

dynamics should be described by the full perturbative string theory. Rather then starting from

the QFT-motivated formula (4.2.20) as in [183, 184], one can identify the potential logarithmic

correction from the following purely string theory argument – see also the recent discussion in

[186].

As discussed in [195], at weak string coupling gs ≪ 1 the high-energy and fixed-angle string

scattering amplitudes [196, 197] enter a fully quantum phase at an energy-squared of order

Λ̂2
QG = M2

s log(1/g
2
s ), where Ms is the ten-dimensional string scale. At this scale, higher loop

amplitudes dominate over the tree-level ones and can be Borel resummed. Observe now that,

from the point of view of a four-dimensional observer, M2
s can be identified with T∗. Hence Λ̂QG

is logarithmically larger than T∗ for gs ≪ 1 (for fixed string frame internal metric), and then

violates (4.2.23). On the other hand, the discussion of the following subsection 4.3.2 shows that

T∗ ≲ g2sM
2
P , which implies that

Λ̂2
QG ≲ T∗ log

M2
P

T∗
(if gs ≪ 1) . (4.2.24)
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Since in the emergent string limit we must hence have T∗ ≪ Te|we≥2, one may modify (4.2.23)

into the following upper bound

Λ̂2
QG(ℓ) ≤ Λ̂2

max(ℓ) ≡ min
{
Te(ℓ) | e ∈ CEFT

S |we≥2

}
, (4.2.25)

which should hold for either definition of stringy species one decides to adopt. The bound

(4.2.25) is clearly weaker than (4.2.23) since by definition Λ̂2
max ≥ Λ2

max.

4.3 String theory models

In order to make the general discussion of section 4.1 less abstract, we now describe two large

classes of string theory models, namely the heterotic and F-theory models in the large volume

regime. These have the advantage that can be described quite explicitly in our general frame-

work, and will allow us to provide a few concrete examples thereof to better illustrate and

check our main points. As in [64, 65], our general claims also apply to other string theory

models or perturbative regimes – e.g. type I, type IIA and M-theory – which are however either

very similar/dual to the heterotic and F-theory cases, or admit a less explicit EFT description.

Hence, for concreteness and clarity, in this section we focus on the F-theory and heterotic ones,

while we will encounter again the IIA and M-theory models in section 4.5.1.

4.3.1 F-theory/type IIB models

An important large class of examples is provided by the F-theory compactifications – see e.g.

[110, 198] for reviews. An F-theory model corresponds to a type IIB compactification on a

Kähler space X in presence of 7-branes. The space X can be regarded as the base of an

elliptically fibered Calabi-Yau four-fold, whose fiber’s complex structure can be identified with

the type IIB axio-dilaton. In particular, this requires the base X to have an effective anti-

canonical divisor KX .12 In the following we will for simplicity assume that the Calabi-Yau

four-fold elliptically fibred overX has vanishing third Betti number, b3 = 0, so to avoid technical

complications associated with moduli of the M-theory gauge three-form.

These models admit a natural perturbative regime corresponding to the large volume limit. Let

us pick a basis of divisors Da ∈ H4(X,Z) of X and a dual basis of two-cycles Σa ∈ H2(X,Z),

such that Da ·Σb = δab , a = 1, . . . , b2(X). The Kähler moduli va are obtained by expanding the

(Einstein frame) Kähler form J of X in the Poincaré dual basis [Da] ∈ H2(X,Z):

J = va[D
a] ⇔ va =

∫

Σa

J . (4.3.1)

12We adopt the quite common usage of denoting holomorphic line bundles and corresponding divisors by the
same symbol.
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The corresponding saxions sa are then defined as follows:

sa =
1

2
κabcvbvc , (4.3.2)

where we have introduced the triple intersection numbers κabc = Da · Db · Dc. Hence in this

case N = b2(X).

As discussed in [64], one can identify the saxionic cone with the cone Mov1(X) generated by

movable curves.13 We can then write

s = saΣa ∈ ∆K ≃ Mov1(X) . (4.3.3)

Note that the string charge vectors e can be identified with curves Σe = eaΣa and, in particular,

the EFT string charges correspond to movable curves

CEFT
S ≃ Mov1(X)Z . (4.3.4)

Physically, EFT strings are realized by D3-branes wrapping movable curves.

The constants C̃a appearing in the Gauss-Bonnet term admit a nice geometrical interpretation

[65]:

C̃a = 6KX · Σa . (4.3.5)

In particular, the pairing appearing in (4.2.14) corresponds to the intersection number

⟨C, e⟩ = 6KX · Σe (4.3.6)

Recalling that KX is an effective divisor, the bound is (4.2.14) always satisfied, since movable

curves can be precisely characterized as those curves that have non-negative intersection with

all effective divisors [115]. In order to test the stronger bound (4.2.18), which is expected to

hold up to subleading corrections in 1/N ≪ 1, let us focus on the large class of models with

toric X – for more details see [199]. Then the anti-canonical divisor is given by

KX =
∑

I∈toric div.

DI (4.3.7)

where the sum is over the set of all toric divisors DI , I = 1, . . . , N + 3. Each toric divisor is

effective, and in fact generate the whole cone of effective divisors. So any movable curve Σe has

strictly positive intersection number with at least one toric divisor DI , and then

KX · Σe ≥ 1 . (4.3.8)

13Movable curves and get their names from the fact that they can freely explore the entire internal space.
Below we will also encounter movable divisor, which enjoy the same property.

97



Combined with (4.3.7), this implies that

⟨C, e⟩ ≥ 6 , ∀e ∈ CEFT
S . (4.3.9)

We then see that, in this large class of models, in the saxionic convex hull the bound (4.2.18)

is realized in a quite stronger form:

γ(s) ≥ Nπ

α
. (4.3.10)

In order to describe the corresponding contribution EFT Kähler potential, it is convenient to

use the dual saxionic formulation

ℓa =
3va

κ(J, J, J)
, (4.3.11)

where κ(J, J, J) ≡ J · J · J = κabcvavbvc. The dual saxionic cone PK can then be identified

with an ‘extended’ Kähler cone K(X)ext obtained by gluing different spaces connected by flop

transitions, in which curves collapse or blow-up:

PK = Kext(X) =
⋃

X′∼X

K(X ′) . (4.3.12)

Here X ′ ∼ X means that X ′ can be obtained from X by a chain of flops (which may be also

trivial, corresponding to X ′ = X). Hence ℓ ∈ PK if there exists one chamber of Kext(X),

associated with a compactification space X ′ ∼ X, in which ℓ = ℓaD
a is a nef R-divisor, that is

ℓ ∈ K(X ′).14

At large volume, the kinetic potential F(ℓ) takes the form (4.1.4):

FK(ℓ) = log κ(ℓ, ℓ, ℓ) . (4.3.13)

Hence P̃ (ℓ) = κ(ℓ, ℓ, ℓ), which is clearly homogeneous as in (4.1.6), with n = 3.

If one can take Sen’s orientifold limit, the space X can be regarded as the Z2-orientifold quotient

of a Calabi-Yau three-fold X̂. A new saxion ŝ ≡ e−ϕ appears, detected by D(−1)-instantons,

where ϕ is the standard type IIB dilaton, so that we now haveN = b2(X)+1. The corresponding

dual saxion is

ℓ̂ =
1

2
eϕ . (4.3.14)

In the perturbative regime described by the dual saxions ℓi = (ℓ̂, ℓa), the leading contribution

to the Kähler potential is given by

F = log ℓ̂+ FK(ℓ) = log ℓ̂+ log κ(ℓ, ℓ, ℓ) (4.3.15)

14 In the following we will often focus spaces X which are toric or orientifold quotients of Calabi-Yau three-
folds. In this case K(X)ext can be identified with the space of the so-called movable divisors. Hence we can write
ℓ = ℓa D

a ∈ PK ≃ Mov1(X). This identification can actually hold more generically – see [64] for more details.
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and can then be written as in (4.1.4) with P̃ = ℓ̂ κ(ℓ, ℓ, ℓ), which has homogeneity n = 4.15

Model 1: P3

For illustrative purposes, it is useful to describe a couple of simple explicit models (though with

a small number of (s)axions) and their relevant energy scales. The first and easiest example is

when X = P3.

In this case, the set of effective divisors Eff1(X) is spanned by a single element, the hyperplane

class H. The saxionic cone is also one-dimensional and spanned by the curve Σ = H2. The only

saxion of this model encodes the volume of the hyperplane divisor and has a Kähler potential

given by

K = −3 log s , (4.3.16)

and a corresponding dual saxion ℓ = 3
2s . The condition for the inside the saxionic cone is

extremely simple, being s > 0 ⇐⇒ ℓ > 0.

The single relevant curve leads to a single elementary EFT string and a set of string charges

CEFT
S = {e = eΣ = eH2|e ∈ Z≥0}. The tension of this elementary string, that represents a

w = 2 EFT string limit, is given by T =M2
P ℓ.

The anti-canonical divisor in this setting is just KX = 4H and, by using (4.4.3) and (4.3.5), it

yields

γ(s) = 4πs . (4.3.17)

This is manifestly positive in the saxionic cone and we have also γ(s)|∆̂α
≥ 4π

α , stricter than

(4.2.18) with N = 1.

The bound (4.2.23) then reduces to

Λ2
QG(ℓ) ≤M2

Pℓ =
3M2

P

2s
. (4.3.18)

For generic values of the complex structure and 7-brane moduli, the species scale should cor-

respond to the ten-dimensional Planck scale converted to the four-dimensional Einstein-frame.

This is given the general formula

Λ2
QG =

M2
P

2V (X)
=M2

P

√
κ(ℓ, ℓ, ℓ)

3
, (4.3.19)

where V (X) = 1
6κ(J, J, J) is the internal volume measured in Planck units units and we have

15In fact, the saxionic and dual saxionic cones are expected to receive corrections coming from higher derivative
terms. This type of effect has been discussed in some detail for heterotic models in [65] and we will encounter
it in subsection 4.3.2 – see e.g. (4.3.28). In particular, if we choose ℓ0 so that ℓ0M

2
P gives the tension of lightest

D7-string, we generically have ℓ0 = ℓ̂+ caℓa, where ca ∈ Q accounts for possible world-volume curvature/bundle
corrections. This means that in (4.3.15) we should set ℓ̂ = ℓ0−caℓa, which induces also a shift sa → ŝa = sa+cas0

in the Kähler potential.
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used (4.3.11).16 In this simple case we have ℓ = ℓH and this general formula reduces to

Λ2
QG =M2

Pℓ
3
2 /
√
3. We then see that (4.3.18) is satisfied if ℓ ≤ 3 or equivalently s ≥ 1

2 . It is also

interesting to observe that the bound (4.2.21) becomes Λ2
QG ≲

M2
P

2s =M2
Pℓ/3, which is basically

equivalent to (4.3.18).

Model 2: P1 fibration over P2

This model has already been discussed in [64], which we can then follow. The internal space X

is a P1 fibration over P2, and the fibration is specified by the integer n ≥ 0.

The cone of effective divisors, which can be identified with the cone of BPS instanton charges

CI,17 is simplicial and is generated by two effective divisors E1, E2: E1 is the divisor obtained

by restricting the P1 fibration over P1 ⊂ P2, while E2 corresponds to a global section of the P1

fibration. One can then identify a basis of nef divisors D1 = E1 and D2 = E2 + nE1, which

generate the Kähler cone: J = v1D
1+ v2D

2, with v1,2 > 0. The triple intersection numbers are

given by the coefficients of the formal object I(X) = (D1)2D2 + nD1(D2)2 + n2(D2)3. Hence,

by using the expansion ℓ = ℓaD
a the kinetic potential (4.3.13) becomes

FK = log κ (ℓ, ℓ, ℓ) = log
(
3ℓ21ℓ2 + 3nℓ1ℓ

2
2 + n2ℓ32

)
(4.3.20)

In this model the dual saxionic cone coincides with the Kähler cone: PK = {ℓ = ℓ1D
1+ℓ2D

2|ℓ1 >
0, ℓ2 > 0}. The corresponding saxions are

s1 =
6ℓ1 + 3nℓ2

6ℓ21 + 6nℓ1ℓ2 + 2n2ℓ22
, s2 =

3(ℓ1 + nℓ2)
2

6ℓ21ℓ2 + 6nℓ1ℓ22 + 2n2ℓ32
. (4.3.21)

The (Mori) cone of effective curves is generated by Σ1 = E1 · E2 and Σ2 = (E1)2, which are

dual to the nef divisors Da: Da · Σb = δab . The cone of movable curves is instead generated

by Σ̂1 = D1 · D2 = Σ1 + nΣ2 and Σ̂2 = (D1)2 = Σ2, which are dual to the effective divisors

Ea: Ea · Σ̂b = δab . If we use the expansion s = s1Σ1 + s2Σ2 = s1Σ̂1 + (s2 − ns1)Σ̂2. Hence the

saxionic cone is ∆ = {s = saΣa|s1 ≥ 0 , s2 ≥ ns1}. One can also invert the relation between

saxions and dual saxions:

ℓ1 =
3n

√
s2 − ns1

2
[
(s2)

3
2 − (s2 − ns1)

3
2

] , ℓ2 =
3
(√

s2 −
√
s2 − ns1

)

2
[
(s2)

3
2 − (s2 − ns1)

3
2

] (4.3.22)

16 More precisely, we use conventions in which the d-dimensional Planck length l(d) appears in the Einstein-
frame d-dimensional Einstein-Hilbert term through the combination 2πl2−d

(d)

∫
ddx

√−gR. Then V (X)l6(10) is the

internal compactification volume and (4.3.19) is the conversion to four dimensions of the ten-dimensional energy-
squared 2π/l2(10). Note that in four dimensions we can also introduce the alternative Planck length lP = M−1

P , so

that l2(4) = 4πl2P. In the checks of the asymptotic behaviour of the species scale we will often drop the 2π factors
which are irrelevant for our purposes.

17The fundamental instantons correspond to Euclidean D3-branes wrapping effective divisors.
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As in our general discussion, we can characterize the boundaries of PK in terms of tensionless

strings. The set of EFT string charges is CEFT
S = {e = e1Σ1 + e2Σ2|(e1, e2) ∈ Z2 , e1 ≥ 0 , e2 ≥

ne2} is generated by Σ̂1 = Σ1 + nΣ2 and Σ̂2 = Σ2, which have tensions TΣ̂1
= M2

P(ℓ1 + nℓ2)

and TΣ̂2
=M2

Pℓ2. We notice that TΣ̂2
vanish at ℓ2 = 0, while TΣ̂1

vanish at the tip ℓ1 = ℓ2 = 0.

These are infinite distance boundary components of PK. On the other hand, on the boundary

component ℓ1 = 0 no EFT string tension vanishes. This is instead characterized by the vanishing

of the tension TΣ1 =M2
Pℓ1 associated with the non-EFT string charge Σ1, which together with

Σ2 generates the set of BPS charges CS. This implies that, even if the saxionic convex hull is

simply given by ∆̂α = {s1 ≥ 1
α , s

2 − ns1 ≥ 1
α}, the corresponding dual saxionic convex hull P̂α

is more complicated – see figure 4.1.

(a) Saxionic convex hull ∆̂α. (b) Dual saxionic convex hull P̂α.

Figure 4.1: Saxionic convex hull ∆̂α and dual saxionic convex hull P̂α for the F-theory model
2. The plot has been drawn with the reference values α = 1/10 and n = 3. The hatched area
in figure 4.1a is outside the saxionic cone ∆.

Remember that the GB term is identified by the anti-canonical divisor – see (4.3.5). In the

present examples, it is given by

KX = (3− n)D1 + 2D2 = (3 + n)E1 + 2E2 . (4.3.23)

From (4.4.3) and (4.3.5) we get

γ(s) = π
[
(3− n)s1 + 2s2

]
, (4.3.24)

which is positive since s2 ≥ ns1. We then see that γ(s)|∆̂α
≥ (5+n)π

α , which is stronger than

(4.2.18) with N = 2. It is for instance sufficient to take α ≤ 1
10 and n ≥ 1 to get γ(s)|∆̂α

> 188.

Now let us turn our attention to the relevant energy scales at play. It is easy to check that K ≃
− log σ asymptotically along the EFT string flow associated with e(2) = Σ̂2, while K ≃ −3 log σ

along the EFT string flow associated with e(1) = Σ̂1. Hence, only e(2) should have w = 1, as
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one can explicitly check [64], and the corresponding string obtained by wrapping a D3 on Σ̂2

is indeed dual to a fundamental heterotic superstring via F-theory/heterotic duality. We can

then distinguish two regimes set by the elementary EFT string tensions T(1) = M2
P(ℓ1 + nℓ2)

and T∗ = T(2) =M2
Pℓ2. Note that T∗ ≤ T(1) for any value of the saxions assuming n > 0. Hence

the upper bound (4.2.23) is given by

Λ2
max = T∗ =M2

Pℓ2 . (4.3.25)

If ℓ2 ≪ ℓ1 and hence T∗ ≪ T(1) should indeed correspond to the tension of a weakly coupled

critical string, which then determines the species scale, so that (4.2.23) is satisfied and actually

saturated.

If instead T∗ ≃ T(1), there should not exist a controlled dual weakly couple string theory

description. Since T(1)/T∗ = n + ℓ1/ℓ2 > n, this regime can be reached only if n ∼ O(1) and

ℓ1/ℓ2 ≲ 1. Furthermore, the weakly-coupled EFT description requires that T(1) ≲ M2
P , which

implies that ℓ2 ≲
1
n . In this regime the species scale could be identified with the ten-dimensional

Planck scale 1/l(10) as measured by the four-dimensional observer. By combining (4.3.19) and

(4.3.20) we then get

Λ2
QG =M2

P

√
ℓ21ℓ2 + nℓ1ℓ22 +

1

3
n2ℓ32 ≲ M2

Pℓ2 , (4.3.26)

where in the second step we have used ℓ1 ≲ ℓ2 ≲ 1
n and n ∼ O(1), and we have neglected an

O(1) overall constant. The result is compatible with the bound (4.2.23). Other regimes can

be better studied through the dual heterotic M-theory description, which will be discussed in

subsection (4.3.2) and will confirm that ΛQG is still bounded by (B.3.13).

Let us also discuss the bound (4.2.21) for this model. By recalling (4.3.24) and (4.3.21) we get

2πM2
P

γ(s)
=

2M2
P

(3− n)s1 + 2s2
=

4ℓ2(3ℓ
2
1 + 3nℓ1ℓ2 + n2ℓ22)

6ℓ21 + (3 + n)(6ℓ1ℓ2 + 3nℓ22)
M2

P (4.3.27)

If for instance ℓ2 ≪ ℓ1, then this upper bound reduces to 2M2
Pℓ2, which is then close to (B.3.13).

If instead one considers a limit ℓ1 ≪ ℓ2 then (4.3.27) is well approximated by 4ℓ2
3+9/nM

2
P , which

is again of the same order of (B.3.13). A similar discussion can be carried out for the model

where X is P1 fibration over the Hirzebruch surface Fn and is presented in appendix B.3.1.

4.3.2 Heterotic models

Our second class of models is given by E8×E8 heterotic compactifications on Calabi-Yau spaces,

and their M-theory counterpart, at large volume. (The SO(32) case is completely analogous.)

As discussed in [65], the relevant saxionic cone is affected by higher derivative terms. Here we

summarize only the necessary information.
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The saxions are si = (s0, sa), which include the Kähler moduli sa of the Calabi-Yau compacti-

fication space X. Hence N = b2(X) + 1. These are obtained by expanding the (string frame)

Kähler form J = sa[Da] in a basis Poincaré dual to a basis of divisors Da, a = 1, . . . , b2(X).

The remaining saxion s0 combines the dilaton and the Kähler moduli:

s0 =
1

6
e−2ϕκabcs

asbsc +
1

2
pas

a . (4.3.28)

where κabc ≡ Da ·Db ·Dc and

pa ≡ −
∫

Da

[
λ(E2)−

1

2
c2(X)

]
∈ Z , (4.3.29)

where E1 and E2 denote the two E8 internal bundles, and

λ(E) = − 1

16π2
tr(F ∧ F ) . (4.3.30)

Note that the tadpole cancellation condition imposes the topological constraint λ(E1)+λ(E2) =

c2(X). One could also include NS5/M5-branes wrapping internal curves (see [65]), but here for

simplicity we will not do that. The saxionic cone is given by

∆ =
{
s = (s0, sa)

∣∣ saDa ∈ K(X) , s0 ≥ 0 , s0 ≥ pas
a
}
, (4.3.31)

and the Gauss-Bonnet coupling (4.1.13) takes the form

γ(s) = π

(
2s0 − pas

a +
1

6
nas

a

)
, (4.3.32)

where

na ≡ 1

2

∫

Da

c2(X) . (4.3.33)

Let us also recall that in the M-theory realization [142, 143], the Calabi-Yau X three-fold is

fibered over an interval, representing the 11-th M-theory direction. Then s0 and s0 − pas
a can

be interpreted as the volume of X, as measured by a Euclidean M5-brane, at the two endpoints

of this interval [65].

For simplicity, we will henceforth assume that pas
a ≥ 0. In this case the saxionic cone reduces

to

∆ =
{
s = (s0, sa)

∣∣ saDa ∈ K(X) , s0 ≥ pas
a
}
, (4.3.34)

and the Gauss-Bonnet coupling (4.3.35) becomes

γ(s) = π

[
2(s0 − pas

a) + (pa +
1

6
na)s

a

]
. (4.3.35)

The Kähler potential can be obtained by dimensionally reducing the heterotic M-theory [143],
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taking into account the deformations discussed in [149] – see also [138] – and using the above

parametrization:

K = − log(s0 − 1

2
pas

a)− log κ(s, s, s) , (4.3.36)

where κ(s, s, s) ≡ κabcs
asbsc. Hence

ℓ0 =
1

2(s0 − 1
2pbs

b)
, ℓa =

3κabcs
bsc

2κ(s, s, s)
− pa

4(s0 − 1
2pbs

b)
. (4.3.37)

The dual saxionic cone is then given

P = {(ℓ0, ℓaΣa) ∈ R≥0 ×H2(X,R)|
(
ℓa +

1

2
ℓ0pa

)
Σa ∈ Phet

K } , (4.3.38)

where Σa is the basis of curves dual to Da (Da ·Σb = δba), and Phet
K ⊂ H2(X,R) is the Poincaré

dual of the closure of the image of K(X) under the map J → 1
2J ∧ J . Note that Phet

K is a

sub-cone of the cone Mov1(X) introduced in (4.3.3).

The saxionic convex hull is now given by

∆̂α =

{
s = (s0, saDa)

∣∣ saDa ∈ K̂α(X) , s0 ≥
(
1

α
+ pas

a

)}
. (4.3.39)

where K̂α(X) is the Kähler convex hull defined as in the generic saxionic case, which is contained

in the stretched Kähler cone introduced in [44]. We then see that

γ(s)|∆̂α
≥ π

[
2

α
+
(
pa +

1

6
na
)
sa|K̂α(X)

]
. (4.3.40)

For concreteness, consider for instance the models with λ(E2) = 0. In this case pa = na,

which satisfies the above condition pas
a ≥ 0 since nas

a = 1
2

∫
X c2(X) ∧ J ≥ 0 [150]. By

applying the same arguments that led us to (4.2.18), we expect
(
nas

a
)
|K̂α(X) ≥ b2(X)/α, where

b2(X) = N − 1. Hence we should have

γ(s)|∆̂α
= π

(
2

α
+

7

6
nas

a|K̂α(X)

)
≥ (5 + 7N)π

6α
. (4.3.41)

Note that is lower bound is stronger than (4.2.18). We numerically tested this bound against a

set of explicit Calabi-Yau compactifications with CYtools [48]. The result is reported in figure

4.2, in which we plot the value of αγ(s) evaluated at the tip of stretched Kähler cone against

b2(X) = N − 1. Such values clearly satisfy the lower bound in (4.3.41). Since the Kähler sector

of the saxionic convex hull ∆̂α is contained in the stretched Kähler cone, also γ(s)|∆̂α
satisfies

this bound. Hence the plot confirms how (4.3.41) provides a good, if not conservative lower

bound of the scaling with respect to N .
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Figure 4.2: Value of αγ(s) at the tip of the stretched Kähler cone as a function of b2(X) =
N − 1 in an explicit set of Calabi-Yau compactifications analyzed with CYtools [48]. The
set consists of 71908 Calabi-Yau manifolds with b2(X) ranging from 2 to 491, with up to
100 polytopes per fixed b2(X) and with 25 triangulations per polytope obtained with the
random triangulation fast method. The quantity nas

a of equation (4.3.35) has been ob-
tained with the second chern class method and evaluated at the tip of the stretched Kähler
cone. The black line refers to the lower bound of equation (4.3.41).

Energy scales in heterotic models

Finally, let us consider the heterotic models discussed in section 4.3.2. By discretizing (4.3.34)

one gets CEFT
S , which is generated by e∗ = (1, 0) and vectors of the form (eapa, De), where

De ≡ eaDa are generators of the cone of nef divisors. By looking at the behavior of (4.3.36)

under the corresponding EFT string flows we can check that K ∼ − log σ under the e∗ flow,

consistently with the fact that e∗ indeed represents a critical heterotic string. On the other

hand, under the flow of the EFT string charges (eapa, De) we have K ∼ −n log σ, with integer

n = 2, 3, 4 determined by the self-intersections of De. Indeed these strings have scaling weights

w = 2 or w = 3 [65]. These EFT strings have tensions

T∗ =M2
Pℓ0 =

M2
P

2(s0 − 1
2pbs

b)
=

3M2
Pe

2ϕ

κ(s, s, s)
(w = 1) ,

TDe
=M2

P(e
aℓa + eapaℓ0) =

(
3κ(e, s, s)

2κ(s, s, s)
+

eapa

2(s0 − 1
2pbs

b)

)
M2

P (w = 2, 3) ,

(4.3.42)
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where we have used (4.3.37). By recalling (4.3.28) one can immediately see that in the limit

s0 ≫ 1, with sa fixed within (4.3.39), corresponds to the weak string coupling limit gs = eϕ ≪ 1,

and that in this limit T∗ ≪ TDe
, for any nef De. Hence in this regime Λ2

max = T∗ and the the

bound (4.2.23) is saturated, since T∗ corresponds to the critical string tension.

On the other hand, in the strong string coupling regime e2ϕ ≫ 1 the determination of Λ2
max

depends on the constants pa. For simplicity, suppose that eapa > 0 for any ea identifying a nef

divisor eaDa. This is for instance the case if
∫
D c2(X) is strictly positive for any nef divisor

D – see e.g. [200] – and we assume that λ(E2) = 0, so that eapa = eana = 1
2

∫
De
c2(X) > 0.

In this case tension T∗ is just slightly smaller than any TDe
, hence we again have Λ2

max = T∗.
One can then check (4.2.23) in different regimes. Consider first the M-theory supergravity

regime. Since the internal six-dimensional M-theory and string frame IIA metrics are related

by dŝ2M(X) = e−
2ϕ
3 ds2IIA-st, this requires ŝ ≡ e−

2ϕ
3 s to be large enough – for instance we may

require that ŝ ∈ K̂α. In this case the species scale ΛQG should coincide with the M-theory

Planck scale 1/l(11) (see footnote 16) as measured by the four-dimensional Einstein observer,

that is:

Λ2
QG =

6
1
3M2

P

4π(s0 − 1
2pas

a)
2
3κ(s, s, s)

1
3

. (4.3.43)

Hence

Λ2
max

Λ2
QG

= 2π

(
κ(s, s, s)

6(s0 − 1
2pas

a)

) 1
3

= 2πe
2ϕ
3 . (4.3.44)

This formula can be more directly derived by identifying Λ2
max = T∗ with the tension of an open

M2-branes stretching along the M-theory interval, which has length l(11)e
2ϕ/3. It is then clear

that the bound (4.2.23) is satisfied if eϕ ≳ 1. It is also interesting to check (4.2.23) in other

limits. These are discussed in appendix B.3.3, together with examples with pae
a = 0, in both

N = 1 and N = 2 supersymmetry.

4.4 SO(4)-symmetric configurations

In this section we show that the broad class of models described by the 2-derivative action

(4.1.1), or equivalently (2.2.6), admits sub-extremal and extremal wormhole configurations with

SO(4) symmetry, after continuation to Euclidean space. These solutions can be considered as

generalizations of the ones provided in the seminal paper [201] and encompass several other

generalizations already appeared in the literature. In Section 4.4.2 we derive the equations of

motion associated to our SO(4)-symmetric ansatz and of the on-shell action for sub-extremal

wormholes. This part of our work is not new but serves to set the stage for the original results

presented in the subsequent sections. Extremal solutions are discussed in Section 4.4.3 and

their relation with fundamental instantons is clarified. A curious BPS bound on the on-shell

action of sub-extremal wormholes, together with a possible solution of the associated puzzle, is

briefly commented upon in Section 4.4.4.
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4.4.1 Euclidean action

When discussing non-perturbative effects such as wormholes we have to pass to the Euclidean

formulation. The way in which one identifies charged saddles in the axions-saxions Euclidean

action has been clarified in [6] (see also [14]) and involves a continuation to imaginary axion

fields as well as the introduction of boundary terms. No such subtleties appear if one works

with the dual formulation, which is what we do. One just has to Wick rotate (2.2.6), giving

S = − 1

2
M2

P

∫

M

√
g R− 1

2
M2

P

∫

∂M

√
h(K −K0)

+
1

2
M2

P

∫

M
Gijdℓi ∧ ∗dℓj +

1

2M2
P

∫

M
GijH3,i ∧ ∗H3,j ,

(4.4.1)

where the Hawking-Gibbons term has been written explicitly. As already anticipated in Section

4.1, our analysis also aims at investigating the impact of the semi-topological operators in

(4.4.1). The Pontryagin operator turns out to be trivial on the SO(4)-invariant solutions that

we will be studying.18 We therefore focus on the Gauss-Bonnet term. Rotating to Euclidean

signature, this reads

SGB ≡ −
∫

M

√
g γ(s)EGB −

∫

∂M

√
h γ(s) (Q−Q0) , (4.4.2)

where we included the appropriate boundary term and we approximated γtot (see (4.1.11)) as

γ(s) =
π

6
C̃is

i ≡ π

6
⟨C̃, s⟩ (4.4.3)

consistently with the bound (4.2.18). In (4.4.2) we regard si as functions of the dual saxions ℓi as

defined by (2.2.8). In this dual formulation the presence of accidental axionic shift symmetries is

encoded in the Bianchi identity dH3 = 0. This is in general broken by the Pontryagin operator

(4.1.9), which we just argued that will be ignored, or (4.1.10) (see for instance section 3.2 of

[65]) as well as non-perturbative effects. 19 Because in our work gauge fields are assumed to

have trivial backgrounds, the interaction in (4.1.9) can be safely ignored as well.

4.4.2 Effective one-dimensional action and equations of motion

In deriving the relevant equations of motion we will follow the approach of [14], but will work

with the formulation in terms of gauge two-forms B2 i and dual linear multiplets.

18Because of the axion-dependent coefficient in (4.1.10), it is not fully topological and actually affects the
equations of motion. However here we will treat the higher-dimensional operators as perturbations and estimate
their effect by evaluating them on the leading order solution. It is in this sense that the Pontryagin operator can
be neglected.

19The Bianchi identity dH3 = 0 can also be broken by field-strengths of gauge three-forms. As discussed in
[67], in N = 1 supersymmetry this effect is dual to the presence of special multi-branched superpotentials which
are often realized in flux compactifications [202]. In this section we assume that such superpotential terms are
not present.
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We are looking for Euclidean wormholes preserving SO(4) rotational symmetry. This means

that we can restrict the metric to take the form

ds2 =
1

M2
P

[
e2A(ρ)dρ2 + e2B(ρ)dΩ2

]
. (4.4.4)

Here ρ ∈ I is an arbitrary dimensionless radial coordinate taking values in some interval I ⊂ R,

to be defined below, and dΩ2 is the line element of a three-sphere of unit radius, which has

volume 2π2. One can of course remove the arbitrariness of ρ by gauge-fixing eA(ρ) or eB(ρ). A

particularly convenient choice is given by

eB = ρ ≡MPr (4.4.5)

where r represents the radius of the three-sphere. This gauge fixing corresponds to the following

line element

ds2 = e2A(r)dr2 + r2dΩ2. (4.4.6)

Note that, however, in this case r can smoothly parametrize only half wormhole.20 Another

useful parametrization is discussed below, but for the moment we keep ρ arbitrary.

In addition to the metric, we will allow the fields ℓi,H3,i appearing in (4.4.1) to have non-trivial

profiles. By SO(4) symmetry the (dual) saxions can only depend on the radial coordinate:

ℓi = ℓi(ρ), or equivalently s
i = si(ρ). Instead the field-strengths H3 i must necessarily take the

form

H3 i =
1

π
qi volS3 , (4.4.7)

with qi constants. Observing that J1 i = M2
PGijda

i = ∗H3 i corresponds to the 1-form current

associated to the axion shift symmetry, the quantities qi are to be interpreted as the wormhole

charges
1

2π

∫

S3

H3 i = qi ∈ Z . (4.4.8)

Charge quantization can be either seen as a consequence of the axion periodicity (2.1.1) (i.e.

the momentum conjugate to a periodic variable is quantized) or, in the dual language, to the

quantization of the H3 i field-strengths.

The SO(4) symmetry ensures that our ansatz can be regarded as a consistent truncation of the

20This issue is avoided if instead we use the ‘geodesic’ radial coordinate χ defined by MPdχ = eAdρ. With
this coordinate the metric takes the form ds2 = dχ2 +M−2

P e2B(χ)dΩ2, corresponding to the gauge-fixing eA = 1
and the identification ρ = χMP.
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full theory. Inserting it in eq. (4.4.1), the action reduces to

S|ansatz = − 6π2
∫

I
dρ

[
eA+B +

(
dB

dρ

)2

e3B−A

]
+ 6π2

[
e2B
]
∂I

+

∫

I
dρ

[
e3B−Aπ2Gij dℓi

dρ

dℓj
dρ

+ eA−3BGij qiqj

]
.

(4.4.9)

Extremizing (4.4.9) with respect to A we have the constraint

e6B−2Aπ2Gij dℓi
dρ

dℓj
dρ

− Gij qiqj = 6π2
(
dB

dρ

)2

e6B−2A − 6π2 e4B . (4.4.10)

The equations of motion for ℓi are derived from the second line of (4.4.9) and will be shown

shortly. The variation of (4.4.9) with respect to B is on the other hand redundant once the

former two conditions are satisfied, and hence will not be discussed.

To write the field equations for ℓi it is convenient to introduce [14] a ‘proper’ radial coordinate

τ such that

dτ = ± 1

π
eA−3Bdρ , (4.4.11)

where the two signs correspond to the two possible relative orientations between τ and ρ. With

this notation the second line of (4.4.9) resembles the action for a particle with non-canonical

kinetic term moving in a non-trivial potential:

2π

∫
dτ

[
1

2
Gij(ℓ) ℓ̇iℓ̇j − Vq(ℓ)

]
(4.4.12)

with ℓ̇i ≡ dℓi
dτ . The potential is

Vq(ℓ) ≡ −1

2
Gij(ℓ) qiqj ≡ −1

2
∥q∥2 (4.4.13)

where we have introduced the norm defined by the metric (2.2.7):

∥q∥2 ≡ Gij(ℓ) qiqj . (4.4.14)

The (dimensionless) particle energy

E ≡ 1

2
Gij(ℓ) ℓ̇iℓ̇j + Vq(ℓ) (4.4.15)

is thus manifestly conserved. From (4.4.12) – or equivalently (4.4.9) – we may now obtain the

equations of motion for ℓi

GijDℓ̇j
dτ

= −∂Vq
∂ℓi

⇔ F ij ℓ̈j =
1

2
F ijk

(
qjqk − ℓ̇j ℓ̇k

)
, (4.4.16)
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where Dℓ̇j/dτ is the Levi-Civita covariant derivative associated with the metric Gij ; we have

used (2.2.7) and the shorthand notation F ij ≡ ∂2F/∂ℓi∂ℓj , F ijk ≡ ∂3F/∂ℓi∂ℓj∂ℓk. In addition

the dual saxions ℓi satisfy appropriate boundary conditions, which we assume to be Dirichlet.21

We are interested in asymptotically flat wormhole configurations manifesting a Euclidean “time-

reversal” symmetry.22 Namely, the dual saxions flow from some asymptotic value ℓ∞ at infinity

(ρ = −∞) to some value ℓ∗ at the neck of the wormhole (ρ = 0), and then go back to the

asymptotic value ℓ∞ (ρ = +∞). The analogy with the point particle makes it clear that

the saxionic flow can be interpreted as a scattering process, in which the particle climbs the

potential (4.4.13) until it reaches the turning point ℓ∗, at which it stops and then rolls down

back to its original position. Since Vq < 0 the saxions can bounce only if E = −|E| < 0. We

will however be a bit more general and consider

E = −|E| ≤ 0 . (4.4.17)

The cases E = 0 and E < 0 are usually referred to as extremal and sub-extremal (non-

supersymmetric) solutions – see for instance the review papers [203–205]. In this section we

will concentrate on these cases, and not consider super-extremal wormholes, which have E > 0

and a singular geometry.

Inserting (4.4.15) in the constraint (4.4.10), and writing the result in the gauge (4.4.5) we get

e2A =
1

1− L4

r4

(4.4.18)

where

L4 ≡ |E|
3π2M4

P

=
∥q∥2∗

6π2M4
P

, (4.4.19)

with ∥q∥2∗ ≡ ∥q∥2(ℓ∗). Hence the metric takes the form

ds2 =
1

1− L4

r4

dr2 + r2dΩ2
3, (4.4.20)

with r ∈ [L,∞) and L can be identified with the minimal S3 radius r∗ = L. In the second

equality in (4.4.19) we used the fact that at the turning point, the wormhole throat, the particle

stops ℓ̇i = 0 and E reduces to Vq(ℓ∗). We see that the wormhole minimal S3 radius is controlled

by the charge vector norm ∥q∥ at such radius.

By using (4.4.18) in (4.4.11) (in the gauge (4.4.5)) one gets a differential relation between r and

τ , which can be easily integrated. For sub-extremal (E < 0) wormholes we will impose that

21In presence of low-energy supersymmetry breaking, the asymptotic values ℓ∞ may ultimately be determined
by an hypothetical stabilizing potential for the saxions. We will come back to this in the conclusions.

22The Euclidean time-reversal symmetry ensures that by cutting these solutions at the minimal radius one
gets half-wormholes which, once analytically continued back to a Lorentzian spacetime, describe the nucleation
or absorption of a baby universe, with real boundary values of the fields and of their time derivatives [201].
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τ∗ = 0 at the turning point ℓ∗, that is

τ∗ = 0 ⇔ r∗ = L . (4.4.21)

Then (4.4.11), with +/− sign for positive/negative τ , integrates to

τ = τ = ± 1

2πM2
PL

2

[
π

2
− arcsin

(
L2

r2

)]
(4.4.22)

or similarly L2/r2 = cos
(
2πM2

PL
2τ
)
. This in particular implies that e−2A as a function of τ is

given by e−2A = sin2
(
2πM2

PL
2τ
)
. The maximal extension of the τ interval is

|τ | < τ∞ ≡ 1

4M2
PL

2
⇔ r∞ = ∞ , (4.4.23)

where cos
(
2πM2

PL
2τ∞

)
= 0. In particular, the region 0 ≤ τ < τ∞ parametrizes the first half-

wormhole, while the interval −τ∞ < τ ≤ 0 parametrizes the second half-wormhole. In other

words, the particle takes a proper time τ∞ to make half of its journey.

The particle interpretation also suggests a simple characterization of regular wormholes. The

point particle is at rest at τ = 0 and starts rolling down the potential Vq. If it reaches τ∞
remaining inside the perturbative dual saxionic domain, then the corresponding trajectory de-

scribes an everywhere regular on-shell wormhole. Whenever along its path the particle exits the

allowed domain, the solution develops a singularity and should either be somehow regularized

or discarded.

Finally, the on-shell wormhole action can be obtained by plugging (4.4.10) into (4.4.9), using

the gauge (4.4.5) and the explicit solution (4.4.18). Alternatively, we can use the traced Einstein

equation

R ∗ 1 = Gij

(
dℓi ∧ ∗dℓj −

1

M2
P

H3 i ∧ ∗H3 j

)
(4.4.24)

in (4.4.1), observing that the Gibbons-Hawking boundary term vanishes for the metric (B.1.1).

In either case, we obtain the wormhole action

S|w = 2π

∫
dτ ∥q∥2 = 1

M2
P

∫
GijH3,i ∧ ∗H3,j . (4.4.25)

Considering only half of the domain, we finally arrive at the on-shell action for half-wormhole:

S|hw = 2π

∫ τ∞

τ∗

dτ ∥q∥2 . (4.4.26)
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The latter can also be written using (4.4.13), (4.4.19), and (4.4.23) in an alternative form:

S|hw = −4π

∫ τ∞

τ∗

dτ Vq

= 3π3M2
PL

2 + 4π

∫ τ∞

τ∗

dτ (E − Vq) .

(4.4.27)

The first term coincides with what one would find for a purely axionic theory, where the dual

saxions are essentially ‘frozen’ at ℓ∗ = ℓ∞.23 The second contribution can be identified with

the integrated ‘kinetic’ energy of the dual saxions, see (4.4.15), and is hence always positive.

We remind the reader that the results obtained in this section relies on the assumption that

a truncation of the action at the 2-derivative level is justified. This requires L > 1/Λ, where

Λ is an appropriate UV cutoff. While the agnostic EFT physicist would just impose on Λ the

upper bound in (4.2.1), the discussion of Section 4.2.3 implies that Λ should in fact satisfy

much stronger upper bounds. The most conservative bound would be Λ < m∗, since the tower

scalem∗ represents the highest possible energy at which our four-dimensional EFT makes sense.

However, in principle a wormhole with L ≲ m−1
∗ could still make sense in a weakly-coupled

higher-dimensional EFT. This is certainly not possible if L−1 exceeds the scale ΛQG. So, we

will conservatively impose the bound

L2 > Λ−2
QG (4.4.28)

as the most fundamental consistency condition. We will come back to this point later on. Note

that, in any case, once a wormhole solution exists these bounds can be always satisfied by

picking a large enough charge ||q||.

4.4.3 Extremal wormholes and fundamental BPS instantons

So far in this section we have not really exploited supersymmetry, and what we have found

would hold even if the kinetic matrices of ℓi and H3,i were different from each other (see for

instance the recent work [208]). On the other hand supersymmetry forces such matrices to

be identical, see (4.4.1), and this allows for a particularly simple class of extremal E = 0

configurations.

Indeed, given the form of the potential (4.4.13), we see that taking ℓ̇i = qi obviously satisfies

(4.4.15) with E = 0 (another possible choice is ℓ̇i = −qi and can be viewed as being associated

to conjugate charges). The equations of motion (4.4.16) are manifestly solved as well. The

condition can be easily integrated to ℓ(τ) = ℓ(τ∞) + q(τ∞ − τ). The throat radius (4.4.19)

23Up to a different convention for the Planck scale, our semi-wormhole action agrees with the one first derived
in [201]. We also agree with [7] provided no Gibbons-Hawking term is added at the wormhole throat (recall
we are interested in 1/2 of the wormhole action and in such a calculation the Gibbons-Hawking term does not
contribute to the on-shell action because the geometry of a full wormhole is asymptotically flat). We also agree
with the result shown in eq.(12) of [203], up to a typo in the last equality. The expression for half a wormhole
presented in [206, 207], however, includes a 1/2 in front and restricts the integration over half wormhole, and
thus effectively corresponds to the action of a fourth of a wormhole.
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tends to zero as E → 0 and so the wormhole metric (4.4.6) becomes flat in the extremal limit,

i.e. in the gauge (4.4.5) we have e2A = 1.

In the present case, it is more convenient introduce a new proper radial coordinate

τ̂ ≡ τ∞ − τ , (4.4.29)

which has opposite orientation with respect to τ and is such that r = ∞ corresponds to τ̂∞ = 0,

while r = 0 corresponds to τ̂∗ = τ∞. This is motivated by the fact that in the extremal solution

r = 0 corresponds to a singular point, which is then moved to infinite τ̂ -distance, and this

simplifies our presentation. By solving (4.4.11) one then obtains

τ̂ =
1

2πM2
Pr

2
(4.4.30)

and

ℓ(r) = ℓ∞ + qτ̂ = ℓ∞ +
q

2πM2
Pr

2
. (4.4.31)

The nature of the singularity will be explored shortly. For the moment let us point out a suggest-

ive coincidence. By recalling (2.2.4), one can easily derive the identity Gijqiqj = Gijqiℓ̇j = −qiṡi
– in this section ℓ̇i ≡ dℓi

dτ̂ . Thus, paying attention to the relation (4.4.29), the on-shell action

(4.4.26) of our extremal solution reads

S|hw-extr. = 2π

∫ τ̂∗

τ̂∞

dτ̂ Gijqiqj = −2π

∫ τ̂∗

τ̂∞

dτ qiṡ
i = 2πqis

i
∞ − 2πqis

i
∗ . (4.4.32)

This action reminds us of that of a BPS instanton but differs from it because of the term

−2πqis
i
∗. Yet, inspecting (4.4.31) we see that the dual saxions diverge as r → 0. If the Kähler

potential is as in (4.1.3), this implies that s∗ → 0 in this limit. So, apparently, the two actions do

in fact coincide. This coincidence suggests that perhaps one should view extremal wormholes

as low energy manifestations of fundamental BPS instantons. But this interpretation, as it

stands, is a bit naive. We will now support it with a more precise argument.

The singularity at r = 0 indicates that the expression (4.4.31) is not fully reliable. From

a genuinely EFT perspective, that solution should be interpreted as viable only in a region

r ≥ 1/Λ outside the origin, and the singularity should be regularized by some local counterterm

placed around r = 0. So the integral in (4.4.32) should be limited to the region r ≥ 1/Λ, hence

giving the on-shell contribution

SΛ
bulk = 2πqi(s

i
∞ − siΛ), (4.4.33)

with siΛ ≡ si(r = Λ−1), and should be supplemented by a cutoff dependent localized term

SΛ
loc contributing to the total action. Such a localized term cannot be determined by sole
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considerations of the low energy observer. 24 Fortunately we have crucial information about

the UV. The analysis presented in appendix E of [64] shows that fundamental BPS instantons

appear precisely in this way in the EFT: the introduction of a fundamental BPS instanton at

r ∼ 1/Λ is captured by the addition of a localized term

SΛ
loc = 2πqis

i
Λ = 2π⟨q, sΛ⟩ . (4.4.34)

This acts as a magnetic source for the potentials B2,i and leads to the solution (4.4.31). Hence

the complete on-shell action, including the localized term, exactly reproduces the expression

SBPS = SΛ
bulk + SΛ

loc = 2πqis
i
∞ ≡ 2π⟨q, s∞⟩ (4.4.35)

familiar from Section 4.2.1. Note that for fixed si∞ the dependence of siΛ and then of SΛ
loc on

Λ is dictated by the dual saxionic flow (4.4.31). This can be interpreted as an RG-flow of SΛ
loc,

as discussed in the same context but for strings and membranes in [51, 64]. This flow has an

IR-fixed point which is given by 2πqis
i
∞, and of course coincides with (4.4.35), which is RG-flow

invariant.

This observation strongly supports our conclusion that a subclass of fundamental BPS instan-

tons can admit a description within the EFT in terms of extremal wormholes. As in [64], we

will refer to such instantons as EFT instantons. Note also that all BPS instantons are mutu-

ally BPS and the derivation described in [64] makes it clear that multiple non-coincident EFT

instantons admit an extremal multi-center wormhole description. In fact, there exists a more

concrete criterion to distinguish EFT instanton from BPS but non-EFT ones [64]. We now

revisit this criterion and present a refinement of its interpretation based on the discussion of

Sections 2.2.1 and 4.2.3.

According to the discussion of Section 4.2.1, a BPS instanton must have charge q ∈ CI. But

EFT instantons must satisfy an additional requirement: the corresponding extremal wormhole

profile (4.4.31) must lie within the perturbative regime along the radial trajectory all the way

down to r = Λ−1. As observed in Section 4.2.1, in the perturbative models in which the Kähler

potential can be approximated by the form (4.1.3), P has conical shape. Since (4.4.31) describes

a straight dual saxionic line generated by q, we conclude that any q ∈ P potentially identifies

an EFT instanton. As in [64], we therefore define the set of charges of the EFT instantons as

CEFT
I ≡ P ∩ CI . (4.4.36)

In general P may be non-convex, and hence the trajectory (4.4.31) may not be completely

contained in P for any ℓ∞ ∈ P. However, if q is in the interior of P the solution certainly exists

if ℓ∞ is chosen to be proportional to q, and hence by continuity also for nearby choices of ℓ∞.

24Since Λ/MP ≪ 1 the dual saxion displacement is quite small and the requirement that the dual saxions are
contained in our perturbative domain is easily ensured.
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For the same reason, for any q ∈ CEFT
I , one can judiciously adjust ℓ∞ in order to get a sensible

extremal solution. On the other hand, as will be shortly discussed in detail, if a BPS instanton

charge q is not EFT, specifically if q ∈ CI − CEFT
I , then the solution (4.4.17) breaks down at

finite radial distance.

Consider the evolution of the tension (2.2.3) along the extremal wormhole flow (4.4.31):

Te(r) = T ∞
e +

⟨q, e⟩
2πr2

, (4.4.37)

where T ∞
e ≡ Te(ℓ∞). Eq. (4.4.37) gives some important information about the consistency of

the solution. We first note that the semiclassical description requires the (fixed) EFT cutoff

Λ to be smaller than the (field dependent) scale ΛQG, i.e. Λ < ΛQG. Now, while the EFT

does not have direct information on ΛQG, the upper bound (4.2.23) tells us that Λ should at

least satisfy the non-trivial condition Λ < Λmax. In particular, it should certainly hold in the

unperturbed vacuum, that is, one must impose that Λ < Λ∞
max. Consider now (4.4.37), where

q ∈ CI while e ∈ CEFT
S . This implies that ⟨q, e⟩ ≥ 0 and thus the tension (4.4.37) of EFT

strings can never decrease along the extremal wormhole flow. We then arrive at the following

important conclusion: if the asymptotic vacuum satisfies Λ < Λ∞
max then the condition Λ < Λmax

automatically holds along the entire flow, regardless of whether q is EFT or not. Furthermore,

while Λmax cannot generically be identified with ΛQG, we expect these scales to have a similar

behavior, in the sense that an increasing Λmax should correspond to an increasing ΛQG (though

possibly with a different rate). This reasoning then leads to the conclusion that the stronger

consistency condition Λ < ΛQG holds everywhere as well. Let us now separately discuss the two

cases corresponding to EFT and non-EFT BPS charges.

Suppose first that q ∈ CEFT
I . As already argued above, this implies that (by possibly adjusting

ℓ∞) the flow is entirely contained in P. On the other hand, since ⟨q, e⟩ ≥ 0 for any BPS

(non-necessarily EFT) string charge e ∈ CS, the tension (4.4.37) generically grows and formally

diverges as r → 0. Recalling that weakly and strongly coupled regions are detected by small

and large elementary EFT string tensions (in Planck units), this suggests that the solution

could exit the perturbative domain as one approaches the instanton. Fortunately, this is not

necessarily the case, since the flow must stop at rΛ ≡ Λ−1 and as argued above we necessarily

have Λ < Λ∞
QG. We conclude that

Te ≤ T ∞
e +

⟨q, e⟩
2πr2Λ

≤ T ∞
e +

⟨q, e⟩
2π

(Λ∞
QG)

2 . (4.4.38)

Since we are assuming that the asymptotic vacuum is in the perturbative regime, we know that

T ∞
e ≪M2

P and Λ∞
QG ≤ Λ∞

max ≪MP. We then conclude that if ⟨q, e⟩ is not too large, that is if

⟨q, e⟩ ≪ 2πM2
P

(Λ∞
QG)

2
, (4.4.39)
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then Te ≪ M2
P and the EFT remains weakly coupled along the entire flow (up to rΛ). Since

Λ∞
QG ≪MP and we are assuming that the string charge is elementary, we conclude that (4.4.39)

can indeed be satisfied for q small enough. Note also that we can always decompose a large

charge instanton into smaller ones and separate them into a controlled extremal multi-wormhole

solution.

Let us now consider an elementary BPS but non-EFT instanton charge q ∈ CI−CEFT
I . As already

noticed in [64], in this case there must exists a BPS but non-EFT string charge e ∈ CS − CEFT
S

such that ⟨q, e⟩ < 0. This means the corresponding tension (4.4.37) vanishes at r2crit =
|⟨q,e⟩|
2πT ∞

e
,

and becomes negative for r < rcrit. Now, as recalled in Section 2.2.1, the vanishing of a non-

EFT string tension signals the presence of strongly-coupled finite distance boundary. The key

point is that elementary non-EFT strings are not directly linked to the quantum gravity aspects

of the theory. In particular, their tension can be arbitrarily small compared to the Planck mass

or the species scale, hence implying that along the extremal non-EFT wormhole one enters a

strongly coupled region, and hence loses control, well before reaching the minimal allowed length

scale Λ−1
QG.

25 This fits well with the idea that non-EFT BPS instantons are not gravitational

in nature, but are rather associated with some strongly coupled non-gravitational sector with

possible tensionless strings as in [97, 151].

We will see how, on the other hand, not only are EFT instanton charges q ∈ CEFT
I associated

with controlled extremal wormholes, but also with smooth sub-extremal deformations thereof.

4.4.4 A non-standard BPS bound

Given the underlying supersymmetric structure of our EFT, one expects some kind of BPS

bound relating the action of the (non-BPS) wormhole on-shell action and the BPS instanton

action (4.4.35). Take any EFT instanton of charges q ∈ CEFT
I and consider a sub-extremal

wormhole carrying the same charges. Recalling (4.4.15), we observe that the extremality bound

(4.4.17) is equivalent to ∥q∥2 ≥ ∥ℓ̇∥2. Employing (2.2.7) and (2.2.8) we then have

∥q∥2 ≥ ∥q∥∥ℓ̇∥ ≥ |qiGij ℓ̇j | = |qiṡi| , (4.4.40)

which is saturated only in the extremal BPS instanton case: ℓ̇ = q. The action (4.4.26) is

therefore subject to the following bound:

S|hw ≥ 2π

∫ τ∞

0
dτ
∣∣qiṡi

∣∣ ≥ 2π
∣∣∣qi
∫ τ∞

0
dτ ṡi

∣∣∣ =
∣∣SBPS − 2π⟨q, s∗⟩

∣∣ , (4.4.41)

where we have again adopted the convention (4.4.21). The bound involves in a crucial way

the neck contribution ⟨q, s∗⟩. In the EFT instanton case, as we have seen in the previous

25A probably more precise way of identifying the exit from a weakly-coupled phase is provided by the violation
of the EFT condition Te ≥ Λ2, which then leads to the critical radius r2crit =

|⟨q,e⟩|

2π(T ∞

e
−Λ2)

. We then see that for

by taking Λ2 closer to T ∞
e we have an arbitrarily large rcrit.
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section, that contribution is actually absent once one takes into account the counterterm induced

by the insertion of the fundamental instanton at the singularity. On the other hand, in the

sub-extremal wormhole case there is no singularity and no need for a local counterterm. A

large enough ⟨q, s∗⟩ in that case may indicate that S|hw < SBPS, which would contradict the

expectation that supersymmetric solutions saturate inequalities like (4.4.41). This puzzling

relation has indeed been observed in some explicit wormhole solutions (see e.g. [14]) and will

be encountered in the following section.

Perhaps the claim that sub-extremal wormholes can have actions smaller than the BPS solutions

is a bit rushed, though. Other contributions, beyond the 2-derivative approximation, may not

always be negligible. For example the Gauss-Bonnet term (4.4.2) contributes to the wormhole

action. It does not however affect the (flat) BPS solution. Hence, once Gauss-Bonnet is taken

into account one may recover a more familiar inequality of the type SBPS < (S + SGB)|hw
despite of S|hw < SBPS. This is particularly relevant for EFTs with many axions, where we

have seen that SGB has a large coefficient. We may provide a suggestive perturbative argument

in favor of the plausibility of our resolution of the puzzle. If we are allowed to treat the Gauss-

Bonnet as a perturbation, at leading non-trivial order its effect on the equations of motion

can be neglected when evaluating the on-shell action. Within this approximation (S+SGB)|hw
is simply obtained by plugging in the leading order solution. The Gauss-Bonnet density of a

(leading-order) wormhole is negative definite, EGB|wh = −3L8/(2π2r12), whereas the boundary

term in (4.4.2) identically vanishes because of the flat asymptotic condition. Denoting by γmin

the minimum value attained by γ(s) along the saxions flow, we find that the Gauss-Bonnet

action of a semi-wormhole satisfies a lower bound

SGB|hw = −
∫

M

√
g γ(s)EGB|wh ≥ −γmin

∫

M

√
g EGB = γmin . (4.4.42)

Restricting our considerations to the controllable domain ∆̂α we thus identify a sizable contri-

bution SGB|hw ≥ Nπ/(6α) that can conceivably result in SBPS < (S + SGB)|hw. We will see

that this in fact happens for some of the explicit wormhole solutions we find in Section 4.5.1.

4.5 Wormholes in the N = 1 axiverse

Having introduced all the necessary machinery, we are finally ready to analyze explicit sub-

extremal (non-supersymmetric) wormhole configurations. In Section 4.5.1 we introduce novel

solutions involving an arbitrary number of axions and saxions. Crucial to their existence is the

homogeneity of the function P̃ in eq. (4.1.4). In Section 4.5.3 we will discuss a particularly

interesting subclass of these solutions. We will then draw some general lessons in Section 4.5.2.
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4.5.1 The homogeneous solution

Let us now restrict our focus on the large class of models characterized by a Kähler potential

determined by the dual saxion kinetic function (4.1.4) (or equivalently (4.1.3)). We would like

to show that, under rather general conditions, the set of EFT instanton charges (4.4.36) admits

a corresponding set of wormhole configurations, no matter how complicated P (s) or P̃ (ℓ) are,

as long as they are homogeneous functions. In a certain sense, our result can be considered as a

four-dimensional generalization of the string theory solutions found in [209], which also applies

to many more string models.

The sharpest statements can be made for wormhole charges q belonging to the interior of the

set (4.4.36), that is to

CWH ≡ CI ∩ IntP ⊂ CEFT
I . (4.5.1)

Since P is conical, the whole ‘ray’ generated by q is contained in P. It is then natural to

consider homogeneous wormhole configurations with

ℓ(τ) = ℓ̃(τ)q . (4.5.2)

Note that the condition ℓ ∈ P simply reads ℓ̃ > 0. Inserting the ansatz (4.5.2) into (4.4.12)

leads to

2π

∫
dτ
[ n

4ℓ̃2

( dℓ̃
dτ

)2
+

n

4ℓ̃2

]
, (4.5.3)

where we used the identity Gij(q)qiqj = n
2 , which follows from degree-n homogeneity of P̃ .

Furthermore, one can verify that the homogeneity of P̃ guarantees that the equations of motion

(4.4.16) for ℓi coincide with those derived from the effective action in eq. (4.5.3). What we

have found is therefore a consistent multi-saxion wormhole with axionic charges q.

We have basically reduced the problem to a simple axion-dilaton model with kinetic function

F̃ = n log ℓ̃ (4.5.4)

and (effective) unit charge, as the ones studied in refs. [201, 209]. Similar results also follow.

In particular, since the reduced effective potential is

Ṽ (ℓ̃) = − n

4ℓ̃2
, (4.5.5)

the wormhole radius (4.4.19) and the maximal proper time (4.4.23) are given respectively by

L4 =
n

12π2ℓ̃2∗M4
P

⇒ τ∞ =
π

2

√
3

n
ℓ̃∗ . (4.5.6)

We note in particular that L explicitly depends on ℓ̃∗, but not on q. The explicit profile ℓ̃(τ)

can be obtained by integrating directly (4.4.15) in our reduced one-saxion model. Imposing the
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boundary conditions ℓ̃(τ∗) = ℓ̃∗ and dℓ̃/dτ(τ∗) = 0 fixes completely the solution:

ℓ̃(τ) = ℓ̃∗ cos

(
τ

ℓ̃∗

)
= ℓ̃∗ cos

(
π

2

√
3

n

τ

τ∞

)
, (4.5.7)

where the asymptotic value is implicitly determined by

ℓ̃∞ = ℓ̃∗ cos

(
π

2

√
3

n

)
. (4.5.8)

Since by definition ℓ̃ must be positive, eq. (4.5.7) describes a completely smooth wormhole if

and only if

n > 3 . (4.5.9)

This represents a lower bound on the coefficient of the scalar kinetic term first identified in

[201, 209] for the case of simple dilatonic models, and then generalized in [14]. In all string

theory models we are aware of, n is an integer taking values from 1 to 7 – see subsection 4.5.5.

We hence have a wormhole regular everywhere only in models with n = 4, 5, 6, 7. Note that the

wormhole corresponding to n < 3 become singular at finite distance from the wormhole throat,

while the limit case n = 3 is singular only at spatial infinity. We will further investigate this

case below in Section 4.5.3.

Our homogeneous solution can equivalently be expressed in terms of saxionic fields. These move

along a straight line as well. Indeed from (2.2.8) and (4.1.6) we get

si(τ) =
F i(q)

2ℓ̃(τ)
, (4.5.10)

where F i(q) ≡ ∂F/∂ℓi(q) is a charge dependent constant. Homogeneity also implies that

⟨q, s⟩ = n

2ℓ̃
. (4.5.11)

Because si increases as we move away from the wormhole throat, the most constraining perturb-

ative requirement on our solution comes from the internal region. In particular, by repeating

the same argument leading to (4.2.18) with q now playing the role of C̃, we get the lower bound

⟨q, s∗⟩ ≥ cqN/α, where cq ≥ 1 is some q-dependent constant scaling as ckq = kcq. In terms of

ℓ̃, this reads

ℓ̃(τ) ≤ ℓ̃∗ ≤
nα

2cqN
. (4.5.12)

By applying this upper bound to (4.5.6), we get

L2 ≥ cq

αnπ
√
3

N

M2
P

=
cq

αnπ
√
3

1

(Λsp,EFT)2
. (4.5.13)
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Hence for moderately small α and/or moderately large q, L−1 is automatically smaller than

low-energy length scale Λsp,EFT introduced in (4.2.1). While this is already reassuring, from

the discussion of Section 4.2.3 it is clear that L−1 should actually be smaller than microscopic

species scale ΛQG ≤ Λsp,EFT.

We can get more information about this point from the tension of EFT strings. By applying

the general formula (2.2.3) to the present case, we get

Te(τ) =M2
P ℓ̃(τ)⟨q, e⟩ . (4.5.14)

Notice that ⟨q, e⟩ > 0 for any EFT (or even non-EFT) BPS string charge e, since q ∈ CWH – see

(4.5.1). Recalling (4.2.23), we then get the following τ -dependent upper bound on the species

scale

Λ2
max(τ) =M2

P ℓ̃(τ) min
e∈CEFT

S

⟨q, e⟩ . (4.5.15)

This increases monotonically as one approaches the wormhole throat, Λ∞
max ≤ Λmax(τ) ≤ Λ∗

max

with

Λ∞
max = Λ∗

max cos

(
π

2

√
3

n

)
, (4.5.16)

which signals a similar behavior of the species scale ΛQG(τ). Notice also that cos
(
π
2

√
3
n

)
≳ 0.2

for n ≥ 4. Hence Λ∗
max is of the same order of Λ∞

max, exceeding it at most by a factor of 5.

As already mentioned, a semiclassical wormhole configuration can make sense only if its throat’s

radius is larger than Λ−1
QG, and hence than Λ−1

max. On the other hand, the actual four-dimensional

EFT cutoff Λ must be in principle smaller than the tower scale m∗. If m∗ is associated with

a KK tower, it can in turn be much smaller than ΛQG, and precisely in this case we may also

have a large hierarchy between ΛQG and Λmax.
26 Hence the wormhole solution that we have

described, and in particular the formula (4.5.6), is actually reliable only if L > m−1
∗ . Notice

that, in fact, it is always possible to get a wormhole satisfying this condition by simply rescaling

q → kq and ℓ̃→ k−1ℓ̃ for large enough k, since L2 → kL2 while the saxionic profile and hence

all the microscopic energy scales do note change. However, if m∗ is a KK tower scale, it may

be interesting to consider also wormholes of smaller charges. These may be better described by

a higher dimensional configuration with a corrected throat radius L′ = L + ∆L, which would

still make sense at the semiclassical level.27 In such a case, on purely dimensional grounds, we

would expect the correction ∆L to be set by m−1
∗ and to make L′ larger than L. This reasoning

leads to the conclusion that a condition of the form

LΛ∗
max > 1 (4.5.17)

26Assuming the ESC [70], the only other possibility is that m∗ corresponds to the microscopic critical string
scale, and then coincides with ΛQG = Λmax.

27Of course, here we are assuming that the wormhole survives the higher dimensional UV completion.
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already provides a quite non-trivial criterion for the validity of a semiclassical wormhole con-

figuration. In particular, in case of a hierarchy between ΛQG and Λmax we expect a corres-

ponding significant correction ∆L which can help in realizing the actual semiclassical condition

L′Λ∗
QG > 1. Hence in the following we will just focus on (4.5.17).

Now, from (4.5.6) and (4.5.15) we get the relation

(LΛ∗
max)

2 =
1

2π

√
n

3
min

e∈CEFT
S

⟨q, e⟩ . (4.5.18)

Notice that any explicit dependence on ℓ̃ has disappeared from LΛ∗
max, which instead depends

linearly only on q. The condition LΛ∗
max > 1 then translates into the condition

⟨q, e⟩ ≥ 2π ∀e ∈ CEFT
S , (4.5.19)

which is basically always satisfied. This conclusion provides an important and non-trivial

consistency check on the universal reliability of our homogeneous wormhole solutions, even for

small charges q.

Having assessed the validity of our solution, we can finally discuss the on-shell action. Observing

that ∥q∥2 = n
2ℓ̃2

, eq. (4.4.26) is easily computed:

S|hw =
nπ

ℓ̃∗
tan

(
π

2

√
3

n

)
= 6π2M2

PL
2

√
n

3
tan

(
π

2

√
3

n

)

= 2π sin

(
π

2

√
3

n

)
⟨q, s∞⟩ .

(4.5.20)

The equivalent expression shown at the end of the first line serves as a consistency check of our

result. In the regime n → ∞ and ℓ̃∗ ∼ √
n the saxion profile flattens while L stays finite, and

consistently the on-shell action becomes the same as the purely-axionic scenario, as seen in the

second line of (4.4.27). Yet, we should assign no physical meaning to this mathematical check

because in such a limit the corresponding solution has ℓi ≫ 1 and is therefore well outside

the regime of validity of our perturbative analysis. Indeed, so far string theory realizations

have only allowed for n ≤ 7. Scenarios with n ≤ 3 have divergent actions, as expected by the

considerations above. We will clarify the physics of the limiting case n = 3 below in Sections

4.5.3 and 4.5.4.

Sticking for now to the controllable solutions with n > 3, we observe that the last line of

(4.5.20), where the relation (4.5.11) was used, implies S|hw < SBPS, explicitly realizing the

puzzling possibility mentioned in subsection 4.4.4. The impact of the Gauss-Bonnet term on

this inequality is quantified in Appendix B.4. It is found that – in the approximation discussed in

Section 4.4.4 – the more conventional inequality (S+SGB)|hw > SBPS is recovered for n = 4, 5, 6.
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What we infer from this simple exercise is that small actions for non-supersymmetric solutions

like the one of this subsection do not necessarily indicate that such configurations are more

important than the supersymmetric ones, as one may have feared. In fact, corrections to those

solutions from higher order terms cannot always be neglected.

4.5.2 Non-homogeneous generalization

Coming back to these wormholes solutions, we observe that s∗, or equivalently s∞, can be freely

chosen to be any point of the ray in P generated by q. This means that we can always choose

s∗ such that the entire trajectory lies in the perturbative region ∆̂α (or ∆̃α). This property

actually comes from the more general scaling symmetry of the wormhole equations. Namely, if

ℓ(τ) is a solution of the equations of motion then ℓ′(τ) = λℓ( τλ) (λ > 0) is a solution too, which

starts from ℓ′∗ = λℓ∗ (at τ = 0) and arrives in ℓ′∞ = λℓ∞ (at τ ′∞ = λτ∞). The corresponding

saxionic flow is s′(τ) = 1
λs(

τ
λ), which shows that we can always make such a rescaling in order

to ensure that the flow is inside ∆̂α (or ∆̃α). We would then like to use this property to identify

more general wormhole solutions corresponding to an EFT instanton charge q ∈ CWH. In order

to understand this possibility, it is useful to discuss some properties of the metric Gij and the

potential Vq.

First of all, the saxionic metric admits as particular geodesics the radial direction. This ‘iso-

tropy’ is broken by the presence of the potential Vq(ℓ), which in fact identifies q as preferred

direction. Indeed, if we restrict along the q direction as in (4.5.2), we get Gij
∂Vq

∂ℓj
= qi

ℓ̃
. Hence

we see that along the radial direction identified by q the ‘force’ associated with Vq is directed

along −q. The sign can be understood by noticing that Vq(λℓ) = 1
λ2Vq(ℓ) and then, since

Vq is negative definite, it decreases as one moves radially towards the tip of P. Correspond-

ingly, Vq(λs) = λ2Vq(s) and then Vq(s) decreases as we move radially away from the tip of the

saxionic cone ∆.

We can say something more about the shape of the potential Vq. Take a particular point ℓ̂

along the ray in P generated by q and the corresponding point ŝ along the ray generated by

s|ℓ=q = 1
2
∂F
∂ℓ (q),

28 and consider the saxionic plane Sŝ passing through it and ‘orthogonal’ to q:

Sŝ =
{
s ∈ ∆

∣∣∣⟨q, s⟩ = ⟨q, ŝ⟩
}
. (4.5.21)

By using again the homogeneity, one can easily show that Vq(ŝ) = − 1
n |⟨q, ŝ⟩|2 = − 1

n |⟨q, s⟩|2 |Sŝ
.

On the other hand |⟨q, s⟩|2 ≤ ∥q∥2∥ℓ∥2 = −nVq(s). We deduce that

Vq(ŝ) ≥ Vq(s)|Sŝ
(4.5.22)

28By ∂F
∂ℓ

(q) we mean the saxionic vector with components si = ∂F
∂ℓi

(q). Since q belongs to P, then by definition
∂F
∂ℓ

(q) belongs to ∆.
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and then the potential restricted to Sŝ has an absolute maximum at ℓ̂. Hence Vq(s) is neg-

ative definite and has a hill shape with crest decreasing along s|ℓ=q (which belongs to ∆) or,

correspondingly, Vq(ℓ) has hill shape with crest decreasing −q.

It is now clear why, if we start from a point s∗ at rest along the ray identified by s|ℓ=q, the

point is radially driven away from the tip of the cone P along the hill’s crest down to the point

s∞. This is precisely the saxionic counterpart of the radial solution described above and, as

already discussed, we can rescale it in order to make it lie inside ∆̂α.

Suppose now to slightly move s∗ away from the the ray generated by s|ℓ=q. The potential will

drive it further away the radial direction, but if the s∗ is close enough to the initial position one

should still get a sensible wormhole solution, ending at some s∞ inside ∆̂α. The perturbative

results of Appendix B.2 confirm this qualitative idea. Combining this observation with the above

scaling symmetry, we then expect to be able to fine-tune the initial value s∗ to reach any final

point s∞ inside ∆̂α. This is certainly true in the case of a diagonal metric (which corresponds

to a completely factorized of the form P (s) = (s1)n1(s2)n2(s3)n3 . . ., with n1 + n2 + . . . > 3),

which is a case already discussed in the literature – see for instance [14]. More generically, if

the metric factorizes into decoupled saxionic sub-sectors (corresponding to a factorization of

P (s)), then one can clearly construct non-radial solutions by freely combining radial solutions

in each subsector – see appendix B.5 for more details. The above argument strongly suggest

that this property holds also for more general models, with non-factorizable P (s). We will

provide further support for this claim in subsection 4.5.5.

This provides further support to the main claim of this section: if the perturbative regime

is described by a Kähler potential (4.1.3) (or a kinetic potential (4.1.4)) associated with a

homogeneous function P (s) (or P̃ (ℓ)) of degree n > 3, then for each q ∈ CWH there exists a

corresponding smooth wormhole solution. Some comments are in order.

• The existence of the wormholes does not depend on the overall sign of q. Hence a wormhole

exists also for −q ∈ CWH. We will refer to it as anti-wormhole.

• The condition (4.5.1) excludes the cases in which q ∈ CEFT
I belongs to the boundary of

P. However, some boundary regions P ′ ⊂ ∂P|fin. dist. are at finite distance in field space

and can correspond to a restricted perturbative regime. In these cases, we can apply the

same construction to this restricted perturbative regime.

• If instead a q ∈ CEFT
I belongs to an infinite distance boundary ∂P|inf. dist., then the ho-

mogeneous ansatz (4.5.2) does not make sense. However, the arguments of this section

suggest that if we move ℓ∗ slightly away from the unphysical homogeneous direction, in-

side P, than a wormhole may still exists. In particular, this is certainly true if P can

be factorized into two subcones, e.g. P = P(1) × P(2), with block-diagonal metric with

corresponding factorized homogeneous polynomials P̃ = P̃1P̃2, with at least one of degree

≥ 4 and q contained in it.
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We can summarize the above conclusions on the more general wormholes as follows. First, it is

natural to extend of the set (4.5.1) of wormhole charges as follows:

Cext
WH ≡ CI ∩ (IntP ∪ ∂P|fin. dist.) = CWH ∪ (CI ∩ ∂P|fin. dist.) (4.5.23)

Second, if q ∈ Cext
WH and P̃ (ℓ) restricted to the ray (4.5.2) is homogeneous of degree nq ≥ 4, then

there should still exists wormhole solutions approaching any s∞ ∈ P. Moreover, there could

exist regular wormholes also for q ∈ ∂P|inf. dist., under some additional conditions. Finally,

the critical nq = 3 case is in fact quite interesting too, as we will be discuss in the following

subsection.

4.5.3 Marginally degenerate case

It is instructing to more quantitatively discuss how the homogeneous wormholes with n ≤ 3

fail to be globally well defined. This will highlight how the ‘marginally’ degenerate case n = 3

can, and in fact is, physically relevant.

We start by rewriting the universal solution (4.5.7) in terms of the three-sphere radius r. This

can be more easily done by passing through the alternative proper parameter τ̂ introduced in

(4.4.29). Indeed, from (4.4.22) and (4.4.23) we get the relation

τ̂ =
1

2πM2
PL

2
arcsin

(
L2

r2

)
=

2τ∞
π

arcsin

(
L2

r2

)
(4.5.24)

By using it in (4.5.7) we get

ℓ̃(r) = ℓ̃∗ cos

[√
3

n

(
π

2
− arcsin

(
L2

r2

))]
. (4.5.25)

This more manifestly shows that if n ≤ 3 then ℓ̃(r) vanishes, and then the solution degenerates,

at the radius

rdeg =
L√

sin
[
π
2

(
1−

√
n
3

)] . (4.5.26)

We will assume that in any physically sensible theory n is an integer, as clearly indicated by all

string theory models n. Hence we have basically three possibilities: n = 1, 2, 3. From (4.5.26)

one gets rdeg|n=1 ≃ 1.27L and rdeg|n=2 ≃ 1.88L.

Physically, at these degeneration points the theory reaches the infinite distant tip ℓ = 0 of the

dual saxionic cone. This means that all BPS string tensions (2.2.3) and Λmax defined in (4.2.23)

vanish. Note that all the other relevant four-dimensional energy scales Λ ≤ m∗ ≤ ΛQG vanish

as well. Hence, for n = 1, 2 already at rdeg ≃ L the solution ceases to make any sense. This

clearly indicates that the charges q ∈ Cext
WH with nq = 1, 2 can only be regarded as charges of

fundamental BPS instantons of the type discussed in Section 4.4.3.
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The story is very different for the n = 3 case. First of all, in this case rdeg|n=3 ≃ ∞. So,

in fact, the solution is everywhere well defined and degenerates only asymptotically at spatial

infinity. Moreover, for n = 3 the profile (4.5.25) assumes a particularly simple form. Indeed

(4.5.6) implies that

L2 =
1

2πℓ̃∗M2
P

(4.5.27)

and (4.5.25) reduces to

ℓ̃(r) =
1

2πM2
Pr

2
⇒ ℓ(r) =

q

2πM2
Pr

2
. (4.5.28)

We then see that, as a function of r, the dual saxionic profile is identical to extremal BPS profile

(4.4.31), with vanishing (and hence degenerate) asymptotic saxionic value ℓ∞ = 0. The only

difference with the extremal case is in the metric, which has non vanishing warping (4.4.18),

and in the radial range r ∈ [L,∞) (if we restrict to only half wormhole). This means that,

even if the two solutions are not exactly identical, at a distance moderately larger then L they

do not look much different. Already at a radius r ≥ 10L, the two solutions differ by a relative

error of order O(10−4)! The degeneration ℓ → 0 is of course again associated to an infinite field

distance limit, but now it corresponds to infinite radius limit r → ∞. In particular, all BPS

string tensions (2.2.3) and Λ2
max decrease as r−2. This is in fact what one would have guessed

just from dimensional analysis, if we regard r−1 as and energy scale.29

These considerations become particularly important if the wormhole solution is relevant only

up to some infra-red length scale rIR ≫ L. For instance, as one moves to large distances some

low supersymmetry-breaking scale ΛSB might become relevant, and stabilize the saxions to some

finite value at a distance rIR ≃ 1/ΛSB. Or one may be interested in studying the wormhole

contributions to the EFT with low sliding cutoff Λ ≪ 1/L, as we will do in in Section 4.5.4. In

such a case, one ‘integrates-out the wormhole’ only up to a distance rIR = rΛ ≡ 1/Λ, and so

the behavior of the wormhole solution at larger distances does not matter [5, 6, 209]. In the

following, we will focus on the latter Wilsonian interpretation of the IR cutoff.

As an example, in the low energy effective action defined at Λ ≪ L−1 the contribution of the

half-wormhole is represented by the insertion of the localized operator obtained by cutting-off

the on-shell action (4.4.26) at the proper time τΛ = τ∞ − τ̂Λ, with τ̂Λ corresponding to rΛ

through (4.5.24). This gives

S|hw =
3π

ℓ̃Λ
sin

(
π

2

τΛ
τ∞

)
= 2π⟨q, sΛ⟩

√
1− L4Λ4 = 2π⟨q, sΛ⟩[1 +O(ϵ2)] . , (4.5.29)

where in the second step we have used (4.5.11) (with n = 3) and (4.5.24), and we have introduced

29From the saxionic viewpoint, (4.5.10) tells us that the flow may be regarded as a sort of EFT string flow.
So (4.2.19) suggests that m2

∗ should generically decrease faster than Λ2
max as r. However we again regard the

species scale, rather than the tower scale, as the relevant one in the present setting. This is supported by the
‘fake’ BPS-ness of the n = 3 wormholes, which suggests a protection mechanism.
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the expansion parameter

ϵΛ ≡ L2Λ2 ≪ 1 ⇒ ℓΛ = ϵΛℓ̃∗ . (4.5.30)

For instance, we can take rΛ = 10L, and hence ϵΛ = 10−2. We then see that, up to O(ϵ2Λ)

corrections, the cut-off on-shell action (4.5.37) is precisely the localized operator (4.4.34) ac-

counting for the insertion of a BPS fundamental instanton! This confirms the above observation

that, from far away, the n = 3 wormhole looks like a fundamental BPS instanton.

We can also study the effect of slightly moving ℓ∗ away from the choice (4.5.2). The general non-

perturbative arguments of Section 4.5.2 and the perturbative results of Appendix B.2 clearly

indicate that a tiny displacement of ℓ∗ transversal to q evolves to a large relative deviation

along as we go to infinite radial distance.

As in Appendix B.2, let us consider a small deformation ℓi(r) → ℓ̂i(τ) = ℓi(r) + δℓi(r) of the

dual saxionic flow. We can set

δℓi(r) = ℓ̃(r)fi(r) , fi(r) ≪ 1 , (4.5.31)

with fi(r) representing the relative small deformations. Only transversal deformations are

relevant, and one can impose the transversality condition (B.2.6) on the initial deformations

f∗i, so that the wormhole radius L receives only second order corrections in f∗i – see (B.2.7).

By using (4.4.29) and (4.5.24) in (B.2.8) (with n = 3), one gets the relative deviation:

fi(r) = g(r)f∗i , g(r) ≡ 1 +

√
r4

L4
− 1

[
π

2
− arcsin

(
L2

r2

)]
, (4.5.32)

which clearly diverges for r → ∞. However, for fixed large radius r ≥ rΛ ≫ L we have

g(r) =
πr2

2L2

[
1 +O

(
ϵ2Λ
)]
. (4.5.33)

and then the perturbative solution can still make sense up to this radius if f∗i is slightly smaller

than L2/r2. In particular, since r ≥ rΛ we necessarily have f∗i < ϵΛ and thus L2 can be

identified with (4.5.27) up to O(ϵ2Λ) corrections.

By plugging (4.5.28) and (4.5.32) in (B.2.2), we get the absolute deviation

δℓi(r) = ℓ̃∗f∗i
L2g(r)

r2

≃ f∗i
4M2

PL
2

[
1 +O

(
ϵ2Λ
)]

for r ≥ rΛ .

(4.5.34)

Hence δℓi(r) is asymptotically constant and then, for r ≥ rΛ, the complete perturbed solution
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can be written as

ℓ̂(r) ≡ ℓ(r) + δℓ(τ) = ℓ̃ (q+ g(τ)f∗)

=
q

2πM2
Pr

2
+ δℓΛ

[
1 +O(ϵ2Λ)

]
with δℓΛ ≡ f∗

4M2
PL

2
.

(4.5.35)

This clearly shows that, up to O(ϵ2Λ) corrections, the perturbed solution still has the BPS form

(4.4.31), but with a non-vanishing constant term δℓΛ, which must be sufficiently small but

otherwise completely arbitrary.

In the assumed approximation scheme, the cut-off on-shell action (4.4.26) is still given by

(4.5.37). Indeed, by using the second expansion in (4.5.35) and the transversality condition

(B.2.6), one can easily check that

∥q∥2(ℓ̂) = ∥q∥2(ℓ)
[
1 +O(ϵ2Λ)

]
. (4.5.36)

Correspondingly, ⟨q, ŝ⟩ = ⟨q, s⟩[1+O(ϵ2Λ)], where ŝ
i are the saxions corresponding to ℓ̂i, as can

be verified by using the saxionic expansion ŝi = si − g(r)Gij(ℓ)f∗j associated to (4.5.35) and

(B.2.6). We conclude that the perturbed solution still has BPS-like cut-off action

S|hw = 2π⟨q, ŝΛ⟩[1 +O(ϵ2Λ)] . (4.5.37)

In the following Subsection we will provide numerical non-perturbative evidence that this con-

clusion holds also for larger deformations of the homogeneous solution.

It is also interesting to evaluate the contribution of the GB term to the on-shell action. Consider

first the homogeneous case. The matching procedure amounts to computing (see Appendix B.4)

S|GB, hw =
πC̃iF i(q)

8ℓ̃∗

∫ xΛ

0
dx cos2 x =

π2C̃iF i(q)

32ℓ̃∗

[
1 +O(ϵ3Λ)

]

=
π2ϵΛ
16

⟨C̃, sΛ⟩
[
1 +O(ϵ3Λ)

]
,

(4.5.38)

where xΛ = π
2 − arcsin ϵΛ. We see that compared to the leading order action (4.5.37) the

GB contribution is O(ϵΛ) subleading. If we consider the perturbed solution (4.5.35), we must

impose f∗i < ϵΛ and hence their correction to the GB contribution is always negligible. So, the

corresponding GB correction is simply given by (4.5.38) with ŝ instead of s.

Finally, being (4.5.38) of order O(ϵΛ), for sufficiently small ϵΛ it always overwhelms a possible

negative O(ϵ2Λ) correction in (4.5.37), giving an overall positive correction to the BPS on-shell

action 2π⟨q, ŝΛ⟩.
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4.5.4 Marginally degenerate wormholes and BPS instantons

We would like now to explore in more depth the singular case n = 3. As a preliminary step,

though, we note that, quite suggestively, sending n → 3+ and ℓ̃∗ ∝ 1/(n − 3) → ∞ with ℓ∞
(or equivalently s∞) held fixed one recovers from (4.5.7) the same solution as in (4.4.31). In

addition, the on-shell action becomes the BPS one, as seen in the second line of (4.5.20). 30

This intriguing result suggests a correlation between homogeneous wormholes with n = 3 and

BPS instantons with ℓ∞ ∝ q. However, since the curvature length tends to zero (or equivalently

s∗ → 0) this limit is not fully under control physically. We thus need to look at this limit a bit

more carefully.

With the boundary condition ℓ̃(τ∞) = ℓ̃∞ kept fixed, the singular homogeneous solution (4.5.7)

with n = 3 becomes progressively larger and larger as we approach the wormhole throat,

and eventually we reach a scale at which the EFT cannot be trusted anymore. We should

confine our considerations to distances r > 1/Λ >
√
N/(4πMP) away from the throat. For any

r ≫ L > 1/Λ the proper time in the + branch of (4.4.22) approximates to

τ =
1

4M2
PL

2
− 1

2πM2
Pr

2

(
1 +O(L2/r2)

)
. (4.5.39)

Hence, at a time τ = τ∞ −∆τ our solution (4.5.7) can be written as

ℓ̃(τ) = ℓ̃∗

[
cos

(
τ∞
ℓ̃∗

)
cos

(
∆τ

ℓ̃∗

)
+ sin

(
τ∞
ℓ̃∗

)
sin

(
∆τ

ℓ̃∗

)]

=
[
ℓ̃∞ +∆τ

] [
1 +O(∆τ/ℓ̃∗)

2
] (4.5.40)

where the correction can be ignored since

∆τ

ℓ̃∗
≡ τ∞ − τ

ℓ̃∗
=
L2

r2
(
1 +O(L2/r2)

)
≪ 1. (4.5.41)

Eq. (4.5.40) exactly reproduces the form of a BPS instantons with ℓ∞ ∝ q, see eq. (4.4.31),

up to small corrections of order L4/r4. In other words, within the EFT the latter configuration

is in fact indistinguishable from a homogeneous wormhole with n = 3. The difference, if any,

must appear at scales as close as r < 1/Λ to the throat, and is not visible at large distances.

The apparent loss of calculability in the far UV is just a red-herring. There is an alternative

way to confirm that homogeneous n = 3 wormholes are actually BPS instantons and that

avoids curvature singularities in the UV. Rather than fixing the asymptotic value of the field

and letting ℓ̃∗ grow as we approach the throat, as done so far, we now fix L to some reliable

value and instead introduce an arbitrary IR cutoff 1/rIR ≪ 1/L. Restricting the integration to

the domain L < r < rIR, and keeping n arbitrary for the moment, the on-shell action for half

30If we instead kept ℓ∗ (hence L) finite we would have obtained a divergent s∞ as well as a divergent action.
We will come back to this alternative perspective below.
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a wormhole becomes

S|hw =
nπ

ℓ̃∗
tan

τ(rIR)

ℓ̃∗
=
nπ

ℓ̃∗
tan

(√
3

n
arctan

√
r2IR
L2

− 1

)
. (4.5.42)

For any finite curvature length L (and hence ℓ̃∗), we see that this expression diverges as rIR/L→
∞ if n = 3, and only in that case 31. But the solution at least does not develop any curvature

singularity. One may superficially think that the IR divergence indicates that the associated

wormhole configuration has no physical impact semi-classically, but this is not true [5]: at scales

larger than a matching scale rΛ ≫ L (rΛ ≪ rIR) the effect of the wormhole is captured by a

local operator of the form Ce2πi⟨q,aΛ⟩ [6], with aΛ ≡ a(τΛ) and a finite coefficient C. One can

compute the latter coefficient by matching the IR theory valid at r > rΛ, where the geometry

is essentially flat, with our earlier description of the wormhole. The result is approximately

C ∝ e−(S|hw−SΛ) [5], where SΛ is the action evaluated with the IR description at lengths r > rΛ

for configurations with axionic charges qi equal to those of the wormhole. In both cases one

observes the same IR divergence regulated by our IR cutoff rIR, because IR divergences are

insensitive to the UV. As a result S|hw − SΛ is finite and approximately equal to our earlier

result (4.5.42) with rIR replaced by the matching scale rΛ [5]. For n = 3 one obtains:

C ∝ e
− 3π

ℓ̃Λ
sin

τ(rΛ)

ℓ̃∗ = e
−2π⟨q,sΛ⟩ sin τ(rΛ)

ℓ̃∗ = e−2π⟨q,sΛ⟩[1+O(L4/r4Λ)] , (4.5.43)

where we used (4.5.7) to write ℓ̃Λ ≡ ℓ̃(τΛ) = ℓ̃∗ cos(τΛ/ℓ̃∗) as well as the relation n/ℓ̃ = 2⟨q, s⟩.
The conclusion of this exercise is that the effect of a n = 3 wormhole is parametrized at energies

below 1/rΛ by adding to the action of the IR EFT a term 2πi⟨q, tΛ⟩ localized at the matching

scale. Because we have argued earlier in Section 4.4.3 that BPS instantons are described exactly

in the same way, we are lead to conjecture that singular homogeneous wormholes with n = 3

are the low energy manifestation of a class of BPS instantons .

4.5.5 Examples in string theory models

Let us now discuss some possible realizations of the above wormholes in string theory models.

Consider the F-theory models discussed in subsection 4.3.1. In this case case, we recall that the

set CI of BPS instanton charges can be identified with the cone of effective divisors. In order

to identify the possible wormhole configurations, we must identify the set (4.4.36) of possible

EFT instanton charges. Recalling the discussion around (4.3.12), we immediately conclude that

q = qaD
a ∈ CEFT

I is a nef divisor in some space X ′ ∼ X. In the following we will for simplicity

take q = qaD
a to be nef already in X. Note also that we will mostly focus on toric models,

or orientifold quotients of Calabi-Yau three-folds, in which the comments of footnote (14) hold

and then q = qaD
a ∈ CEFT

I can be regarded as movable divisors.

31When n < 3 the solution develops a singularity at a small distance from the throat. We will not consider
these cases in the following.

129



Since the ℓa-sector alone has n = 3, in order to get everywhere regular wormhole solutions we

are led to focus on Sen’s weak coupling limit, in which we have the additional dual saxion ℓ̂,

so that we can pass to n = 4 by turning on a corresponding charge q̂ > 0.32 In this case we

know that there certainly exists the family of homogeneous wormholes for any wormhole charge

vector (q̂,q) ∈ CWH – see 4.5.1 – which means that q̂ > 0 and that q = qaD
a represents an

ample divisor in X. In these wormholes the dual saxions have a profile of the form ℓ̂(τ) = q̂ ℓ̃(τ)

and ℓ(τ) = ℓa(τ)D
a = q ℓ̃(τ), where ℓ̃(τ) is as in (4.5.7) with n = 4.

According to the general argument, we also expect that there exist other wormhole solutions

whose initial position (ℓ̂∗, ℓ∗) is non-aligned but sufficiently closed to the radial direction identi-

fied by the charge vector (q̂,q). Since the scaling discussed below (4.5.20) identifies equivalent

classes of solutions, it is convenient to rephrase our statement in terms of the vector

x(τ) ≡ xa(τ)D
a ≡ q̂ ℓ(τ)

ℓ̂(τ)
, (4.5.44)

which characterizes wormholes that are not equivalent under scaling symmetry. Note that the

universal solution corresponds to the constant profile x(τ) ≡ q (hence with x∗ = x∞ = q),

while other equivalence classes of solutions correspond to any other profile x(τ) completely

contained in PK and with x∗ ̸= q. Not only do we expect to find admissible solutions for any

x∗ in a sufficiently small neighborhood of q, but we also expect that we can tune x∗ in this

neighborhood to get any x∞ ∈ PK. Note also that by the scaling symmetry, for any admissible

solution x(τ), we can always find a non-empty subset of corresponding flows (ℓ̂(τ), ℓ(τ)) that

lie inside the α-saxionic convex hull.

We can more explicitly test our expectation by considering the simple models described in

subsections 4.3.1 and in the appendices B.3.1, in which x(τ) should belong to R2
>0 and R3

>0

respectively. Consider first the model of subsection 4.3.1. Ignoring for the moment the sector

associated with the dilaton (4.3.14), the cone of BPS instanton charges is generated by the

effective divisors E1 and E2. Hence, in the basis of nef divisors D1, D2 the components of a

BPS instanton charge q = q1D
1 + q2D

2 ∈ CI must satisfy q1 + nq2 ≥ 0 and q2 ≥ 0. On the

other hand, q belongs to the subset CEFT
I of EFT instanton charges only if q1 ≥ 0 and q2 ≥ 0.

For instance the charge vector q = E2, which corresponds to (q1, q2) = (−n, 1), is BPS but

not EFT. Including back the dilaton, according to our general claim there should exist a large

family of wormhole solutions for charges in the set (4.5.1), that is q̂, q1, q2 > 0, in addition to the

corresponding homogeneous wormholes which certainly exist. One can numerically integrate the

equations (4.4.16) for different choices of the twisting constant n > 0 (the case n = 0 reducing

to a trivial factorized one), charges q̂, q1, q2 > 0 and initial values (x∗1, x∗2). The results confirm

our expectations, as for instance exemplified in figures 4.3 and 4.4. In particular, the plots show

how, even if the allowed throat values (x∗1, x∗2) are confined to a sharp specific sub-region, the

32This is just the simplest choice but, for instance, we may also turn on charges corresponding to the (s)axionic
sector appearing in some asymptotic region of the complex structure moduli space.
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Figure 4.3: Sample x(τ) trajectories with initial condition x∗ displaced from the homogeneous
solution, indicated by a star in the plot. The gray region is an interpolation of the red x∗
acceptable domain of figure 4.4a. Small displacements around the star lead to completely
different trajectories in a manner resembling the behavior of an unstable system.

corresponding asymptotic values (x∞1, x∞2) spread all over R2
>0, as predicted by our general

arguments. Recalling that the boundary ℓ1 = 0 is at finite distance, we also expect to find

wormhole solutions for charges q̂, q2 > 0 and q1 = 0 around the homogeneous solution. This

is indeed what we find, as shown in the plots of Fig. 4.5. Almost surprisingly, we also find

solutions with q̂, q1 > 0 and q2 = 0 where no homogeneous solution is in principle possible.

A closer inspection of the plots reveals however how these solutions do not form a dense open

set around the would-be homogeneous solution, but rather belong to the class of “accidental”

solutions as for the ones of Fig. 4.4.

It is also interesting to explicitly check the correspondence between fundamental instantons

and n = 3 wormholes of section 4.5.3 beyond the homogeneous and perturbative regime. We

can do this by keeping only the ℓa sector, which is described by a n = 3 Kähler potential, and

performing the usual numerical scan. Following the cut-off procedure outlined in section 4.5.3,

we can test the equivalence by comparing the complete numerical action of the solutions to the

associated BPS value (4.4.34). As on general grounds we expect all the solutions to degenerate

at most at r = ∞, identifying valid solutions is somehow ambiguous. We therefore employ

the empirical criterion that the dual saxions must degenerate at distances at least greater than

rΛ, where we assume that they will then be stabilized by some mechanism within the low-

energy EFT. The result of the scan is reported in the plots of Fig. 4.6, where we both show

the usual spread in the asymptotic values associated to deformations around the homogeneous

solutions and the comparison between the complete and the BPS action. In the neighbourhood

of the homogeneous solutions the actions coincide up to O(ϵ2Λ), exactly as predicted by (4.5.37).

Interestingly, a new region around ℓ1 = 0 also appears. This is not surprising as it closely
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(a) Scanned throat values x∗ ≡ x|r=L.
(b) Corresponding asymptotic values x∞ ≡
x|r=∞.

Figure 4.4: Numerical scan obtained by integrating the equations of motion with charge vector
q = (1, 1, 1) in the F-theory model 2 with random initial conditions for the dual saxions. The
first plot contains the allowed throat points x∗ identified by the scan: all the points in the box
has been randomly scanned, but we just show the ones that lead to acceptable solutions, i.e.
with x1, x2 > 0 all along their trajectory. The shape of the domains of acceptable solutions are
clearly distinguished and visible and have been indicated with different colors. The black star
denotes the point corresponding to the radial solution and the red dots in its neighborhood
can be identified with the solutions predicted by our general arguments, while the blue set
on the left represents “accidental” solutions, not predicted by our argument. The second plot
shows the asymptotic values x∞ associated to the acceptable solutions. We can again clearly
distinguish two sets of points, corresponding to the two disjoint sets of the first plot: the set
corresponding to the red neighborhood of the black star in the first plot, which is spread out
all over R2

>0, as predicted by our general argument; the set corresponding to the accidental
solutions, which identifies the blue thin denser cone which is visible in the second plot.

resemble the situation of Figs. 4.4, 4.5. This time the agreement between the complete and

BPS action is roughly of O(ϵΛ).

The model described in the appendix B.3.1 can be analyzed in the same way. In this case, in

addition to the dilaton (4.3.14), we have a three-dimensional vector ℓ = ℓ1D
1 + ℓ2D

2 + ℓ3D
3

that takes values in the Kähler cone. So, with focus on this sector, any q ∈ CEFT
I can be

identified with the generic nef divisor q = q1D
1 + q2D

2 + q3D
3, with q1, q2, q3 ≥ 0. Again,

the set CI of BPS instanton charges is larger, and is generated by the effective divisors. In

particular, if n, h > 0, the generators E1 and E3 identify BPS instanton charges (q1, q2, q3) =

(1,−n, 0) and (q1, q2, q3) = (−h, 0, 1), respectively, which do not belong to CEFT
I . As in the

previous model, including the dilaton, we expect that for any choice of charges in CWH, that

is q̂, q1, q2, q3 > 0, there should exist a large family of wormhole solutions reaching all possible

asymptotic values (x∞1, x∞2, x∞3) ∈ R3
>0. By numerically integrating (4.4.16) with initial

conditions (x⋆1, x⋆2, x⋆3) ∈ R3
>0, one gets another clear confirmation of our expectation as

evident from the plots in figure 4.7.
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(a) Throat values x∗ ≡ x|r=L of solutions with
charge vector q = (1, 0, 1).

(b) Asymptotic values x∞ ≡ x|r=∞ of solu-
tions with charge vector q = (1, 0, 1).

(c) Throat values x∗ ≡ x|r=L of solutions with
charge vector q = (1, 1, 0).

(d) Asymptotic values x∞ ≡ x|r=∞ of solu-
tions with charge vector q = (1, 1, 0).

Figure 4.5: Same scan as in Figure 4.4 but with charges q = (1, 0, 1) and q = (1, 1, 0), as
indicated in the captions of the plots. While the solution with vanishing ℓ1 charge is expected,
the one with vanishing ℓ2 charge is apparently surprising as the point ℓ2 = 0 is at infinite
distance. Indeed, a closer look at 4.5c reveals how getting closer to the point associated to
the homogeneous solution (indicated as star in the plot) the domain shrinks so that the the
homogeneous solution is never actually reached, confirming that ℓ2,∗ = 0 never delivers a valid
configuration. This is a completely different behavior with respect to figure 4.5a, where the
homogeneous solution has a “dense” neighbourhood of valid solutions.

133



(a) Scanned throat and asymptotic values of x =
ℓ1/ℓ2.

(b) Ratio between the complete and the BPS ac-
tion as a function of x∗.

Figure 4.6: Numerical scan obtained by integrating the equations of motion with charge vector
q = (1, 1) in the F-theory model 2 without the dilaton and with random initial conditions
for the dual saxions. The left panel compares the allowed throat values of x∗ = ℓ1,∗/ℓ2,∗ to
the asymtpotic values xΛ = ℓ1,Λ/ℓ2,Λ found by the scan, where acceptable solutions have been
identified as the ones in which the dual saxions degenerate at a distance greater than rΛ = 10L
from the throat. The black star denotes the point corresponding to the radial solution and
the red dots in its neighborhood can be identified with the solutions predicted by the general
perturbative argument, while the set on the left represents the usual accidental solutions. In
this case, the set of points around the homogeneous solution is significantly more restricted
compared to the accidental solutions one. The second plot shows the ratio Shw/SBPS associated
to the acceptable solutions, where Shw is obtained by cutting off the integration up to rΛ as
outlined in the main text and SBPS is given by (4.4.34) . Around the homogeneous solution the
two actions are compatible up to O(ϵ2Λ) terms as predicted by (4.5.37), while in the accidental
region the deviation is slightly bigger (but still below O(ϵΛ)).
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(a) Scanned throat values x∗ ≡ x|r=L.
(b) Corresponding asymptotic values x∞ ≡
x|r=∞.

Figure 4.7: Numerical scan obtained by integrating the equations of motion with charge vector
q = (1, 1, 1, 1) in the P1 over Fn F-theory model with random initial conditions for the dual
saxions. As in figure 4.4, the first plot contains the acceptable throat points x∗ identified by
the scan. The shape of the domain of acceptable solutions is clearly visible and generates a
dense set around the homogeneous solution, indicated as a black ball connected by dashed gray
lines for clarity. The second plot shows the asymptotic values x∞ associated to the acceptable
solutions, that as predicted by our general argument spreads all over R3

>0.
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Chapter 5

Conclusions

In this thesis we have presented the results of two main lines of work linked by the use of certain

axionic, or EFT strings, previously introduced in [34, 51], as the main tools.

In Chapter 3 we provided a number of quantum gravity constraints on the effective action

of an N = 1 supergravity theory in four dimensions. The constraints arise, modulo certain

assumptions, by demanding the consistent cancellation of the gauge and gravitational anomalies

induced by inflow from the bulk on the worldsheet of the EFT strings. This logic is generally

in the spirit of the analysis of [36, 37, 39, 49, 77–79] treating effective theories with more

supersymmetry or in a larger number of dimensions.

Our derivation of the anomaly inflow and hence the quantum gravity bounds is valid for theories

in which the gauge and gravity sector couple in a standard way to the axionic sector of the

supergravity as in (2.1.11) and (2.1.19). For theories with this property, we have derived

the positivity bounds and quantization conditions (3.2.3), (3.2.4) and (3.2.6) on the axionic

couplings and furthermore argued for the bound (3.2.26) on the rank of the gauge sector coupling

to the EFT strings. These bounds indeed rule out many supergravity theories as quantum

gravity theories which would otherwise seem perfectly consistent, as we have demonstrated in

simple settings in Section 3.3.1.

At a technical level the derivation of the bounds rests on the fact that the worldsheet theory of

the EFT strings can be assumed to be weakly coupled. This is a consequence of the backreaction

of the strings on the supergravity background in four dimensions [34, 51] and distinguishes

EFT strings from intrinsically strongly coupled strings. At the same time, the class of EFT

strings cannot be decoupled from the gravitational sector, and in this sense are similar to

the supergravity strings in higher dimensions [36, 39]. This makes them ideal candidates to

constrain the quantum gravity effective action.
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Our derivations furthermore rest on the assumption, specified around (3.1.26), that the spec-

trum of the weakly coupled NLSM obeys a certain minimality principle: The nN Fermi mul-

tiplets charged under the group of transverse rotations, U(1)N, are all assumed to participate

in the lifting of a subset of the nC chiral multiplets in such a way that at best the difference

nC − nN of remaining unobstructed chiral multiplets can contribute to the worldsheet anom-

alies via a Green-Schwarz type coupling. This assumption is natural in concrete string theory

realizations of the effective theory. As one of the classes studied in more detail in this paper, we

have analyzed EFT strings in F-theory compactifications by wrapping D3-branes on movable

curves on the base of the elliptic Calabi-Yau four-fold. In this context, we have seen that the

difference nC −nN is a topological index; in the geometric subsector it corresponds precisely to

the number of unobstructed geometric moduli which enter the NLSM. In fact, the minimality

principle is manifestly satisfied for EFT strings obtained from D3-branes wrapping movable

curves of genus g = 0, as in this case nN = 0. If the cone of movable curves is generated by

rational curves, our assumptions are thus indeed realised. Incidentally, for Fano 3-folds this is

the case (see e.g. [210] and references therein), and it is tempting to speculate if this pattern

generalises to non-Fano base spaces of Calabi-Yau fourfolds with minimal holonomy. More

generally, it would be important to better understand the validity of our working assumption

(3.1.26) independently of concrete realizations in string theory.

In full generality, the quantum gravity bounds depend not only on the axionic couplings C and

C̃ appearing in the four-dimensional effective field theory, (2.1.11) and (2.1.19), but also on

a contribution to the worldsheet anomalies encoded in the quantity Ĉ as defined in (3.1.11).

We propose that such contributions should be present only for EFT strings whose backreaction

probes a five-dimensional substructure of the theory. Examples of such EFT strings can arise

in the heterotic theory, for strings obtained by dimensional reduction of heterotic 5-branes

along nef divisors with non-vanishing triple self-intersection on the Calabi-Yau threefold. In

a general setting, the appearance of the coupling Ĉ could be used to deduce an underlying

five-dimensional structure of the four-dimensional effective theory whenever a comparison of

our bounds with the four-dimensional effective action implies that Ĉ ̸= 0. We believe that this

interesting effect deserves further investigation.

The bounds on the rank of the gauge algebra in their general form (3.2.26) are oftentimes rather

conservative. In the context of minimally supersymmetric F-theory on elliptic fibrations with

a smooth base, we have proposed a sharper bound, (3.3.36), based on a detailed understanding

of the NLSM massless fields in this case. On the other hand, the more general bound (3.2.26)

can in fact be saturated for instance in heterotic orbifolds (and therefore also their F-theory

duals, which necessarily involve a non-smooth base) and is hence to be regarded as the more

general bound. Irrespective of this, it would be very important to verify if the sharper bound

(3.3.36) indeed withstands scrutiny in F-theory on smooth three-fold bases, as our preliminary

analysis in a handful of examples is currently suggesting. We believe that the analysis of EFT

strings adds a fruitful new line of investigation to the active program [84–93] of constraining the
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possible effective field theories which can be obtained in F-theory. An important achievement

would be to establish a universal bound on the rank of the gauge group in this class of minimally

supersymmetric compactifications, as was possible for the abelian subsector in six dimensions

in [37]. In view of (3.3.36), this challenge can be re-phrased as the task of finding a universal

bound for the intersection product between a curve in the interior of the movable cone Mov1(X)

and the anti-canonical class K̄X on all possible three-fold base spaces X over which an elliptic

Calabi-Yau can be constructed.

Finally our focus in concrete string realizations has been on strings probing the Kähler sector

e.g. of F-theory or heterotic compactifications. By contrast, the sector of EFT strings probing

the complex structure sector of these theories is far less understood. We leave an investigation

of this sector of EFT strings as a challenge for future work.

In Chapter 4 we presented a detailed study of a class of homogeneous multi-saxionic wormhole

solutions in N = 1 effective theories of gravity coming from String Theory compactifications,

their non-homogeneous generalizations and begin to discuss their physical consequences on the

low energy action. In doing so, we also delved into the topic of the energy scale of validity of

such solutions and hence into the notion of species scale in our context.

The concept of EFT strings guided us in our inquiry, providing both a consistency bound on the

coefficient of the relevant higher derivative correction to the on-shell action of the wormholes,

the Gauss-Bonnet term, derived in Section 4.2.2 on the results of Chapter 3, an upper bound

on the species scale through their tension and an organising principle for such bound in the

neighbourhood of various infinite distance limits, as shown in Section 4.2.3. The issue of the

energy cut-off is particularly important when dealing with geometric configurations controlled

by a length scale, in this case the size of the wormhole throat, to assess their validity in the

EFT regime and for this we dedicated resources to it in our discussion. We proposed the

square of the corresponding EFT string tension as an upper bound on the scale of strongly

coupled gravitational effects and motivated it both in EFT string infinite distance limits and

the asymptotic region around them. This proposal was at the core motivated by the Emergent

String Conjecture [70] together with the Scaling Weight Conjecture of [34], which imply that

such a scale can be either the mass of the excitations of a fundamental string (for which a

perturbative quantum description can be achieved and the bound is expected to be saturated)

or of an extended object (for which a perturbative description cannot be achieved anyway).

Several checks in explicit F-theory and heterotic compactifications confirmed our proposal.

We have described and analysed a wide class of Euclidean wormholes which are characterized by

homogeneous dual saxion profiles and delved into their extensions thanks to both perturbative

and numerical tools. The dual framework is specifically suited for simplifying the exploration

of their features. We have proved the existence of such controlled solutions whenever the

configuration carries an instanton charge in a peculiar subset of the dual of the set of possible

EFT string charges. This both confirms and widens their role as the charges associated to
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perturbatively controlled regimes. It has already been proposed that EFT string charges are

in biunivocal correspondence with weakly coupled asymptotic regimes in [34] and [35], but

this result might point to them and BPS string charges in general being also crucial for the

understanding of geometric configurations which can be described consistently within the EFT

approximation. Such general statement is clearly outside the scope of our discussion, but it is

nevertheless an intriguing possibility.

The existence of the above solutions is granted by the specific form of the kinetic term of the dual

saxions, controlled by a Käler potential generated by a homogeneous intersection polynomial

of degree 3 or greater. This condition is automatically satisfied in F-theory models when the

axio-dilaton is taken into account. The marginal case of degree 3 is not without meaning:

thanks to it leading to solutions which are well-defined everywhere outside infinity we were able

to highlight an interesting connection to extremal BPS instantons. The study of the physical

consequences of such wormholes in the marginal cases allowed us to entertain this possibility

and propose that such wormholes might be seen as the low energy effective realizations of

extremal instantons of the UV complete theory. It would be interesting to gather additional

evidence for such claims in future work.

Finally we should stress that all of our discussion is based on the assumptions that we are in a

minimal supersymmetric setting and that the saxions involved get a potential only through the

effective one induced by the non-vanishing flux of the 2-form field on the compact patches of

the wormhole. A possible future line of research, beyond the scopes of this thesis, is represented

by the addition to the framework of the effects coming from supersymmetry breaking and an

explicit potential, and check whether either of those are enough to change substantially our

conclusions and proposals.
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Appendix A

A.1 Conventions for 2d anomalies

Here we summarise our conventions for the computation of the two-dimensional gauge and

gravitational anomalies – see for instance [211] for a review and references to the original

literature.

The notion of positive and negative chirality fermions along the two-dimensional worldsheet of

the string is induced from the four-dimensional bulk theory by identifying the two-dimensional

chirality matrix γ∗ with −Γα
β = −(σ3)

β
α , using the notation introduced in Section 3.1.3. In

matrix notation,

γ∗ =

(
−1 0

0 1

)
(A.1.1)

and a two-dimensional Dirac spinor decomposes as

ψ =

(
ψ−
ψ+

)
. (A.1.2)

In order to be compatible with the terminology adopted in several related works, we will refer

to the negative (positive) chirality spinors ψ− (ψ+) as left-moving (right-moving). (Admittedly,

this may be confusing, since on-shell ψ∓ depends only on y∓∓ ≡ y0 ∓ y1.)

The variation of the quantum effective action can be written as

δΓ ≡ (δgauge + δLorentz)Γ = 2π

∫
I
(1)
2 , (A.1.3)

where the polynomial I
(1)
2 obeys the descent relations

I4 = dI
(0)
3 , δI

(0)
3 = dI

(1)
2 . (A.1.4)

In 2n dimensions, the anomaly polynomial I2n+2 associated with a complex positive-chirality

Weyl fermion transforming in a representation r of the gauge group is given by the following
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general formula:

I2n+2 = [A(M) chr(−F )]2n+2 , (A.1.5)

where A(M) is the Dirac genus of the manifold M and ch(−F ) the Chern character:

A(M) = 1 +
1

12(4π)2
trR2 +

1

(4π)4

[
1

360
trR4 +

1

288
(trR2)2

]
+ . . .

chr(−F ) = trr exp

(
− 1

2π
F

)
= dim r− 1

2π
trr F +

1

2(2π)2
trr F

2 + . . . .

(A.1.6)

In two dimensions, the gauge and gravitational anomaly generated by a single complex Weyl

fermion with positive chirality (i.e. a right-moving fermion) is therefore encoded in

I4 =
1

8π2
trr F

2 +
dim r

192π2
trR2 . (A.1.7)

Notice that in this form the possibility of mixed abelian anomalies is automatically taken into

consideration. In fact, if the gauge group G can be written as a direct product as in (2.1.5),

the field strength has the form F =
∑

A FA +
∑

I FI and we obtain

I4 =
1

8π2
trr F

2 +
dim r

192π2
trR2

=
1

8π2
trr(

∑

A

FA +
∑

I

FI)(
∑

B

FB +
∑

J

FJ) +
dim r

192π2
trR2

=
1

8π2

∑

i

qAi q
B
i FA ∧ FB +

∑

I

∑

k

ℓ(rIk)

16π2
trF 2

I +
dim r

192π2
trR2 ,

(A.1.8)

where qAi denotes the U(1)A charge of the i-th component of the representation r and we have

decomposed r =
⊕

k r
I
k of r into GI representations rIk. In the second line we have used the

trace tr ≡ 2
ℓ(r) trr introduced in section 2.1.1. A negative chirality (i.e. left-moving) complex

fermion contributes with the opposite sign. Taking this into account and summing over all the

possible contributions of (0,2) scalar and Fermi chiral multiplets, one gets (3.2.1) and (3.2.8).

A.2 Weakly coupled NLSMs on EFT strings

In this appendix we provide some non-trivial evidence that the NLSM supported on EFT strings

can be treated as weakly coupled.

A.2.1 EFT strings in F-theory models

Consider an F-theory model of the type described in Section 3.3.2 and focus on the EFT strings

corresponding to D3-branes wrapping movable curves. Note that by the EFT Completeness

Conjecture the movable curves should admit an effective representative, which is furthermore
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expected to be generically smooth. The geometric moduli space Mgeom of such a movable

curve Σ ⊂ X should provide part of the target space MNLSM of the NLSM model supported

by the EFT string. Other possible directions along MNLSM are represented by SL(2,Z)-twisted

‘Wilson lines’, which are part of the chiral fields Φ(2) in the language of Section 3.3.2. By

appropriately tuning the initial value of the moduli, the NLSM should remain weakly coupled

along the EFT string flow. In this appendix we more explicitly check these expectations.

If we introduce some complex coordinates Zi onX, φI onMgeom and ζ along Σ, then the moduli

space corresponds to a family of local embeddings ζ 7→ Zi(ζ;φ). A first-order infinitesimal

deformation of Σ corresponds to an element of TMgeom|Σ ≃ H0(NΣ), where NΣ = TX|Σ/TΣ.
By introducing a basis ωI of H0(NΣ) we can regard these elements as vectors ωI = ωi

I∂i

describing the deformations of the local embedding:

δZi = ωi
I(ζ;φ)δφ

I . (A.2.1)

The IIB Einstein frame spacetime metric takes the form

ds2 = e2Ads24 + ℓ2sdŝ
2
X , (A.2.2)

with e2A =
M2

Pℓ
2
s

4πVX
, where the dimensionless quantity VX is the volume of X in string units (i.e.

measured by dŝ2X , which we also take to be dimensionless).

Along the D3-brane world-volume W ×Σ, where W is a two-dimensional world-sheet in the ex-

ternal directions, we can use coordinates ξA = (σα, ua), where ua = ua(ζ, ζ̄) are real coordinates

along Σ. The complete embedding is then defined by Xµ(σ), Zi(ζ;φ(σ)), and we can consider

φI(σ) as NLSM fields. The metric h̃AB induced on W × Σ splits as follows:

ds2|W×Σ = h̃ABdξ
AdξB = h̃αβdσ

αdσβ + 2h̃αadσ
αdub + ℓ2s ĥabdu

adub

=
[
e2Ahαβ + 2ℓ2s ĝiȷ̄(Z, Z̄)ω

i
Iω

ȷ̄
J̄
∂αφ

I∂βφ̄
J̄
]
dσαdσβ

+ 2ℓ2s
[
ĝiȷ̄(Z, Z̄)ω

i
I∂αφ

I∂bZ̄
ȷ̄ + c.c.

]
dσαdub + ℓ2s ĥabdu

adub ,

(A.2.3)

where hαβ ≡ gµν(X)∂αX
µ∂βX

ν is the pull-back to the EFT string world-sheet of the four-

dimensional Einstein frame metric, and ĥab ≡ ĝiȷ̄(Z, Z̄)∂aZ
i∂bZ̄

ȷ̄ + c.c. . Then

det(h̃AB) = ℓ4s det
[
e2Ahαβ + ℓ2s

(
ĝ⊥iȷ̄ (Z, Z̄)ω

i
Iω

ȷ̄
J̄
∂αφ

I∂βφ̄
J̄ + c.c.

)]
det(ĥab) , (A.2.4)

where

ĝ⊥iȷ̄ ≡ ĝiȷ̄ − ĝik̄ ĝlȷ̄ ĥ
ζ̄ζ ∂̄ζ̄Z̄

k̄∂ζZ
l (A.2.5)

is the projection of the metric in the orthogonal directions, in the sense that ĝ⊥iȷ̄V
i = ĝ⊥iȷ̄ V̄

ȷ̄ = 0

if V i∂i ∈ TD and ĝ⊥iȷ̄V
iV̄ ȷ̄ = ĝiȷ̄V

iV̄ ȷ̄ if V i∂i ∈ T⊥
D . Neglecting the flux contributions, the
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D3-action becomes

SD3 = −2π

ℓ4s

∫

W×Σ
d4ξ

√
− det h̃AB + . . .

= −TΣ
VΣ

∫

W
d2σd2u

√
− det

[
hαβ +

2πVΣ
TΣ

(
ĝ⊥iȷ̄ (Z, Z̄)ω

i
Iω

ȷ̄
J̄
∂αφI∂βφ̄J̄ + c.c.

)]
det(ĥab) + . . . .

(A.2.6)

Here we have introduced the volume VΣ of Σ in string units, and the string tension

TΣ =
2πe2AVΣ

ℓ2s
. (A.2.7)

We could now tune the bulk moduli so that, at energies E ≤ Λ ≪ m∗, we can expand the

square root appearing in the second line of (A.2.6). We now argue that the validity of this

property is preserved, or even improved, along the flow (2.2.9) generated by the EFT string.

Indeed, we can make the identifications

m2
∗ =

e2A

ℓ2sL
2
⊥

and ĝ⊥iȷ̄ = L2
⊥ ĝ

⊥
0iȷ̄ , (A.2.8)

where L⊥ is a length scale (in string units) associated with the directions orthogonal to Σ. For

instance, we may identify L4
⊥ ∼ VD, where D is some effective divisor with D · Σ ≥ 1. This

implies that L2
⊥ scales as

√
σ along the EFT string flow (2.2.9) and m∗ can be identified with

the lightest KK scale. Hence
2πVΣ
TΣ

ĝ⊥iȷ̄ =
1

m2∗
ĝ⊥0iȷ̄ . (A.2.9)

If we pick local inertial coordinates σα in which hαβ ≃ ηαβ , at energy scales of order E the

second term under the square root in the second line of (A.2.6) is of order E2/m2
∗ ≪ 1.

We can then expand the square root, getting

SD3 ≃ −TΣ
∫

W
d2σ

√
− dethαβ −

∫

W
d2σ

√
− dethαβ GIJ̄(φ, φ̄)h

αβ∂αφ
I∂βφ̄

J̄ + . . . (A.2.10)

The first term is the standard contribution of the universal sector. The leading correction to

takes the form of an NLSM, with target space metric

GIJ̄ ≡ 2π

∫

Σ
d2u

√
det ĥΣ g

⊥
iȷ̄ (Z, Z̄)ω

i
Iω

ȷ̄
J̄
. (A.2.11)

It remains to investigate the scaling of this target space metric along the EFT flow, which

depends also on the scaling of ĥΣ. This can be understood by using the classification of possible

EFT string flows provided in [71]. By adopting the terminology of this reference, one can

distinguish three main cases labelled by an integer q = 0, 1, 2. These are associated with
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so-called quasi-primitive EFT strings, which form the building blocks of EFT string limits;

generalisations beyond these quasi-primitive limits are then possible along the lines of [71].

In limits of type q = 0, X can be regarded as a P1 fibration over a base two-fold B, and Σ

can be identified with the P1 fiber. This EFT string is dual to a heterotic fundamental string

moving in a Calabi-Yau which is elliptically fibered over B. In the dual heterotic description it

is clear that an EFT string flow is compatible with a weakly coupled regime – see section 3.1.3.

This can also be understood from the F-theory viewpoint, at least if we focus on the geometric

moduli space Mgeom. Indeed, any vertical divisor in X has vanishing intersection with Σ and

then, asymptotically, does not scale with σ. On the other hand, the base volume scales like σ.

This implies that ĥΣ scales like 1√
σ
, and then that GIJ̄ does not scale. This is consistent with

the identification of GIJ̄ with the string frame metric of base B in the dual heterotic description.

In the case q = 1, X can be identified with the fibration of a surface S over a P1 base, and Σ

is a movable curve inside the S fibre with (Σ · Σ)S ≥ 1. In this case S · Σ = 0 and then the

volume of S does not scale. Consider now the effective divisor DΣ of X obtained by fibering Σ

- or in fact any curve in the fiber S with non-vanishing intersection with Σ - over the base P1.

Hence Σ ·DΣ = (Σ ·Σ)S ≥ 1 and the volume of DΣ scales as σ along the EFT string flow. The

analysis of [71] shows that VΣ is constant and the base P1 volume scales as σ. From (A.2.11)

we see that in this case GIJ̄ scales as σ. Note that this case corresponds to w = 2.

Finally, consider the case q = 2. This case describes a homogeneous decompactification. Hence,

VΣ ∼ √
σ and g⊥iȷ̄ ∼

√
σ and then GIJ̄ scales as σ. Also in this case the scaling weight is w = 2.

In summary, we have found that

GIJ̄ ∼ σw−1G0
IJ̄ . (A.2.12)

Hence, if w = 1 we can either choose the NLSM to be weakly coupled or even exactly quantize

it, as in perturbative superstring theory, since gs = eϕ is automatically driven to zero. If w > 1,

the EFT string does not uplift to a critical string but the corresponding flow automatically

drives the bulk moduli to a large distance limit in which the Mgeom sector of the NLSM is

weakly coupled. By applying similar scaling arguments to the complete DBI-action, one can

extend these conclusions to the twisted Wilson-line sector as well.

A.2.2 EFT strings in heterotic models

We now consider the EFT strings of the heterotic models discussed in Section 3.3.3.

Take first an EFT string that uplifts to a heterotic F1 string. Its flow is compatible with a

weak coupling regime, since along it the (string frame) Kähler moduli do not change, while the

ten-dimensional string coupling goes to zero [34]. Hence one may even exactly quantize it in

superstring perturbation theory.

Let us then turn to an EFT string corresponding to an NS5-brane wrapping a nef divisor

D ⊂ X. In this case gs can increase along the EFT string flow – see [34] and below – and
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then it is convenient to uplift the model to an HW M-theory compactification on I ×X, with

I = S1/Z2. The NS5-brane uplifts to an M5-brane wrapping {ŷ}×D ⊂ I×X and, as discussed

in section 3.3.3, may require the insertion of open M2-branes. The M5’s geometric moduli space

can be identified with I ×MD, where MD is the moduli space of D ⊂ X. Any nef divisor D is

expected to be automatically effective, as conjectured in [39]. One can more precisely describe

MD as in [39, 118], but we will not need such a description.

We will focus on the NLSM description of the M5’s geometric moduli space I×MD, proceeding

as for the D3-branes discussed in Appendix A.2.1. We introduce some complex coordinates zi on

X, φI on MD and ζI along D. MD describes a family of local embeddings ζI 7→ Zi(ζ;φ) and

a first-order infinitesimal deformation of D corresponds to an element of TM|D ≃ H0(ND),

where ND = TX|D/TD ≃ OX(D)|D. The elements of a basis ωI = ωi
I∂i of H

0(ND) describe

the deformations of the local embedding as in (A.2.1).

As in section 3.3.3, we set the M-theory Planck length ℓM ≡ ℓs and parametrize I ≡ S1/Z2 by

a coordinate y ≃ y + 2, with y ≃ −y. We can then restrict to y ∈ [0, 1] with y = 0, 1 hosting

the ten-dimensional E8 gauge sectors. The eleven dimensional M-theory metric takes the form

ds211 = e2Ads24 + ℓ2M

(
dŝ2X + e

4ϕ
3 dy2

)
(A.2.13)

with

e2A =
ℓ2MM

2
Pe

− 2ϕ
3

4πV̂X
, (A.2.14)

where V̂X is the volume of X in eleven-dimensional Planck units. We can identify eϕ with the

heterotic string coupling and e
2ϕ
3 with the length of the HW interval. Here we are neglecting

subleading backreaction effects due to non-trivial gauge bundles or G4 field strength, and to

bulk M5-branes, since they will not be relevant in the following.

An M5-brane has world-volume Γ = W × {y = Ŷ } × D, on which we introduce adapted real

coordinates ξA = (σα, ua) (where ua = ua(ζ, ζ̄)). The embedding is defined by Xµ(σ), Ŷ (σ),

Zi(ζ;φ(σ)), and we can consider Xµ(σ), Ŷ (σ), φI(σ) as NLSM fields. By repeating the same

steps followed in Appendix A.2.1, the geometrical sector supported by the M5-brane is described

by the effective action

SM5 = −2π

ℓ6M

∫

Γ
d6ξ
√

− det g|Σ + (flux terms)

= −TD
V̂D

∫

Γ
d6ξ

√√√√− det

{
hαβ +

2πV̂D
TD

[
e

4ϕ
3 ∂αŶ ∂βŶ +

(
ĝ⊥iȷ̄ (Z, Z̄)ω

i
Iω

ȷ̄
J̄
∂γφI∂βφ̄J̄ + c.c.

)]}

·
√
det ĥab + (flux terms) .

(A.2.15)
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Here we have introduced the projection of the Calabi-Yau metric to the orthogonal directions

ĝ⊥iȷ̄ ≡ ĝiȷ̄ − ĝik̄ ĝlȷ̄ ĥ
ĪJ ∂̄ĪZ̄

k̄∂JZ
l , (A.2.16)

the world-sheet metric hαβ = gµν(X)∂αX
µ∂βX

ν , the induced metric ĥab ≡ ĝiȷ̄(Z, Z̄)∂aZ
i∂bZ̄

ȷ̄+

c.c. along D, the volume V̂D of D in eleven-dimensional Planck units, and the EFT string

tension:

TD =
2πe2AV̂D

ℓ2M
. (A.2.17)

We now note that the combination appearing in front of (∂Y )2 in (A.2.15) is given by

2πV̂De
4ϕ
3

TD
= ℓ2Me

4ϕ
3 e−2A ≡ 1

m2∗
, (A.2.18)

where m∗ is the KK mass along I. As in the D3 case of Appendix A.2.1, we can write

ĝ⊥iȷ̄ = L2
⊥ ĝ

⊥
0iȷ̄ , (A.2.19)

where L⊥ is identified with the length scale (in eleven dimensional Planck units) of the directions

in X transversal to D, and g⊥0iȷ̄ is at most of order O(1). By introducing the corresponding KK

scale mKK = eA/(ℓML⊥), we obtain the relation

2πV̂D
TD

ĝ⊥iȷ̄ =
1

m2
KK

ĝ⊥0iȷ̄ . (A.2.20)

We can then expand the square root appearing in (A.2.15), since the second term appear-

ing therein is at most of order O(E
2

m2
∗
, E2

m2
KK

), which is small in the EFT regime E ≤ Λ ≪
min{m∗,mKK}.

Hence, the leading contribution to the world-sheet action splits into a standard universal term

and a NLSM term:

− TD
∫

d2σ
√
− det hαβ − πe

4ϕ
3

∫
d2σ

√
− det hαβ h

αβ∂αŶ ∂βŶ

−
∫

d2σ
√
− det hαβ h

αβGIJ̄(φ, φ̄)∂αφ
I∂βφ̄

J̄ + . . .

(A.2.21)

with

GIJ̄ ≡ 2π

∫

D
d4u

√
det ĥD ĝ

⊥
iȷ̄ (Z, Z̄)ω

i
Iω

ȷ̄
J̄
. (A.2.22)

Note also that GIJ̄ approximately scales like V̂X under a deformation of the internal space.

We can now discuss the scaling behaviour of the NLSM terms along the possible EFT string

flows, following the classification of [34]. In order to lighten the discussion, we will assume that

there are no background M5-branes. Their inclusion can be treated similarly.
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As a preliminary step, we observe that combining (3.3.68) and (3.3.82a) (plus the absence of

background M5s) we get

s0 =
1

3!
e−2ϕκ(s, s, s) +

1

2
pas

a , (A.2.23)

and then

e2ϕ =
κ(s, s, s)

6(s0 − 1
2pas

a)
and V̂X = s0 − 1

2
pas

a . (A.2.24)

Furthermore, recalling (A.2.14) we can rewrite the microscopic mass scales m∗ and mKK as

follows:

m2
∗ =

M2
Pe

−2ϕ

4πV̂X
=

3M2
P

2πκ(s, s, s)
, m2

KK =
M2

Pe
− 2

3
ϕ

4πL2
⊥V̂X

=
6

1
3 M2

P

4πL2
⊥[κ(s, s, s)]

1/3V̂
2/3
X

. (A.2.25)

Consider now an EFT string with charge vector e = (e0, ea). Without loss of generality, we

can assume that pae
a ≥ 0, since the case pae

a ≤ 0 can be recovered by applying the symmetry

(3.3.83). We will actually restrict to the case pae
a > 0, in which the EFT string detects the

perturbative gauge sector.

From (3.3.90) we see that De ≡ eaDa must be nef and furthermore we must impose that

e0 ≥ pae
a. We will then make the minimal choice e0 = pae

a, since the extension of the

following discussion to the case e0 > pae
a is immediate. Note in particular that the condition

e0 = pae
a forces the internal volume V̂X to asymptotically scale like

V̂X ≃ 1

2
pae

aσ , (A.2.26)

under any EFT string flow of this class. This implies that GIJ̄ asymptotically scales like σ too,

guaranteeing the weak-coupling description of the corresponding NLSM sector. These effects

are induced by the inclusion of the higher derivative corrections and of the corresponding

deformation (3.3.90) of the saxionic cone identified in [34], which was not taken into account

in that paper. Hence, the discussion of [34] actually holds only if pae
a = 0, and we now revisit

the three cases considered therein in the more general case pae
a > 0.

Case 1: κ(e, e, e) > 0

The first of (A.2.24) implies that e2ϕ ≃ κ(e,e,e)
3paea

σ2 asymptotically along the EFT string flow

(2.2.9). We then see that the two NLSM terms appearing in (A.2.21) scale like σ4/3 and

σ respectively, hence naturally guaranteeing the weakly-coupled description. Furthermore,

note that the length of the HW interval scales like σ
2
3 , while the Calabi-Yau characteristic

length scales like σ
1
6 . Hence the EFT string backreaction generates a hierarchy and induces an

intermediate decompactification to five dimensions. Furthermore L2
⊥ ∼ σ1/3 and from (A.2.25)

we get the asymptotic scalings m2
∗ ∼M2

Pσ
−3 and m2

KK ∼M2
Pσ

−2, hence confirming the scaling

weight w = 3 found in [34], but microscopically realizing it in a different way.
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Case 2: κ(e, e, e) = 0 but κ(e, e, e′) > 0 for some e′ ∈ NefZ(X)

In this case X can be realised as the T 2 fibration over a two-fold B and the divisor De is

‘vertical’. Along the flow both e2ϕ and GIJ̄ scale like σ. This implies that the two NLSM terms

appearing in (A.2.21) scale like σ2/3 and σ respectively, again justifying the weak-coupling

assumption.

Note also that the effective curve C = D2
e is a multiple of the T 2 fibre and has constant string

frame volume vol(C) = κ(e, e, s) = κ(e, e, s0). In the M-theory frame, v̂ol(C) = e−
2ϕ
3 κ(e, e, s0)

and then C shrinks to zero-size as e−2ϕ/3 ∼ σ−1/3. This implies that the M-theory base volume

v̂ol(B) should diverge like σ4/3. Hence, the corresponding length goes like σ1/3, as the length

of the HW interval. This means that the EFT string flow induces again a hierarchy of compac-

tification scales, so that the configuration could be described by first reducing M-theory theory

to nine dimensions along a T 2 fibre, and then by further compactifying along B × I. Further-

more L2
⊥ ∼ σ2/3 and (A.2.25) gives the asymptotic scalings m2

∗ ∼ M2
Pσ

−2 and m2
KK ∼ M2

Pσ
−2,

confirming the scaling weight w = 2 found in [34], but again microscopically realizing it in a

different way.

Case 3: κ(e, e, e′) = 0 for any e′ ∈ NefZ(X)

In this case e2ϕ does not scale asymptotically along the EFT string flow, while as in the above

cases GIJ̄ scales like σ, again allowing for a weakly-coupled NLSM description. The internal

space X can be regarded as a T 4 or K3-fibration over P1. The divisor De is a multiple of the

fibre and has constant string-frame volume 1
2κ(e, s0, s0). Hence V̂De

= 1
2e

− 4ϕ
3 κ(e, s0, s0) is also

constant. Since V̂X diverges as σ, the volume of the P1 base should also diverge like σ, so

that L2
⊥ ∼ σ. We then see that the EFT string flow induces a decompactification along the

P1 base, while the other directions do not decompactify. In this case we get a scaling weight

which is different from the one obtained in [34]. Indeed (A.2.25) now gives m2
∗ ∼ M2

Pσ
−1 and

m2
KK ∼ M2

Pσ
−2, corresponding to a scaling weight w = 2, which is different from the value

w = 1 found in [34].

In conclusion, in all cases a weakly-coupled NLSM description is allowed, if not even favored,

by the EFT string flow.

A.3 Derivation of heterotic (s)axionic couplings

In this section, we recall the derivation of the threshold corrections to the (s)axionic couplings

in both the E8 × E8 and the SO(32) heterotic string models in order to obtain the expression

that we used in this thesis to check the validity of the EFT string constraints.
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A.3.1 E8 × E8 models

We begin by reviewing the derivation of the threshold corrections to the (s)axionic couplings in

heterotic E8×E8 string models, referring to [138] and references therein for further details. Let

us denote the two heterotic E8 field strengths by F1 and F2 respectively. Our conventions for

the traces are the same ones as described after (2.1.7) and in Footnote 1. Similarly, we denote

the ten-dimensional curvature two-form by R.

These objects enter the Bianchi identity

dH3 = − ℓ2s
16π2

[tr(F1 ∧ F1) + tr(F2 ∧ F2) + tr(R ∧R)] + ℓ2sδ4(Γ) , (A.3.1)

where Γ = R4 × C with C ≡ ⋃
k Ck denotes the overall world-volume of a set of NS5-branes,

labelled by k, wrapped on irreducible internal curves Ck ⊂ X.

We can now split F1,2 and R into external and internal contributions: F1,2 = F1,2 + F̂1,2 and

R = R + R̂. For simplicity, we assume that the possible non-trivial internal gauge bundles

associated with F̂1,2 correspond to semi-simple sub-algebras of e8. This leads to the following

cohomological condition for the tadpole of the internal contribution,

λ(E1) + λ(E2) = c2(X)− [C], (A.3.2)

where we have defined

λ(E) ≡ − 1

16π2
tr(F̂ ∧ F̂ ) . (A.3.3)

We are interested in the higher curvature terms originating from the 10-dimensional Green-

Schwarz counterterm [212, 213]

∆SGS =
1

ℓ2s

∫
B2 ∧ I8 , (A.3.4)

written in terms of the anomaly polynomial

I8 =
1

192(2π)3

[
2(trF 2

1 )
2+2(trF 2

2 )
2− 2 trF 2

1 trF 2
2 +(trF2

1+trF 2
2 ) trR

2+trR4+
1

4
(trR2)2

]
,

(A.3.5)

and from the following two terms associated with the background NS5-branes,

S(1) =
1

192π
qa

∫

M4

aa
(
trF 2

1 + trF 2
2 + trR2

)
,

S(2) =
1

16π

∑

k

∫

M4

ãk
(
trF 2

1 − trF 2
2

)
.

(A.3.6)

Here we are using a compact notation in which the wedge product is implicit, which we will
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often adopt also in the following. Furthermore we have introduced the intersection numbers

qa ≡
∫

C
ωa = Da · C , (A.3.7)

and the NS5 axions defined as

ãk ≡
∫

Ck

B̃k
2 , (A.3.8)

where B̃k
2 is the self-dual gauge two-form living on the k-th NS5-brane wrapping the curve

Ck. The derivation of the corrections to the heterotic action from the 5-branes is particularly

elegant in the framework of heterotic M-theory, where they can be attributed to the M5-brane

sector. For further details on the derivation, we refer to [138].

Under our assumptions on the internal bundles, we can split the field strengths as

trF 2
1 = trF 2

1 + tr F̂ 2
1 , trF 2

2 = trF 2
2 + tr F̂ 2

2 ,

trR2 = trR2 + tr R̂2 , trR4 = 0 .
(A.3.9)

Taking this into account and expanding the perturbative heterotic B-field as B2 = ℓ2sa
aωa, we

arrive at the total threshold corrections for the gauge sector,

− 1

8π

∫ (
â+

1

2
paa

a − 3

8
qaa

a − 1

2

∑

k

ãk

)
tr(F1 ∧ F1)

− 1

8π

∫ (
â− 1

2
paa

a +
1

8
qaa

a +
1

2

∑

k

ãk

)
tr(F2 ∧ F2) .

(A.3.10)

and the gravitational sector,

− 1

96π

∫ (
12â+ naa

a − 3

2
qaa

a

)
tr(R ∧R) . (A.3.11)

Here we have introduced the quantized constants

pa ≡ −
∫

X
ωa ∧

[
λ(E2)−

1

2
c2(X)

]
, (A.3.12a)

na ≡ 1

2

∫

X
ωa ∧ c2(X) . (A.3.12b)

After replacing â with a0 defined as

â = a0 − 1

2
paa

a +
3

8
qaa

a +
1

2

∑

k

ãk , (A.3.13)
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we can rewrite (A.3.10) and (A.3.11) in the form

− 1

8π

∫
a0 tr(F1 ∧ F1)−

1

8π

∫ (
a0 − paa

a +
1

2
qaa

a +
∑

k

ãk

)
tr(F2 ∧ F2), (A.3.14)

and

− 1

96π

∫ (
12a0 − 6paa

a + naa
a + 3qaa

a + 6
∑

k

ãk

)
tr(R ∧R) , (A.3.15)

respectively. We finally perform another shift, this time of the M5-brane axions, redefining

ãk ≡ ak − 1

2ℓ2s

∫

Ck

B2 = ak − 1

2
mk

aa
a with mk

a ≡ Da · Ck . (A.3.16)

Note that, taking into account that

qa =
∑

k

mk
a , (A.3.17)

(A.3.16) implies that ∑

k

ãk =
∑

k

ak − 1

2
qaa

a . (A.3.18)

The saxionic counterpart of this redefinition reads

s̃k = sk − 1

2
mk

as
a . (A.3.19)

To understand the meaning of this linear redefinition, we may observe that it can be interpreted

as a shift of what we mean by ‘zero-position’ of the background M5-branes on the HW interval

and that the chiral fields tk that contain the axions and saxions correspond to the chiral fields

−2πiΛa in [138]. Hence, by adapting their (41) we identify

s̃k = λk
∫

Σk

J = λkmk
as

a (no sum over k) , (A.3.20)

where λk represents the position of the M5 along the HW interval – denoted as λa in [138].

Now, as illustrated in Figure 2 therein, the values λk = −1
2 and λk = 1

2 correspond to placing

the k-th M5 on the left and right HW wall, respectively. That is, we can identify λk = ŷk − 1
2 ,

where ŷk is the coordinate we used on the orbifold circle, with the property of being 0 on the left

HW wall and 1 on the right one. In combination with (A.3.20), this implies that sk introduced

in (A.3.19) corresponds microscopically to

sk = ŷk
∫

Σk

J = ŷkmk
as

a (no sum over k) . (A.3.21)
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In terms of new M5 axions ak introduced in (A.3.16), the axionic couplings take their final form

− 1

8π

∫
a0 tr(F1 ∧ F1)−

1

8π

∫ (
a0 − paa

a +
∑

k

ak

)
tr(F2 ∧ F2) ,

− 1

96π

∫ (
12a0 − 6paa

a + naa
a + 6

∑

k

ak

)
tr(R ∧R) .

(A.3.22)

The corresponding saxionic couplings then follow by supersymmetry:

− 1

8π

∫
s0 tr(F1 ∧ ∗F1)−

1

8π

∫ (
s0 − pas

a +
∑

k

sk

)
tr(F2 ∧ ∗F2) ,

− 1

96π

∫ (
12s0 − 6pas

a + nas
a + 6

∑

k

sk

)
tr(R ∧ ∗R) .

(A.3.23)

A.3.2 SO(32) models

The SO(32) heterotic string models can be treated in a similar way to the E8×E8 string. First,

recall the form of the I8 polynomial in the Green-Schwarz term needed for anomaly cancellation

in this setting [212, 213]. Adapting it to our conventions, this is given by

I8 =
1

192(2π)3

[
8 trF 4 + trF 2 trR2 + trR4 +

1

4
(trR2)2

]
, (A.3.24)

We proceed by splitting F and R in their internal and external components, according to the

KK ansatz. This gives us

trF 2 = trF 2 + tr F̂ 2 ,

trR2 = trR2 + tr R̂2 , trR4 = 0 .
(A.3.25)

In general, contrary to the E8 × E8 case, different breaking patterns for SO(32) will result in

different corrections to the 4d kinetic terms (see e.g. [214]). Here, for simplicity we assume an

internal gauge bundle such that trF 4 = 0. This choice leads to

I8 =
1

192(2π)3

[
(trF 2 + tr F̂ 2)(trR2 + tr R̂2) +

1

4
(trR2 + tr R̂2)2

]

≃ 1

192(2π)3

[
trF 2 tr R̂2 − trR2

(
− tr F̂ 2 − 1

2
tr R̂2

)]

=
1

96π

[
trF 2c2(X)− trR2

(
λ(E)− 1

2
c2(X)

)]

≃ 1

96π

[
trF 2c2(X)− 1

2
trR2c2(X)

]
,

(A.3.26)
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where we ignored the terms that will not contribute to the 4d couplings we are interested in

and the last steps are to be meant cohomologically and in absence of NS5-branes, having taken

into account the tadpole condition λ(E) = c2(X).

Expanding the B2 gauge two-form in the Green-Schwarz counterterm (A.3.4), we obtain the

corrections to the axion couplings in absence of NS5-branes

− 1

8π

∫
(â− 1

6
naa

a) tr(F ∧ F )− 1

96π

∫
(12â+ naa

a) tr(R ∧R) . (A.3.27)

If we now replace â with

a0 ≡ â− 1

6
naa

a , (A.3.28)

we obtain the contribution

− 1

8π

∫
a0 tr(F ∧ F )− 1

96π

∫
(12a0 + 3naa

a) tr(R ∧R) . (A.3.29)

By supersymmetry, the saxionic couplings are then given by

− 1

8π

∫
s0 tr(F ∧ ∗F )− 1

96π

∫
(12s0 + 3nas

a) tr(R ∧ ∗R) . (A.3.30)

We expect the gravitational couplings to be invariant under a transition that replaces some of

gauge bundle by NS5-branes; the changes in the above computation due to the modification of

the Bianchi identify should be counter-balanced by additional terms from NS5-branes. These

are hard to compute directly in the heterotic frame, but are S-dual to curvature terms in the

Chern-Simons actions of D5-branes in Type I string theory [215].

A.4 M5 instantons in E8 × E8 heterotic models

In this appendix we discuss the structure of the saxionic cone (3.3.88) in terms of the Euclidean

M5-brane instantons.

We start by considering a process in which the first four-dimensional gauge sector forms an

elementary anti-self-dual BPS instanton of unit charge, − 1
16π2

∫
tr(F1 ∧ F1) = 1 – see Footnote

1. This instanton contributes to the amplitudes by an exponential factor e2πit
0
= e−2πs0e2πia

0
.

By a small instanton transition, this gauge instanton can be continuously deformed into an M5-

brane instanton wrapping X at ŷ = 0. Hence, by holomorphy, the M5-instanton contribution

to the amplitudes should still be weighted by e2πit
0
= e−2πs0e2πia

0
and then its Euclidean action

should be given by 2πs0. By repeating the same argument with the second HW wall and taking

into account (3.3.80), we conclude that an M5-brane instanton at ŷ = 1 should have Euclidean

action 2π(s0 − pas
a + qas

a). At first sight, these results may be puzzling, and one may naively

be worried that if (pa − qa)s
a > 0 the M5 instanton on the first HW wall could slip to the

second wall, and vice versa if (pa − qa)s
a < 0. But this would clearly appear in tension with
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the assumed BPS-ness of the M5 instanton, as we would expect that either the M5-instantons

are stuck at the HW walls, or that their on-shell action should not change as we move them

along the y direction.

The key point is that in presence of a non-vanishing G4 flux along X, the Euclidean M5-branes

sitting at intermediate positions yE5 ∈ (0, 1) are not isolated but must be rather connected to one

of the HW walls by open Euclidean M2-branes. Indeed recall that, in general, if the boundary

of one or more open M2-branes contains a two-cycle Σ supported on the M5 world-volume, they

contribute as follows to the Bianchi identity of the M5 self-dual three-form H̃3:

dH̃3 = ℓ−3
M G4|M5 − δ4(Σ) . (A.4.1)

This implies the cohomological constraint

ℓ−3
M [G4]|M5 = [Σ] . (A.4.2)

In other words, if [G4]M5 is non-trivial in cohomology, then the M5-brane must host a homolo-

gically non-trivial component Σ of the M2 boundary, fixed by (A.4.2).

In the present setting, (3.3.86b) implies that the constants pa defined in (3.3.76) can be altern-

atively identified with

pa =
1

ℓ3M
lim

y→1−

∫

{y}×Da

G4 , (A.4.3)

and then measure the flux quanta of G4 close to the second HW wall. As we move to the left

and we cross a given subset of background M5-branes, the G4 flux quanta change to

1

ℓ3M

∫

{y}×Da

G4 = pa −
∑

k|ŷk>y

mk
a ⇒ 1

ℓ3M
lim

y→0+

∫

{y}×Da

G4 = pa − qa . (A.4.4)

Combined with (A.4.2), this implies that

∫

Σ
J =

1

ℓ3M

∫

{yE5}×X
J ∧G4 = pas

a −
∑

k|ŷk>yE5

mk
as

a . (A.4.5)

In our setting, BPS Euclidean M2-branes extend along the HW interval and wrap an effective

(possibly reducible) curve C ⊂ X. Considering BPS Euclidean M2-branes ending on the M5-

instanton from the left or from the right (in the y direction), we can then identify their boundary

with Σ = C or Σ = −C, respectively. Since we necessarily have
∫
C J > 0, (A.4.2) and (A.4.5)

imply that these open M2-branes should end on the M5-instanton from the left if pas
a −∑

k|ŷk>yE5
mk

as
a is positive, and from the right if it is negative. Note that mk

as
a =

∫
Ck J ≥ 0

and then the combination pas
a −∑k|ŷk>yE5

mk
as

a increases as the M5 instanton crosses the

background M5-branes from the left.
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Consider for example the case in which (pa − qa)s
a > 0. In this case an isolated M5 instanton

sitting on the first HW wall can be moved away from it to a more general position yE5 > 0,

but this process will generate Euclidean M2-branes stretching between the HW wall, the M5

instanton and the intermediate background M5-branes. Figure 3.1 in Section 3.3.3 illustrates the

case with a single background M5-brane wrapping the curve CM5 ≃ qaΣ
a (where Σa ·Db = δab )

at ŷ ≤ yE5, and the open Euclidean M2-branes wrapping the curves CE2 ≃ (pa − qa)Σ
a and

C′
E2 ≃ paΣ

a respectively. The total action does not change from the initial value 2πs0, but is

the sum of the contributions of the different Euclidean branes.

Let us order the background M5-branes so that ŷk < ŷk+1. We can write the contribution to

the total instanton action coming from the open M2-branes as

Sinst
M2 = 2π

[
yE5

(
pa −

∑

k|ŷk>yE5

mk
a

)
sa −

∑

k|ŷk<yE5

sk
]
. (A.4.6)

Hence, the contribution to the instanton action coming from the M5 at yE5 must be given by

Sinst
M5 = Sinst − Sinst

M2 = 2π
[
s0 − yE5

(
pa −

∑

k|ŷk>yE5

mk
a

)
sa +

∑

k|ŷk<yE5

sk
]
. (A.4.7)

It is easy to check that Sinst
M2 and Sinst

M5 are continuous in yE5 and that, as expected, the latter

reduces to 2π(s0 − pas
a +

∑
k s

k) in the limit yE5 → 1.

Note that, on the other hand, if (pa − qa)s
a > 0 an isolated M5 instanton sitting on the second

HW cannot move from it, since it would require the presence of open M2-branes ending on it

from the left. If instead pas
a < 0 the role of the two HW walls is inverted: an isolated M5

instanton on the first HW will remain stuck on it, while an isolated M5 instanton on the second

HW will be free to move away from it, forming a composite M5/M2 instanton. Indeed, this is

expected from the Z2 symmetry (3.3.83).

There could also be intermediate cases in which pas
a > 0 and (pa − qa)s

a < 0. In these

cases the isolated M5 instantons sitting in both HW walls should be trapped, while there

could be composite mobile M5/M2 instantons. It would be interesting to study better the

transitions between these various possibilities as we move in the Kähler cone, and in particular

the connection with the bundle stability walls. But for the purposes of the present thesis, we

just need to observe that the positivity of the M5-brane action (A.4.7) is guaranteed if we

impose the conditions s0 > 0 and s0 − pas
a +

∑
k s

k > 0.
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Appendix B

B.1 Basic considerations on wormholes and their regime of

validity

B.1.1 2-derivative solution and estimation of the cut-off

Within a two-derivative approximation, explicit wormhole solutions have been known since the

seminal work [201]. Extensions with several axions, or their dual two-forms, or axions plus

additional scalars have subsequently been constructed by many authors [5–7].

In the absence of scalar potentials, wormholes are built out of two asymptotically flat Euclidean

geometries glued together at the point of maximal curvature, the wormhole throat. In the two-

derivative approximation, the metric of half a wormhole, or semi-wormholes, is

ds2 =
1

1− L4

r4

dr2 + r2dΩ2
3, (B.1.1)

where r ∈ [L,∞) and the characteristic length scale L is determined in terms of the wormhole

charges and the fundamental parameters of the theory. For example, purely axionic solutions

have L4 = qi(f
−2)ijqj/(24π

4M2
P), with (f2)ij the axions’ decay constants, qi the axionic charges,

and MP the reduced Planck scale. While model-dependent, L always increases in the regime of

large wormhole charge.

We have argued below eq. (4.0.4) that a measure of the strength of wormholes in the semi-

classical approximation is provided by 1/2 of the wormhole action. Given the symmetry of

such a configuration, to obtain Swh/2 we might as well decide to compute the action of a semi-

wormhole. The explicit result in the case of purely axionic solutions is Swh/2 = 3π3M2
PL

2. 1

Superficially, one might think these wormhole solutions have validity in the regime 2π2M2
PL

2 ≫
1Up to a different convention for the Planck scale, our semi-wormhole action agrees with the one first derived

in [201]. We also agree with [7] provided no Gibbons-Hawking term is added at the wormhole throat (recall
we are interested in 1/2 of the wormhole action and in such a calculation the Gibbons-Hawking term does not
contribute to the on-shell action because the geometry of a full wormhole is asymptotically flat). We also agree
with the result shown in eq.(12) of [203], up to a typo in the last equality. The expression for half a wormhole
presented in [206, 207], however, includes a 1/2 in front and restricts the integration over half wormhole, and
thus effectively corresponds to the action of a fourth of a wormhole.
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1 of large action, or equivalently large charge or small axion decay constants. But in fact this

is in general a very optimistic bound.

The truncation at the two-derivative level is justified only if interactions of higher dimensions

lead to small corrections. One expects the latter operators to be suppressed by inverse powers

of the cutoff Λ, via an expansion of the form ∂2/Λ2. Observing that the maximal gradient in

the leading order wormhole solutions is set by ∂2 ∼ 1/L2, we see that to retain perturbative

control on our analysis it is necessary to impose (ΛL)2 ≳ 1. On purely dimensional grounds,

the action of a wormhole at the 2-derivative level scales as Swh ∼ 2π2M2
PL

2. Reliable solutions

of the truncated action must thus satisfy [201]

Swh ≳ 2π2
M2

P

Λ2
. (B.1.2)

The effective field theory has no information on Λ, but one can identify an upper bound on

such a quantity requiring a well defined perturbative expansion. In a perturbative effective field

theory with N light degrees of freedom, the physical cutoff must necessarily be smaller than

the low-energy species scale

Λ2 ≪ Λ2
low−sp ≡ 16π2M2

P

N
. (B.1.3)

The reason is that the effective coupling of matter to gravity, namely g2EFT ≡ p2/M2
P with

p2 < Λ2 the typical momentum transfer, must satisfy g2EFTN/16π
2 ≪ 1 in order to retain

perturbative control. This consistency requirement translates into (B.1.3). We call Λlow−sp the

low-energy species scale to distinguish it from the species scale that contains information about

the tower of states beyond the 4-dimensional effective field theory, which we discuss in Section

4.2.3.

The low-energy species scale Λlow−sp is not a physical mass, but rather the highest possible

energy at which the effective field theory can be treated perturbatively. The true regime of

validity of the effective field theory is instead determined by the first physical threshold beyond

the effective theory, i.e. the mass of the first excited state. It is the latter that we must identify

with the UV cutoff Λ. According to the estimate (B.1.2) we therefore anticipate that, in a

theory with N ≫ 1 low-energy degrees of freedom, reliable wormhole solutions should have

actions that scale at least as Swh ≫ N , and their impact should be suppressed by

e−Swh/2 ≲ e−π2M2
P/Λ

2 ≪ e−O(N). (B.1.4)

We will provide evidence of this scaling in various ways in the rest of this thesis.
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B.1.2 The Gauss-Bonnet correction

Our estimate (B.1.4) of the wormhole action was based on dimensional grounds and the implicit

assumption that the uncontrollable higher derivative terms can modify the wormhole configur-

ation. There are potentially two exceptions to this expectation: the Gauss-Bonnet operator

EGB ≡ 1

32π2

(
RabcdR

abcd − 4RabR
ab +R2

)
(B.1.5)

and the Pontryagin operator EP ≡ ϵcdefRa
befR

b
acd. Being total derivatives, they do not alter

the equations of motion and therefore do not affect the wormhole solution. Furthermore, their

coefficients are a priori unconstrained by our perturbative considerations because they do not

describe graviton vertices. Let us therefore analyze them in some detail.

Consider the Gauss-Bonnet term first. Despite it being a total derivative, and similarly to the

Einstein-Hilbert term, its variational problem is not well posed unless an appropriate Hawking-

Gibbons term Q is included. Subtracting the flat space contribution at the boundary so as to

have a vanishing action in Euclidean space, the complete Gauss-Bonnet term reads

SGB = −γ
∫

M

√
g EGB − γ

∫

∂M

√
h(Q−Q0) , (B.1.6)

with γ an unknown coefficient. After the boundary term Q is included the Gauss-Bonnet term

acquires topological significance. More precisely, [216]

χ(M) = b0(M)− b1(M) + b2(M)− b3(M)− b4(M)

=

∫

M

√
gEGB +

∫

∂M

√
hQ

(B.1.7)

is the Euler number (or characteristic), which counts the alternating sum of the ranks of the

homology groups of M: bk = dimHk(M). Viewing Euclidean space E4 as a ball with asymp-

totic S3 boundary, we get χ(E4) = 1, a value entirely determined by the boundary term. 2 As

a result eq.(B.1.6) becomes

SGB = −γ[χ(M)− χ(E4)] = −γ[χ(M)− 1] . (B.1.8)

This expression reproduces the topological contribution considered in [201]. A configuration of

nwh wormholes have topology characterized by χ(M)− 1 = −nwh. In practice, this reveals the

effective field theory contains a non-perturbative coupling

e−γnwh (B.1.9)

2We may adopt an alternatively asymptotic compactification prescription for the asymptotically flat space
which would give different χ(M) and χ(E4). For instance, adding just one asymptotic point, E4 becomes S4 and

we would get χ(E4) = 2. Nevertheless, the combination χ(M)− χ(E4), and hence S
(E)
GB , does not change.
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suppressing wormhole insertions (provided γ > 0). Knowledge of the coefficient γ of the Gauss-

Bonnet term offers another, independent, rationale to quantify the impact of wormholes.

When discussing wormholes, on the other hand, the Pontryagin term is always irrelevant because

of topological considerations. To start, EP ≡ ϵcdefRa
befR

b
acd = 0 on the simplest wormhole

solution (B.1.1). Yet, even allowing potential corrections beyond the two-derivative approxim-

ation, the topological structure of an arbitrary wormhole configuration is such that the integral∫ √
gEP is exactly zero. We can therefore safely ignore this term in our discussion.

B.2 Perturbative deviation from homogeneous solution

Writing ℓi = ℓ0i + δℓi, where ℓ
0
i = qiℓ̃, and expanding the action (4.4.12) up to quadratic order

in the fluctuation, we have

δ2S = π

∫
dτ Gij(q)

1

ℓ̃2

{
δℓ̇iδℓ̇j −

4

ℓ̃

˙̃
ℓ δℓiδℓ̇j +

3

ℓ̃2

(
2− ℓ̃2

ℓ̃2∗

)
δℓiδℓj

}

= π

∫
dτ Gij(q)

{
δℓ̇iδℓ̇j

ℓ̃2
+

[
1− sin2

(
τ

ℓ̃∗

)]
δℓiδℓj

ℓ̃4

} (B.2.1)

Since we are only interested in the equations of motion for δℓi, we have ignored all boundary

terms. By setting

δℓi = ℓ̃fi , (B.2.2)

after one integration by parts and discarding again boundary terms, this quadratic action can

be rewritten as

δ2S = π

∫
dτ Gij(q)

{
ḟiḟj +

2

ℓ̃2
fifj

}
. (B.2.3)

The equations of motion for fi are

f̈i =
2

ℓ̃2
fi =

2

ℓ̃2 cos2
(
τ
ℓ̃∗

)fi . (B.2.4)

From (B.2.2) and (4.5.7) it is easy to see that the initial condition δℓ̇i(0) = 0 corresponds to

ḟi(0) = 0. The general solution of (B.2.4) satisfying this initial condition is3

fi(τ) = f∗i
[
1 +

τ

ℓ̃∗
tan

( τ
ℓ̃∗

)]
⇔ δℓi = f∗i ℓ̃∗

[
cos
( τ
ℓ̃∗

)
+
τ

ℓ̃∗
sin
( τ
ℓ̃∗

)]
, (B.2.5)

where f∗i = fi(0) is the integration constant representing the value of fi(τ) at the throat. We

emphasize that the relative fluctuations fi(τ), rather then δℓi(τ), must be small in order for

the perturbative expansion to make sense. This certainly requires that f∗i ≪ 1, and that the

3The most general solution of (B.2.4) contains also a term proportional to tan
(

τ

ℓ̃∗

)
, which however violates

the initial condition ḟi(0) = 0.
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fi(τ) remains small along the flow.

As a consistency check, if we choose f∗i = f̃∗qi the solution (B.2.5) coincides with the first order

term appearing in the f̃∗ ≪ 1 expansion of (4.5.7) with ℓ̃∗ → ℓ̃′∗ = ℓ̃∗(1+ f̃∗), as expected. This

also implies that without loss of generality we can impose some transversality condition on f∗i,

as for instance

Gij(q)f∗iqj = 0 . (B.2.6)

This condition is useful because it implies that the deformation changes the wormhole radius

(4.4.19) only to second order in f∗i:

L4 = L4
(0) (1 + δ) with δ =

6

n
Gij(q)f∗if∗j (B.2.7)

Recalling (4.4.23), this implies τ∞ is only modified by second order corrections too. Hence, to

first order, we can still use (4.5.6) to express ℓ̃∗ in terms of τ∞, getting

fi(τ) = f∗i

[
1 +

π

2

√
3

n

τ

τ∞
tan

(
π

2

√
3

n

τ

τ∞

)]
. (B.2.8)

We see that the deviation grows towards τ = τ∞, with maximum relative gain reading

f∞i

f∗i
= 1 +

π

2

√
3

n
tan

(
π

2

√
3

n

)
≃ {∞, 7.37, 4.29, 3.24, 2.70} (B.2.9)

for n = 3, 4, 5, 6, 7. For n ≥ 4 the perturbative expansion makes sense everywhere for sufficiently

small f∗i. For instance, fi(τ) < 0.1 can be guaranteed along the entire wormhole by choosing

f∗i < 0.014 for n = 3, or f∗i < 0.03 for n = 6. On the other hand, the general arguments

of Section 4.5.2 suggest that in a complete non-perturbative treatment it is sufficient to pick

moderately larger f∗i to allow for a much larger range of f∞i , as confirmed by the numerical

evidence of Figs. 4.3, 4.4, 4.5, 4.6.

As expected, if n = 3 the solution (B.2.8) diverges at infinite radial distance and thus, for

any arbitrarily small initial values f∗i, the perturbative expansion breaks down at some finite

radius. Nevertheless, as discussed in Section 4.5.3, it can still make sense in presence of some

type of IR cutoff.

B.3 Other tests of the species scale bound

B.3.1 Another model: P1 fibration over Fn

Another class of simple models is obtained by choosing X to be a P1 fibration over the

Hirzebruch surface Fn, which in turn can be described as a P1 fibration over P1, specified

by the integer n ≥ 0. This model has been recently discussed in a closely related framework
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by [71], to which we refer for more details. For our purposes it is sufficient to restrict to a P1

fibration over Fn specified a single non-negative integers h ∈ Z≥0,
4 and to identify the relevant

cones of divisors and curves and their intersection numbers.

The cone of effective divisors is simplicial and is generated by three effective divisors Ea,

a = 1, 2, 3. These three effective divisors can be roughly regarded as twisted products of the

possible pairs of the three P1’s involved in the geometry. We can also introduce a basis of nef

divisors Da, with respect to which

E1 = D1 − nD2 , E2 = D2 , E3 = D3 − hD1 . (B.3.1)

The divisors Da generate all the other nef divisors, as well as the Kähler cone. Hence, by using

these divisors in the expansion (4.3.1) the Kähler cone corresponds to v1, v2, v3 > 0. The triple

intersections are given by the coefficients of

I(X) = D1D2D3 + n(D1)2D3 + hnD1(D3)2 + hD2(D3)2 + h2n(D3)3 . (B.3.2)

By using the expansion ℓ = ℓaD
a, the kinetic potential (4.3.13) becomes

FK = log κ(ℓ, ℓ, ℓ) = log
(
6ℓ1ℓ2ℓ3 + 3nℓ21ℓ3 + 3hnℓ1ℓ

2
3 + 3hℓ2ℓ

2
3 + h2nℓ33

)
. (B.3.3)

The condition that J belongs to the Kähler cone is equivalent to ℓa > 0. In order to understand

the complete (dual) saxionic domain, we have to consider the saxions sa = 3κabcℓbℓc
2κ(ℓ,ℓ,ℓ) , which

identify the R-effective curves:

s = saΣa =
3 ℓ · ℓ

2κ(ℓ, ℓ, ℓ)
, (B.3.4)

where Σa are effective curves

Σ1 = E2 · E3 , Σ2 = E1 · E3 , Σ3 = E1 · E2 , (B.3.5)

which generate the whole cone of effective curves Eff1(X) and are dual to the nef divisors D1:

Da · Σb = δab . On the other hand, the saxionic cone can be identified with the cone of movable

curves – see (4.3.3) – which is generated by the (effective) movable curves

Σ̂1 = D2 ·D3 = Σ1+hΣ3 , Σ̂2 = D1 ·D3 = nΣ1+Σ2+hnΣ3 , Σ̂3 = D1 ·D2 = Σ3 , (B.3.6)

which are dual to the effective divisors Ea: Σ̂a · Eb = δba. Hence, if we use the expansion

s = ŝaΣ̂a, the saxionic cone is defined by the positivity conditions ŝa > 0. By using (B.3.1)

4 Following [124], the P1 fibration can be defined in terms of a line bundle T = hd1 + pd2, where d1, d2
are elementary nef divisors over Fn. In particular, their intersection numbers are given by the coefficients of
I(Fn) = nd21 + d1d2. In the notation of [71], our integers (h, p) correspond to (s, t). Here we are restricting to
fibrations with p = 0.
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and (B.3.4) we can compute the components ŝa = Ea · s = 3Ea·ℓ·ℓ
2κ(ℓ,ℓ,ℓ) , getting

ŝ1 =
6ℓ2ℓ3

2κ(ℓ, ℓ, ℓ)
, ŝ2 =

3(2ℓ1ℓ3 + h ℓ23)

2κ(ℓ, ℓ, ℓ)
, ŝ3 =

3(2ℓ1ℓ2 + n ℓ21)

2κ(ℓ, ℓ, ℓ)
. (B.3.7)

The saxionic cone condition ŝa > 0 is clearly satisfied if ℓa > 0.5

The PK boundaries can again be characterized in terms of tensionless string limits. The set

CEFT
S of EFT string charges is generated by the movable curves (B.3.6) and hence, in the basis

Σa, we identify the following corresponding tensions:

TΣ̂1
=M2

P(ℓ1 + hℓ3) , TΣ̂2
=M2

P(nℓ1 + ℓ2 + hnℓ3) , TΣ̂3
=M2

Pℓ3 . (B.3.8)

We then see that, assuming n, h > 0, TΣ̂3
= 0 on the two-dimensional boundary component

{ℓ3 = 0}, TΣ̂1
= 0 on the one dimensional boundary component {ℓ1 = ℓ3 = 0}, while TΣ̂2

= 0

at the tip {ℓ1 = ℓ2 = ℓ3 = 0}. These boundary components are at infinite distance. On the

other hand, the BPS but non-EFT strings of charges Σ1 and Σ2 have tensions TΣ1 = M2
Pℓ1

and TΣ2 = M2
Pℓ2, which vanish on the boundaries ℓ1 = 0 and ℓ2 = 0, respectively, which are

at finite field distance (if ℓ3 > 0). More precisely, they correspond to the finite distance ∆

boundaries ŝ3 = 0 and ŝ1 = 0, respectively, while ℓ3 → 0 corresponds to the infinite distance

limit ŝ3 → ∞. Viceversa, a limit ŝ2 → 0 (with ŝ1, ŝ3) fixed corresponds to a limit ℓ2 → ∞. So,

as in subsection 4.3.1, while the saxionic convex hull is simply given by ∆̂α = {s̃a ≥ 1
α}, its

dual saxionic counterpart P̂α is more complicated – see figure B.1.

The anti-canonical divisor is

KX = 2E3 + (2 + h)E1 + (2 + n+ nh)E2

= 2D3 + (2− h)D1 + (2− n)D2 .
(B.3.9)

Hence from (4.4.3) and (4.3.5) we get

γ(s) = π
[
2s̃3 + (2 + h)s̃1 + (2 + n+ nh)s̃2

]
. (B.3.10)

Hence

γ(s)|∆̂α
≥ π(6 + n+ h+ nh)

α
, (B.3.11)

which is again stronger than (4.2.18) with N = 3. If for instance n, h ≥ 1 and α ≤ 1
10 , we get

the lower bound γ(s)|∆̂α
> 282.

5Note that, if we consider fibrations of the kind described in footnote 4 with p > 0, in general the image of
the cone {ℓa > 0} under the map (B.3.7) does not cover the entire saxionic cone ∆ – see [71] – as discussed in
general in Section 4.3.1. This issue is absent if we set p = 0.
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Figure B.1: Dual saxionic convex hull P̂α for the F-theory model P1 over Fn. The plot has been
drawn with the reference value α = 1/10. Note that the valid region is the red one (as opposed
to figure 4.1b where the valid region is the one not colored).

B.3.2 Energy scales in the P1 over Fn model

In the F-theory model of P1 fibration over Fn of the previous section B.3.1 we have seen that

we have the following set of EFT string tensions, each associated to a generator of the cone of

movable curves

TΣ̂1
=M2

P(ℓ1 + hℓ3) , TΣ̂2
=M2

P(nℓ1 + ℓ2 + hnℓ3) , TΣ̂3
=M2

Pℓ3 . (B.3.12)

It is clear that, assuming n, h > 0, TΣ̂3
is always the lowest of the three in the controlled regime

and can thus be identified with the upper bound (4.2.23)

Λ2
max = T∗ =M2

Pℓ3 . (B.3.13)

If ℓ3 ≪ ℓ1, ℓ2 and hence T∗ ≪ TΣ̂1
, TΣ̂2

, we know the limit corresponds to the weakly coupling

limit of a critical string in the dual heterotic frame, whose tension given by T∗ can be seen as

the species scale, so that (4.2.23) is satisfied and saturated.

This time we have two different regimes to look at, the one with T∗ ≃ TΣ̂1
and the one with

T∗ ≃ TΣ̂2
, and check (4.2.23).
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In the first case, T∗ ≃ TΣ̂1
, we should have TΣ̂1

/T∗ ≃ 1, but also

TΣ̂1

T∗
=
ℓ1
ℓ3

+ h > h . (B.3.14)

Hence, this is possible only if h ∼ O(1) and ℓ1/ℓ3 ≲ 1. We must also remember that to be sure

to be in a weakly coupled EFT description we have to impose TΣ̂1
, TΣ̂2

≤M2
P . In this situation

these are ℓ1+hℓ3 ≤ 1 and nℓ1+ ℓ2+hnℓ3 ≤ 1, therefore they imply ℓ3 ≲
1
hn , ℓ1 ≲

1
n and ℓ2 ≲ 1.

Thanks to these upper bounds, we can see that the square of the 10-dimensional Planck scale,

given by

Λ2
QG =M2

P

√
2ℓ1ℓ2ℓ3 + nℓ21ℓ3 + hnℓ1ℓ23 + hℓ2ℓ23 +

1

3
h2nℓ33 , (B.3.15)

is indeed constrained from above or at best of the same order of T∗, neglecting an irrelevant

O(1) factor.

In the second case, T∗ ≃ TΣ̂2
, we can repeat the same line of reasoning. We must have TΣ̂2

/T∗ ≃
1, but we know that

TΣ̂2

T∗
= n

ℓ1
ℓ3

+
ℓ2
ℓ3

+ hn > hn . (B.3.16)

Hence, we need h, n ∼ O(1), together with ℓ1/ℓ3 ≲ 1/n and ℓ2/ℓ3 ≲ 1. We have again the same

conditions as before the EFT control, i.e. TΣ̂1
, TΣ̂2

≤M2
P , giving us ℓ3 ≲

1
hn , ℓ1 ≲

1
n and ℓ2 ≲ 1.

Therefore, we can even in this case bound from above the scale (B.3.15) with T∗, up to a O(1)

factor, confirming our conjecture of section 4.2.3 also in this example.

B.3.3 N = 2 models in 4d Type IIA

Let us recall some generalities that will be useful for computing and comparing the species scale

in various models and EFT string limits, in particular the case of N = 2 models in 4d in type

IIA and the heterotic models with pae
a = 0. The universal saxion s0 is given by

s0 =
1

6
e−2ϕκ(s, s, s) = e−2ϕVX , (B.3.17)

where ϕ is the 10d dilaton and VX is the volume of the Calabi-Yau X in string units as seen

from the 10d string frame metric, that reads

ds2 = e2Ads24 + ℓ2sds
2
X , (B.3.18)

with

e2A =
ℓ2sM

2
Pe

2ϕ

4πVX
=
ℓ2sM

2
P

4πs0
, (B.3.19)

fixed by taking ds24 to be the 4d Einstein frame metric. We can distinguish from the start the

two notable cases of infinite distance limits: the one where the s0 is taken to diverge along the

flow of σ as s0(σ) = s00 + σ with the Kähler saxions, and hence VX , kept fixed, that is a weakly
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string coupling limit as we can see from (B.3.17); and the ones where instead we keep s0 fixed,

that will represent strong coupling limits.

In the first case of weak coupling, that is of 10d dilaton becoming small, the EFT string limit

represents a 10-dimensional fundamental string becoming tensionless, and its corresponding

tension measured from the 4d Einstein frame is

T∗ =
2πe2A

ℓ2s
=M2

Pℓ0 =
M2

P

2s0
(B.3.20)

It is easy to see that the square of the mass scale of the lightest KK tower is proportional to

such tension. In fact, it is given by

m2
∗ =

e2A

R2∗
=

ℓ2sT∗
2πR2∗

, (B.3.21)

with R2
∗ being the largest compactification length-scale measured in the string frame. But, since

in this infinite distance limit we keep these length scale fixed, this will scale with σ exactly like

the tension, realizing the w = 1 situation of [64]. In this case the quantum gravity species scale

is just the string scale and no other check is needed.

In the second class of cases, the EFT string comes from NS5-branes wrapped on internal 4-cycles

that are nef divisors. The tension associated to an EFT string from the divisor e = [D] = ea[Da]

is given by

Te =M2
Pe

aℓa =
3M2

Pκ(e, s, s)

2κ(s, s, s)
. (B.3.22)

Keeping s0 fixed has the effect of making e2ϕ diverge as κ(s, s, s), as we can see from (B.3.17).

New light degrees of freedom can appear from strong string coupling effect, in particular the

scale m∗ is now given by the KK scale along the circle S1 that is becoming large in the type IIA

to M-theory limit, or equivalently the mass of the D0-branes. Taking into account the Einstein

frame rescaling, we have

m2
∗ =

2πe2Ae−2ϕ

ℓ2s
=

3M2
P

κ(s, s, s)
. (B.3.23)

It is interesting also to look at the mass of the states coming from D2-branes wrapped on a

2-cycle C that might become relevant in the problem of evaluating the scales of the setting

m2
D2 =

2πe2Ae−2ϕV 2
C

ℓ2s
=

3M2
PV

2
C

κ(s, s, s)
. (B.3.24)

Which towers of states should be considered in computing the quantum gravity scale depends

on the intersection properties of the nef divisor associated to the charge e and the associated

saxion flow s = s0 + eσ. As remarked in [64] and [70], these can be divided into three

possibilities.
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Case 1: κ(e, e, e) > 0

In this case we obtain κ(s, s, s) ≃ κ(e, e, e)σ3 and κ(e, s, s) ≃ κ(e, e, e)σ2, hence Te ≃ 3M2
P

2σ and

m2
∗ ≃

3M2
P

κ(e,e,e)σ3 . Therefore it is a w = 3 EFT string limit. The KK mass scale ismKK = eA

ℓs(VX)
1
6

and it is parametrically higher than m∗. The same occurs for mD2 for any internal 2-cycle. We

can compute the quantum gravity scale using only the KK species coming from the tower of

D0-branes with mass m∗. If we do that, we get Λ2
QG ≃

3√3M2
P

3
√

κ(e,e,e)σ
, that is manifestly less than

Te.

Case 2: κ(e, e, e) = 0 but κ(e, e, e′) > 0 for some e′ ∈ NefZ(X)

In this limit, the CY base X can be seen as a T 2 fibration over a twofold, with the non-

trivial curve C = e · e being a multiple of the T 2 fiber. We have κ(s, s, s) ≃ 3κ(e, e, s0)σ
2

and κ(e, s, s) ≃ 2κ(e, e, s0)σ, hence Te ≃ M2
P
σ and m2

∗ ≃ M2
P

κ(e,e,s0)σ2 , realizing a w = 2 EFT

string limit. The volume of C in the string frame is constant along this flow, indeed we have

κ(e, e, s) = κ(e, e, s0). Therefore the CY KK scale comes from the 4-dimensional base of the

fibration becoming large, that scales as m2
KK ≃ M2

P
s0σ

, again much heavier than m∗. But this

time the mass of the wrapped D2-branes is given by m2
D2 ≃ M2

Pκ(e,e,s0)

σ2 , the same rate of m∗.

The evaluation of the species scale must be performed by taking into account both those towers

as multiplicative species, as described by [217]. The result is a Λ2
QG scaling exactly like Te and

being strictly lower than it if we consider the O(1) factor coming from the actual number of

states below ΛQG not being just ND0ND2 =
Λ2
QG

m∗mD2
.

Case 3: κ(e, e, e′) = 0 for any e′ ∈ NefZ(X)

In this case we have e · e = 0 and in this limit the CY can be seen as a K3 or T 4 fibration over

a P1. We have κ(s, s, s) ≃ 3κ(e, s0, s0)σ and κ(e, s, s) = κ(e, s0, s0). Hence m
2
∗ scales like the

tension and this is a w = 1 EFT string limit. There exist a dual description in which this is

a tensionless critical string limit. Thus, like in the case where s0 was not fixed, the quantum

gravity species scale will be automatically given by the string scale.

B.3.4 EFT string limits in heterotic models

Consider an EFT string in a heterotic setting with charge vector e = (e0, ea). We must have

e0 ≥ pae
a to have a good EFT string charge and we will make the minimal choice e0 = pae

a > 0

in this section. With pa ̸= 0, the definition of the universal saxion has to be changed as

s0 =
1

6
e−2ϕκ(s, s, s) +

1

2
pas

a , (B.3.25)

and we can define V̂X = s0 − 1
2pas

a. Notice that, with the choice e0 = pae
a > 0, we have

V̂X ≃ 1
2pae

aσ for any asymptotic EFT string limit of the class that we want to study. Again we

can divide these EFT string limits according to the triple intersection number of the associated

nef divisor De.
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Case 1: κ(e, e, e) > 0

In this case we obtain κ(s, s, s) ≃ κ(e, e, e)σ3 and κ(e, s, s) ≃ κ(e, e, e)σ2, hence e2ϕ ≃ κ(e,e,e)
3paea

,

TDe
≃ 5M2

P
2σ and m2

∗ ∼ M2
Pσ

−3. Therefore it is a w = 3 EFT string limit. The KK mass scale

goes like mKK ∼ M2
Pσ

−1 and it is parametrically higher than m∗. Also mD2 is parametrically

higher for any internal 2-cycle. We can hence compute the quantum gravity scale using only

the KK species coming from the tower of D0-branes with mass m∗. If we do that, we get

Λ2
QG ∼ M2

P
σ , that is asymptotically less than or equal to TDe

.

Case 2: κ(e, e, e) = 0 but κ(e, e, e′) > 0 for some e′ ∈ NefZ(X)

In this limit, the CY base X can be seen as a T 2 fibration over a twofold, with the non-trivial

curve C = e · e being a multiple of the T 2 fiber. We have κ(s, s, s) ≃ 3κ(e, e, s0)σ
2 and

κ(e, s, s) ≃ 2κ(e, e, s0)σ, hence TDe
≃ 2M2

P
σ . The volume of C in the string frame is constant

along this flow, indeed we have κ(e, e, s) = κ(e, e, s0). The D0-brane mass and CY KK scalings

have been computed in detail in [65] and are given by m2
∗ ∼ m2

KK ∼ M2
P

σ2 , corresponding to a

w = 2 EFT string limit. As in theN = 2 case, the presence of two or more mass towers becoming

massless with the same scaling ∼ σ−2 is enough to ensure the species scale is asymptotically

lower to or equal to TDe
.

Case 3: κ(e, e, e′) = 0 for any e′ ∈ NefZ(X)

In this case we have e · e = 0 and in this limit the CY can be seen as a K3 or T 4 fibration

over a P1. We have κ(s, s, s) ≃ 3κ(e, s0, s0)σ and κ(e, s, s) = κ(e, s0, s0), moreover the dilaton

is constant along the flow in this particular limit. m2
∗ here scales like the tension but this is

not a w = 1 EFT string limit as one could naively think. Indeed the detailed analysis in [65]

shows that in this case we have m2
KK ∼ M2

P
σ2 , thus this is actually a w = 2 EFT string limit.

What is becoming large is the P1 base of the K3 or T 4 fibration, thus there will be two separate

KK towers of states becoming massless with the same scaling for mKK . The calculation of the

species scale is analogous to the one in B.3.3, hence again a species scale asymptotically lower

than or equal to the square root of the EFT string tension.

B.4 GB correction to on-shell action

In this appendix we show that discuss the GB term contribution to the on-shell effective action

of the homogeneous wormholes is proportional to the BPS on-shell action (4.4.35), up to a

coefficient dependent on n and q. More precisely, this additional contribution gives we are

working in PT

SGB|hw =
πC̃iF i(q)

8ℓ̃∗

∫ π
2

0
dx

cos3 x

cos
(√

3
n x
) (B.4.1)
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Combining it with (4.5.20), we get

(S + SGB)|hw = 2πBn,q ⟨q, s∞⟩ , (B.4.2)

with

Bn,q ≡ sin

(
π

2

√
3

n

)
+
C̃iF i(q)

8n
cos

(
π

2

√
3

n

)∫ π
2

0
dx

cos3 x

cos
(√

3
n x
) , (B.4.3)

where the second term comes from the GB term. Notice that F i(λq) = 1
λF i(q), which shows

that F i(q) and hence the GB contribution is smaller for larger charges and fixed asymptotic

s∞, as expected. In order to get an idea on (B.4.2), let us assume that C̃ ∈ CEFT
I and pick

charges qi =
1
3 C̃i (which would for instance be allowed by the quantization conditions in the

F-theory models), so that C̃iF i(q) = 3n. With this specific choice B4,q ≃ 1.036, B5,q ≃ 1.032,

B6,q ≃ 1.015 and B7,q ≃ 0.993. So we see that for n = 4, 5, 6 the GB term is already sufficient

to make (S + SGB)|hw larger than the BPS action. On the one hand, this clearly shows how

higher-derivative terms can drastically change the relation between the on-shell half-wormhole

action and the corresponding BPS action. On the other hand, one should not take (B.4.2) too

seriously, since there could be other additional terms coming from other four-derivative terms

involving the saxions.

In the marginally degenerate case n = 3, by adopting the n→ 3(1+ 4ϵ
π ) regularization described

in Section 4.5.3, the equation (B.4.3) gives the following leading contributions

Bn,q = 1 +
πC̃iF i(q)

96
ϵ+O(ϵ2) (B.4.4)

B.5 Universal wormholes with factorized metrics

In this appendix we study more in detail the possible restrictions on the throat value ℓ∗ imposed

by the global existence of the wormhole solution. A similar discussion in a slightly different

context and conventions can be found in [218]. Assuming a Kähler potential of the form (4.1.3),

we already know that the allowed ℓ∗ form a cone.

If we have multiple decoupled sectors one can get larger families of explicit wormhole solutions.

Suppose

F(ℓ(1), ℓ(2)) = F(1)(ℓ
(1)) + F(2)(ℓ

(2)) . (B.5.1)

In this case the equations of motion for the saxions in the two sectors are completely decoupled.

Furthermore q = (q(1),q(2)) and

Vq(ℓ) = V (1)

q(1)(ℓ
(1)) + V (2)

q(2)(ℓ
(2)) . (B.5.2)
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From (4.4.23) it follows that
1

(τ∞)2
=

1

(τ (1)
∞ )2

+
1

(τ (2)
∞ )2

. (B.5.3)

This shows that the total τ∞ is generically smaller than both τ (1)
∞ and τ (2)

∞ . Hence, the flow

in the two sectors must roll along a shorter path in order to completely traverse the entire

wormhole, and this can help the existence of a global solution.

Consider now the particular case in which F (1) takes the form (4.1.4). In the first sector we can

restrict to a profile ℓ(1)(τ) = q(1)ℓ̃(1)(τ), as in section 4.5.1. In particular

ℓ̃(1)(τ) = ℓ̃(1)∗ cos

(
π

2

√
3

n1

τ

τ (1)
∞

)
(B.5.4)

where n1 is the degrees of P̃ (1)(ℓ(1)) and

τ (1)
∞ =

π

2

√
3

n1
ℓ̃(1)∗ . (B.5.5)

The profile (B.5.4) is everywhere regular only if τ (1)
∞ >

√
3
n1
τ∞, which by (B.5.3) becomes

(
τ (1)
∞
τ (2)
∞

)2

>
3− n1
n1

. (B.5.6)

By using (B.5.5) and the more general (4.4.23) for the second sector, we get the condition

(
ℓ̃(1)∗
)2

>
3− n1

4|V (2)

q(2)(ℓ
(2)
∗ )|

. (B.5.7)

Hence, if n1 < 3, for fixed ℓ
(2)
∗ the initial value ℓ̃(1)∗ defining the flow in the first sector is not

arbitrary, but must satisfy the lower bound (B.5.7).

Of course, this is not sufficient to guarantee the existence of an admissible profile in the second

sector too, which similarly depends on ℓ̃(1)∗ too. These mutual constraints become more explicit

if we assume that F (1) takes the form (4.1.4) and we restrict to a profile ℓ(2)(τ) = q(2)ℓ̃(2)(τ),

too. By inverting the roles of the two sectors in (B.5.7), one then gets the the condition for

the global existence of the second profile. Taking into account (4.5.5), we conclude that the

wormhole is globally well defined if and only if ℓ̃(1)∗ and ℓ̃(2)∗ :

(
ℓ̃(1)∗
ℓ̃(2)∗

)2

>
3− n1
n2

,

(
ℓ̃(2)∗
ℓ̃(1)∗

)2

>
3− n2
n1

. (B.5.8)

Note that these conditions identify a (possibly empty) cone. If we choose ℓ̃(1)∗ = ℓ̃(2)∗ , as in the
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universal solutions of section 4.5.1, the conditions (B.5.8) reduce to

n = n1 + n2 > 3 , (B.5.9)

as expected. This necessary condition must actually hold more generically, as can be seen

by taking the product of the two conditions (B.5.8), and is equivalent to requiring that the

right-hand sides of (B.5.8) are smaller than 1. As another consistency checks, if n1, n2 ≥ 3,

they are always satisfied. On the other hand, (B.5.8) is generically non-trivial. If for instance

n1 = n2 = 2, then we get the cone identified by ℓ̃(1)∗ <
√
2 ℓ̃(2)∗ and ℓ̃(2)∗ <

√
2 ℓ̃(1)∗ . If instead for

instance n1 = 1 and n2 = 3, then they reduce to ℓ̃(1)∗ >
√

2
3 ℓ̃

(2)
∗ .

Note, however,that these constraints on ℓ̃(1)∗ and ℓ̃(2)∗ do not restrict ℓ̃(1)∞ and ℓ̃(2)∞ . Let us set

x∗ ≡
ℓ̃(1)∗
ℓ̃(2)∗

(B.5.10)

so that (B.5.8) correspond to x2∗ >
3−n1
n2

and 1
x2
∗
> 3−n2

n1
. One can obtain the relation

x∞ ≡ ℓ̃(1)∞
ℓ̃(2)∞

= x∗
cos
(
π
2

√
3

n1+n2x2
∗

)

cos
(
π
2

√
3x2

∗
n1+n2x2

∗

) . (B.5.11)

Hence, assuming that n1, n2 ≤ 3, for x2∗ → 3−n1
n2

we have x∞ → 0, while for 1/x2∗ → 3−n2
n1

we

have x∞ → ∞. Hence, all the possible asymptotic values can be obtained.

It is also interesting to observe that in the critical case n = n1 + n2 = 3, the bounds (B.5.8)

become x∗ < 1 and x∗ > 1, respectively. Hence, we can at best saturate and only marginally

violate them by picking ℓ̃(1)∗ = ℓ̃(2)∗ . This marginal violation is still physically acceptable, since

the degeneration happens at infinite spatial distance. On the other hand, if we choose ℓ̃(1)∗ ̸= ℓ̃(2)∗ ,

one of the two bounds is necessarily non-marginally violated (while the other is satisfied), hence

giving a non-physical configuration. This would suggest that the only marginally sensible

configuration is the one with ℓ̃(1)∗ = ℓ̃(2)∗ and then ℓ̃(1)(τ) = ℓ̃(2)(τ) for any τ ∈ (0, τ∞). Consider,

however, a slightly regularized choice, in which n = 3 + ϵ and n1 < 3, so that n2 = 3 + ϵ− n1.

The bound (B.5.8) can now be written as x2∗ >
3−n1

3−n1+ϵ and x2∗ <
n1

n1−ϵ and then identifies a

finite allowed interval for x, of order ϵ around 1. Note, however, that this infinitesimal interval

for x∗ maps to the infinite interval x∞ ∈ (0,∞) at spatial infinity. By taking the limit ϵ → 0

we then gets flows with ℓ̃(1)(τ) ̸= ℓ̃(2)(τ) even if ℓ̃(1)∗ = ℓ̃(2)∗ .

This discussion can be readily generalized to the case of a higher number of sectors of the form

(4.1.4): F(ℓ(1), ℓ(2), . . .) =
∑

aF(a)(ℓ
(a)). In particular, the existence bounds (B.5.8) become

1

(ℓ(a)∗ )2
<

1

3

∑

b

nb

(ℓ(b)∗ )2
. (B.5.12)
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Multiplying them by na and summing over their index a, we get again the necessary condition∑
a na > 3.

As above, we can define xab∗ ≡ ℓ
(a)
∗

ℓ
(b)
∗

and try to repeat the previous discussion to see whether

all the possible asymptotic values xab∞ can be reached from allowed initial conditions. Let us

assume N decoupled sectors and focus on xaN∗ . If we have na < 3 there will be a non-trivial

lower bound on xaN∗ , similarly if nN < 3 there will be an upper bound on it as well.

3− na∑
b ̸=a nb(x

bN∗ )−2 + nN
< (xaN∗ )2 <

na
3−∑b ̸=a nb(x

bN∗ )−2 − nN
. (B.5.13)

For this to be well defined we need to impose

3− na∑
b ̸=a nb(x

bN∗ )−2 + nN
≤ na

3−∑b ̸=a nb(x
bN∗ )−2 − nN

⇒
∑

b ̸=a

nb(x
bN
∗ )−2+nN +na ≥ 3 (B.5.14)

Notice that these bounds identify an open set around 1 that degenerates into just xaN∗ = 1

when the condition above saturates the inequality. If N > 3, a single xbN∗ ≤ 1 with b ̸= a is

enough to ensure the set is non-degenerate.

The asymptotic value of (xaN∞ )2 is given by

(xaN∞ )2 = (xaN∗ )2
cos2

(
π
2

√
3

na+(xaN
∗ )2

∑
b ̸=a nb(xbN

∗ )−2

)

cos2
(

π
2

√
3

na(xaN
∗ )−2+

∑
b ̸=a nb(xbN

∗ )−2

) . (B.5.15)

As (xaN∗ )2 approaches the saturation of its bound, that is (xaN∗ )2 → 3−na∑
b ̸=a nb(xbN

∗ )−2 , the asymp-

totic value will go to zero, provided that the argument of the cosine at denominator does not

go to π/2 as well. This can happen if we have

na(x
aN
∗ )−2 +

∑

b ̸=a

nb(x
bN
∗ )−2 > 3 . (B.5.16)

Therefore, in the considered limit, when

∑

b ̸=a

nb(x
bN
∗ )−2 > 3− na ⇒ na + nN +

∑

b ̸=a,N

nb(x
bN
∗ )−2 > 3 , (B.5.17)

and this can be satisfied if we have N ≥ 4 and if we are allowed to take at least one of the

(xbN∗ )−2 > 1, and it could be marginally violated in the case N = 3 with n1 = n2 = n3 = 1.

Indeed, the bound on the generic xbN∗ allows us to choose it equal to 1− ϵ < 1 when N ≥ 4 in

171



the saturation limit of xaN∗

3

(xbN∗ )2
<

na
(xaN∗ )2

+
nb

(xbN∗ )2
+

∑

c ̸=a,b,N

nc
(xcN∗ )2

+ nN

⇒ (xbN∗ )2 >
3− na − nb∑

c ̸=a,b,N nc(xcN∗ )−2 + nN
.

(B.5.18)

Being all the ns positive integers, it is clear the lower bound on xbN∗ is a number strictly lower

than 1. The same argument can be repeated for each xaN∗ to conclude that we can reach any

(x1N∞ , · · · , xN−1,N
∞ ) ∈ (0, 1)N−1.

The opposite saturation limit would be when the argument of the cosine at denominator goes to

π/2, that is (xaN∗ )2 → na

3−
∑

b ̸=a nb(xbN
∗ )−2 . In this limit the asymptotic value (xaN∞ )2 will diverge,

provided that the argument of the cosine at numerator does not vanish. But, again as above,

this condition amounts to

3

na +
na

3−
∑

b ̸=a nb(xbN
∗ )−2

∑
b ̸=a nb(x

bN∗ )−2
< 1 ⇒

∑

b ̸=a,N

nb(x
bN
∗ )−2 > 3− na − nN , (B.5.19)

exactly as in (B.5.17). Hence, we are again sure this can be done if we have at least one xbN∗ = 1,

and notice that in this case we are not allowed to take it strictly lower than 1. Since all this

discussion was done for a generic xaN∗ , this means we are sure to be able to explore all the

asymptotic values xaN∞ ∈ (0,∞) by starting from the allowed initial conditions.

We are left with the question about the behavior of the xbN∞ with b ̸= a when xaN∞ → ∞. For

each of them, it is still true that the argument in the cosine at denominator is approaching π/2,

so we have to check what the argument at numerator is doing in the same saturation regime.

In particular it will be given by

τ
(b)
∞

ℓ̃
(b)
∗

=
π

2

√
3

nb + (xbN∗ )2(na(xaN∗ )−2 +
∑

c ̸=a,b,N nc(xcN∗ )−2 + nN )
→ π

2xbN∗
, (B.5.20)

therefore whether xbN∞ will be finite or infinite in this limit depends on whether xbN∗ is, re-

spectively, equal to or greater than 1. One might worry that taking each xbN∗ > 1 risks to be

inconsistent with the condition (B.5.17), and hence that the region where all the asymptotic

values become big is not accessible. However, there is no problem for N ≥ 4. Indeed, in this

situation we can always satisfy such condition by taking xbN∗ = 1 + ϵ1 and xcN∗ = 1 + ϵ2, with

b, c ̸= a,N , such that nb(x
bN
∗ )−2 + nc(x

cN
∗ )−2 > 1.
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