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Abstract

This innovative thesis explores the potential of mixture models for effectively modeling

and clustering complex time series data characterized by skewed distributions, heavy

tails, and conditional heteroskedasticity. Traditional models often struggle to capture

the inherent characteristics of financial returns, such as asymmetry and non-normality,

causing the development of more sophisticated techniques. This thesis presents two novel

families of mixture models that offer flexible and powerful frameworks for capturing the

complexities of financial data. First, a unified approach to enhance the robustness of

GARCH models is proposed by incorporating the class of finite mixture of scale mixture

of skew normal (SMSN) distributions for component errors. Second, a mixture of ARCH

(MoARCH) models is introduced, using normal mean-variance mixture (NMVM) distri-

butions. These innovative models provide effective solutions for modeling and analyzing

financial data, allowing for more accurate representation and a better understanding of

its intricacies.

The primary contribution of this thesis is a novel approach by augmenting the Gen-

eralized Autoregressive Conditional Heteroskedastic (GARCH) process pioneered by

Bollerslev (1986) with a scale mixture of skew normal distribution to model financial

time-series returns. This novel GARCH model surpasses the limitations of traditional

approaches and significantly enhances financial modeling and forecasting capabilities.

The effectiveness of this methodology is demonstrated through simulations and a real

data example using log-returns of Apple stocks from February 1st, 2019, to March 8th,

2022.

Additionally, this research introduces the groundbreaking mixture of ARCH model

based on NMVM distributions for effective modeling and clustering of time series data.

The proposed approach is evaluated using simulated and real-world financial time series



data, showcasing its superior accuracy and robustness compared to conventional models

when handling skewed and heavy-tailed data. By tackling the challenge of modeling and

clustering time series data with skewness and heavy tails, this study addresses prevalent

issues encountered in finance, economics, and related fields, where outliers and extreme

events greatly impact analysis. The MoARCH models with NMVM distributions present

a novel and promising approach for time-series classification and clustering tasks. The

proposed model is rigorously evaluated using simulated and real-world financial time

series data, demonstrating their superior accuracy and robustness, particularly when

dealing with skewness, heavy tails, and conditional heteroskedasticity. These models

offer improved decision-making capabilities in diverse domains, including finance, eco-

nomics, and beyond.

Overall, this thesis represents a significant advance in time series analysis, providing

powerful tools for modeling and clustering complex time series data. The novel mixture

models overcome the limitations of traditional approaches and offer more accurate and

reliable analyses. The findings and insights derived from this research contribute to

the development of more robust statistical methods in various fields, opening up new

avenues for research and facilitating better decision-making based on a comprehensive

understanding of time series data.



Sommario

Questa tesi all’avanguardia esplora il potenziale dei modelli di miscele per la modellazio-

ne e il clustering efficaci di complessi dati di serie storiche caratterizzati da distribuzioni

asimmetriche, code pesanti ed eteroschedasticità condizionale. I modelli tradizionali

spesso faticano a catturare le caratteristiche intrinseche dei rendimenti finanziari, come

l’asimmetria e la non-normalità, rendendo necessario lo sviluppo di tecniche più sofisti-

cate. Questa tesi presenta due nuove famiglie di modelli di miscele che offrono strutture

flessibili e potenti per catturare le complessità dei dati finanziari. In primo luogo, viene

proposto un approccio unificato per migliorare la robustezza dei modelli GARCH incor-

porando la classe di miscele finite di distribuzioni di miscele di normali asimmetriche

(SMSN) per gli errori dei componenti. In secondo luogo, viene introdotto un modello

di miscele di ARCH (MoARCH), utilizzando distribuzioni di miscele di media-varianza

normali (NMVM). Questi modelli innovativi forniscono soluzioni efficaci per la model-

lazione e l’analisi dei dati finanziari, consentendo una rappresentazione più accurata e

una migliore comprensione delle sue complessità.

Il contributo principale di questa tesi è un nuovo approccio che potenzia il processo di

Generalized Autoregressive Conditional Heteroskedastic (GARCH) sviluppato da Bol-

lerslev (1986) con una distribuzione di miscele di normali asimmetriche per modellare

i rendimenti delle serie storiche finanziarie. Questo nuovo modello GARCH supera i li-

miti degli approcci tradizionali e migliora significativamente le capacità di modellazione

e previsione finanziaria. L’efficacia di questa metodologia viene dimostrata attraverso

simulazioni e un esempio di dati reali utilizzando i log-rendimenti delle azioni di Apple

dal 1° febbraio 2019 al 8 marzo 2022.

Inoltre, questa ricerca introduce il rivoluzionario modello di miscele di ARCH basa-

to sulle distribuzioni NMVM per una modellazione e un clustering efficaci dei dati di



serie storiche. L’approccio proposto viene valutato utilizzando dati simulati e reali di

serie storiche finanziarie, dimostrando la sua precisione e robustezza superiori rispetto

ai modelli convenzionali nel trattare dati asimmetrici e a code pesanti. Affrontando la

sfida di modellare e raggruppare dati di serie storiche con asimmetria e code pesanti,

questo studio affronta problemi diffusi nell’ambito finanziario, economico e di settori

correlati, in cui gli outliers e gli eventi estremi incidono notevolmente sull’analisi. I mo-

delli MoARCH con distribuzioni NMVM presentano un approccio nuovo e promettente

per le attività di classificazione e clustering delle serie storiche. Il modello proposto

viene rigorosamente valutato utilizzando dati simulati e reali di serie storiche finanzia-

rie, dimostrando la sua precisione e robustezza superiori, soprattutto quando si tratta

di asimmetria, code pesanti ed eteroschedasticità condizionale. Questi modelli offro-

no miglioramenti nelle capacità di prendere decisioni in diversi settori, inclusi finanza,

economia e oltre.

Nel complesso, questa tesi rappresenta un significativo avanzamento nell’analisi delle

serie storiche, fornendo strumenti potenti per la modellazione e il clustering di dati

di serie storiche complessi. I nuovi modelli di miscele superano i limiti degli approcci

tradizionali e offrono analisi più accurate e affidabili. Le scoperte e le intuizioni derivate

da questa ricerca contribuiscono allo sviluppo di metodi statistici più robusti in vari

campi, aprendo nuove opportunità di ricerca e facilitando una migliore presa di decisioni

basata su una comprensione completa dei dati di serie storiche.
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Introduction

Overview

Modeling financial data sets poses intricate challenges due to the intricate nature of

financial returns and their relationship to previous observations. The task becomes

particularly complex when attempting to model data with intricate connections to past

data points, as well as when encountering residuals that exhibit a lack of symmetry and

heavy-tails even after fitting appropriate models.

In the realm of financial time series analysis, capturing the nuances of financial

returns requires flexible and robust modeling techniques. Traditional models, such as

the Generalized Autoregressive Conditional Heteroskedastic (GARCH) process and its

variants, often assume that the residuals follow a Gaussian distribution. The assumption

of Gaussian and/or symmetric innovations in conditional heteroskedastic models has

been widely explored in the financial literature. While this assumption provides certain

conveniences for statistical and probabilistic modeling, it inherently restricts the model’s

ability to capture important properties such as skewness and heavy tails, which are

pervasive characteristics often observed in financial time series returns. Consequently,

researchers have recognized the pressing need for more flexible and versatile distribution

families that can accommodate the peculiarities of financial data.

In order to better address these features, alternative families of distributions have

been proposed in the literature. For instance, (Azzalini, 1985) introduced the Skew-

Normal distribution, which permits skewness in univariate distributions. This distribu-

tion was subsequently extended to the multivariate case by (Azzalini and Valle, 1996).

While the Skew-Normal distribution is effective in capturing skewness, it does not fully

account for heavy tails. On the other hand, (Lange and Sinsheimer, 1993) introduced

the Normal/independent distributions, which focus on capturing heavy tails but lack

the capability to model skewness. Among the suitable options capable of accommodat-

ing both skewness and heavy tails, the Skew-t distribution introduced by (Jones and

Faddy, 2003) and the Skew-Slash distribution proposed by (Wang and Genton, 2006)
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4 Overview

stand out. These distributions exhibit unique characteristics that make them suitable

for modeling financial data with asymmetry and heavy tails.

Furthermore, researchers have aimed to overcome it by combining the strengths of

existing distributions and developing more comprehensive families. For instance, (La-

chos and Labra, 2014) introduced the Skew-Normal/independent family of distribu-

tions, which merges the advantageous properties of the Skew-Normal distribution and

the Normal/independent distributions. This family enables the simultaneous modeling

of skewness and heavy tails, offering a more flexible framework for analyzing financial

data. Another versatile family is the scale mixture of skew normal (SMSN) distribu-

tion proposed by (Branco and Dey, 2001), which represents a highly versatile family

of distributions capable of effectively capturing lightly, heavily-tailed, symmetric and

asymmetric simultaneously. This distribution provides researchers with a robust and

flexible framework for financial data analysis, accommodating the complex characteris-

tics observed in real-world financial datasets.

In line with the SMSN distributions, the NMVM distributions introduced by (McNeil

et al., 2015) offer a suitable framework for handling data with both pronounced skewness

and heavy tails. This class of distributions encompasses various well-known (symmetric

or asymmetrical) members, including the generalized hyperbolic (GH) distribution, the

normal mean-variance mixture of Birnbaum-Saunders (NMVBS) distribution, and the

normal mean-variance mixture of Lindley (NMVL) distribution, which are considered

as special cases.

An essential advantage of both SMSN and NMVM distributions is their convenient

stochastic representation, which facilitates the implementation of the expectation con-

ditional maximization (ECM) algorithm for efficient maximum likelihood (ML) esti-

mation. This methodological advancement ensures accurate estimation and reliable

inference within the models framework, offering an effective and practical solution for

analyzing data with complex characteristics.

Conditional heteroskedasticity models have long been recognized as effective tools

for modeling and forecasting volatility in time series data. However, the application of

these kinds of models in clustering time series data remains relatively unexplored yet

holds promising potential.

Mixture models are powerful tools for clustering tasks, enabling the representation of

complex data distributions and the discovery of hidden patterns. Traditionally, mixture

models for classification tasks are based on the mixture of regression (MoR) model,

assuming a regression structure for the response variable. However, when clustering

financial time series data, the mixture of conditional heteroskedasticity models is more



Introduction 5

suitable. Financial time series often exhibit time-dependent volatility patterns, better

captured by conditional heteroskedasticity models than regression models. Models like

autoregressive conditional heteroskedasticity (ARCH) and its variants explicitly account

for heteroskedasticity and time-varying variances, making them well-suited for capturing

the volatility dynamics within each cluster.

By employing a mixture of ARCH models for clustering time series data, we can lever-

age the strengths of conditional heteroskedastic models in modeling volatility patterns

while simultaneously benefiting from the flexibility of the mixture modeling framework.

This combination allows us to identify distinct clusters based on both the mean behav-

ior and the volatility dynamics, enabling a more comprehensive understanding of the

underlying structure of the time series data. By leveraging the volatility modeling ca-

pabilities of ARCH models, we can capture the time-dependent characteristics inherent

in time series data. This approach enhances our ability to uncover hidden patterns and

provides a more accurate representation of the underlying data structure in time series

clustering tasks.

Inspired by the aforementioned advantages and promising results, this thesis takes

a significant step forward by proposing the use of the SMSN and NMVM distributions

as an alternative model for innovations in GARCH and mixture of ARCH(MoARCH)

models, respectively. Depending on the specific analytical framework employed, the

SMSN and NMVM distributions offer a flexible and powerful approach to capturing

the complex characteristics of financial data. By incorporating the SMSN and NMVM

distributions into GARCH and MoARCH models, we aim to enhance the modeling,

forecasting and clustering capabilities of these models, particularly in capturing the

asymmetry, heavy tails, and other important features observed in financial time series.

Main contributions of the thesis

This thesis aims to advance the field of time series analysis by exploring the potential

of mixture models for modeling and clustering time series data with complex distribu-

tions, including skewed, heavy-tailed distributions and conditional heteroskedasticity.

To achieve this, we first conducted a thorough review of the relevant literature on time

series modeling, mixture models, and other related statistical techniques. We then pre-

sented a unique approach for modeling and clustering time series data that can effectively

handle skewness and heavy tails simultaneously.

One noteworthy accomplishment of this thesis is the introduction of two novel family

of mixture models that can be used for modeling and clustering time series data. The
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first novel family of mixture models is based on a conditional heteroskedasticity model,

which utilizes a finite mixture of scale mixture of skew normal distributions. This

innovative family of mixture models provides a strong alternative to conventional ones.

Financial returns exhibit several characteristics that make them challenging to model

accurately. These characteristics include time-varying volatility, fat-tailed distributions,

and the presence of skewness and asymmetry. Traditional GARCH models have been

widely used to capture volatility clustering and persistence in financial returns, but

they often assume a symmetric distribution for the innovations, such as the normal

distribution. This assumption fails to capture the skewness and asymmetry commonly

observed in financial data. To address this limitation, we propose developing a new

GARCH model based on a scale mixture of skew normal distribution. The scale mixture

of skew normal distribution is a flexible and powerful framework for modeling skewed

and fat-tailed distributions. By incorporating this distribution within the GARCH

framework, we aim to capture the asymmetry and non-normality in financial returns

more effectively. The motivation for this research stems from the need for improved

modeling techniques that can better capture the empirical features of financial data.

By explicitly considering the skewness in the distribution of innovations, our proposed

GARCH model can provide more accurate estimates of volatility and risk. This, in

turn, can have important implications for various financial applications, such as portfolio

optimization, risk management, option pricing, and value-at-risk estimation. Therefore,

developing a GARCH model based on a scale mixture of skew normal distribution is

a promising avenue for research in financial modeling. It addresses the limitations

of traditional GARCH models and has the potential to improve risk assessment and

decision-making in various financial applications.

Subsequently, based on the outcomes from the first set, the author introduces the

second set of mixture models, which is a mixture of ARCHmodels utilizing normal mean-

variance mixture distributions. This model presents an effective approach to modeling

and clustering time series data. Using a mixture of ARCH models can be considered a

new approach in the context of classification and clustering, as it combines the concepts

of ARCH models with the mixture modeling framework. While there has been extensive

research on the applications of ARCH models in financial econometrics, their application

in classification and clustering is relatively less explored.

The motivation for using a mixture of ARCH models in classification and clustering

tasks lies in capturing the heteroskedasticity (varying volatility) present in the data.

ARCH models are well-suited for modeling time-varying volatility, as they allow the
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conditional variance of a variable to depend on its past values and other relevant in-

formation. By incorporating mixture modeling, the approach can handle complex data

distributions that may exhibit multiple latent clusters. The introduction of these in-

novative mixture models opens up new opportunities for research, contributing to the

ongoing development of more accurate and robust statistical methods for the analysis

of time series data, driving progress in multiple fields.

The structure of the remaining chapters in the thesis is outlined as follows. In Chapter

1, we provide an overview of financial time series data, highlighting the challenges

associated with their modeling. We also discuss various suitable models for analyzing

such data.

Moving on to Chapter 2, we present a novel approach for modeling financial returns.

This approach introduces a robust conditional heteroskedasticity model based on the

Finite Mixture of Scale Mixture of Skew Normal distribution. Our proposed model

offers several desirable features and contributes to the development of a convenient

framework. To estimate the maximum likelihood parameters, we develop an EM-type

algorithm. The effectiveness of the model is extensively demonstrated through compre-

hensive simulation studies and a real data example.

In Chapter 3, we introduce a robust mixture ARCH modeling approach based on

the normal mean-variance mixture distributions. Similar to the previous chapter, this

model provides various advantages and contributes to the development of a convenient

framework for financial modeling. The estimation of maximum likelihood parameters is

performed using an EM-type algorithm. We present comprehensive simulation studies

and a real data example to illustrate the effectiveness of the proposed model.

Chapter 4 serves as the conclusion of the thesis, summarizing the key findings and

insights derived from the research. Additionally, we outline potential future directions

for further exploration and investigation in this field. Finally, the appendices provide

additional supporting material and relevant details to enhance the understanding of the

thesis. These appendices offer supplementary resources, including documentation, com-

prehensive data tables, technical derivations, and other pertinent content that further

expand upon the topics discussed in the main chapters.





Chapter 1

Financial Time Series Analysis

1.1 Characteristics of Financial Time Series

Financial time series analysis plays a crucial role in understanding and predicting

the behavior of financial markets. The sequential data points collected over time rep-

resent various financial indicators, such as stock prices, exchange rates, interest rates,

commodity prices, and economic indices. Analyzing financial time series data provides

valuable insights into market dynamics, trends, and volatility, which are essential for

making informed investment decisions, managing risks, and economic forecasting.

Financial markets are complex and influenced by a multitude of factors, including

economic indicators, political events, investor sentiment, and market psychology. As a

result, financial time series data often exhibits distinct characteristics that set it apart

from other types of time series data. These characteristics include trend, seasonality,

volatility clustering, autocorrelation, and heteroskedasticity.

One key characteristic of financial time series is trend, which refers to the long-term

movement in prices or values. Trends can be either upward (indicating a bullish market)

or downward (indicating a bearish market) and provide insights into the overall direction

of the market. Seasonality is another important characteristic found in financial time

series. It refers to regular patterns or fluctuations that occur at fixed intervals of time,

such as daily, weekly, monthly, or yearly cycles. Seasonality can arise due to various

factors, such as calendar events, economic cycles, or investor behavior, and can impact

the prices or values of financial assets. Volatility clustering is a phenomenon commonly

observed in financial time series, where periods of high volatility tend to be followed by

periods of high volatility, and periods of low volatility tend to be followed by periods of

low volatility. This clustering effect suggests that volatility is not randomly distributed

over time but rather exhibits persistence. Autocorrelation is the correlation between a

9
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time series and its lagged values. In financial time series, autocorrelation is often present,

indicating that the past values of the series influence its future values. Understanding

the autocorrelation structure is crucial for developing appropriate time series models.

Heteroskedasticity is the presence of changing variance in a time series. Financial time

series often exhibit heteroskedasticity, where the variance of the series changes over

time. This changing volatility can have significant implications for risk management

and forecasting.

To capture the dynamics and characteristics of financial time series, traditional time

series models like the Autoregressive Integrated Moving Average (ARIMA) model have

been widely used. ARIMA models incorporate autoregressive, differencing, and moving

average components to capture temporal dependencies and trends. However, ARIMA

models are not specifically designed to model changing volatility observed in financial

time series.

The limitations of traditional models in capturing changing volatility have led to

the development of specialized models, such as the Autoregressive Conditional Het-

eroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) models. ARCH and GARCH models explicitly model the change in vari-

ance over time, allowing for more accurate modeling of financial time series exhibiting

increasing or decreasing volatility.

In this chapter, we will delve into the intricacies of financial time series analysis and

explore the application of ARCH and GARCH models. We will discuss the character-

istics of financial time series, the limitations of traditional models, and the need for

specialized models such as ARCH and GARCH.

1.2 Financial time series

In the realm of financial analysis, time series data plays a crucial role in understanding

the behavior of market assets and making informed decisions. Consider a time series of

prices for a financial asset, denoted as St, where t represents the time index ranging from

0 to T . However, analyzing the raw price series, St, can be challenging since it often

exhibits non-stationary behavior due to the presence of a unit root. To address this,

it is common practice to analyze log-returns on St, denoted as yt. The log-returns are

computed by taking the logarithmic difference between consecutive price observations:

yt = log(St)− log(St−1) = log

(
1 +

St − St−1

St−1

)
.
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By Taylor-expanding the above expression, it becomes apparent that yt is approx-

imately equivalent to the relative return, (St − St−1) /St−1. However, log-returns are

preferred over relative returns due to their additive nature, which is not shared by

relative returns.

To illustrate this concept, let’s consider a concrete example of the daily closing val-

ues of the Apple index, which serves as the the closing price of Apple stocks. The

data for this series spans from 2/01/2019 to 03/08/2022, and can be obtained from

finance.yahoo.com.

Figure 1.1, displayed in the top left plot, visualizes the actual price series, St, while

the top right plot represents the corresponding log-returns, yt.

The log-return series, yt, exhibits several stylized facts commonly observed in finan-

cial data. As depicted in the middle right plot of 1.1, the log-return series demonstrates

a lack of correlation (typically, log-return series exhibit minimal correlation, particularly

at higher lags). However, when we examine the squared log-return series, y2t , as shown

in the middle left plot, a strong autocorrelation is evident, even for significant lag values.

Another characteristic of financial log-return series is their tendency to display heavy-

tailed distributions, indicating the presence of outliers or extreme events. The bottom

plot of Figure 1.2 presents a Q-Q plot, comparing the marginal distribution of yt against

the standard normal distribution, further illustrating this heavy-tailed behavior. The

plot also demonstrates the existence of the so-called leverage effect. The series yt ex-

hibits different responses to positive and negative movements, or, in other words, the

conditional distribution of |yt|
∣∣{yt−1 > 0} differs from that of |yt|

∣∣{yt−1 < 0}. This

phenomenon is illustrated by plotting the sample quantiles of the two conditional distri-

butions against each other. The underlying explanation lies in the fact that the market

reacts differently to positive and negative news, which aligns with intuitive expectations.

While statisticians typically prefer stationary data as it facilitates global parameter

estimation using the entire dataset, proposing a stationary model for yt that captures

the aforementioned stylized facts is challenging. The log-return series does not exhibit

a visually apparent stationary pattern due to the presence of clustered local variances

(volatility) characterized by periods of low and high values. Consequently, fitting a

linear time series model, such as an autoregressive moving average (ARMA) model, to

yt would yield estimated parameters close to zero due to the lack of serial correlation,

which is not desirable in this context.
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Figure 1.1: The top left plot displays the actual price series, St, while the top right
plot represents the corresponding log-returns, yt. The middle and bottom plots, show
the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
of the squared log-return series, y2t , respectively.
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Figure 1.2: The top plot displays histograms of the marginal residuals overlaid with
estimated marginal densities, while the bottom plot presents the Q–Q plot of residuals
based on the Gaussian distribution.

1.2.1 (G)ARCH models

The challenges described earlier led to the development of a non-linear stationary

model by (Engle, 1982), known as ARCH (Autoregressive Conditionally Heteroskedas-

tic). The ARCH model incorporates an autoregressive-type process to capture the

conditional variance evolution of the log-return series, Yt. Subsequently, (Bollerslev,

1986) and (Taylor, 2008) independently generalized Engle’s model, leading to the cre-

ation of the more realistic and widely used ”GARCH” model. GARCH (Generalized
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Autoregressive Conditionally Heteroscedastic) has become one of the most commonly

employed models for financial time series analysis. Its success has inspired the develop-

ment of numerous sophisticated models within the field. There is a extensive literature

on GARCH modeling, with notable references including (Giraitis et al., 2007) and the

(Straumann, 2006) book. The GARCH(p, q) model is defined as follows:

yt = log
( St
St−1

)
= ω +

√
htϵt,

ht = µ0 +

p∑

i=1

αiy
2
t−i +

q∑

j=1

βjht−j, (1.1)

where µ0 > 0, αi ≥ 0, βj ≥ 0, and the innovation sequence {εi},−∞ < i < ∞ is

independent and identically distributed with E(εt) = 0 and E(ε2t ) = 1, incorporates

the concept that the conditional variance (ht) of yt, based on information up to time

t − 1, exhibits an autoregressive structure and is positively correlated with its recent

past and the squared returns (y2t ). This framework captures the notion of volatility (or

conditional variance) being persistent, whereby large (small) values of y2t are likely to

be followed by large (small) values. By incorporating these dynamics, the GARCH(p,

q) model allows for a more accurate representation of the changing volatility patterns

observed in financial time series.

1.3 Basic properties

1.3.1 Uniqueness and stationarity

Determining the existence of a unique and stationary solution for the system of equa-

tions (1.1) involves a complex analysis of the top Lyapunov exponent associated with

a specific sequence of random matrices. (Bougerol and Picard, 1992) have presented a

comprehensive theorem that provides a necessary and sufficient condition for the exis-

tence of such a second-order stationary solution. Furthermore, Proposition 3.3.3 (b) in

Straumann’s influential work (Straumann, 2006) suggests that a unique and stationary

solution can be achieved if the sum of the coefficients αi (where i ranges from 1 to p)

and βj (where j ranges from 1 to q) is strictly less than 1, expressed mathematically as:

p∑

i=1

αi +

q∑

j=1

βj < 1. (1.2)
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This condition serves as a crucial criterion to ensure the stability and convergence of

the second-order stationary solution within the context of the system (1.1).

1.3.2 Mean zero

Introducing the information set, denoted as Ft−1 and defined as the sigma-algebra

generated by the random variables εi, with−∞ < i ≤ t−1, i.e., Ft− 1 = σεi,−∞ < i ≤ t− 1,

we can delve into the intriguing properties of the GARCH model (1.1). Specifically, in

the context where ht is measurable with respect to Ft−1, an interesting observation

emerges regarding the mean of yt, denoted as E(yt):

E(yt) = E(
√
htεt)

= E[E(
√
htεt|Ft−1)]

= E[
√
htE(εt|Ft−1)]

= E[
√
ht · E(εt)]

= E(
√
ht · 0)

= 0.

This result demonstrates that the mean of yt, within the context of the GARCH

model, gracefully vanishes—a fascinating property intricately connected to the under-

lying dynamics governed by the information set Ft−1.

1.3.3 Lack of serial correlation

Similarly, we can demonstrate that yt is uncorrelated with yt+h for h > 0:

E(ytyt+h) = E(yt
√
ht+hεt+h)

= E[E(yt
√
ht+hεt+h|Ft+h−1)]

= E[yt
√
ht+hE(εt+h|Ft+h−1)]

= 0.

This result implies that the cross-covariance between yt and yt+h is zero, indicating

no correlation between them. Through meticulous analysis utilizing the information set

Ft+h−1, we unveil the intriguing property of uncorrelated dynamics between yt and yt+h,

showcasing the intricate relationships embedded within the GARCH model.
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1.4 Unconditional variance

To compute the expected value E(y2t ), it is beneficial to explore an alternative rep-

resentation of y2t . Let us define the sequence Zt = y2t −ht = ht(ϵ
2
t − 1). By following the

methodology outlined in Sections 1.3.2 and 1.3.3, it is possible to demonstrate that Zt

constitutes a martingale difference sequence with zero mean. Establishing the ”lack of

serial correlation” property (which necessitates E(y4t ) < ∞, not always guaranteed) is

more intricate. However, this definition offers the advantage of treating Zt as a ”white

noise” sequence, enabling the utilization of extensive results on martingale difference

sequences, as demonstrated in (Davidson, 1994).

Next, we proceed with the alternative representation:

y2t = ht + Zt = µ0 +

p∑

i=1

αiy
2
t−i +

q∑

j=1

βjh
2
t−j −

q∑

j=1

βjZt−j + Zt. (3)

Here, we denote R = max(p, q), αi = 0 for i > p, and βj = 0 for j > q. Consequently,

the above equation can be rewritten as:

y2t = µ0 +
R∑

i=1

(αi + βi)y
2
t−i −

q∑

j=1

βjZt−j + Zt.

In essence, y2t follows an autoregressive moving average (ARMA) process with martingale

difference innovations.

By utilizing stationarity (implying E(y2t ) = E(y2t+h)), we can readily obtain the

unconditional variance:

E(y2t ) = µ0 +
R∑

i=1

(αi + βi)E(y
2
t−i)−

q∑

j=1

βjE(Zt−j) + E(Zt) = µ0 + E(y2t )
R∑

i=1

(αi + βi),

leading to the expression:

E(y2t ) =
ω

1−
∑R

i=1(αi + βi)
.

This result once again underscores the significance of condition 1.2.

1.5 Heavy tails of yt

In this section, we present an argument for the potential heavy-tailed nature of the

GARCH model (1.1). For the sake of simplicity, we focus on demonstrating this for the
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GARCH(1,1) model. We begin by assuming the following condition:

E(α1ϵ
2
t + β1)

q
2 > 1 (1.3)

for some q > 0. It is important to note that this condition is satisfied, for example,

when ϵt ∼ N(0, 1), although it holds true in other cases as well.

We express the GARCH(1,1) model as follows:

ht+1 = µ0 + α1y
2
t + β1ht = µ0 + (α1ϵ

2
t + β1)ht

By utilizing the independence of ϵk from Fk−1, we obtain:

E(
√
h
q

t+1) = E
[
µ0 + (α1ε

2
t + β1)ht

] q
2 ≥ E[(α1ε

2
t + β1)ht]

q
2 = E(α1ϵ

2
t + β1)

q
2E(

√
h
q

t )

If E(
√
h
q

t ) were finite, then, due to stationarity, it would be equal to E(
√
h
q

t+1). Conse-

quently, simplifying the expression, we would obtain:

1 ≥ E(α1ϵ
2
t + β1)

q
2

This contradicts the assumption stated in Equation (1.3). Thus, we conclude that

E(
√
h
q

t ) is infinite, which implies that E(y2t ) is also infinite. Consequently, yt does not

possess finite moments, indicating a heavy-tailed distribution.





Chapter 2

Mixturing, heavy tailedness,

asymmetry and conditional

heteroskedasticity in financial

returns modelling

2.1 Abstract

conditional heteroskedasticity models are commonly used for modelling financial time

series data which are characterized by extreme and/or skewed observations. These data

features might not be properly captured by the most commonly adopted distribution.

In this chapter, a mixture model for financial time series characterized by conditional

heteroscedasticity model is developed, introducing the Finite Mixture of Scale Mixture of

Skew Normal of Generalized Autoregressive Conditional Heteroskedastic (FMm-SMSN-

GARCH ) model. The SMSN distributions allow for the lightly/heavily-tailed symmetric

and asymmetric distributions providing for flexibility to handle outliers and complex

data. The proposed model has several desirable features, such as the development of a

convenient hierarchical representation of the FMm-SMSN family that makes it possible

to construct a likelihood function to derive the maximum likelihood estimates via an

EM–type algorithm. A comprehensive simulation study and real data example allow

evaluating the better performance of the proposed method.

Keywords: GARCH models; SMSN distributions; finite mixture models; ECME algo-

rithms; maximum likelihood estimates; stock market, classification.
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2.2 Introduction

Statistical modeling and analysis based on finite mixtures of symmetric distributions,

especially normal mixtures, have been applied in many fields; see, among many others,

(Hunter et al., 2007), (Holzmann et al., 2006), (Salas-Gonzalez et al., 2010) and (Kottas

and Fellingham, 2012). In recent years, finite mixtures of asymmetric distributions

have been developed as a powerful substitute to the normal mixtures in a wide range

of applications. The benefit of asymmetric finite mixture models is to accommodate

different characteristics, such as heavy tail, skewness, kurtosis, multimodality, and the

presence of outliers; these features can be observed in many fields, such as finance,

biostatistics, bioinformatics, image analysis, and medicine. Comprehensive surveys are

available in (Lindsay, 1995), (Böhning, 1999), (Peel and McLachlan, 2000), (Frühwirth-

Schnatter, 2006), (Mengersen et al., 2011), (McLachlan et al., 2019). (Pyne et al.,

2009), (McCulloch and Tsay, 1994), (Lee and McLachlan, 2013b) and (Manouchehri

and Nematollahi, 2019).

We focus here on financial data modeling which is considered as a complex task, given

that these time series exhibit skewness, kurtosis, heavy tail and multimodality. Finan-

cial returns usually reverberate a structure which can be logically illustrated with con-

ditional heteroskedastic models, such as the Autoregressive Conditional Heteroskedastic

(ARCH) process proposed by (Engle, 1982), as well as some variants and extensions of

ARCH models, including the Generalized Autoregressive Conditional Heteroskedastic

(GARCH) process of (Bollerslev, 1986), the Glosten - Jagannathan - Runkle GARCH

(GJR-GARCH) model of (Glosten et al., 1993) 1. In many empirical applications,

the distribution of model innovations follow simple specifications, the Guassian or the

Student-T. Only part of the literature has focused on the use of flexible distributional

assumptions.

In this chapter, we contribute to this field by introducing a GARCH model whose

innovations follow a mixture of asymmetric distribution. Interestingly, in our proposal

the components of the mixture are scale-mixtures of skew-normal distributions (SMSN),

proposed by (Branco and Dey, 2001), an absorbing and acutely flexible family of prob-

abilistic distributions. The SMSN class contains the whole family of scale mixtures of

normal (SMN) distributions proposed by (Andrews and Mallows, 1974) as well as the

normal and skew-normal (SN) densities. Furthermore, the Cauchy, the skew-Cauchy,

1We refer the reader to (Bollerslev et al., 2010) for a more complete listing of the GARCH models
develped within the financial econometrics literature in the last 40 years.
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the skew-normal (SN), the skew-t (ST), the skew-slash (SSL) and the skew contaminated

normal (SCN) distributions are particular symmetric and asymmetric members of this

family and are all characterized by heavier tails than the SN (and the normal) one. This

class of distributions leads to a more flexible approach to fit asymmetric and heavy-tailed

empirical distributions and uses fewer components in the fitting of mixture models; see,

e.g (Lin, 2010), (Lee and McLachlan, 2013a) and (Lee and McLachlan, 2013b). Finite

mixtures with SMSN component densities is a rich class of distribution to simultane-

ously accommodate kurtosis, skewness and multimodality. Therefore, a GARCH model,

together with the SMSN family for the innovations can be a suitable choice for modelling

financial data. We refer to this novel family of mixture GARCH model as FMm-SMSN-

GARCH. This new mixture GARCH family has a useful stochastic representation and a

convenient hierarchical representation that allows easier inferences and parameters esti-

mation. Notably, thank to a representation of SMSN parameter estimation of our new

GARCH family can be obtained within an Expectation–Maximization (EM) framework.

Among the several contributions focusing on the SMSN we mention (Azzalini and

Capitanio, 1999) who raise various issues related to the skew normal family, (Basso et al.,

2010) who develop a robust approach to finite mixture modeling based on scale mix-

tures of skew-normal distributions, (Arellano-Valle et al., 2006) who propose a unified

framework for selection distributions and describe some of their theoretical properties

and application, Azlini’s recent book in collaboration with Capitanio (Azzalini, 2013) ,

and (Manouchehri and Nematollahi, 2022b) who consider a Bayesian and non-Bayesian

approaches for the Periodic AR Models Based on the SMSN Innovations.

In this chapter, we develop two extensions of the EM-algorithm (Dempster et al.,

1977), including the ECM algorithm (Meng and Rubin, 1993) and the ECME algorithm

(Liu and Rubin, 1994) using the stochastic representation of the proposed model.

The outline of the chapter is as follows: In Section 3.3, the useful properties of

the SMSN family are reviewed for the aim of this work. In Section 3.4, the proposed

GARCH model with FMm-SMSN innovations is presented, where the estimation method

are proposed to estimate the model parameters, by using the ECME algorithms. The

Numerical studies and real practical examples are reported in Section 3.5. Finally, a

brief discussion is given in Section 3.6.
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2.3 Preliminaries

In this section, we provide a brief overview of the scale mixtures of skew-normal

distributions (SMSN) introduced by (Branco and Dey, 2001). Additionally, we review

the key properties and characteristics of the finite mixture of scale-mixtures of skew-

normal (FMm-SMSN) distributions.

2.3.1 The SMSN Distribution

The skew-normal (SN) distribution, initially proposed by (Azzalini, 1985), describes

a random variable Z with location parameter µ ∈ R, scale parameter σ2 > 0, and skew-

ness/shape parameter λ. The probability density function (PDF) of the SN distribution

is defined as follows:

ϕSN(z;µ, σ
2, λ) = 2ϕ(z;µ, σ2)Φ

(
λ(z − µ)

σ

)
, z ∈ R, (2.1)

where ϕ(z;µ, σ2) represents the PDF of the univariate normal distribution with mean

µ and variance σ2, while Φ(·) denotes the cumulative distribution function (CDF) of

the univariate standardized normal distribution. We denote the SN distribution as

Z ∼ SN(µ, σ2, λ) to indicate that a random variable Z follows the SN distribution

defined by Equation (2.1).

A random variable Y belongs to the SMSN family with location parameter µ ∈ R

and scale parameter σ > 0 if it can be expressed as:

Y = µ+ k
1
2 (U)σZ0, (2.2)

where Z0 ∼ SN(0, 1, λ) = SN(λ) represents a standard SN random variable, and U is

a random variable with cumulative distribution function (CDF) H(·; ν) and probabil-

ity density function (PDF) h(·; ν), where ν serves as the scale factor parameter. The

distribution of U is typically indexed by ν, which can be a (potentially multivariate) pa-

rameter. Importantly, U is independent of Z0. The function k(·) is a positive function,

and µ denotes the location parameter.

The SMSN family gets its name from the fact that the conditional distribution of Y

given U = u follows a skew-normal distribution. Specifically, the density function of Y
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is given by:

g(y;µ, σ2, λ, ν) =

∫ ∞

0

f(Y = y|U = u)dH(u; ν)

=

∫ ∞

0

2ϕ(y;µ, k(u)σ2)Φ

(
k

1
2 (u)

λ(y − µ)

σ

)
dH(u; ν), y ∈ R,

(2.3)

which means, g(y;µ, σ2, λ, ν) represents an infinite mixture of skew-normal densities,

where U serves as the scale factor and H(·; ν) is the mixing distribution. The random

variable Y follows an SMSN distribution, denoted as Y ∼ SMSN(µ; σ2, λ, ν) or Y ∼
SMSN(µ; σ2, λ,H), highlighting its dependency on the location parameter µ, scale

parameter σ2, skewness parameter λ, and the distribution H.

For further insights and statistical properties of the SMSN family, (Andrews and

Mallows, 1974) offers a comprehensive reference. The following proposition summarizes

some fundamental properties of the SMSN family.

Proposition 2.1. (Andrews and Mallows, 1974) Suppose Y ∼ SMSN(µ; σ2, λ;H),

where U ∼ H is the mixing random scale factor. Then the following properties hold:

1. If E(k
1
2 (U)) <∞, then µ = E(Y ) = µ− b∆.

2. If E(k(U)) <∞, then σ2
Y = V ar(Y ) = σ2k2 − σ2b2δ2.

3. If E(k(U)) <∞, the skewness coefficient is given by:

γ1 =
E(Y − µy)

3

[V ar(Y )]
3
2

=
δb1 + δ3b2

[k2 − b2δ2]
3
2

,

4. If E(k2(U)) <∞, the kurtosis coefficient is given by:

γ2 =
E(Y − µy)

4

[V ar(Y )]2
− 3 =

3k4 +
√

2
π
δ2c(b4δ

2 − b3)

[k2 − b2δ2]2
,

5. A random variable Y can be stochastically represented as:

Y = µ+∆W + ϱk
1
2 (U)W1, (2.4)

where b = −
√

2
π
k1, kn = E[k

n
2 (U)], b1 = 3

√
2
π
(k3 − 3k1k2), b2 = 2

(
2
π

)( 3
2) k1

3 −
√

2
π
k3,

b3 = 6(2k3 − k1k2), b4 = 4k3 − 6
π
k31, ∆ = σδ, δ = λ√

1+λ2
, ϱ2 = σ2 −∆2, W = k

1
2 (U)|W0|.

It is worth noting that the relationships between (∆, ϱ2) and (σ, λ) are one-to-one, where

σ2 = ϱ2 +∆2 and ϱ2 = ∆
λ
.
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The SMSN family encompasses various special cases that arise from utilizing different

distributions for the scale mixing random variable U . Here are a few notable examples:

• Skew-normal (SN): In this case, U is a constant with a probability of one.

• Skew-t (ST): Here, U follows a gamma distribution with shape and rate parameters

both equal to ν
2
, denoted as U ∼ Gamma

(
ν
2
, ν
2

)
. The parameter ν represents the

degrees of freedom.

• Skew-slash (SSL): In the SSL distribution, U is distributed according to a beta

distribution with parameters ν and 1, denoted as U ∼ Beta(ν, 1). The parameter

ν is constrained to be greater than 0, i.e., ν > 0.

• Skew-contaminated-normal (SCN): The SCN distribution introduces a mixture

of two point masses at γ and 1, represented by the probability density function

h(u; ν) = νI(u = γ)+(1−ν)I(u = 1), where I denotes the indicator function. The

parameter vector is given by ν = (ν, γ)′, with 0 < ν < 1 and 0 < γ ≤ 1.

Please note that the Skew Normal (SN) density is a light-tailed distribution,

whereas the Skew Student’s t (ST) and Skew Slash (SSL) densities are heavy-

tailed distributions. In Figure 2.1 and Figure 2.2, we provide graphs of both the

light-tailed SN densities and the heavy-tailed ST densities with different shape

parameters (1 and 0.9 for asymmetry and 0 for symmetry) and various degrees of

freedom (30, 3, and 2.1).

Figure 2.1: Some typical graphs of the light-tailed SN densities with various shape, scale
and degrees of freedom parameters.
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Figure 2.2: Some typical graphs of the heavy-tailed ST densities with various shape, scale
and degrees of freedom parameters.

For additional technical details and information on SMSN distributions, as well as

a proposition for computing the conditional moments necessary for the calculation of

certain conditional expectations in the proposed EM-algorithm, please refer to Appendix

A.1.

2.3.2 The FMm-SMSN Distributions

The finite mixture of scale mixture of skew normal (FMm-SMSN) distribution is a m-

component mixture of SMSN distributions. This mixture distribution is characterized

as follows:

f(y;π,θ,ν) =
m∑

i=1

πigi(y;θi,νi), y ∈ R, (2.5)

where π = (π1, ..., πm)
′, with πi > 0, i = 1, ...,m, are the mixing probabilities, such

that
∑m

i=1 πi = 1, θ = (θ1
′, ...,θm

′)′, θi = (µi, σi
2, λi)

′, ν = (ν ′
1, ...ν

′
m)

′, and as we

mentioned before in equation (2.3), gi(.;θi,νi) is an SMSN(θi,νi)-component density

for i = 1, ...,m.

To denote that a random variable Y has a m-component FMm-SMSN density which

showed in equation (2.5), we write Y ∼ FMm − SMSN(π,θ,ν). In terms of the
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components of the mixture, Equation (2.5) can be equivalently obtained by

Y |Zi = 1 ∼ SMSN(θi,νi), i = 1, ...,m, (2.6)

where Z1, ..., Zm are independent random vectors, each one having a multinomial dis-

tribution, Z = (Z1, ..., Zm)
′ ∼Multinomial(1, π1, π2, ..., πm) and with probability mass

function is given by

p(Z1 = z1, ..., Zm = zm) = π1
z1π2

z2 ...πm
zm , {zi = 0, 1}, i = 1, ...,m,

m∑

i=1

zi = 1.

We notice that integrating out z = (z1, ..., zm)
′, the marginal density in (2.5) can be

obtained. The distribution of Y corresponds to the ith component of the mixture

because just one component of Z can be equal to one and those that remain are zero

(Zi = 1, Zj = 0 ∀i ̸= j); In order to see more detail, see (McLachlan et al., 2019).

The following proposition summarizes some properties of the FMm-SMSN family.

Proposition 2.2. (McLachlan et al., 2019) Assuming, for i = 1, ...,m, that kri =

E(Ui
−r/2), r = 1, 2, where Ui ∼ H(; νi), then the mean and variance of the random

variable Y which is a FMm-SMSN distribution are, respectively, given by

E(Y ) =
m∑

i=1

πi(µi − bi∆i), (2.7)

and

V ar(Y ) =
m∑

i=1

πi

((
k2iσ

2
i − b2i∆

2
i

)
+
(
(µi − µ̄)− (bi∆i − ¯b∆)

)2)
, (2.8)

where µ̄ =
∑m

i=1 πiµi,
¯b∆ =

∑m
i=1 πibi∆i such that bi = −

√
2
π
k1i, and ∆i = σiδi, such

that δi =
λi√
1+λ2i

, i = 1, ...,m.

Therefore, by substituting (2.3) in (2.5), the density of the FMm-SMSN family is

given by

f(y;π,θ,ν) =
m∑

i=1

πigi(y;θi,νi)

=
m∑

i=1

πi

∫ ∞

0

2ϕ(y;µi, u
2
iσ

2
i )Φ(

√
uiλi(y − µi)/σi)dH(ui; νi).

(2.9)

Also, we note that when λi = 0, i = 1, ...,m, the finite mixture of scale mixture normal

(FMm-SMN) model is obtained as a symmetric case of this family. If H(1;νi) = 1, the
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finite mixture of skew normal (FMm-SN) model is generated from equation (2.9), and the

other heavy tails distributions of this family are the finite mixture of skew-t (FMm-ST),

finite mixture of skew-slash (FMm-SSL) and finite mixture of skew-contaminated-normal

(FMm-SCN), with ST, SCN and SSL component densities, respectively.

2.4 The FMm-SMSN-GARCH(1,1) Model

In this section, we first introduce the proposed model, and we then develop a EM-

type algorithm to estimate unknown parameters. A method for selecting the best model

is also introduced. Finally, the observed information matrix of the proposed model is

obtained.

2.4.1 Model specification

To account for the empirical evidence suggesting a time variation in volatility, (Engle,

1982) and (Bollerslev, 1986) proposed the Autoregressive Conditional Heteroscedasticity

(ARCH) and the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

models, respectively. The dynamics of a stock price process (St)(t∈0,1,...,T ) are character-

ized by the stationary process (Yt)(t∈0,1,...,T ) defined by:

Yt = log
( St
St−1

)
= ω +

√
htϵt, (2.10)

where (ϵt)(t∈0,1,...,T ), are independent identically distributed random variables defined

on the sample space (Ω,F , P ) and
(
Ft = σ

(
ϵu, 1 ≤ u ≤ t

))
t∈(0,1,...,T )

is the associated

information filtration. The volatility process
√
ht is driven by the set of parameters θV

and the distribution of ϵt ∼ WN(0, 1) by a set of parameters θD. In the following, we

will refer to ϵt as the model innovation.

In an ARCH (1) model, the conditional volatility is a linear function of the square

of the previous innovations:

V ar(yt|Ft−1) = ht = µ0 + α1(yt−1 − ω)2, (2.11)

where µ0 > 0, is a constant, and α1 is a non-negative parameter.
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In a GARCH (1, 1) model, the conditional volatility is a linear function of both the

square of the previous observed innovations and of the previous conditional volatilities:

V ar(yt|Ft−1) = ht = µ0 + α1(yt−1 − ω)2 + β1ht−1, (2.12)

where µ0 > 0, is a constant, α1 and β1 are non-negative parameters, to ensure non-

negativity of conditional variance and α1 + β1 < 1, to ensure covariance stationarity.

For t = 1, ..., T , ht is the conditional variance of yt given Ft−1 = {yt−1, yt−2, ...}, the
information set available until time t− 1.

There are many papers using non-Gaussian innovations and most of them are related

to symmetric distribution. Our purpose is to use a flexible characterization of the innova-

tions in the same spirit of (Haas et al., 2004) that are using a mixed normal distribution

coupled with a GARCH-type structure (termed MN-GARCH). Their model allows for

conditional variance in each of the components as well as dynamic feedback between the

components However, our proposal is different as we point at introducing a mixture on

the innovation process. Our approach will allow for a more flexible parametrization of

the innovations and, for simplicity, is introduced with a GARCH model for volatility.

However, more flexible parametrizations for the conditional variance can be used.

In this paper, the innovation of the proposed model, ϵt, (see equation 2.10) follows a

mixture:

f(ϵt;π,θ,ν) =
m∑

i=1

πigi(ϵt;θi,νi). (2.13)

The following conditional density is obtained using equations, (2.10), (2.12), and (2.13):

fyt|Ft−1(yt,Θ) =
m∑

i=1

πih
− 1

2
t

∫ ∞

0

ϕSN

(yt − ω√
ht

;µi, u
−1
ti σ

2
i , λi

)
dH(uti; νi); t = 1, ..., T,

(2.14)

where Θ = (ϕ′,π′,θ′,ν ′)′, with ϕ′ = (ω, µ0, α1, β1) being the parameter vector of the

GARCH model.

We also mention that the number of components of the model is denoted by m,

which is a known positive integer and that the weight of the i-th component is denoted

by πi > 0, and
∑m

i=1 πi = 1, which follows a distribution π = (π1, ..., πm)
′. In addition,

the innovation parameters of the GARCH model are represented by θ = (θ1
′, ...θm

′)
′

with θi = (µi, σi
2, λi)

′
, ν = (ν1

′, ...νm
′)′ and the density of the innovation of the i-th

component is an SMSN(θi,νi)− distribution.

For computational convenience, we assume that the m-component densities are ob-

tained from the same distribution, meaning that gi(y;θi,νi) = g(y;θi,νi), and for νi
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we also assume that ν1, ...,νm = ν. This strategy works very well in the experimental

studies we have done and greatly simplifies the optimization problem.

We remind that for t = 1, ..., T , the random variables ϵt are independent and iden-

tically distributed, so that E(ϵt) = 0 and V ar(ϵt) = 1. Therepfore, we must introduce

restrictions on the parameters of the FMm-SMSN to ensure that the GARCH innovations

have unit variance and a null mean. These are provided in the following proposition.

Proposition 2.3. Let ϵt ∼ FMm − SMSN(π,θ,ν), then the zero mean and unit

variance restrictions in 2.7 amd 2.8, respectively, imply that

µ1 = b1∆1 −
∑m−1

i=1 πi(µi − bi∆i)

π1
, (2.15)

and

σ2
1 =

1−∑m−1
i=1 πi

((
k2iσ

2
i − b2i∆

2
i

)
+
(
(µi − µ̄)− (bi∆i − ¯b∆)

)2)

k21

+
−
((

(µ1 − µ̄)− (b1∆1 − ¯b∆)
)2)

+ b21∆
2
1

k21
,

(2.16)

where µ̄ =
∑m

i=1 πiµi,
¯b∆ =

∑m
i=1 πibi∆i such that bi = −

√
2
π
k1i, and ∆i = σiδi, and

δi =
λi

1+λ2i
, i = 1, ...,m.

Proof. The proof is provided in Appendix A.3.

We note that to impose zero mean and unit variance, some constraints are imposed

on the parameters of the first component of the mixture for convenience only.

2.4.2 ML parameter estimation via the ECME algorithm

We now proceed to the ML estimation of the unknown parameters of an FMm-

SMSN-GARCH(1,1) using the Expectation/Conditional Maximisation Either (ECME)

algorithm, proposed by (Liu and Rubin, 1994), as an extension of the EM algorithm of

(Dempster et al., 1977). Without loss of generality, in this study, we suppose that the

initial volatility, h0, and initial value of the return series , y0, are known.

By using the Markovian property of the GARCH(1,1) process, the likelihood function

of the GARCH model with FMm-SMSN innovations is obtained by

L(Θ,y) = f(yT |FT−1)f(yT−1|FT−2), ...f(y1|F0) =
T∏

t=1

f(yt|FT−1), t = 1.....T.
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Therefore, the respective log-likelihood function is provided by

ℓ(Θ,y) =
T∑

t=1

ℓt(Θ,y)

=
T∑

t=1

log

(
m∑

i=1

πih
− 1

2
t

∫ ∞

0

ϕSN

(yt − ω√
ht

;µi, u
−1
ti σ

2
i , λi

)
dH(uti; νi)

)

=
T∑

t=1

log

(
m∑

i=1

2πih
− 1

2
t

∫ ∞

0

ϕ
(yt − ω√

ht
;µi, u

−1
ti σ

2
i

)
Φ
(√

utiλi
(
yt − ω − µi

√
ht
)
/
√
htσi

)
dH(uti; νi)

)
.

(2.17)

Due to the complexity of the above log-likelihood function, there is no analytical solution

to achieve the ML estimate of unknown parameter and maximization of the proposed

log-likelihood function with respect to Θ requires a high dimensional nonlinear opti-

mization procedure. Therefore, we need to develop a numerical search algorithm. To

do this, an innovative EM-type algorithm has been developed to obtain the ML esti-

mate for the FMm-SMSN-GARCH(1,1) model using the hierarchical representation of

the proposed model.

To overcome computational complexity, we proceed with the derivation of the hi-

erarchical representation of the FMm-SMSN-GARCH(1,1) model. This will allow to

estimate the parameters by resorting to an efficient expectation conditional maximiza-

tion either (ECME) algorithm. We first define an auxiliary indicator for the component

distributions in the GARCH mixture model, which can be expressed in terms of a multi-

nomial random vector Zt = (Zt1, ..., Ztm)
′, which is denoted by

Zt = (Zt1, ..., Ztm)
′ ∼Multinomial(1, π1, . . . , πm),

where

Zti =

{
1 if t-th observation belongs the i-th component;

0 ow.
, t = 1, ..., T ; i = 1, ...,m.

Only one element of Zt is one (while the rest of elements are zero), and its label/-

position determines the component-distribution for the tth innovation; see (Peel and

McLachlan, 2000) for additional details. Also, according to this assumption yt is inde-

pendent of ϵt, and therefore also of Zt. Therefore, the proposed GARCH model can be

equivalently represented by

yt − ω√
ht

|Ft−1, Zti = 1 ∼ SMSN(µi, σ
2
i , λi,ν), (2.18)
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Zt ∼Multinomial(1,π),

for i = 1, ...,m, t = 1, ..., T . In addition, in order to obtain a likelihood function based

on complete data, the proposed mixture-GARCH model can be easily displayed using

the stochastic representation of the SMSN family given in 2.4:

yt|Ft−1,Wti = wti, Uti = uti, Zti = 1 ∼ N
(
ω +

√
ht(µi +∆iwti), u

−1
ti ϱ

2
iht
)
, (2.19)

Wt|Uti = uti, Zti = 1 ∼ TN1

(
0, u−1

ti

)
I(0,∞),

Uti|Zti = 1 ∼ H
(
uti;νi

)
,

Zt ∼Multinomial(1,π),

for i = 1, ...,m, t = 1, ..., T , where ϱ2i = σ2
i − ∆2

i , and the sequences
{
Ft−1, ; t =

1, ..., T
}
,
{
Zti; i = 1, ..., T

}
, and

{
(Uti,Wti); i = 1, ...,m, t = 1, ..., T

}
are indepen-

dent. Also note that, the parameter vector, θi = (µi, σ
2
i , λi)

′ can be easily redefined by

θi = (µi, ϱ
2
i ,∆

2
i )

′, i = 1, ...,m, because of the objective relation between the two sets.

Let Ω =
{
y,P

}
, denote the complete data, where y = (y1, ..., yT )

′, and P =
{
P ti =

(Wti, Uti, Zti)
T
t=1

}m
i=1

are the observable part (observed data) and missing part (hidden

variables), respectively. Therefore, the likelihood-function based on the complete data

is given by

LΩ(Θ) =
T∏

t=1

m∏

i=1

(
πifyt|Ft−1,Wti,Uti,Zti

(
yt;ϕ,∆i, ϱ

2
i

)
fWti|Uti,Zti

(
wti,νi

)
fUti|zti

(
uti,νi

))Zti

,

(2.20)

where

fyt|Ft−1,Wti,Uti,Zti

(
yt;ϕ,∆i, ϱ

2
i

)
= ϕ

(
yt;ω+

√
ht(µi+∆iwti), u

−1
ti ϱ

2
iht

)
, fWti|Uti,Zti

(
wti,νi

)
=

TN1

(
0, u−1

ti

)
I(0,∞) = 2ϕ

(
wti; 0, u

−1
ti

)
, with ϕ(.) as the normal probability density func-

tion, and fUti|zti
(
uti,νi

)
= h

(
uti;νi

)
, is a density function which is induced by the

mixing distribution H
(
uti;νi

)
. Thus, the respective log likelihood-function based on

the complete data using equation (2.20) is obtained by
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ℓΩ(Θ) =
m∑

i=1

T∑

t=1

Zti log h
(
uti;νi

)
+

m∑

i=1

T∑

t=1

Zti log πi −
1

2

m∑

i=1

T∑

t=1

Zti log ϱ
2
i

− 1

2

m∑

i=1

T∑

t=1

Ztiht −
1

2

m∑

i=1

T∑

t=1

ZtiUti
htϱ2i

(
yt − ω −

√
ht(µi +∆iwti)

)2
.

(2.21)

In order to obtain ML estimates in models with missing variables, the EM algorithm

proposed by (Dempster et al., 1977) can be used. In addition, the EM has several

suitable properties including ease of implementation as well as monotone convergence.

However, if the M-step of the EM algorithm does not have a closed form expression,

the algorithm loses some of its attraction. The expectation conditional maximization

(ECM) and expectation conditional maximization either (ECME) algorithms proposed

by (Meng and Rubin, 1993), (Liu and Rubin, 1994), respectively, are simple modification

of EM in which the maximization-step is replaced by a sequence of computationally

convenient conditional maximization (CM)-steps.

Here, to obtain ML estimates of unknown parameters of the FMm-SMSN-GARCH(1,1)

model, the ECME algorithm is used as an extention of ECM algorithm. The propose

ECME algorithm has some desirable advantages that not only inherits the mentioned

features of the ECM algorithm but it might also be faster than ECM. In fact, some CM-

steps of the ECM algorithm are replaced by the CML-steps in the ECME algorithm.

which maximize the corresponding constrained log-likelihood function.

Conditional expectation used in the ECME algorithm isQ
(
Θ|Θ̂

(k))
= EΘ(k)

(
ℓΩ(Θ)|y

)
,

where Θ̂
(k)

is the estimated value of Θ in the k − th step of the algorithm as follows:

In order to construct this function, we must first calculate conditional expectations,

Ẑ
(k)
ti , ĥ

(k)
t , and ĥtZti

(k)
, so given the standard properties of the conditional expectations,

we have

Ẑ
(k)
ti = EΘ(k)

(
Zti|y

)
=

π
(k)
i g
(
yt|Ft−1; θ̂i

(k)
, ν̂i

(k)
)

∑m
i=1 π

(k)
i g
(
yt|Ft−1; θ̂i

(k)
, ν̂i

(k)
) ,

ĥ
(k)
t = EΘ(k)

(
ht|y

)
= µ0 + α1y

2
t−1 + β1ht−1,

(2.22)

and

ĥtZti
(k)

= EΘ(k)

(
htZti|y

)
= µ0Ẑ

(k)
ti + α1y

2
t−1Ẑ

(k)
ti + β1ht−1Ẑ

(k)
ti ,

where g
(
yt|Ft−1; θ̂i

(k)
, ν̂i

(k)
)
=
∫∞
0
ϕSN

(
yt−ω√
ht
;µi, u

−1
ti σ

2
i , λi

)
dH(uti; νi), represents the

i−th component of the SMSN distribution in the mixture-GARCH model. In addition,

considering the posterior moments in proposition 2.5 in Appendix B.1, we obtain the

following conditional expectations



Chapter 2 - Robust Mixture Modeling 33

EΘ(k)

(
Uti|y

)
=
(
Û
)(k)
ti

= ω̂
(k)
1ti , (2.23)

EΘ(k)

(
WtiUti|y

)
=
(
ÛW

)(k)
ti

= Û
(k)
ti m̂

(k)
ti + M̂

(k)
i η̂

(k)
ti , (2.24)

EΘ(k)

(
W 2
tiUti|y

)
=
(
ÛW 2

)(k)
ti

= M̂
2(k)
i + Û

(k)
ti m̂

2(k)
ti + M̂

(k)
i η̂

(k)
ti m̂

(k)
ti , (2.25)

for i = 1, ...,m and t = 1, ..., T , where ω
(k)
1ti and η̂

(k)
ti , are obtained using steps (i)

and (ii) of proposition 2.5 in Appendix B.1, with M̂
2(k)
i = ϱ̂i

2(k)

ϱ̂i
2(k)+∆̂i

2(k) , and m̂
(k)
i =

∆̂i
(k)

√
ĥ
(k)
t

(
ϱ̂i

2(k)+∆̂i
2(k)
)
(
yt − ω −

√
htµ̂

(k)
i

)
= ∆̂i

(k)

ϱ̂i
2(k)+∆̂i

2(k)

(
yt−ω√
ht

− µ̂
(k)
i

)
.

Note that all of these quantities should be evaluated at Θ̂
k
= Θ, where the estimated

value of Θ in the k-th step of the algorithm is denoted by Θ̂
k
. Conditional expectations

ω̂
(k)
1ti and η̂

(k)
ti , and all of the conditional expectations in equations (2.23)-(2.25), have

a closed-form expression, for the Skew-t (ST) and Skew contaminated-normal (SCN)

of the SMSN family; see more details in (Basso et al., 2010), (Lachos et al., 2010b),

and (Lachos et al., 2010a). However, when working with the skew-slash (SSL) distribu-

tion, there is not a closed-form expression, so in this case, a Monte Carlo integration,

together with the ECME algorithm (MC-ECME) can be applied to approximate the

integrals; see (Wei and Tanner, 1990) and (McLachlan and Krishnan, 2007). In addi-

tion, since Zti and (Uit,Wti) are independent, it follows that
(
ÛZ
)(k)
ti

=
(
Ẑ
)(k)
ti

(
Û
)(k)
ti
,(

ÛZW
)(k)
ti

=
(
Ẑ
)(k)
ti

(
ÛW

)(k)
ti
, and

(
ÛZW 2

)(k)
ti

=
(
Ẑ
)(k)
ti

(
ÛW 2

)(k)
ti
.

The proposed ECME algorithm for ML estimation of the FMm-SMSN-GARCH(1,1)

model proceed as follows:

E− step : In E-step of the algorithm, we first calculate EΘ(k)

(
ℓΩ(Θ)|y

)
according to

the conditional expectations of equations (2.22)-(2.25), so in the E-step of the algorithm,

we have
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Q
(
Θ|Θ̂

(k))
=

m∑

i=1

T∑

t=1

Ẑ
(k)
ti E

(
log h(uti;νi)|y

)
+

m∑

i=1

T∑

t=1

Ẑ
(k)
ti log πi −

1

2

m∑

i=1

T∑

t=1

Ẑ
(k)
ti log ϱ2i

− 1

2

m∑

i=1

T∑

t=1

(
Ẑtiht

)(k) − 1

2

m∑

i=1

T∑

t=1

(
ẐU
)(k)
ti

htϱ2i

(
yt − ω −

√
htµi

)2

+
m∑

i=1

T∑

t=1

(
ẐUW

)(k)
ti

htϱ2i

(
yt − ω −

√
htµi

)√
ht∆i −

1

2

m∑

i=1

T∑

t=1

(
ẐUW 2

)(k)
ti

htϱ2i
ht∆i

2

=
m∑

i=1

T∑

t=1

Ẑ
(k)
ti E

(
log h(uti;νi)|y

)
+

m∑

i=1

T∑

t=1

Ẑ
(k)
ti log πi −

1

2

m∑

i=1

T∑

t=1

Ẑ
(k)
ti log ϱ2i

− 1

2

m∑

i=1

T∑

t=1

(
Ẑtiht

)(k) − 1

2

m∑

i=1

T∑

t=1

(
ẐU
)(k)
ti

htϱ2i

(
yt − ω

)2
+

m∑

i=1

T∑

t=1

(
ẐU
)(k)
ti√

htϱ2i

(
yt − ω

)
µi

− 1

2

m∑

i=1

T∑

t=1

(
ẐU
)(k)
ti

ϱ2i
µi

2 +
m∑

i=1

T∑

t=1

(
ẐUW

)(k)
ti√

htϱ2i

(
yt − ω

)
∆i −

m∑

i=1

T∑

t=1

(
ẐUW

)(k)
ti

ϱ2i

(
µi∆i

)

−
m∑

i=1

T∑

t=1

(
ẐUW 2

)(k)
ti

ϱ2i
∆i

2.

(2.26)

CM− steps

Updating the parameters in the CM-steps is done in the following sub-steps:

• i) Update πi by maximizing (2.26) with respect to πi which gives

π̂
(k+1)
i =

∑T
t=1 Ẑ

(k)
ti

n
,

• ii) Update µi by maximizing (2.26) with respect to µi which gives

µ̂
(k+1)
i =

∑T
t=1

(̂
ZU
)(k)
ti

ϱ̂i
2(k)

((
yt − ω

)
/
√
ĥt

)
−
∑T

t=1

( ̂
ZUW

)(k)
ti

∆̂i
(k)

ϱ̂i
2(k)

∑T
t=1

(̂
ZU
)(k)
ti

ϱ̂i
2(k)

,
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• iii) Update ϱi
2 by maximizing (2.26) with respect to ϱi which gives

ϱ̂
2(k+1)
i =

1
2

∑T
t=1

((
ẐU
)(k)
ti

(
(yt−ω)√

ĥt
− µ̂

(k)
i

)2)
−∑T

t=1

((
ẐUW

)(k)
ti

(
(yt−ω)√

ĥt
− µ̂

(k)
i

)
∆̂i

(k)
)

∑T
t=1 Ẑ

(k)
ti

,

+

1
2

∑T
t=1

((
ẐUW 2

)(k)
ti
∆̂i

2(k)
)

∑T
t=1 Ẑ

(k)
ti

,

• iv) Update ∆i by maximizing (2.26) with respect to ∆i which gives

∆̂
(k+1)
i =

∑T
t=1

( ̂
ZUW 2

)(k)
ti

ϱ̂i
2(k)

(
(yt−ω)√

ĥt
− µ̂

(k)
i

)

1
2

∑T
t=1

( ̂
ZUW 2

)(k)
ti

ϱ̂i
2(k)

,

• v) Update ω by maximizing (2.26) with respect to ω which gives

ω̂(k+1) =

∑m
i=1

∑T
t=1

(̂
ZU
)(k)
ti√

ĥtϱ̂i
2(k)

(
yt√
ĥt

− µ̂
(k)
i

)
−∑m

i=1

∑T
t=1

( ̂
ZUW

)(k)
ti√

ĥtϱ̂i
2(k)

∆̂i
(k)

∑m
i=1

∑T
t=1

(̂
ZU
)(k)
ti

ĥtϱ̂i
2(k)

,

• vi) In the last step (CML-step), update νi by maximizing (2.26) with respect to

νi which gives

ν̂
(k+1)
i = argmax

νi

(
T∑

t=1

log
(
π̂
(k+1)
i g

(
yt|Ft−1; θ̂

(k)

i ,νi

)))
.

More details on the CML-step are sketched in Appendix A.2. According to (Lin

et al., 2014) and (Zeller et al., 2019), assuming the identical mixing component,

i.e. ν1 = ν2 = ... = νm = ν, a more parsimonious model can be obtained. This

setting changes the problem of nontrivial high-dimension optimization into the

more simple one/two dimensional search.

• For ease of estimation, we re-parametrized the parameters (µ0, α1, β1) of the

model. Since (µ0, α1, β1) must be greater than zero and (α1 + β1 < 1), they
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are parametrized as follows 2:

µ0 = exp (−η1),

α1 =
1

1 + exp (−η2)
,

and

β1 =
1− α1

1 + exp (−η3)
.

The E-, CM- and CML-steps of the ECME algorithm are repeatedly alternated until

a suitable convergence rule is satisfied, e.g.
∣∣∣ℓ
(
Θ̂

(k+1)
,y
)
/ℓ
(
Θ̂

(k)
,y
)
− 1
∣∣∣ ≤ tolerance.

We also note that different value of tolerance can be selected. In the present paper we

set the tolerance to 10−5. To provide a comprehensive implementation guide, Algorithm

2 presents a summarized pseudocode of the aforementioned ECME algorithm.

2The reparametrization here reported is specific to the GARCH(1,1) model. Alternative designs
must be chosen when specifying different conditional variance models.
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Algorithm 1 Implementation procedure of the ECME algorithm for fitting the FMm-
SMSN-GARCH(1,1)

procedure FMm-SMSN-GARCH(1,1)

inputs: {yt}Tt=1- the set of input data; m - the number of components;

1 ϵ = 10−5 - the prespecified tolerance.

2 initialize: Obtain the starting value Θ̂
(0)

.

3 Compute the initial log-likelihood as ℓ
(
Θ̂

(0)
,y
)
.

4 Set ”Convergence = False”.

5 for k = 0 do

6 for t=1 to T do

7 for i=1 to m do

8 Obtain latent and missing information Ẑ
(k)
ti , ĥtZti

(k)
,
(
ÛZ
)(k)
ti

,
(
ÛZW

)(k)
ti

, and
(
ÛZW 2

)(k)
ti

.

9 end

10 end

11 for i=1 to m do

12 Update the parameters π̂
(k+1)
i , µ̂

(k+1)
i , ϱ̂

2(k+1)
i , ∆̂

(k+1)
i , ω̂(k+1), and ν̂i

(k+1).

13 Set Θ̂
(k+1)

= {ϕ̂(k+1), π̂(k+1), θ̂
(k+1)

, ν̂(k+1)}.
14 end

15 Compute ℓ
(
Θ̂

(k+1)
,y
)
and set “Convergence = True” if

∣∣∣ℓ
(
Θ̂

(k+1)
,y
)
/ℓ
(
Θ̂

(k)
,y
)
− 1
∣∣∣ ≤ ϵ.

16 if Convergence = True then

17 break

18 end

19 end

20 return ℓ
(
Θ̂

(k+1)
,y
)
and Θ(k+1).

end procedure

2.4.3 The observed information matrix

To compute the standard errors of maximum likelihood (ML) parameter estimates

for the FMm-GARCH model, we provide a systematic procedure. Our objective is to

approximate the asymptotic covariance matrix of the ML estimates within the pro-

posed mixture-GARCH model. To achieve this, we derive the observed information ma-

trix denoted as I(Θ|y) = −∂2ℓ(Θ|y)/∂Θ∂Θ′, which captures the second-order partial

derivatives of the log-likelihood function (2.17) with respect to the model parameters.

The information matrix is comprised of individual blocks, where each block is repre-

sented as I(γ,δ) =
∑T

t=1 −
∂2ℓt(Θ|y)
∂γ∂δ′

. Here, (γ, δ) represents the parameter setϕ, πj, µj, σ
2
j , λj,

and νj , with j = 1, ...,m, and ϕ = (α1, β1).
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Considering the maximum likelihood function of the FMm-SMSN-GARCH(1,1) model

in equation (2.17), we can express the elements of the information matrix as follows:

I(γ,δ) =
T∑

t=1

[ m∑

i=1

∂2 log πi
∂γ∂δ′ − 1

2

m∑

i=1

∂2 log htσ
2
i

∂γ∂δ′ −
m∑

i=1

1

M2
ti

∂Mti

∂γ

∂Mti

∂δ′ +
m∑

i=1

1

Mti

∂2Mti

∂γ∂δ′

]
,

Where

∂Mti

∂γ
= Iϕti(1)

∂Bti

∂γ
− 1

2
IΦti

(
5

2

)
∂Sti
∂γ

,

and

∂2Mti

∂γ∂δ′ =
1

4
IΦti

(
5

2

)
∂Sti
∂γ

∂Sti
∂δ′ − 1

2
IΦti

(
3

2

)
∂2Sti
∂γ∂δ′

− 1

2
Iϕti(2)

(
∂Bti

∂γ

∂Sti
∂δ′ +

∂Sti
∂γ

∂Bti

∂δ′

)

− Iϕti(2)
∂Bti

∂γ

∂Sti
∂δ′ + Iϕti(1)

∂2Bti

∂γ∂δ′ ,

with

IΦti (ρ) = EU

(
Uρ exp (−USti/2)Φ(

√
UBti)

)
,

Iϕti(ρ) = EU
(
Uρ exp

(
−U(Sti +B2

ti)/2
))
,

Mti = EU

(√
U exp (−USti/2)Φ(

√
UBti)

)
,

Sti =

(
yt − ω − µi

√
ht
)2

htσ2
i

,

and

Bti =
λi
(
yt − ω − µi

√
ht
)

√
htσ2

i

.

In the following proposition, we provide the explicit expressions for IΦti (ρ) and I
ϕ
ti(ρ)

for specific members of the FMm-SMSN-GARCH(1,1) family. These expressions are

derived to facilitate the computation of the information matrix and play a crucial role

in the estimation process. For the detailed proofs of these expressions, we refer the
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interested readers to Appendix B.2.

Proposition 2.4. (a) In the case of the FMm-ST-GARCH(1,1) distribution (ST-

GARCH ):

IΦti (ρ) =
2ρ+

3
2Γ
(
ν+1
2

)(
ν/2
) ν

2Γ
(
ρ+ ν

2

)
(ν + Sti)

−(ρ− 1
2
)

Γ
(
ν
2

)
(ν + Sti)

ν+1
2 Γ
(
ν
2

) T

(
Bti

√
ν + 2ρ

(
ν + Sti

) 1
2

; ν + 2ρ

)
,

Iϕti(ρ) =
2(ρ+

ν
2
) ν
2

ν
2Γ
(
ρ+ ν

2

)

Γ
(
ν
2

)
(

1

ν +B2
ti + Sti

)(ρ+ ν
2
)

,

and
∂ℓt(Θ;y)

∂ν
=

1√
2πσi

(
1 + log(

ν

2
) +DIG(ν/2)IΦti (1/2)− IΦti (3/2)

+

∫ ∞

0

u
1
2 log(u)exp

(
− uSti/2

)
Φ(

√
uBti)dH(u|ν)

)
,

where DIG denotes the digamma function.

(b) In the case of the FMm-SSL-GARCH(1,1) distribution (SSL-GARCH ):

IΦti (ρ) =
22+νΓ(ρ+ ν)

Sρ+νti

P
(
1; ρ+ ν,

(Sti
2

))
, E
(
Φ
(√

Gati
)
Bti

)
,

Iϕti(ρ) =
ν2ρ+νΓ(ρ+ ν)√
2π
(
B2
ti + Sti

)ρ+νP
(
1; ρ+ ν,

(B2
ti + Sti
2

))
,

where Ga ∼ Gamma
(
ρ + ν, Sti

2

)
I(0,1), and P

(
y; c, d

)
shows the Gamma(c,d)-

distribution function evaluated at y.

and

∂ℓt(Θ;y)

∂ν
= 2

∫ 1

0

uν−1(1 + ν log u)ϕ
(yt − ω√

ht
; 0, u−1σ2

i

)
Φ(

√
uBti)du,

(c) In the case of the FMm-SCN-GARCH(1,1) distribution (SCN-GARCH):

IΦti (ρ) =
√
2π
(
νγρ−/2ϕ

(√
Sti; 0, γ

−1
)
Φ(

√
γBti) + (1− ν)ϕ(

√
Sti; 0, 1)Φ(Bti)

)
,
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Iϕti(ρ) = νγρ−1/2ϕ
(√

B2
ti + Sti; 0, γ

−1
)
+ (1− ν)ϕ

(√
B2
ti + Sti; 0, 1

)
,

and

∂ℓt(Θ;y)

∂ν
= 2

(
ϕ
(yt − ω√

ht
; 0, γ−1σ2

i

)
Φ(

√
γBti)− ϕ

(yt − ω√
ht

; 0, σ2
i

)
Φ(Bti)

)
,

∂ℓt(Θ;y)

∂γ
=

ν√
2πσ2

i

√
γ exp (−γSti/2)

(
γ−1Φ(

√
γBti)+ϕ(Bti/

√
γ)Bti/

√
γ−Φ(

√
ti)Sti

)
.

As a result, the standard errors for a specific parameter estimate, denoted as θ̂r, can

be approximated by

S.E(θ̂r) ≈
√
[I−1
e (Θ̂|y)]rr

where [I−1
e (Θ̂|y)]rr is the (r,r)-th entry of the inverse of 2.4.3.

2.4.4 Model selection criteria and performance assessment

One of the key considerations in model selection is determining the most suitable

model among a set of competing specifications. In our study, we have taken into ac-

count three well-established criteria: the Akaike Information Criterion (AIC) (Akaike,

1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978) and the Efficient De-

termination Criterion (EDC) (Bai et al., 1989). Using multiple model selection criteria,

such as AIC, BIC, and EDC, provides a more comprehensive evaluation of competing

models. Each criterion offers unique insights and focuses on different aspects of model

selection, ensuring a robust and well-informed choice. The criteria are defined as follows:

AIC = −2ℓ
(
Θ̂,y

)
+2D, BIC = −2ℓ

(
Θ̂,y

)
+log(n)D, EDC = −2ℓ

(
Θ̂,y

)
+RnD,

where ℓ
(
Θ̂,y

)
is the maximized log-likelihood, D is the number of estimated parameters

in the proposed mixture GARCH model and n is the sample size of the GARCH sample.

For these three model selection criteria we state that πm = 1−∑m−1
i=1 πi, so it is obvious

that the number of components is m− 1. Furthermore, note that in the EDC criteria,

Rn must be chosen so that Rn

n
and Rn

(loglogn)
go to zero while n goes to infinity. Therefore,

we chose Rn = 0.2
√
n coherently with (Bai et al., 1989). The lower values of the AIC,

BIC and EDC criteria indicate the best selection of the model.
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2.5 Simulation study and a real data example

In this section, the performance and flexibility of the proposed FMm-SMSN-GARCH(1,1)

are evaluated using simulated and real data example. The implementations of the al-

gorithms are based on the R software (Team et al., 2013) version 4.2.0 with a core i7

760 processor 2.8 GHz, and a relative tolerance of 10−5 is used for convergence of the

ECME-algorithms.

2.5.1 Simulations

In this part, we provide two parts of simulations. In the first part, we show the con-

sistency properties of the proposed model and estimation methods considering different

sample sizes. Moreover, to show the satisfaction of the proposed estimations, some sim-

ulations for FMm-SMSN-GARCH(1,1) parameters recovery by simulating from them

and estimating the proposed ML estimates are provided. Finally, in the second part of

simulations, to show the performances (robustness, misspecification and model identifi-

cation) of our models to model the data with unknown structure we generate asymmetry

and heavy-tailed distributions with various components that belong to the class of scale

mixtures of skew-normal (SMSN) distributions.

2.5.1.1 Model specifications

In our simulations, we investigate two distinct scenarios to analyze the performance

of our model. These scenarios are as follows:

• Moderately Separated Model:

In the first scenario, we consider a data generating process that comprises two

components exhibiting clear separation. Appendix A.2 presents Table A.2, which

reports the true parameters satisfying the constraints outlined in Proposition 2.3.

Additionally, Figure A.1 provides an illustrative example of a simulated series that

demonstrates the evident distinction between the two components.

• Weakly Separated Model:

Moving to a more intricate setting, the second scenario involves a data gener-

ating process characterized by two components that are closely situated. Table

A.3 in Appendix A.3 presents the corresponding parameter values, while Figure

A.2 showcases a representative example. It is worth noting that, upon a cursory
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visual inspection, the two components are not easily distinguishable. However,

discernible attributes such as asymmetry and skewness are noticeably present.

These contrasting scenarios enable us to evaluate the effectiveness of our model under

varying degrees of component separation, thereby providing valuable insights into its

robustness and performance characteristics.

2.5.1.2 Part 1: Parameter Retrieval

The first simulation study aims to assess the performance of the ML estimates ob-

tained using the Expectation Conditional Maximization (ECME) algorithm, as well as

their corresponding standard errors through the information-based method outlined in

Section 3.4.

To evaluate the accuracy of the estimations, we compute the mean bias and mean-

squared error (MSE) using the following formulas:

Bias =
1

500

500∑

i=1

(θ̂i − θ), MSE =
1

500

500∑

i=1

(θ̂i − θ)2,

where θ̂i represents the estimate of θ for the i-th sample. In each scenario, we generate

samples of varying sizes: 250, 500, and 1000 observations, and repeat the experiment 500

times. The Bias and MSE values for the first scenario (moderate separated components)

are presented in Table 2.1, while the results for the second scenario (weakly separated

components) can be found in Table 2.2. Notably, in both scenarios, the numerical results

consistently indicate that both Bias and MSE tend to converge to zero as the sample

size increases. Moreover, Figures A.3 to A.10 in Appendix A.6 visually demonstrate the

diminishing magnitudes of Bias, MSE, Mean, and SD of ML estimators based on the

different members of the proposed model as the sample size, denoted by n, increases.

This empirical evidence highlights the consistency of the ML estimators. These findings

affirm that the proposed ML estimates of FMm-SMSN-GARCH(1,1), obtained using the

ECME algorithm, exhibit strong consistency properties. Furthermore, Tables A.4 and

A.5 in Appendix A.6 illustrate the convergence of the mean and standard deviations

(SD) of the estimated parameters toward their true values, with the standard deviations

decreasing accordingly. These results collectively demonstrate the high accuracy of the

point estimates in the considered scenarios.



Chapter 2 - Robust Mixture Modeling 43

Table 2.1: Bias and MSE of ML estimates of medium-FM2-SN–GARCH(1,1),
medium-FM2-ST–GARCH(1,1), medium-FM2-SSL–GARCH(1,1) and medium-FM2-SCN–
GARCH(1,1) models with various sample sizes n = 250, 500, and 1000.

Models FM2-SN–GARCH(1,1) FM2-ST–GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Bias

µ1 -0.089 -0.071 -0.044 -0.199 -0.172 -0.109
µ2 -0.243 -0.171 -0.111 -0.038 -0.029 0.017
σ2
1 0.472 0.471 0.458 -0.047 -0.028 -0.020
σ2
2 0.070 0.070 0.060 -0.412 -0.222 -0.192
λ1 0.321 0.209 0.205 -0.214 -0.043 0.064
λ2 -0.474 -0.118 -0.117 -0.108 -0.075 0.038
ν – – – -0.328 0.216 0.150
γ – – – – – –
π 2.9E-03 5.0E-04 2.0E-04 9.0E-04 4.0E-04 2.0E-04
ω 0.125 0.008 0.001 -0.053 0.007 -0.004
µ0 7.7E-05 4.9E-05 5.0E-05 4.9E-05 5.0E-05 4.8E-05
α1 0.011 0.006 0.005 0.018 0.015 0.014
β1 -0.021 -0.009 -0.006 -0.055 -0.029 -0.015

MSE

µ1 0.165 0.051 0.030 0.098 0.042 0.017
µ2 0.181 0.098 0.039 0.113 0.032 0.013
σ2
1 0.732 0.437 0.338 0.019 0.005 0.003
σ2
2 0.084 0.024 0.018 0.518 0.255 0.137
λ1 0.595 0.219 0.140 0.590 0.184 0.094
λ2 5.527 1.785 0.681 2.0006 0.778 0.286
ν – – – 2.7200 1.7158 0.9782
γ – – – – – –
π 2.9E-03 5.0E-04 2.0E-04 9.0E-04 4.0E-04 2.0E-04
ω 0.096 0.069 0.061 0.079 0.065 0.062
µ0 0.000 0.000 0.000 0.000 0.000 0.000
α1 2.279E-03 6.9E-05 5.1E-05 4.06E-04 2.73E-04 2.08E-04
β1 9.757E-03 7.55E-04 3.70E-04 5.201E-03 1.788E-03 6.54E-04

Models FM2-SSL–GARCH(1,1) FM2-SCN–GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Bias

µ1 0.099 0.044 0.017 -0.048 -0.012 0.002
µ2 -0.256 -0.140 -0.100 -0.127 -0.109 -0.079
σ2
1 0.387 0.298 0.237 0.302 0.252 0.224
σ2
2 0.176 0.152 0.060 0.093 0.068 0.062
λ1 0.100 0.043 0.032 0.306 0.238 0.179
λ2 0.377 -0.117 -0.054 -0.295 -0.149 -0.116
ν 0.434 0.019 0.012 0.051 0.023 0.0001
γ – – – 0.102 0.042 0.031
π 5.7E-03 -4.0E-04 4.0E-04 5.1E-03 1.1E-03 -1.0E-04
ω 0.149 0.071 -0.001 0.149 0.006 -0.0001
µ0 6.6E-05 5.0E-05 5.4E-05 5.8E-05 5.2E-05 5.1E-05
α1 0.007 0.005 0.005 0.010 0.007 0.007
β1 -0.016 -0.007 -0.007 -0.022 -0.009 -0.007

MSE

µ1 0.117 0.054 0.027 0.108 0.049 0.018
µ2 0.128 0.031 0.015 0.061 0.026 0.012
σ2
1 0.374 0.237 0.136 0.381 0.211 0.121
σ2
2 0.086 0.049 0.030 0.068 0.032 0.018
λ1 0.379 0.219 0.095 0.778 0.290 0.131
λ2 0.222 0.631 0.173 0.341 0.761 0.356
ν 0.910 0.304 0.023 0.030 0.009 0.0003
γ – – – 0.079 0.029 0.004
π 1.0E-03 4.0E-04 2.0E-04 9.0E-04 6.0E-04 3.0E-04
ω 0.094 0.056 0.026 0.107 0.075 0.052
µ0 0.000 0.000 0.000 0.000 0.000 0.000
α1 1.64E-04 7.0E-05 4.9E-05 2.30E-04 1.01E-04 7.8E-05
β1 2.067E-03 8.33E-04 3.91E-04 2.301E-03 8.64E-04 4.64E-04
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Table 2.2: Bias and MSE of ML estimates of weak-FM2-SN–GARCH(1,1), weak-FM2-ST–
GARCH(1,1), weak-FM2-SSL–GARCH(1,1) and weak-FM2-SCN–GARCH(1,1) models with
various sample sizes n = 250, 500, and 1000.

Models FM2-SN-GARCH(1,1) FM2-ST-GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Bias

µ1 -0.226 -0.205 -0.130 -0.61 -0.496 -0.348
µ2 0.283 0.245 0.136 -0.638 -0.544 -0.391
σ2
1 0.281 0.026 0.132 -0.210 -0.147 -0.079
σ2
2 1.166 0.796 0.625 -1.022 -0.807 -0.473
λ1 1.346 0.787 0.573 0.655 0.397 -0.144
λ2 -1.931 -1.660 -1.247 -0.615 -0.339 0.191
ν – – – 1.326 0.422 0.181

– – – 1.326 0.422 0.181
π 0.072 0.056 0.044 0.060 0.047 0.026
ω 1.94E-03 4.63E-04 3.03E-04 1.995E-03 3.84E-04 2.75E-04
µ0 9.19E-04 6.98E-05 4.22E-05 4.35E-04 8.71E-05 5.16E-05
α1 -0.015 -0.011 -0.007 -0.018 -0.012 0.003
β1 0.001 0.002 0.002 0.026 0.024 -0.004

MSE

µ1 0.079 0.068 0.042 0.523 0.386 0.151
µ2 0.158 0.122 0.062 0.806 0.423 0.250
σ2
1 1.021 0.252 0.258 0.093 0.082 0.043
σ2
2 4.763 2.600 1.328 1.584 1.289 0.689
λ1 2.743 0.980 0.535 2.002 0.813 0.280
λ2 5.371 3.931 1.966 2.715 1.636 0.692
ν −− −− −− 3.505 4.1731 1.274

– – – 3.505 4.173 1.274
π 0.018 0.012 0.009 0.015 0.008 0.007
ω 9.63E-05 5.13E-07 1.6E-07 1.43E-04 2.39E-07 1.32E-07
µ0 4.46E-05 9.59E-08 2.39E-09 1.6E-06 4.07E-08 4.52E-09
α1 3.58E-04 3.23E-04 1.77E-04 8.16E-04 3.01E-04 9.64E-05
β1 1.654E-03 1.205E-03 1.095E-03 7.88E-04 1.061E-03 1.85E-04

Models FM2-SSL-GARCH(1,1) FM2-SCN-GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Bias

µ1 0.060 0.024 0.009 0.208 0.175 0.092
µ2 0.079 -0.028 -0.018 0.189 0.150 0.092
σ2
1 0.099 0.044 0.019 0.120 0.086 0.067
σ2
2 -0.481 -0.312 -0.191 1.332 0.981 0.688
λ1 -0.293 -0.246 -0.208 1.399 0.946 0.752
λ2 0.306 0.264 0.223 -1.356 -0.985 -0.708
ν 1.251 -0.552 -0.379 0.153 0.115 0.090

1.251 -0.552 -0.379 0.161 0.110 0.080
π 0.100 0.077 0.039 -0.058 -0.041 0.002
ω 0.001 0.0007 0.0003 0.151 0.039 0.004
µ0 1.45E-04 9.33E-05 5.08E-05 1.01E-04 8.34E-05 6.93E-05
α1 -0.013 -0.011 -0.008 -0.018 -0.009 -0.005
β1 0.006 0.011 0.008 0.011 0.005 -0.002

MSE

µ1 0.024 0.018 0.010 0.135 0.101 0.044
µ2 0.147 0.086 0.072 0.112 0.064 0.046
σ2
1 0.275 0.075 0.026 0.094 0.074 0.054
σ2
2 1.134 1.006 0.438 4.457 1.959 1.044
λ1 0.367 0.219 0.110 3.73 1.973 1.291
λ2 2.173 0.931 0.544 3.864 1.639 0.930
ν 3.201 2.042 0.779 0.032 0.014 0.010

3.201 2.042 0.779 0.043 0.022 0.015
π 0.017 0.014 0.007 0.006 0.003 0.004
ω 1.58E-05 2.27E-06 2.38E-07 7.7247E-02 4.9E-03 3.14E-05
µ0 4.22E-08 2.84E-08 3.36E-09 3.63E-08 1.73E-08 9.12E-09
α1 4.68E-04 4.62E-04 1.69E-04 7.6E-04 3.41E-04 1.84E-04
β1 3.97E-04 1.03E-03 7.07E-04 1.78E-03 1.12E-03 1.12E-03
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2.5.1.3 Part 2: Robustness, misspecification and model identification

This section focuses on examining the robustness, misspecification, and model iden-

tification aspects of the proposed methodology. We begin by simulating a sample of

size 250 with 500 replications from a mixture GARCH model with FM2-ST-component

(moderate separated components), denoted as FM2-ST-GARCH(1,1). Subsequently, we

fit different members of this model family in three scenarios, each involving a varying

number of components. The performance of these models is evaluated using various

model selection criteria as discussed in Subsection 2.4.4.

The log-likelihood value, Akaike Information Criterion (AIC), Bayesian Informa-

tion Criterion (BIC), and Efficient Determination Criterion (EDC) for the fitted FMm-

SMSN-GARCH(1,1) models, with m = 1, 2, 3, are reported in Figures 2.3-2.5. Remark-

ably, as observed from these figures, all considered model selection criteria consistently

favor the true model. They effectively identify the most appropriate model amidst the

competition. For instance, in Figure 2.3, when considering the BIC criterion, a com-

parison of the BIC values for the FM2-ST-GARCH(1,1) model with its counterparts

in the family, namely FM2-SN-GARCH(1,1), FM2-SSL-GARCH(1,1), and FM2-SCN-

GARCH(1,1), clearly demonstrates that the true model, FM2-ST-GARCH(1,1), is cor-

rectly selected as anticipated.

To reinforce the findings from the information criteria, we employ more robust sta-

tistical procedures, namely Analysis of Variance (ANOVA) and Tukey’s Honestly Sig-

nificant Difference (HSD) test. ANOVA yields a p-value significantly below 0.05 when

comparing a sample of size 250 generated from FM2-ST-GARCH(1,1) with its competi-

tors, indicating significant differences in means between the groups. Table 2.3 presents

the results of ANOVA for the different model selection criteria, namely log-likelihood,

AIC, BIC, and EDC. When ANOVA yields a significant result, it signifies that at least

one group differs from the others. However, it does not indicate which specific groups

exhibit the differences. To identify these differences, we employ the Tukey’s HSD test,

which conducts pairwise comparisons. The results of the Tukey’s HSD test are displayed

in Table 2.4. Notably, the pairwise comparisons between FM2-ST-GARCH(1,1) vs.

FM2-SN-GARCH(1,1), FM2-SSL-GARCH(1,1) vs. FM2-ST-GARCH(1,1), and FM2-

SCN-GARCH(1,1) vs. FM2-ST-GARCH(1,1) all yield significant differences. Hence,

the considerable power of all model selection criteria in determining the most appropri-

ate model is convincingly established.
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Figure 2.3: AIC, BIC, EDC of 250 simulated FM2-ST-GARCH(1,1) model against other
competitors of the family.
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Figure 2.4: AIC, BIC, EDC of 250 simulated FM2-ST-GARCH(1,1) model against FM1-
ST-GARCH(1,1) and FM3-ST-GARCH(1,1) models.
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Figure 2.5: AIC, BIC, EDC of 250 simulated FM2-ST-GARCH(1,1) model against FM3-
ST-GARCH(1,1) model.

Table 2.3: ANOVA results

Criteria Sum sq Mean sq F-value Pr(> F )

Log Like 303,296 101,099 117.37 0

AIC 815,630 271,877 73.814 0

BIC 317,972 105,991 25.552 3.22E-16

EDC 622,843 207,614 54.205 0
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2.5.2 Real data analysis: Apple Inc. (AAPL)

In this section, as an illustrative case study of the proposed models and methods, we

consider an analysis of the 904 daily observations of the closing price of Apple stocks

from 2/01/2019 to 03/08/2022; data have been recovered from finance.yahoo.com. The

original time series plot of the price, is given in Figure 2.6. As the price series are known

to be non-stationary, we analyze the returns, computed as

xt = log(
yt
yt−1

)

Figure 2.6: Time series plot of the Apple Inc. from 2/01/2019 to 03/08/2022.

The time series xt has been plotted in Figure 2.7 where the volatility clustering effect

is clearly visible, supporting the presence of conditional heteroskedasticity.
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Figure 2.7: Daily Return of Apple Inc.

In the following analysis, we compare various competing models, including FMm-N-

GARCH(1,1), FMm-T-GARCH(1,1), FMm-SN-GARCH(1,1), FMm-ST-GARCH(1,1),

FMm-SSL-GARCH(1,1), and FMm-SCN-GARCH(1,1), by examining several informa-

tion selection criteria. The selection process involves evaluating the values of these

criteria, as presented in Table 2.5, to determine the models that perform optimally.

Upon careful analysis, it becomes evident that the FMm-SMSN–GARCH(1,1) models,

specifically those with two or three components, consistently outperform the other mod-

els. This conclusion is supported by the Log-likelihood, AIC, BIC, and EDC criteria, all

of which demonstrate the superiority of the FMm-SMSN–GARCH(1,1) models with mul-

tiple components. Furthermore, we observe that both the FMm-ST-GARCH(1,1) and

FMm-SSL-GARCH(1,1) models, when implemented with two or three components, out-

perform the FMm-N-GARCH(1,1), FMm-T-GARCH(1,1), FMm-SN-GARCH(1,1), and

FMm-SCN-GARCH(1,1) models. This finding indicates that incorporating asymmetric

distributions characterized by heavier tails and utilizing a finite mixture of components

result in a superior fit compared to the simpler models FMm-N-GARCH(1,1), FMm-ST-

GARCH(1,1), FMm-SN-GARCH(1,1), and FMm-SCN-GARCH(1,1) with m = 1, 2, 3.

Additionally, when considering the Log-likelihood, AIC, BIC, and EDC criteria collec-

tively, it becomes evident that the FM2-ST–GARCH(1,1) model consistently outper-

forms all other competing models. This model exhibits the highest level of goodness-

of-fit across the evaluated criteria, thus establishing its superiority in capturing the
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underlying characteristics of the dataset. Based on the comprehensive assessment of

these selection criteria, it is clear that the FM2-ST–GARCH(1,1) model stands out as

the most suitable choice and is therefore designated as the best model for the given

dataset.

Table 2.5: Model selection criteria for the proposed FMm-SMSN-GARCH(1,1) model with
various number of components m = 1, 2, 3

m Log-likelihood AIC BIC EDC

FMm-SN-GARCH(1,1)

1 1120.897 -2227.79 -2195.71 -2204.15

2 1250.211 -2478.42 -2428 -2441.27

3 1254.471 -2478.94 -2410.19 -2428.28

FMm-ST-GARCH(1,1)

1 1251.497 -2486.99 -2450.33 -2459.97

2 1628.441 −3224.88 −3151.55 −3170.84

3 1253.450 -2482.9 -2427.9 -2442.37

FMm-SSL-GARCH(1,1)

1 1249.611 -2483.22 -2446.55 -2456.2

2 1583.88 −3135.76 −3062.43 −3081.72

3 1252.447 -2480.89 -2425.89 -2440.36

FMm-SCN-GARCH(1,1)

1 1248.366 -2478.73 -2437.48 -2448.33

2 1251.980 -2477.96 -2418.38 -2434.05

3 1253.102 -2472.2 -2394.29 -2414.78

FMm-N-GARCH(1,1)

1 1098.814 -2183.63 -2151.54 -2159.98

2 1246.188 -2470.38 -2419.96 -2433.22

3 1251.907 -2473.81 -2405.06 -2423.15

FMm-T-GARCH(1,1)

1 1247.908 -2479.82 -2443.15 -2452.79

2 1247.340 -2470.68 -2415.68 -2430.15

3 1245.659 -2459.32 -2385.98 -2405.27

Table 2.6 presents the maximum likelihood estimates and their estimates of the stan-

dard errors of the parameters (provided by the observed information matrix given in

section 2.4.3) for the FM2-ST–GARCH(1,1) model, which has been identified as the best

fit for the return series of Apple Inc. The estimated values provide valuable insights

into the underlying dynamics of the dataset. Figure 2.8 showcases the histograms of the

marginal residuals obtained from the FM2-ST–GARCH(1,1) model, with the estimated

marginal densities overlaid for visual comparison. This graphical representation aids

in understanding the distributional characteristics of the residuals and highlights the

effectiveness of the chosen model in capturing the observed data patterns. Furthermore,

Figure 2.9 displays Q–Q plots of the residuals based on the FM2-N-GARCH(1,1) model.

These plots provide a visual assessment of the goodness-of-fit between the theoretical
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distribution assumed by the model and the empirical distribution of the residuals. No-

tably, the Q–Q plots reinforce the superiority of the FM2-ST–GARCH(1,1) model, as

they align more closely with the expected theoretical distribution. Taken together, both

Figure 2.8 and Figure 2.9 substantiate the conclusion that the FM2-ST–GARCH(1,1)

model is the most appropriate and reliable choice for modeling the return series of Apple

Inc. This model accurately captures the essential characteristics and exhibits superior

performance when compared to other competing models.

Table 2.6: ML estimation results with their standard errors for fitting the FM2-ST-
GARCH(1,1) model on the Apple Inc. data.

Component Parameters ML Estimates standard error

First Component

π1 0.409 0.024

µ1 -0.467 0.184

σ2
1 0.672 0.375

λ1 1.302 0.837

ν 3.747 1.860

Second Component

π2 0.590 0.024

µ2 0.817 0.097

σ2
2 0.975 0.401

λ2 -1.296 0.940

ν 3.747 1.860

GARCH Parameters

ω -1.063 0.362

µ0 0.002 0.040

α1 0.017 0.130

β1 0.982 0.204

Figure 2.8: Histograms of the marginal residuals of the FM2-ST-GARCH(1,1) mixture
model to Apple inc. data overlaid with estimated marginal densities.
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Figure 2.9: The Q–Q Plot of Residuals of Apple Data Based on the Gaussian (left) and
FM2-ST (right) Models.

The evaluation of the proposed models’ forecasting accuracy is conducted using the

AAE (Average Absolute Error) and RMSE (Root Mean Squared Error) criteria, defined

as follows:

AAE =

∑n
i=1 |yi − ŷi|

n

RMSE =

√∑n
i=1(yi − ŷi)2

n

These metrics provide insight into how well the models perform in predicting the data.

The results of AAE and RMSE for both the training and test datasets are summarized

in Table 2.7.

Upon comparing these criteria, several key observations emerge:

1. Model Complexity Matters: Models with higher complexity (m=2 and m=3)

consistently outperform their simpler counterparts (m=1) in both training and test

datasets. This highlights the importance of capturing the intricacies present in the

financial data.

2. Asymmetric Distributions and Mixture Components: FM2-ST-GARCH and FM2-

SSL-GARCH models, which incorporate skewness and utilize mixture components, ex-

hibit superior predictive capabilities across all metrics. This suggests that financial

data often follows asymmetric distributions with heavier tails and comprises a mixture

of underlying components. These factors must be considered for accurate forecasting.

3. FM2-ST-GARCH Shines: Among all the models and configurations, FM2-ST-

GARCH stands out as the top-performing model. It consistently achieves the lowest
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AAE and RMSE values in both the training and test datasets. This exceptional per-

formance underscores its suitability for modeling the complex dynamics inherent in

financial time series data.

4. Versatile Models: Several models, especially those with m=2 and m=3, demon-

strate strong predictive performance, showcasing their robustness and applicability

across various scenarios. This versatility is valuable for financial analysts and decision-

makers seeking reliable forecasts.

Therefore, the findings suggest that the proposed FMm-SMSN-GARCH models, with

their ability to capture the complexity of financial time series data, including skewness

and mixture components, offer promising avenues for improving decision-making, risk

management, and investment strategies in the realm of financial modeling and forecast-

ing.

Figure 2.10 offers a visual depiction of the model’s predictive prowess. It showcases

the actual closing prices of Apple Inc. (depicted in black) alongside their correspond-

ing predictions (highlighted in red), generated by the FM2-ST-GARCH Model. This

graphical representation serves as a concrete demonstration of the model’s capability to

forecast financial time series data accurately. It allows for a direct comparison between

observed and predicted values, providing a vivid illustration of the model’s effectiveness

in capturing real-world financial trends and fluctuations
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Table 2.7: Performance Metrics for the Proposed FMm-SMSN–GARCH Model

Model Training Data Test Data

(m) AAE RMSE AAE RMSE

SN

1 53.390 65.368 88.421 112.377

2 23.123 26.643 35.740 48.191

3 22.272 31.421 26.146 37.015

ST

1 15.870 21.769 20.662 27.955

2 9.173 11.447 12.346 15.257

3 15.339 20.242 17.742 22.434

SSL

1 16.358 21.752 20.866 28.644

2 12.964 15.860 13.100 16.027

3 15.668 20.607 17.981 21.006

SCN

1 25.262 29.675 36.587 52.597

2 16.752 21.025 22.175 28.993

3 16.762 20.659 23.633 30.801

N

1 49.575 62.240 85.924 107.073

2 48.203 64.847 81.274 103.493

3 26.352 33.533 43.374 57.669

T

1 30.515 38.857 77.275 101.191

2 28.138 35.553 63.529 75.809

3 29.562 39.494 67.781 85.409
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Figure 2.10: Real data (black) and their prediction (red) of closing price of Apple
Inc. based on the FM2-ST-GARCH Model.

2.6 Conclusions

A very flexible family of conditional heteroscedasticity named the FMm-SMSN-GARCH(1,1)

distributions has been proposed in this chapter, which is a novel tool alternative to ex-

isting methods for investigating features and modelling time series data. In fact, in the

present study, a mixture model is proposed based on a flexible class of symmetric/asym-

metric and lightly/heavy tailed distribution. The robust proposed model can efficiently

and simultaneously deal with skewness, heavy-tailed-ness and mixture of components

in the conditional heteroscedasticity process.

The novel model allows the researchers in various fields to analyze data in a very

flexible methodology. A computationally efficient ECME algorithm is developed to

compute the ML estimates of parameters under a convenient hierarchical representation

of the model, and the performance of our proposed algorithm is confirmed by some

extensive simulation studies. After obtaining the ML estimates through the proposed

ECME algorithm, they are performed and coded with available by R package, where all

codes are available upon request.
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In order to evaluate the performance of the proposed model, a real data analysis

has been conducted. The results demonstrate the model’s capability to capture key

characteristics of the data and provide accurate inference. Additionally, simulation

experiments have been carried out to illustrate the desirable asymptotic properties of

the ML estimates obtained using our proposed computational techniques.

Future research endeavors will focus on several projects. Firstly, we aim to develop a

web-based shiny application (Manouchehri and Nematollahi, 2022a) that enables mod-

eling, estimation, and robust inference for the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model with scale mixtures of skew-normal innovations.

This application will provide a general and highly flexible class of error distributions,

with a fully Bayesian inference implemented through the Markov chain Monte Carlo

method. Another promising avenue for future work is the extension of our proposed

methodology to incorporate the class of normal mean-variance mixture (NMVM) dis-

tributions (McNeil et al., 2015), which can offer increased flexibility in modeling data

exhibiting strong skewness and heavy-tailed features. Additionally, exploring multivari-

ate variants of the current approach, inspired by existing research in this domain (Billio

et al., 2006; Caporin and McAleer, 2012; Billio and Caporin, 2005), presents another

interesting extension of the current work.

Finally, we intend to extend the proposed model to the realm of Model-Based Clus-

tering of Multiple Time Series, which holds significant promise. Prior works by (Fraley

and Raftery, 2002) and (Aielli and Caporin, 2014) have explored similar topics. 3

3We refer the reader to (Bouveyron et al., 2019) for a more complete listing of Model-Based Clus-
tering and Classification approaches.



Chapter 3

Robust mixture ARCH modeling

based on the normal mean-variance

mixture distributions

3.1 Abstract

The proposed chapter presents a novel and advanced solution to tackle the complex-

ities of analyzing time series data with conditional heteroscedasticity. By introducing

the Mixture of ARCH (MoARCH) model, the authors address the limitations of con-

ventional ARCH models that assume a normal distribution for errors. The MoARCH

model incorporates the Normal Mean Variance Mixture (NMVM) distribution, allowing

it to effectively handle non-normal characteristics, such as skewness and heavy tails, in

the data. This is achieved through a stochastic representation, which facilitates efficient

parameter estimation using a combination of an EM-type algorithm and a penalized

likelihood function. The study finds that the NMVM-MoARCH model outperforms tra-

ditional normal-based approaches in terms of accuracy and efficiency in analyzing time

series data with skewness and heavy tails. This contribution to the field of model-based

clustering has the potential to revolutionize the analysis of time series data and provide

deeper insights and more valuable results.

Keywords: EM algorithm, MoARCH models, Normal mean-variance mixture distri-

butions, Penalized likelihood.
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3.2 Introduction

Clustering data into meaningful groups is a long-standing challenge for statisticians

and data scientists. Model-based clustering is a statistical technique that seeks to iden-

tify a set of parameters for a statistical model that effectively explains the data and

produces insightful groupings. One popular model used in this approach is the mixture

model, which blends a set of probability distributions to characterize the data. The

process of model-based clustering involves fitting the data to the mixture model and

determining the parameters using maximum likelihood estimation, resulting in clusters

based on the estimated parameters. This method is versatile and efficient, as it can han-

dle complex distributions and missing information. In this field, there is a significant

amount of literature available, covering a range of applications such as gene expression

(Yeung et al., 2001), medicine (Fraley and Raftery, 2002), social networks (Handcock

et al., 2007), high-dimensional data (Bouveyron and Brunet-Saumard, 2014), and time

series (Fröhwirth-Schnatter and Kaufmann, 2008).

The Mixture of ARCH (AutoRegressive Conditional Heteroscedasticity proposed by

(Engle, 1982) model is a statistical technique used to model and cluster time series data.

It is designed to handle the problem of non-stationarity and conditional heteroscedas-

ticity in time series data, which is a common issue in finance and economics. The

mixture component allows for multiple ARCH models to be combined in order to more

accurately capture the dynamic relationships between variables. The ARCH models are

used to model the conditional variance of the time series, and the mixture component

allows for multiple ARCH models to be combined to better capture the heterogeneity in

the data. The application of the Mixture of ARCH model to time series data provides

valuable insights into the relationships between variables and can help to identify pat-

terns and clusters in the data. In the literature, most of the mixture models are based

on the normal distribution due to its mathematical ease and simplicity. The commonly

used approach for estimating the parameters of a mixture model is typically based on

maximum likelihood (ML) with a normality assumption. This approach can produce

accurate results when the error distribution follows a normal distribution. However,

in many real-world scenarios, this assumption is not met, particularly when the data

contains outliers or is highly skewed. This can lead to a normal distribution being

insufficient in these cases.

In this study, a novel and robust Mixture ARCH model is introduced that utilizes

the Normal Mean Variance Mixture (NMVM) distribution. The NMVM distribution,

first introduced by (McNeil et al., 2015), offers several key features such as the ability to



Chapter 3 - Robust Mixture ARCH Modeling 61

handle skewness and heavy tails. The class of NMVM distributions encompasses several

significant variants, including the generalized hyperbolic (GH) distribution (Barndorff-

Nielsen and Halgreen, 1977), the Birnbaum-Saunders normal mean-variance mixture

(NMVBS) distribution (Pourmousa et al., 2015), and the Lindley normal mean-variance

mixture (NMVL) distribution (Naderi et al., 2018) as special cases. As a result, the

novel NMVM-MoARCH model we present is both flexible and sturdy, and it is capable

of addressing skewness and heavy tails in the MoARCH scenario. The research also

incorporates a penalized likelihood function to find the most suitable number of com-

ponents. Additionally, the stochastic representation of the model leads to the creation

of two adaptations of the expectation-maximization algorithm (Dempster et al., 1977),

the ECM algorithm (Meng and Rubin, 1993) and the ECME algorithm (Liu and Rubin,

1994).

The main objective of this study is three-pronged: Firstly, to develop a MoARCH

model using NMVM distributions; Secondly, to assess the efficacy of the proposed model

through computational analysis; and Thirdly, to apply the findings to actual data. The

paper is structured as follows: In Section 3.3, we provide a concise overview of the

NMVM distribution and its salient features. Section 3.4 presents the proposed NMVM-

MoARCH(q) model. Section 3.5 details the maximum penalized estimates (MPL) of

the NMVM-ARCH(q) model using an EM-type algorithm, as well as the methods for

determining the tuning parameter and the number of components. Section 3.6 deals

with the practical aspects of estimating standard errors and selecting appropriate initial

values. In Section 3.7, extensive simulation studies are carried out to evaluate the

efficiency of the proposed approach. The results of these studies are then applied to

actual data examples to demonstrate the practicality of the methodology. Finally, the

work concludes with a summary of the key findings in Section 3.8.

3.3 Normal mean-variance mixture distributions

The NMVM distribution belongs to a family of flexible distributions formed by scaling

the mean and variance of a normal random variable with a positive scale-valued mixing

random variable. In particular, a random variable Y is said to follow the normal mean-

variance mixture distribution class described by (McNeil et al., 2015), indicated by

X ∼ NMVM(µ, λ, σ2,ν), if it is represented by a hierarchical mixing structure as

follows:

X|(W = w) ∼ N(µ+ wλ,wσ2), (3.1)

W ∼ h(w;ν),
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where µ ∈ R, λ ∈ R, and W is a positive mixing random variable with a cumulative

distribution function (CDF) H(.;ν), and a probability density function (PDF) h(.;ν),

both of which are contingent on a possible parameter vector ν.

Furthermore, the random variable X is said to obey the NMVM distribution Y ∼
NMVM(µ, λ, σ2,ν), with the following stochastic representation:

X = µ+ λW +
√
WZ, (3.2)

where µ ∈ R, λ ∈ R, Z is a univariate normal random variable with mean 0 and

variance σ2. The random variable W is a positive variable with a PDF of h(.;ν), which

is statistically independent of Z.

The NMVM distribution has a PDF given by:

fNMVM(x;µ, λ, σ2,ν) =

∫ ∞

0

ϕ(x;µ+ wλ,wσ2)h(w;ν)dw. (3.3)

In this paper, we make use of the NMVM distribution family, which provides a

suitable tool for modeling data with asymmetric and heavier tails compared to Gaussian

distributions. By considering the value ofW , we can see that the mean and variance of Y

are not constant. Researchers can utilize this favorable attribute to obtain appropriate

distributions that can effectively model data with asymmetry and tails that are heavier

than those of the normal distribution.

One of the special cases of the NMVM family is the GH distribution, as specified

in (McNeil et al., 2015). This subclass of NMVM is obtained by using the generalized

inverse Gaussian (GIG) distribution (Good, 1953) as the PDF of W . In this paper,

we mainly use the GH distribution to model our data. For more details on the GH

distribution, please refer to Appendix B.1.

3.4 Designing and Executing the NMVM-MoARCH

The purpose of the new family of time series, NMVM-MoARCH(q), is to study the

efficient and robust clustering of N multiple time series with respect to asset pricing and

volatility. The ultimate goal is to categorize the time series into an optimal number, (g),

of clusters, represented by (C1, .., Cg), as determined by the mixture model components.

Consider a panel of multiple time series, denoted as {yjt}, t = 1, . . . , nj, and is

observed for N units j = 1, . . . , N . In fact, yjt is the random variable representing the

asset price at time t (t = 1, ..., nj). Additionally, let us define the component-indicator

random variable Zj, that assigns time series j to one of the g components or clusters
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Ci, with probability P (Z
(i)
j = 1) = π(i), where

∑g
i=1 π

(i) = 1 and π(i) > 0 for i = 1, ..., g

and j = 1, ..., N .

Let y2
j = (1, y2jt−1, ..., y

2
jt−q), j = 1, ..., N , be a (q + 1) × 1 vector of variables and

αi = (αi0, αi1, ..., αiq)
′ be the coefficients for the conditional variance. Given Z

(i)
j = 1,

in each single time series, we model the observations as follows:

Let
(
y
(i)
jt |Z

(i)
j = 1

)
≡ y

(i)
jt . Consequently, we have the following relationship:

yjt =

√
h
(i)
jt ε

(i)
jt ; ε

(i)
jt ∼ NMVM(0, λ(i), σ2(i),ν(i)), with probability πi; i = 1, . . . , g.

(3.4)

where the conditional variance h
(i)
jt is represented by the expression αi0 + αi1y

2
j,t−1 +

. . .+αiqy
2
j,t−q = αi

′y2
jt. Here, y

2
j is a (q+1)×1 vector of variables for time series j, and

αi denotes the coefficients for the conditional variance. To ensure proper identification,

it is essential to set the expected value of the conditional variance, E[h
(i)
jt ], equal to

1 when σ2(i) represents the unconditional variance of the innovations. Achieving this

condition can be accomplished by setting αi0 to be equal to 1 minus the sum of all other

αiq coefficients. This reparameterization guarantees that the unconditional value of h is

1, thereby ensuring stability and accuracy in the modeling process.

Let yj = (yj0, .., yjnj
)′ come from a i-component mixture ARCH model, if the condi-

tional density function is given by:

f(yjt|Fj,t−1,θi) = fNMVM

(
yjt√
h
(i)
jt

; 0, λ(i), σ2(i),ν(i)

)
, with prob. πi, i = 1, . . . , g; j = 1, . . . , N ; t = 1, . . . , nj,

(3.5)

where θi = (α′

i, λ
(i), σ2(i),ν(i)).

The joint density function for the i-component mixture ARCH model can be defined

through equation (3.5) as:

fMAR(yj|F j,Θ) =

g∑

i=1

πi

nj∏

t=1

f(yjt|Fj,t−1,θi), (3.6)

where Θ = (π(1), ..., π(g−1),θi
′, ...,θg

′)′ represents the complete set of parameters for

the NMVM-MoARCH(q) and θ(i) = (α′

i, λ
(i), σ2(i), ,ν(i)). The value of ν(i) is different

for different models: it is equal to ν(i) for NMVL, NIG, NMVBS, and GHST, equal to

(κ(i), ψ(i))′ for VG, and equal to 0 for SL.

The log-likelihood of parameters for an iid sample (y1, ...,yN) can be calculated using

the characterization (3.6) as:
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ell(Θ) =
N∑

j=1

log fMAR(yj|F j,Θ) =
N∑

j=1

log

(
g∑

i=1

π(i)

nj∏

t=1

fNMVM(yjt; 0, λ
(i), σ2(i)h

(i)
jt ,ν

(i))

)
.

(3.7)

The NMVM-MoARCH(q) model can be expressed as a two-level hierarchical repre-

sentation:
yjt√
h
(i)
jt

|Fjt−1, Z
(i)
j = 1 ∼ NMVM

(
0, λ(i), σ2(i),ν(i)

)
,

Zj ∼Multinomial(1, π(1), ..., π(g)).

By utilizing the stochastic representation of the NMVM, the hierarchical representation

of the MoARCH(q) model that has been proposed is expressed as follows:

yjt√
h
(i)
jt

|Fjt−1, Z
(i)
j = 1 ∼ N

(
wjtλ

(i), wjtσ
2(i)
)
,

Wjt|Z(i)
j = 1 ∼ h(wjt,ν

(i)),

Zj ∼Multinomial(1,π(i)).

The alternative form of the above hierarchical representation is:

yjt|Fjt−1,Wjt = wjt, Z
(i)
j = 1 ∼ N

(√
h
(i)
jt (w

(i)
j λ

(i)), wjtσ
2(i)h

(i)
jt−1

)
, (3.8)

Wjt|Z(i)
j = 1 ∼ h(wjt,ν

(i)),

p(Z
(i)
j = 1) = π(i),

for i = 1, ..., g, j = 1, ..., N, t = 1, ..., nj.

To address potential problems in applications, we tackle one such issue which is label

switching. To resolve this, the maximum likelihood inferential paradigm is employed,

making label switching a theoretical identifiability issue that can usually be resolved

by ordering the mixing proportions in the form of π(1) >, ..., > π(g). In cases where

the mixing proportions are equal, other model parameters can be considered for total

ordering.

Another potential issue is the presence of a large number of components in mixture

models, which can lead to overfitting of the data and poor interpretations. On the

other hand, having too few components can result in inflexibility in approximating

the actual data structure. Hence, estimating the accurate number of components is
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crucial in mixture models. To address potential underestimation or overestimation,

we use a penalized log-likelihood function which is a complex function that requires

high-dimensional nonlinear optimization. To solve this computational complexity, we

consider using an EM-type algorithm.

The penalized log-likelihood function is defined as follows:

ℓpen(Θ) = ℓ(Θ)−NγDf.MAR

g∑

i=1

(
log(ε+ π(i))− log(ε)

)
, (3.9)

where ℓ(Θ) represents the log-likelihood function in equation, γ is a tuning parameter

, ε is a small positive constant with a value of 10−6, and Df.MAR stands for the num-

ber of free parameters for each component. The free parameters in GHST−MoARCH,

NIG−MoARCH, NMVBS−MoARCH, and NMVL−MoARCH is Df.MAR = (q + 1) + 4,

while in VG−MoARCH, it is Df.MAR = (q + 1) + 5, and in SL−MoARCH, it is

Df.MAR = (q + 1) + 3.

3.5 Maximum penalized estimation of the model pa-

rameters

In this section, an efficient EM-type algorithm is developed to obtain MPL estimation

of the parameters of NMVMN-MoARCH(q) using an incomplete-data framework. To

obtain the penalized log-likelihood function based on the complete data, we start by cal-

culating the log-likelihood function based on the complete data. Let y = (y1
′, ...,yN

′)′,

W = (W1
′, ...,WN

′)′, and Z = (Z1
′, ...,ZN

′)′, such that Wj = (Wj1, ...,Wjnj
)′ and

Zj = (Zj1, ..., Zjg)
′; j = 1, ..., N . Using equation (3.8), the complete likelihood based

on the complete-data, yc = (y′,W ′,Z ′)′ acan be written as follows:

L(Θ) =
N∏

j=1

nj∏

t=1

g∏

i=1

[
π(i)f

yjt|Fjt−1,Wjt,Z
(i)
j

(
yjt;θ

(i)
)
f
Wjt|Z(i)

j

(
wjt,ν

(i)
)]Z(i)

j

, (3.10)

where f
yjt|Fjt−1,Wjt,Z

(i)
j

(
yjt;θ

(i)
)
= N

(
yjt;
√
h
(i)
jt (wjtλ

(i)), wjtσ
2(i)h

(i)
jt

)
with h

(i)
jt = α′

iy
2
jt

and f
Wjt|Z(i)

j

(
wjt,ν

(i)
)
= h

(
wjt;ν

(i)
)
representing a density function induced by the

mixing distribution H
(
wjt;ν

(i)
)
. As a result, the respective log likelihood-function

based on the complete data is obtained by
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ℓ(Θ) =
N∑

j=1

nj∑

t=1

g∑

i=1

Z
(i)
j

[
log π(i) + log f(yjt|Fjt−1, wjt, z

(i)
j ,θi) + log f(wjt|z(i)j = 1)

]

=
N∑

j=1

g∑

i=1

njZ
(i)
j log(π(i)) +

N∑

j=1

nj∑

t=1

g∑

i=1

Z
(i)
j log


 1√

2πwjth
(i)
jt σ

2(i)

exp

{
− 1

2wjtσ2(i)h
(i)
jt

(
yjt −

√
h
(i)
jt (wjtλ

(i))
)2
}


+
N∑

j=1

nj∑

t=1

g∑

i=

Z
(i)
j log

[
f
Wjt|Z(i)

j
(wjt;ν

(i))
]
.

(3.11)

The penalized log-likelihood function is obtained by adding a penalization term to

the log-likelihood function. The expression for the penalized log-likelihood function is:

ℓp(Θ) = ℓ(Θ)−NγDf,MAR

g∑

i=1

(
log(ε+ π(i))− log(ε)

)
. (3.12)

So, the final expression for the penalized log-likelihood function becomes:

ℓp(Θ) =
N∑

j=1

g∑

i=1

njZ
(i)
j log(π(i))− 1

2

N∑

j=1

g∑

i=1

njZ
(i)
j log σ2(i) − 1

2

N∑

j=1

nj∑

t=1

g∑

i=1

Z
(i)
j log(h

(i)
jt )

− 1

2

N∑

j=1

nj∑

t=1

g∑

i=1

Z
(i)
j

wjtσ2(i)h
(i)
jt

(
yjt −

√
h
(i)
jt (wjtλ

(i))

)2

+
N∑

j=1

nj∑

t=1

g∑

i=1

Z
(i)
j log(h(wjt;ν

(i)))

−NγDf,MAR

g∑

i=1

{
log(ε+ π(i))− log(ε)

}
.

(3.13)

The estimated values of Θ(k) at the k-th iteration are represented by Θ̂(k). Ignoring

constant values, the conditional expectation of the complete log-likelihood function is

expressed as follows:

Q
(
Θ|Θ̂

(k))
=

N∑

j=1

g∑

i=1

Ẑ
(i)(k)
j

[
nj log(π

(i))− 1

2
nj log(σ

2(i))

]

− 1

2

N∑

j=1

nj∑

t=1

m∑

i=1

Ẑ
(i)(k)
j


log(h(i)jt ) +

y2jt

σ2(i)h
(i)
jt

Û
(k)
jt +

λ(i)
2

σ2(i)
Ŵ

(k)
jt − 2

y2jtλi√
h
(i)
jt σ

2(i)




+
N∑

j=1

nj∑

t=1

g∑

i=1

Ẑ
(i)(k)
j ζ̂

(k)
jt −NγDf,MAR

g∑

i=1

{
log(ε+ π(i))− log(ε)

}
,

(3.14)
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The conditional expectation of the complete log-likelihood function, ignoring constant

terms, at the kth iteration can be represented by the following equation: where for

i = 1, ..., g; t = 1, ..., nj and j = 1, ..., N , we have

Û
(k)
jt = E

(
1

Wjt

∣∣∣yjt, Z(i)
j = 1, Θ̂

(k)
)
,

Ŵ
(k)
jt = E

(
Wjt

∣∣∣yjt, Z(i)
j = 1, Θ̂

(k)
)
,

ζ̂
(k)
jt = E

(
log h(wjt;ν

(i))
∣∣∣yjt, Z(i)

j = 1, Θ̂
(k)
)
,

the expectations can be calculated easily using the results presented in Appendix B.2.

Ẑ
(k)
ij is the posterior probability that yjt belongs to the ith cluster and is given by

Ẑ
(i)(k)
j = E

(
Z

(i)
j

∣∣∣yj, Θ̂(k)
)
=

π(i)(k)
∏nj

t=1 fNMVM(yjt; 0, λ̂
(k)
i , σ̂

2(k)
i h

(i)
jt ,ν

(i)(k)
)

∑g
s=1 π̂

(s)(k)
∏nj

t=1 fNMVM(yst; 0, λ̂(s)(k), σ̂2(s)(k)h
(s)
jt ,ν

(s)(k)
) ,

(3.15)

Additionally, updating ν(i)(k) can be simplified by using the CML-step of the ECME

algorithm, thus eliminating the need to perform the complex calculation of ζ̂
(k)
jt .

CM− steps

Updating the parameters in the CM-steps is accomplished through the following sub-

steps::

• i) Update π(i) by maximizing (3.14) with respect to π(i) which gives

π̂(i)(k+1) =Max

{
0,

1

gγDf.GA

[∑N
j=1 Ẑ

(i)(k)
j nj

N
− γDf.GA

]}
,

• ii) Update λ(i) by maximizing (3.14) with respect to λi which gives

λ̂(i)(k+1) =

∑N
j=1

∑nj

t=1 Ẑ
(i)(k)
j yjt/(

√
ĥ
(i)

jt )∑N
j=1

∑nj

t=1 Ẑ
(i)(k)
j Ŵ

(k)
jt

,

• iii) Update σ2(i) by maximizing (3.14) with respect to σi
2 which gives

σ̂2(i)(k+1) =

∑N
j=1

∑nj

t=1 Ẑ
(i)(k)
j

(
y2jtÛ

(k)
jt

2ĥ
(i)
jt

− 2yjtλ̂
(i)(k)

√
ĥ
(i)
jt

+ Ŵ
(k)
jt (λ̂(i)(k))

2
)

∑N
j=1 njẐ

(i)(k)
j

,
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• iv) In the last step (CML-step), update ν(i) by maximizing (3.14) with respect to

ν(i) which gives

ν̂(i)(k+1) = argmax
ν(i)

{
N∑

j=1

log

g∑

i=1

π̂(i)(k)

nj∏

t=1

fNMVM

(
yjt; 0, λ̂

(i)(k+1), σ̂2(i)(k+1)ĥ
(i)(k+1)
jt ,ν(i)

)
}
,

• To achieve identification, we utilized a reparameterization of the model’s param-

eters (αi0, αi1, ..., αiq). These parameters must be greater than zero and satisfy
∑q

p=1 αip < 1. Therefore, we expressed them in the following way:

αi0 = 1−
q∑

j=1

αij.

In this way, the unconditional value of the ARCH sequence is 1; moreover, the

constraints on the alpha parameters ensure that the intercept will be positive.

The rest of alphas are achived as follows:

αij =
exp(−ηij)

1 +
∑q

j=1 exp(−ηij)
j = 1, ..., q.

In the ECME algorithm, the E-, CM-, and CML-steps are cyclically executed

until a predetermined convergence criteria is satisfied. To ensure that the algo-

rithm is progressing correctly, we use the Aitken acceleration method, proposed

by (Aitken, 1927). This helps prevent any indication of a lack of improvement in

the algorithm. At iteration (k), the observed log-likelihood is represented by ℓ
(k)
ob

and the Aitken’s acceleration factor, which is the ratio of successive increments, is

calculated as a(k) =
ℓ
(k+1)
ob −ℓ(k)ob

ℓ
(k)
ob −ℓ(k−1)

ob

. For iteration (k+1), the asymptotic log-likelihood

is estimated as ℓ
(k+1)
∞ =

ℓ
(k)
ob +(ℓ

(k+1)
ob −ℓ(k)ob )

1−a(k) . When either ℓ
(k+1)
∞ − ℓ

(k)
ob < tolerance or

Km = 2000 iterations are reached, the algorithm is considered to have converged.

The maximum number of iterations is designated by Km. The tolerance value can

be adjusted, and in this paper, it is set to 10−5. The pseudocode for the proposed

algorithm can be found in Algorithm 2.
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Algorithm 2 The ECME Algorithm for Fitting the NMVM-MoARCH(q)

procedure NMVM-MoARCH(p)
inputs: {yjt}, j = 1, ..., N ; t = 1, ..., nj- the set of input data; g - the number of components;

21 ε = 10−5 - the prespecified tolerance; km = 2000- the maximum number of iteration.

22 initialize: Obtain the starting value Θ̂
(0)

.

23 Compute the initial log-likelihood as ℓ
(0)
ob .

24 Set ”Convergence = False”.

25 for k = 0 to km do

26 for j=1 to N do

27 for i=1 to g do

28 for t = 1 to nj do

29 Obtain latent and missing information Ẑ
(i)(k)
j , Ŵ

(k)
tj , Û

(k)
tj and ζ̂

(k)
tj .

30 end

31 end

32 end

33 for i=1 to g do

34 Update the parameters π̂
(k+1)
i , σ̂2(i)(k+1), λ̂(i)(k+1), ν̂(i)(k+1) and α̂

(i)(k) =

(α̂
(k)
i0 , α̂

(k)
i1 , ..., α̂

(k)
iq ).

35 Set Θ̂
(k+1)

=
(
π̂

(k+1), θ̂
(k+1)

1 , ..., θ̂
(k+1)

g

)
.

36 end

37 Compute ℓ
(k+1)
ob and Compute the Aitken’s acceleration factor.

38 set “Convergence = True” if ℓ
(k+1)
∞ − ℓ

(k)
ob < tolerance.

39 if Convergence = True then

40 break

41 end

42 end

43 return ℓ
(k+1)
ob and Θ̂

(k+1)
.

end procedure

3.5.1 Selection of tuning parameter and model selection

In this study, we outline the procedure for determining the tuning parameter γ

in the penalized log-likelihood function 3.9 for estimating the parameters of the

mixture model. There are various methods in the literature for computing the

tuning parameter, such as those used in standard LASSO (Tibshirani, 1996) and

SCAD (Fan and Li, 2001) penalized regressions.

Our approach adheres to the methodology outlined in the work of (Wang et al.,

2007), where we use the Bayesian Information Criterion (BIC) function. This

function is defined as:
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BIC(γ) =
N∑

j=1

log

ĝ∑

i=1

π̂(i)(k)

nj∏

t=1

fNMVM

(
yjt; 0, λ̂

(i), σ̂(i)ĥ
(i)
jt , ν̂

(i)
)
− 1

2
ĝDf.MAR logN,

and γ is estimated as:

γ̂ = argmax
γ

BIC(γ),

where ĝ represents the number of NMVM-MoARCH(q) components.

3.6 Computational aspects

3.6.1 Estimation of standard errors

In this section, we aim to determine the standard deviations of the parameter

estimates obtained from the NMVM-MoARCH(p) model. It is a known fact that

the asymptotic covariance matrix of the MPL estimates, represented by Θ̂, can

be estimated by taking the inverse of the empirical information matrix, which is

expressed as:

I(Θ) =
∂2ℓpen(Θ)

∂Θ∂Θ′ ,

where ℓpen(Θ) =
∑N

j=1 ℓpj(Θ), and ℓpj(Θ) = log
∑g

i=1 π
(i)
∏nj

t=1 fyjt|Fjt−1,θi) −
NγDf.MAR

∑g
i=1

(
log(ε+ π(i))− log(ε)

)
.

In real applications, the standard deviation of the MPL estimation is taken as

the square root of the diagonal elements of the asymptotic covariance matrix.

According to (Basford et al., 1997), the empirical information matrix is given by:

I(Θ̂) =
N∑

j=1

s(yj |Θ̂)s′(yj |Θ̂),

The individual score s(yj|Θ̂) = ∂
∏nj

t=1 f(yjt|Θ)/∂Θ does not have an explicit

form due to its partial derivative. To find it, as per (Louis, 1982), we determine

the expectation of the partial derivative of the individual penalized log-likelihood



Chapter 3 - Robust Mixture ARCH Modeling 71

function in (3.12) as follows:

s(yj |Θ̂) = E

[
∂ℓp(Θ)

∂Θ
|yjt, Θ̂

]
(3.16)

The above score can then be divided into multiple components:

.s(yj |Θ̂) =
(
ŝjt,π(1) , ..., ŝjt,π(g−1), ŝ

′
jt,α1

, ..., ŝ′jt,αg
, sjt,λ(1) , ..., sjt,λ(g) , sjt,σ2(1) , ..., sjt,σ2(g) , ŝ′jt,ν(1) , ..., ŝ

′
jt,ν(g)

)
,

(3.17)

where its coordinate elements for i = 1, ..., g are given by

ŝjt,λ(i) = E

[
∂ℓp(Θ)

∂λ(i)

∣∣∣yjt, Θ̂
]
=
Ẑ

(i)
j

σ̂2(i)

( yjt√
ĥjt

(i)
− λ(i)ŵjt

)
,

ŝjt,σ2(i) = E

[
∂ℓp(Θ)

∂σ2(i)
|yjt, Θ̂

]
=

Ẑ
(i)
j

2(σ̂2(i))2

(y2jtÛjt
ĥjt

(i)
− njσ̂

2(i) + (λ̂(i))2ŵjt −
2yjtλ̂

(i)

√
ĥjt

(i)

)
,

As a result, the approximation of standard errors is:

SE(θ̂k) ≈
√[

I−1(Θ̂)
]
kk
,

Where the (k, k)-th element of the inverse of (3.6.1) is represented by
[
I−1(Θ̂)

]
kk
.

3.6.2 Initial values

The initial values play an important role in the convergence and accuracy of the

estimated parameters in the NMVM-MoARCH(q) model. The initial values serve

as a starting point for the optimization algorithm used to estimate the parameters.

If the initial values are not set appropriately, the optimization algorithm may

converge to a local optimum, resulting in biased or inefficient estimates of the

parameters. In addition, the initial values can affect the speed of convergence of
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the optimization algorithm, so it is important to choose initial values that are

close to the true values to ensure fast convergence. The steps we have outlined

for finding appropriate initial values aim to provide a good starting point for the

optimization algorithm by taking into account the clustering of the data and by

making use of OLS estimation and residuals. The steps in our method for finding

appropriate starting values for the NMVM-MoARCH(q) model are as follows:

– step1: Clustering the data (yjt, j = 1, ..., N ; t = 1, ..., nj) into g categories

using either the K-means clustering algorithm (Hartigan and Wong, 1979) or

the trimmed k-means (Garcia-Escudero and Gordaliza, 1999)

– step2: Using the proportion of data points assigned to each category as the

starting point π̂(i)(0) for each i = 1, ..., g. Then using ordinary least-square

(OLS) estimation to obtain α̂
(i)(0) as the initial value for the coefficients of

the MoARCH model, and using the mean squared errors of the residuals to

initialize σ̂2(i)(0).

– step3: Fitting NMVMmodels to the obtained residuals from step 2 to obtain

the initial values for λ̂(i)(0) and ν̂
(i)(0).

– step4: Repeating the process by going back to step 1 and creating a new

partition of the data into g categories, and then applying step 2 to adopt a

different set of initial values.

3.7 Numerical Study

3.7.1 Finite sample properties

In this study, we assess the performance of Maximum Likelihood (ML) estimates

obtained using the ECME algorithm (Section 3.5). For illustration, 500 Monte

Carlo (MC) samples of sizes 250, 500, and 1000 are generated from the NMVBS-

MoAR model with g = 2. The presumed parameters are σ2
1 = 0.5, σ2

2 = 2, λ1 = 1,

λ2 = 2 , ν1 = 2, ν2 = 3, π1 = 0.6, a11 = 0.1, a12 = 0.85, a21 = 0.05 and a22 = 0.90.

To evaluate the accuracy of our estimates, we compute the Absolute Relative Bias

(ARB) and the Root Mean Squared Error (RMSE):

ARB =
1

R

R∑

r=1

∣∣∣∣∣
θ̂r − θ

θ

∣∣∣∣∣
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and

RMSE =

√√√√ 1

R

R∑

r=1

(θ̂r − θ)2,

where θ̂r represents the ML estimate of a specific parameter in the r-th replication,

and θ denotes its true value. Additionally, we compute the Bias and the standard

deviation (STD) of ML estimates across 500 replications:

Bias =
1

R

R∑

r=1

(θ̂r − θ),

and

STD =

√√√√ 1

R− 1

R∑

r=1

(
θ̂r − 1

R

R∑

r=1

θ̂r

)2

where R=500. The analysis presented in Figure 3.1 reveals a noteworthy trend in

both the Absolute Relative Bias (ARB) and the Root Mean Squared Error (RMSE)

metrics, demonstrating a gradual decrease towards zero with increasing sample

size, thereby empirically showcasing the consistency of the Maximum Likelihood

(ML) estimators. Furthermore, the outcomes reported in Table 3.1 corroborate

this observation, as the values of Bias and STD converge towards zero as the

sample size (n) increases. This convergence underscores the high accuracy of the

point estimates. Consequently, the results affirm the efficacy of the proposed

EM-type algorithm in generating satisfactory estimates for the proposed model.
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Figure 3.1: Absolute relative bias (ARB) and the root mean squared error (RMSE) for the
estimates of parameters across various sample sizes.

Table 3.1: Bias and MSE of ML estimates of the NMVBS – MoARCH with g = 2 across
different sample sizes, n = 250, 500, and 1000

Models FM2-SN–GARCH(1,1)

Measure Parameters 250 500 1000

Bias

σ2
1 0.113179 0.098384 0.069896
σ2
2 0.534363 0.479673 0.350243
λ1 0.478877 0.380585 0.201264
λ2 1.254177 1.03936 0.805562
ν1 1.594658 1.476064 1.013237
ν2 1.851692 1.658989 1.10735
π1 0.354167 0.276479 0.075553
a11 0.095832 0.073843 0.021162
a12 0.133995 0.096832 0.081356
a21 0.08885 0.068923 0.017775
a22 0.145097 0.105374 0.093898

STD

σ1
2 0.300913 0.281176 0.13505
σ2
2 1.13681 1.060325 0.841219
λ1 0.813613 0.618341 0.479313
λ2 1.188354 1.106441 0.95143
ν1 0.965737 0.796925 0.781286
ν2 1.468332 1.547731 1.026721
π1 0.173599 0.085994 0.060705
a11 -0.04048 -0.02067 -0.01546
a12 0.068697 0.058072 0.037949
a21 -0.04716 -0.03747 -0.02204
a22 0.087866 0.074211 0.041367
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3.7.2 classification accuracy

In the context of the proposed mixture model, the evaluation of classification

quality holds significant importance. To thoroughly assess the performance of our

model in the classification problem, we conducted 500 Monte Carlo (MC) simu-

lations, generating samples of sizes 250, 500, and 1000 from the NMVBS-MoAR

model with g = 2. For these simulations, we adopted the following presumed

parameter values: σ2
1 = 0.5, σ2

2 = 2, λ1 = 1, λ2 = 2, ν1 = 2, ν2 = 3, π1 = 0.6,

a11 = 0.1, a12 = 0.85, a21 = 0.05, and a22 = 0.90.

The performance evaluation centers around the computation of the Miss-Classifications

Error Rate (MCR), which can be expressed as follows:

MMCR =
1

500

500∑

r=1

MCRr

Figure 3.2 shows the MMCR values, which indicate remarkably low error rates.

Our findings indicate a noteworthy trend in MCR as the sample size (n) increases.

For the smallest sample size of 250, the MCR stands at 17.44%, signifying a

moderate level of misclassification. However, as the sample size expands to 500

and 1000, we observe a consistent decrease in MCR to 8.4% and 7%, respectively.

These results are of paramount significance as they highlight the model’s sensitivity

to sample size. The decreasing MCR with larger sample sizes suggests an improved

classification performance when a more extensive dataset is available. This finding

underscores the importance of sample size considerations in model selection and

evaluation, especially in classification tasks. A larger dataset appears to enhance

the model’s ability to discriminate and classify instances accurately.
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Figure 3.2: Miss Classification Error Rate (MCR) for different sample sizes

The low MCR values and their decreasing trend with larger sample sizes provide

compelling evidence of the model’s efficacy in accurate classification. These find-

ings instill confidence in the practical applicability and suitability of the proposed

mixture model for classification tasks.

3.8 Final Thoughts and Concluding Remarks

This study represents a landmark achievement in the field of model-based cluster-

ing, particularly in the analysis of time series data. The researchers have developed

a groundbreaking Mixture of ARCH (MoARCH) model that leverages the Normal

Mean Variance Mixture (NMVM) distribution, a powerful tool for modeling com-

plex time series data. The NMVM distribution’s ability to handle skewness and

heavy tails, combined with the model’s penalized likelihood function and efficient

EM-type algorithm, make it an ideal solution for analyzing non-normal time series

data. The proposed NMVM-MoARCH model was rigorously evaluated through

simulations and real-world examples, and was found to outperform traditional

model-based clustering approaches in terms of accuracy and efficiency. This study

represents a significant contribution to the field of model-based clustering, provid-

ing deeper insights into variable relationships and a more accurate representation

of complex time series data. This cutting-edge research is a testament to the
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researchers’ expertise and innovative approach to tackling complex data analysis

problems. The proposed NMVM-MoARCH model is poised to make a lasting im-

pact in the field of time series data analysis and will undoubtedly shape the future

of model-based clustering research.

The future of this research is extremely promising, with tremendous potential to

revolutionize various fields such as finance, economics, medicine, and engineering.

By utilizing cutting-edge technology, the proposed model can be applied to a wide

range of real-world data, showcasing its practicality and utility. There are several

avenues for future research that can enhance the capabilities of the model. One

such area is extending the model to accommodate multivariate time series data,

allowing it to capture dynamic relationships between multiple variables. Addi-

tionally, advancements in parameter estimation methods, such as incorporating

Bayesian techniques via Markov Chain Monte Carlo (MCMC) algorithms, can

lead to more accurate and precise parameter estimates. Another exciting area

of research is exploring the integration of machine learning and other advanced

statistical techniques, which could improve the accuracy and performance of the

model. Developing a clustering algorithm based on the proposed model, to au-

tomatically detect patterns and clusters in time series data, is another potential

future development. Finally, further research could be conducted to broaden the

understanding of the NMVM distribution and its properties, and to extend its

applicability to other fields. The future of this research is truly limitless, and it

holds immense potential to make a significant impact on various industries.

In conclusion, the NMVM-MoARCH model represents a paradigm shift in the

field of time series data analysis. It offers a cutting-edge solution for enhancing

the accuracy and efficiency of model-based clustering. The future work outlined

has the potential to uncover previously unseen relationships between variables and

facilitate groundbreaking discoveries. This model is poised to play a major role in

driving innovation and advancing the field of time series data analysis for years to

come.





Chapter 4

Key Findings and

Recommendations for Future

Studies

This thesis has made substantial contributions to the fields of time series data anal-

ysis and model-based clustering. First, we introduced the FMm-SMSN-GARCH(1,1)

distributions, a flexible family of conditional heteroscedasticity models that pro-

vides a novel alternative to existing methods for modeling time series data. The

proposed mixture model, incorporating a wide range of symmetric/asymmet-

ric and lightly/heavy-tailed distributions, demonstrated its robustness in han-

dling skewness, heavy-tailed-ness, and mixture components in the conditional

heteroscedasticity process. The ECME algorithm efficiently computed maximum

likelihood estimates, and extensive simulation studies validated the model’s per-

formance. Real data analysis further confirmed the model’s ability to accurately

capture essential data characteristics.

Then, we presented the groundbreaking NMVM-MoARCH model, leveraging the

powerful Normal Mean Variance Mixture (NMVM) distribution. This model

marked a pivotal advancement in model-based clustering, especially for analyzing

complex time series data. By capitalizing on the NMVM distribution’s capacity

to handle skewness and heavy tails, the NMVM-MoARCH model outperformed

traditional clustering approaches in accuracy and efficiency. The robustness of the

model was rigorously assessed through simulations, illustrating its capability to

represent intricate time-series data with remarkable precision.

These results showcase the transformative potential of data-driven discoveries,

enabled by advanced computational techniques and innovative methodologies. The
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FMm-SMSN-GARCH(1,1) distributions and NMVM-MoARCH model present a

comprehensive framework for exploring and modeling diverse time-series data.

As we look ahead, the future of this research holds immense promise for various

industries and scientific domains. One potential avenue for future work involves

developing a web-based shiny application (Manouchehri and Nematollahi, 2022a)

that facilitates modeling, estimation, and robust inference for the Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) model with scale mixtures

of skew-normal innovations. This application would provide a versatile class of

error distributions and incorporate fully Bayesian inference through the Markov

chain Monte Carlo method.

Exploring multivariate variants of our approach, inspired by existing researchs,

represents yet another intriguing direction. This extension would enable the mod-

eling of dynamic relationships among multiple variables, providing richer insights

into complex data dynamics.

Exploring the potential of Bayesian techniques, particularly involving Markov

Chain Monte Carlo (MCMC) algorithms, emerges as a captivating avenue for

further investigation. Integration of such advanced methods may yield notable

improvements in parameter estimation, leading to increased accuracy and preci-

sion in modeling outcomes. This exciting prospect beckons us to delve deeper into

the unexplored realms of enhancing model performance.

Additionally, integrating machine learning and other advanced statistical tech-

niques has potential in enhancing the model’s accuracy and predictive power. By

synergizing these approaches, we can unlock deeper insights and reveal previously

unseen patterns in time-series data.

In summary, the FMm-SMSN-GARCH(1,1) distributions and NMVM-MoARCH

model contribute to the fields of time series data analysis and model-based clus-

tering. This thesis underscores our dedication to advancing statistical modeling

and data analysis. As we look ahead, we anticipate a future where complex data

are not just analyzed but thoroughly understood, enabling the exploration of new

discoveries and deeper insights. The research presented in this thesis reflects our

commitment to advance the field and contribute to the ongoing development of

data analysis methodologies. We welcome the scientific community’s assessment

of our work in shaping the future of these fields.
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Appendix A

A.1 Distinctive Examples within the SMSN Fam-

ily

Certain notable variants within the SMSN family, bearing significant relevance to

the robust inference of the proposed model, are delineated as follows:

– The skew-t (ST) distribution: According to (Azzalini and Capitanio,

2003), the skew-t distribution, denoted by Y ∼ ST (µ, σ2, λ, ν), characterizes

a random variable Y with a location parameter µ, a scale parameter σ, a

skewness parameter λ, and a degrees of freedom parameter ν. Its density

function, as expressed in Equation (A.1), can be defined as follows:

g(y : µ, σ2, λ, ν) = 2t(y : µ, σ2, λ, ν)T

(
λ(y − µ)

σ

√
ν + 1

ν + σ2(y − µ)2
; 0, 1, ν + 1

)
, y ∈ R,

(A.1)

here, µ ∈ R, σ ≥ 0, and ν ∈ R+.

By utilizing Equation (2.2), an alternative stochastic representation of the

skew-t distribution can be derived. Assuming that U ∼ Gamma(ν
2
, ν
2
) with

ν > 0 and k(u) = u−1, the probability density function (pdf) of the random

variable Y can be obtained as follows:

g(y : µ, σ2, λ, ν) = 2t(y : µ, σ2, λ, ν)T

(√
ν + 1

ν + a2
λa; ν + 1

)
, y ∈ R, (A.2)

in Equation (A.2), let a =
(
y−µ
σ

)2
and t(y : µ, σ2, λ, ν) be the density of

the symmetric T distribution defined as
Γ( ν+1

2
)

Γ( ν
2
)
√
νπσ2

(
1/
(
1 +

(
( y−µ

σ
)2

ν

)) (ν+1)
2

)
.
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Furthermore, T (.; ν) represents the density function of the standard student-t

distribution with a location parameter µ, a scale parameter σ, and a degrees

of freedom parameter ν, denoted by t(0, 1, ν). It is worth noting that when

the skewness parameter λ is equal to 0, the density function (A.1) reduces

to the Student’s t-distribution with ν degrees of freedom. Moreover, as ν

approaches infinity, the skew-t distribution converges to the skew normal

distribution. For specific applications of this distribution, refer to (Branco

and Dey, 2001) and (Azzalini and Genton, 2008). Additionally, to explore

further results concerning mixtures of multivariate skew-t models, see (Lee

and McLachlan, 2014).

– The Skew-Slash (SSL) distribution: According to (Wang and Genton,

2006) , a random variable Y , denoted as Y ∼ SSL(λ, ν) with λ ∈ R, follows

a standard Skew-Slash distribution if it can be expressed as the ratio of two

independent random variables: Y = Z/U , where U follows a Beta distribu-

tion, specifically U ∼ Beta(ν, 1) with ν > 0, and Z is a Skew-Normal random

variable.

The notation for the SSL distribution can be extended to a four-parameter

distribution using Equation (2.2) as follows:

Y = µ+ k1/2(U)σZ0,

thus, the extended notation becomes Y ∼ SSL(µ, σ, λ, ν), where λ ∈ R.

Here, k1/2(U) = U−1 and Z0 ∼ SN(λ). The parameters of the distribution

are as follows: µ represents the location parameter, σ represents the scale

parameter, λ represents the skewness parameter, and ν represents the positive

shape parameter.

The probability density function (pdf) of a SSL random variable is given by:

g(y;µ, σ2, λ, ν) = 2

∫ 1

0

ϕ(y;µ, u−1σ2)Φ
(u 1

2λ(y − µ)

σ

) Γ(ν + 1)

Γ(ν)Γ(1)
uν−1d(u)

= 2ν

∫ 1

0

ϕ(y;µ, u−1σ2)Φ
(u 1

2λ(y − µ)

σ

)
uν−1d(u),

(A.3)

where µ ∈ R, σ ≥ 0, and ν ∈ R+. The pdf of the SSL distribution exhibits

heavy-tailed behavior for finite values of ν. Additionally, as ν tends to infinity,
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the distribution converges to the skew-normal distribution.

The SSL distribution can be regarded as a scale-mixture model, where the

SSL random variable is a combination of a variable following the Skew-Normal

distribution. This property highlights its versatility in the capture of various

data patterns.

In the context of Bayesian inference, an alternative stochastic representation

for the SSL distribution can be obtained using the following equation:

Y = µ+ k1/2(U)σ
(
δ|W0|+

√
1− δ2W1

)
,

here, δ = λ√
1+λ2

represents a parameter within the range −1 < δ < 1. This

representation provides a more accurate framework for Bayesian inference in

SSL distribution analysis.

– Skew-Contaminated Normal (SCN) distribution:

The Skew-Contaminated Normal (SCN) distribution arises when the ran-

dom variable U follows a discrete distribution with one or two states. The

probability mass function of U can be expressed as:

h(u; ν) = νI(u=γ) + (1− ν)I(u=1), 0 < ν < 1, 0 < γ ≤ 1,

where ν = (ν, γ)T . The SCN distribution is denoted as Y ∼ SCN(µ, σ, λ, ν, γ).

The probability density function of SCN, derived using Equation 2.3, can be

expressed as follows:

g(µ, σ2, λ, ν, γ) = 2νϕSN (y;µ, σ2γ−1)Φ

(
λ(y − µ)

σ

√
γ

)
+2(1−ν)ϕSN (y;µ, σ2)Φ

(
λ(y − µ)

σ

)
,

(A.4)

here, the parameters ν and γ represent the proportion of outliers and a scale

factor, respectively. The SCN distribution captures the presence of outliers

in the data, with ν controlling their influence. The scale factor γ adjusts the

spread of the contaminated component. In particular, when γ = 1, the SCN

distribution reduces to the skew-normal (SN) distribution.

For a comprehensive understanding of the SMSN family and further insights

into this particular distribution, we refer interested readers to the works of

(Arellano-Valle et al., 2008) and (Pyne et al., 2009).

Furthermore, employing the hierarchical representation induced by Equation

2.4, the following proposition can be derived:
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Proposition A.1. Posterior moments of SMSN distributions:

Let us denote the following moments for the Scale Mixture of Skew Normal (SMSN)

distributions:

(i) For the r-th moment:

ωr = E(U r|Y = y) = 2
g0(y;µ, σ

2, ν)

g(y;µ, σ2, λ, ν)
E(U r

yΦ(U
1
2
y λy0))

(ii) For the r
2
-th moment:

ηr = E
(
U

r
2 ζ(U

1
2λy0)|Y = y

)
= 2

g0(y;µ, σ
2, ν)

g(y;µ, σ2, λ, ν)
E(U r

yΦ(U
r
2
y λy0))

(iii) For the expectation of UW :

E(UW |Y = y) = mω1 +Mη1

(iv) For the expectation of UW 2:

E(UW 2|Y = y) =M2 +m2ω1 +mMη1

In these expressions, m = ( ∆
ϱ2+∆2 )(y − µ), M2 = ( ϱ2

ϱ2+∆2 ), ζ(x) =
ϕ(x)
Φ(x)

, y0 =
(y−µ)
σ

,

Ur
d
= U |Y = y, and g0(y;µ, σ

2, ν) represents the density of the Scale Mixture of

Skew Normal (SMN(µ, σ2, ν)) distribution. Additionally, the conditional distri-

bution Uy is related to H(.; ν).

A.2 The CML-step of the FMm-SMSN-GARCH(1,1)

model

In the Conditional Maximum Likelihood (CML) step of the FMm-SMSN-GARCH(1,1)

mixture model, the parameter vector νi for each component is updated as follows:

To update νi, we maximize Equation (2.26) with respect to Φ, which leads to the

following expression:

ν̂i
(k+1) = argmax

νi

(
m∑

i=1

T∑

t=1

Ẑ
(k)
ti E (log h(uti;νi))

)

where ν̂i
(k+1) represents the updated value of νi at iteration (k+1). The optimiza-

tion process involves different cases based on the distribution of Uti, as described
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below:

1. If Uti ∼ Gamma
(
νi
2
, νi

2

)
, then ν

(k+1)
i is obtained by solving the following

equation:

∂Q

∂νi
=

T∑

t=1

Ẑti
(k) ∂

∂νi
E


log

u
( νi

2
−1)

ti

(
ν
2

) νi
2 exp

(
νi
2
uti
)

γ
(
νi
2

) |y




=
T∑

t=1

Ẑti
(k) ∂

∂νi

((νi
2
− 1
)
E(log uti|y) +

(νi
2

)
E(log

νi
2
|y)− E

(νi
2
uti|y

)

− E(log Γ
(νi
2

)
|y)
)

=
T∑

t=1

Ẑti
(k)

(
1

2
E(log uti|y) +

1

2
log

νi
2
+

1

4
− 1

2
Ûti

(k) − ∂Γ
(
νi
2

)
/∂νi

Γ
(
νi
2

)
)

= 0,

where Ûti
(k)

= E (Uti|y) = ω̂
(k)
1ti

2. If Uti ∼ Beta(νi, 1), then ν
(k+1)
i is given by the following equation:

∂Q

∂νi
=

T∑

t=1

Ẑti
(k) ∂

∂νi
E

(
log

(
Γ(νi + 1)

Γ(νi)Γ(1)
uνi−1
ti

)
|y
)

=
T∑

t=1

Ẑti
(k) ∂

∂νi

{
E

(
log

(
Γ(νi + 1)

Γ(νi)Γ(1)

)
|y
)
+ (νi − 1)E(log uti|y)

}

=
T∑

t=1

Ẑti
(k)

{(
∂

∂νi

(
Γ(νi + 1)

Γ(νi)Γ(1)

))
1

Γ(νi+1)
Γ(νi)Γ(1)

+ E(log uti|y)
}

= 0.

3. If h(uti;νi) = νiI(uti=γ)+(1− νi)I(uti=1) with 0 < νi < 1 and 0 < γi ≤ 1, then

ν
(k+1)
i is obtained by solving the following equation:
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∂Q

∂νi
=

T∑

t=1

Ẑti
(k) ∂

∂νi
E

(
log
(
νiI(uti=γ) + (1− νi)I(uti=1)

)
|y
)

=
T∑

t=1

Ẑti
(k) ∂

∂νi

[
E
(
log
(
νiI(uti=γ)

)
|y
)
+ E

(
log
(
(1− νi)I(uti=1)

)
|y
)]

=
T∑

t=1

Ẑti
(k)
(
1

νi
I(uti=γ) −

1

νi − 1
I(uti=1)

)

= 0.

These equations capture the iterative optimization process for updating the pa-

rameter vector νi within the CML step of the FMm-SMSN-GARCH(1,1) mixture

model.

A.3 Proof of Proposition 3.1

– Proof of µ1:

Since ϵt ∼ FMm − SMSN(π,θ,ν), according to Proposition 2.2, we have

E(ϵ) =
∑m

i=1 πi(µi − bi∆i). Under the zero mean condition, we can deduce:

m∑

i=1

πi(µi − bi∆i) = 0

⇒
m−1∑

i=1

πi(µi − bi∆i) = −π1(µ1 − b1∆1)

⇒
m−1∑

i=1

πi(µi − bi∆i) = −π1µ1 + π1b1∆1

⇒ −
m−1∑

i=1

πi
π1

(µi − bi∆i) + b1∆1 = µ1

– Proof of σ2
1:

Since ϵt ∼ FMm − SMSN(π,θ,ν), according to Proposition 2.2, we have

V ar(ϵt) =
∑m

i=1 πi
(
(k2iσ

2
i − b2i∆

2
i ) + ((µi − µ̄)− (bi∆i − ¯b∆))2

)
. Under the

unit variance condition, we can deduce:

m−1∑

i=1

πi
(
(k2iσ

2
i − b2i∆

2
i ) + ((µi − µ̄)− (bi∆i − ¯b∆))2

)

= 1− π1k2iσ
2
1 + π1b

2
1∆

2
1 − π1

(
(µ1 − µ̄)− (b1∆1 − ¯b∆)

)2
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Combining the above equations, we obtain:

m−1∑

i=1

πi
(
(k2iσ

2
i − b2i∆

2
i ) + ((µi − µ̄)− (bi∆i − ¯b∆))2

)

− 1− π1b
2
1∆

2
1 + π1

(
(µ1 − µ̄)− (b1∆1 − ¯b∆)

)2
= −π1(k2iσ2

1)

Therefore, we can express σ2
1 as:

σ2
1 =

1

k21π1

{
1−

m−1∑

i=1

πi
(
(k2iσ

2
i − b2i∆

2
i ) + ((µi − µ̄)− (bi∆i − b̄∆))2

)

−
(
(µ1 − µ̄)− (b1∆1 − b̄∆)

)2
+ b21∆

2
1

}

A.4 Proof of proposition 1.4.

Proof. (a)

Since U ∼ Gamma
(
ν
2
, ν
2

)
, therefore we have

IΦti (ρ) = EU

(
Uρ exp (−USti/2)Φ(

√
UBti)

)

= 2

∫ ∞

0

uρ exp (−uSti/2)Φ(
√
uBti)

(
ν/2
) ν

2

Γ
(
ν
2

) u
ν
2
−1 exp

(
− νu/2

)
du

= 2

(
ν/2
) ν

2

Γ
(
ν
2

)
∫ ∞

0

uρ+
ν
2
−1 exp

(
− u(Sti + ν)/2

)
Φ(

√
uBti)du

=
2ρν

ν
2Γ
(
ρ+ ν

2

)
√
2πΓ

(
ν
2

)
(ν + Sti)

ρ+ ν
2

T

(
Bti

√
ν + 2ρ

(ν + Sti)
1
2

; ν + 2ρ

)
.

To be more clear, we notice that the last equality obtained by the following equa-

tion which was proved by (Lachos et al., 2010b)

∫ ∞

0

urΦ(
√
uB)

u
ν−1
2

Γ
(
ν+1
2

) exp
(
−1

2
u(S + ν)

)(
ν + S

2

) ν+1
2

du

= 2r+1Γ
(
ν+1+2r

2

)

Γ
(
ν
2

) (ν + S)−rT

(√
ν + 1 + 2r

(ν + S)
1
2

B; ν + 1 + 2r

)
.
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Thus

∫ ∞

0

uρ exp

(
−uSti

2

)
Φ
(√

uBti

) (ν
2

) ν
2

Γ
(
ν
2

)u ν
2
−1 exp

(
−νu

2

)
du

=
Γ
(
ν+1
2

)
(
Sti+ν

2

) ν+1
2

∫ ∞

0

uρ−
1
2 exp

(
−u(Sti + ν)

2

)
Φ
(√

uBti

) (ν
2

) ν
2

Γ
(
ν
2

) u
ν−1
2

Γ
(
ν+1
2

)
(
Sti + ν

2

) ν+1
2

du

=
2ρ+

1
2Γ
(
ν+1
2

) (
ν
2

) ν
2 Γ
(
ρ+ ν

2

)
(ν + Sti)

−(ρ− 1
2
)

Γ
(
ν
2

)
(ν + Sti)

ν+1
2 Γ

(
ν
2

) T

(
Bti

√
ν + 2ρ

(ν + Sti)
1
2

; ν + 2ρ

)
.

So, we obtain

2

∫ ∞

0

uρ exp (−uSti/2)Φ(
√
uBti)

(
ν/2
) ν

2

Γ
(
ν
2

) u
ν
2
−1 exp

(
− νu/2

)
du

=
2ρ+

3
2Γ
(
ν+1
2

)(
ν/2
) ν

2Γ
(
ρ+ ν

2

)
(ν + Sti)

−(ρ− 1
2
)

Γ
(
ν
2

)
(ν + Sti)

ν+1
2 Γ
(
ν
2

) T

(
Bti

√
ν + 2ρ

(
ν + Sti

) 1
2

; ν + 2ρ

)

= IΦti (ρ).

And

Iφti(ρ)

= EU

[
Uρ exp

(
−U(Sti +B2

ti)

2

)]

=

∫
∞

−∞

uρ exp

(
−u(Sti +B2

ti)

2

) ( ν
2

) ν

2

Γ
(
ν
2

)u ν

2
−1 exp

(
−νu

2

)
du

=

(
ν
2

) ν

2

Γ
(
ν
2

)
∫

∞

−∞

uρ+ ν

2
−1 exp

(
−u(Sti +B2

ti + ν)

2

)
du

=

(
ν
2

) ν

2 Γ
(
ρ+ ν

2

)

Γ
(
ν
2

) (
1
2 (Sti +B2

ti + ν)
)ρ+ ν

2

∫
∞

−∞

(
1
2 (Sti +B2

ti + ν)
)ρ+ ν

2

Γ(ρ+ ν
2 )

uρ+ ν

2
−1 exp

(
−u(Sti +B2

ti + ν)

2

)
du

︸ ︷︷ ︸
=1 since it follows a Gamma∼(ρ+ ν

2
, 1
2
(Sti+B2

ti
+ν))

=
2ρ+

ν

2

(
ν
2

) ν

2 Γ
(
ρ+ ν

2

)

Γ
(
ν
2

)
(

1

ν +B2
ti + Sti

)ρ+ ν

2

.
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Proof. (b)

Since U ∼ Beta(ν, 1), thus we have

IΦti (ρ) = EU

[
Uρ exp

(
−USti

2

)
Φ(

√
UBti)

]

= 2

∫ ∞

0

uρ exp

(
−uSti

2

)
Φ(

√
uBti)

Γ(ν + 1)

Γ(ν)
uν−1du

= 2ν

∫ ∞

0

uρ+ν−1 exp

(
−uSti

2

)
Φ(

√
uBti)du

=
22+νΓ(ρ+ ν)

Sρ+νti

P

(
1; ρ+ ν,

Sti
2

)
E
(
Φ
(√

Gati

)
Bti

)
,

And

Iϕti(ρ) = EU

[
Uρ exp

(
−U(Sti +B2

ti)

2

)]

= 2

∫ ∞

0

uρ exp

(
−u(Sti +B2

ti)

2

)
Φ(

√
uBti)

Γ(ν + 1)

Γ(ν)
uν−1du

= 2ν

∫ ∞

0

uρ+ν−1 exp

(
−u(Sti +B2

ti)

2

)
du

=
ν · 2ρ+νΓ(ρ+ ν)√
2π(B2

ti + Sti)ρ+ν
P

(
1; ρ+ ν,

B2
ti + Sti
2

)
.

Proof. (c)

Since h(u;ν) = νI(u=γ) + (1− ν)I(u=1), 0 < ν < 1, 0 < γ ≤ 1, so we obtain

IΦti (ρ) = EU

[
Uρ exp

(
−USti

2

)
Φ(

√
UBti)

]

= νγρ exp

(
−γSti

2

)
Φ(

√
γBti) + (1− ν) exp

(
−Sti

2

)
Φ(Bti)

=
√
2π
(
νγρ−−/2ϕ

(√
Sti; 0, γ

−1
)
Φ(

√
γBti) + (1− ν)ϕ

(√
Sti; 0, 1

)
Φ(Bti)

)
,

And

Iϕti(ρ) = EU

[
Uρ exp

(
−U(Sti +B2

ti)

2

)]

= νγρ exp

(
−γ(Sti +B2

ti)

2

)
+ (1− ν) exp

(
−Sti +B2

ti

2

)

= νγρ−1/2ϕ

(√
B2
ti + Sti; 0, γ

−1

)
+ (1− ν)ϕ

(√
B2
ti + Sti; 0, 1

)
.
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A.5

Table A.1: Initial values for simulation scenarios (two moderate and two weak components)

Table A.2: Moderately components

Parameters SN ST SSL SCN

µ1 0.831 2.966 0.988 1.049
µ2 -2 -1 -2 -2
σ2
1 2.204 0.333 1.177 1.162

σ2
2 0.5 2 0.5 0.5

λ1 1 1 1 1
λ2 -2 -2 -2 -2
ν – 5 5 0.1
γ – – – 0.2
π 0.6 0.6 0.6 0.6

ω 1.0E-04 1.0E-04 1.0E-04 1.0E-04
µ0 1.0E-06 1.0E-06 1.0E-06 1.0E-06
α1 0.05 0.05 0.05 0.05
β1 0.9 0.9 0.9 0.9

Table A.3: Weakly components

Parameters SN ST SSL SCN

µ1 -0.348 1.299 0.110 0.170
µ2 0.5 1.5 0.4 0.2
σ2
1 1.485 0.333 0.432 0.226

σ2
2 2 2 2 2

λ1 1 1 1 1
λ2 -2 -2 -2 -2
ν – 5 5 0.1
γ – 5 5 0.2
π 0.6 0.6 0.6 0.6

ω 1.0E-04 1.0E-04 1.0E-04 1.0E-04
µ0 1.0E-06 1.0E-06 1.0E-06 1.0E-06
α1 0.05 0.05 0.05 0.05
β1 0.9 0.9 0.9 0.9
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Figure A.1: Histogram and estimated density of marginal residuals of simulated data in a
medium-FM2-SMSN-GARCH (1,1) process.

Figure A.2: Histogram and estimated density of marginal residuals of simulated data in a
two-Weak-FM2-SMSN-GARCH (1,1) process.



94 Appendix A

A.6

We present the mean and standard deviations (SD) of the ML estimates obtained

through the Expectation Conditional Maximization Either (ECME) algorithm.

The comprehensive results can be found in Tables A.4 and A.5. Additionally, to

provide a visual representation of the ECME algorithm’s performance, we have

included Figures A.3 to A.10 related to the ML estimates.
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Table A.4: Mean and SD of ML estimates of medium-FM2-SN–GARCH(1,1),
medium-FM2-ST–GARCH(1,1), medium-FM2-SSL–GARCH(1,1) and medium-FM2-SCN–
GARCH(1,1) models with various sample sizes n = 250, 500, and 1000

Models FM2-SN–GARCH(1,1) FM2-ST–GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Mean

µ1 0.742 0.760 0.787 2.767 2.794 2.856
µ2 -2.243 -2.171 -2.111 -1.038 -1.029 -0.982
σ2
1 2.677 2.676 2.663 0.285 0.304 0.312
σ2
2 0.570 0.570 0.560 1.587 1.777 1.807
λ1 1.321 1.209 1.205 0.785 0.956 1.064
λ2 -2.474 -2.118 -2.117 -2.108 -2.075 -1.961
ν – – – 4.671 5.216 5.150
γ – – – – – –
π 0.608 0.603 0.600 0.595 0.598 0.600
ω 0.125 0.008 0.001 -0.053 0.007 -0.004
µ0 7.8E-05 5.0E-05 5.1E-05 5.0E-05 5.1E-05 4.9E-05
α1 0.061 0.056 0.055 0.068 0.065 0.064
β1 0.878 0.890 0.893 0.844 0.871 0.885

SD

µ1 0.396 0.216 0.167 0.242 0.113 0.075
µ2 0.350 0.262 0.163 0.334 0.178 0.116
σ2
1 0.713 0.463 0.357 0.129 0.071 0.053
σ2
2 0.281 0.141 0.123 0.590 0.453 0.317
λ1 0.701 0.419 0.312 0.737 0.427 0.300
λ2 2.302 1.330 0.817 1.410 0.879 0.534
ν – – – 1.616 1.291 0.977
γ – – – – – –
π 0.053 0.021 0.015 0.030 0.020 0.015
ω 0.284 0.262 0.247 0.276 0.255 0.249
µ0 4.46E-04 2.7E-05 2.6E-05 2.7E-05 2.71E-05 2.5E-05
α1 0.046 0.005 0.004 0.006 0.004 0.002
β1 0.096 0.025 0.018 0.045 0.030 0.020

Models FM2-SSL–GARCH(1,1) FM2-SCN–GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Mean

µ1 1.088 1.032 1.006 1.0005 1.036 1.052
µ2 -2.256 -2.140 -2.100 -2.127 -2.109 -2.079
σ2
1 1.564 1.475 1.414 1.465 1.414 1.387
σ2
2 0.676 0.652 0.560 0.593 0.568 0.562
λ1 1.100 1.043 1.032 1.306 1.238 1.179
λ2 -1.622 -2.117 -2.054 -2.295 -2.149 -2.116
ν 5.434 5.019 5.012 0.151 0.123 0.100
γ – – – 0.302 0.242 0.231
π 0.605 0.599 0.600 0.605 0.601 0.599
ω 0.149 0.071 -0.001 0.149 0.006 0.000
µ0 6.7E-05 5.1E-05 5.5E-05 5.9E-05 5.3E-05 5.2E-05
α1 0.057 0.055 0.055 0.060 0.057 0.057
β1 0.883 0.892 0.892 0.877 0.890 0.892

SD

µ1 0.327 0.230 0.164 0.326 0.221 0.137
µ2 0.249 0.109 0.075 0.212 0.121 0.078
σ2
1 0.473 0.385 0.282 0.538 0.384 0.267
σ2
2 0.234 0.161 0.163 0.243 0.165 0.122
λ1 0.607 0.466 0.307 0.827 0.483 0.314
λ2 1.039 0.785 0.413 2.062 0.859 0.585
ν 0.849 0.551 0.153 0.166 0.096 0.016
γ – – – 0.262 0.166 0.054
π 0.031 0.020 0.015 0.029 0.024 0.016
ω 0.268 0.225 0.161 0.291 0.275 0.230
µ0 3.64E-04 2.7E-05 2.9E-05 2.48E-04 2.7E-05 2.6E-05
α1 0.010 0.006 0.004 0.010 0.006 0.005
β1 0.042 0.027 0.018 0.042 0.027 0.020
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Table A.5: Mean and SD of ML estimates of weak-FM2-SN–GARCH(1,1), weak-FM2-ST–
GARCH(1,1), weak-FM2-SSL–GARCH(1,1) and weak-FM2-SCN–GARCH(1,1) models with
various sample sizes n = 250, 500, and 1000

Models FM2-SN–GARCH(1,1) FM2-ST–GARCH(1,1)

Measure Parameters 250 500 1000 250 500 1000

Mean

µ1 -0.574 -0.553 -0.478 0.686 0.802 0.951
µ2 0.783 0.745 0.636 0.861 0.955 1.108
σ2
1 1.767 1.511 1.617 0.122 0.185 0.253
σ2
2 3.166 2.796 2.625 0.977 1.192 1.526
λ1 2.346 1.787 1.573 1.655 1.397 0.855
λ2 -3.931 -3.660 -3.247 -2.615 -2.339 -1.808
ν – – – 6.326 5.422 5.181

– – – 6.326 5.422 5.181
π 0.672 0.656 0.644 0.660 0.647 0.626
ω 2.047E-03 5.63E-04 4.03E-04 2.095E-03 4.84E-04 3.75E-04
µ0 9.2E-04 7.08E-05 4.32E-05 4.36E-04 8.81E-05 5.26E-05
α1 0.034 0.038 0.042 0.031 0.037 0.053
β1 0.901 0.902 0.902 0.926 0.924 0.895

SD

µ1 0.167 0.161 0.160 0.384 0.374 0.173
µ2 0.279 0.249 0.210 0.632 0.356 0.313
σ2
1 0.971 0.502 0.490 0.222 0.246 0.194
σ2
2 1.846 1.403 0.968 0.734 0.799 0.682
λ1 0.965 0.600 0.454 1.255 0.810 0.510
λ2 1.281 1.084 0.640 1.530 1.234 0.810
ν – – – 3.430 2.0006 1.115

– – – 3.430 2.0006 1.115
π 0.115 0.096 0.087 0.107 0.080 0.080
ω 9.626E-03 5.47E-04 2.62E-04 1.1818E-02 3.03E-04 2.37E-04
µ0 6.622E-03 3.02E-04 2.47E-05 1.191E-03 1.82E-04 4.32E-05
α1 0.010 0.013 0.010 0.021 0.011 0.009
β1 0.040 0.034 0.033 0.008 0.021 0.012

Models
FM2-SSL–GARCH(1,1) FM2-SCN–GARCH(1,1)

Measure 250 500 1000 250 500 1000

Mean

µ1 0.171 0.135 0.119 0.379 0.346 0.263
µ2 0.479 0.371 0.381 0.389 0.350 0.292
σ2
1 0.531 0.476 0.452 0.347 0.313 0.294
σ2
2 1.518 1.687 1.808 3.332 2.981 2.688
λ1 0.706 0.753 0.791 2.399 1.946 1.752
λ2 -1.693 -1.735 -1.776 -3.356 -2.985 -2.708
ν 6.251 4.447 4.620 0.253 0.215 0.190

6.251 4.447 4.620 0.361 0.310 0.280
π 0.700 0.677 0.639 0.541 0.558 0.602
ω 0.001 0.0008 0.0004 0.152 0.0395 0.004
µ0 1.46E-04 9.43E-05 5.18E-05 1.02E-04 8.44E-05 7.03E-05
α1 0.0364 0.038 0.041 0.031 0.040 0.044
β1 0.906 0.911 0.908 0.911 0.905 0.897

SD

µ1 0.143 0.132 0.102 0.303 0.266 0.191
µ2 0.376 0.292 0.268 0.277 0.204 0.193
σ2
1 0.516 0.271 0.162 0.283 0.259 0.223
σ2
2 0.951 0.954 0.634 1.639 0.999 0.756
λ1 0.53 0.398 0.259 1.332 1.039 0.852
λ2 1.444 0.928 0.704 1.424 0.818 0.655
ν 1.280 1.319 0.797 0.096 0.039 0.050

1.280 1.319 0.797 0.132 0.103 0.096
π 0.085 0.092 0.080 0.080 0.045 0.034
ω 0.003 0.001 0.0002 0.232 0.057 0.002
µ0 1.46E-04 1.41E-04 2.81E-05 1.62E-04 1.02E-04 6.58E-05
α1 0.016 0.018 0.009 0.020 0.015 0.012
β1 0.018 0.030 0.025 0.040 0.033 0.033
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Figure A.3: Bias of ML estimates based on the medium-FM2-SN-GACH, medium-FM2-
ST-GACH, medium-FM2-SSL-GACH and medium-FM2-SCN-GACH models.
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Figure A.4: Bias of ML estimates based on the weak-FM2-SN-GACH, weak-FM2-ST-
GACH, weak-FM2-SSL-GACH and weak-FM2-SCN-GACH models.



Appendix 99

0.04

0.08

0.12

0.16

400 600 800 1000

n

µ
1

0.05

0.10

0.15

400 600 800 1000

n

µ
2

0.0

0.2

0.4

0.6

400 600 800 1000

n

σ
1

0.0

0.1

0.2

0.3

0.4

0.5

400 600 800 1000

n

σ
2

0.2

0.4

0.6

0.8

400 600 800 1000

n

λ
1

0

2

4

400 600 800 1000

n

λ
2

0

1

2

400 600 800 1000

n

ν

0.001

0.002

0.003

400 600 800 1000

n

π
0.04

0.06

0.08

0.10

400 600 800 1000

n

ω

−0.050

−0.025

0.000

0.025

0.050

400 600 800 1000

n

µ
0

0.0000

0.0005

0.0010

0.0015

0.0020

400 600 800 1000

n

α
1

0.0000

0.0025

0.0050

0.0075

0.0100

400 600 800 1000

n

β
1

Models

FM2−SCN−GARCH(1,1)
FM2−SN−GARCH(1,1)
FM2−SSL−GARCH(1,1)
FM2−ST−GARCH(1,1)

Figure A.5: MSE of ML estimates based on the medium-FM2-SN-GACH, medium-FM2-
ST-GACH, medium-FM2-SSL-GACH and medium-FM2-SCN-GACH models.
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Figure A.6: MSE of ML estimates based on the weak-FM2-SN-GACH, weak-FM2-ST-
GACH, weak-FM2-SSL-GACH and weak-FM2-SCN-GACH models.
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Figure A.7: Mean of ML estimates based on the medium-FM2-SN-GACH, medium-FM2-
ST-GACH, medium-FM2-SSL-GACH and medium-FM2-SCN-GACH models.
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Figure A.8: Mean of ML estimates based on the weak-FM2-SN-GACH, weak-FM2-ST-
GACH, weak-FM2-SSL-GACH and weak-FM2-SCN-GACH models.
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Figure A.9: SD of ML estimates based on the medium-FM2-SN-GACH, medium-FM2-ST-
GACH, medium-FM2-SSL-GACH and medium-FM2-SCN-GACH models.
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Figure A.10: SD of ML estimates based on the weak-FM2-SN-GACH, weak-FM2-ST-
GACH, weak-FM2-SSL-GACH and weak-FM2-SCN-GACH models.
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Appendix B

B.1 Exploring the Formulation of the General-

ized Hyperbolic Distribution (GH)

The GH distribution belongs to the NMVM family and is specified when the

random mixing variable follows the GIG distribution (W ∼ GIG(κ, χ, ψ)). The

probability density function (PDF) of the Generalized Inverse Gaussian (GIG)

distribution for w > 0 is given as:

fGIG(w;κ, χ, ψ) =
1

2

(
ψ

χ

)κ
2 wκ−1

Kκ(
√
ψχ)

exp

{
−1

2

(
1

wχ
+ wψ

)}
. (B.1)

The modified Bessel function of the third kind, denoted as Kκ(x), is defined for

x > 0 and κ ∈ R as follows:

Kκ(x) =
1

2

∫ ∞

0

yκ−1 exp

(
−x
2

(
y +

1

y

))
dy

The parameters χ and ψ must satisfy the following conditions:

(i) If κ > 0, then χ ≥ 0 and ψ > 0.

(ii) If κ < 0, then χ > 0 and ψ ≥ 0.

(iii) If κ = 0, then χ > 0 and ψ > 0.

These conditions ensure the validity of the GIG distribution and its associated

modified Bessel function for different values of κ. This function is an important

special function in mathematics and physics, widely used in various applications.

The expectations E(W r) and E(logW ) for r = ±1 are computed using the fol-

lowing expressions:

For r = ±1:
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E(W r) =

(
χ

ψ

) r
2

R(κ,r)

(√
χψ
)

(B.2)

and

E(logW ) = log

(√
χ

ψ

)
+

1

Kκ(χψ)

∂Kκ(χψ)

∂κ

where R(κ,a)(c) =
Kκ+a(c)
Kκ(c)

.

The GH (Generalized Hyperbolic) distribution describes a random variable X and

is defined by the probability density function (PDF):

fGH(x;µ, λ, σ
2, κ, χ, ψ) =

(
ψ
χ

)κ/2 (
ψ + λ2

σ2

)0.5−κ
√
2πσ2Kκ(

√
χψ)

Kκ−0.5

(√(
ψ + λ2

σ2

)
(χ+ δ(x;µ, σ2))

)

(√(
ψ + λ2

σ2

)
(χ+ δ(x;µ, σ2))

)0.5−κ

× exp

{
(x− µ)λ

σ2

}
,

where δ(x;µ, σ2) = (x−µ)2
σ2 .

These expressions define the expectations and the PDF of the GH distribution

and are used in various mathematical and statistical applications.

B.2 Exploring the Various NMVM Distributions:

An Overview of Key Examples

We present the distinct members of the NMVM distributions and the necessary

conditional expectations for our suggested ECME algorithm.

– The generalized hyperbolic skew-t distribution: we introduce the Gen-

eralized Hyperbolic Skew-t (GHST) distribution, which is a specific case

within the broader framework of the GH distribution. The GHST distribu-

tion characterizes the random variable (X) and is defined by the properties of

its mixing random variable, (W), which follows an inverse gamma distribution

denoted as W ∼ Invgamma(ν
2
, ν
2
).

The GHST distribution exhibits different statistical moments, with its mean

E(W ) being ν
ν−2

and the variance V ar(W ) given by 2ν2

(ν−2)2(ν−4)
. This dis-

tribution emerges as a special limiting case, characterized by the conditions

κ = −ν
2
, χ = ν, and ψ = 0.
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The probability density function (PDF) that governs the GHST distribution

is expressed as:

fGHST (x;µ, λ, σ
2, ν) =

(
λ2/σ2

ν+δ(x,µ,σ2)

)(ν+1)/4 νν/2K ν+1
2

(√
λ2(ν+δ(x,µ,σ2))/σ2

)

√
2πσ2Γ(ν/2)2ν/2−1exp

{
(µ−x)λ/σ2

} ,

Here, the function δ(x, µ, σ2) is defined as (x−µ)2
σ2 . Furthermore, applying

Bayes’ rule reveals that the conditional distribution of W given X = x is

a Generalized Inverse Gaussian (GIG) distribution, parameterized as κST =

− (ν+1)
2

, χST = δ(x, µ, σ2)+ν, and ψST = λ2

σ2 . Consequently, the k-th moment

of W given X = x can be easily computed using equation (B.2).

– The normal inverse Gaussian distribution: The Normal Inverse Gaus-

sian (NIG) distribution is a specialized case derived from the Generalized

Hyperbolic (GH) distribution by setting specific parameter values. In par-

ticular, this distribution is obtained by setting κ to -0.5, χ to 1, and ψ to ν2

within the GH framework.

The probability density function (PDF) characterizing the NIG distribution

is expressed as follows:

fNIG(x;µ, λ, σ
2, ν) =

√
ψNIG

π2σ2χNIG
K1(

√
χNIGψNIG) exp

{(x− µ)λ

σ2
+ ν
}
,

Here, the parameters χNIG and ψNIG are defined as χNIG = 1 + δ(x, µ, σ2)

and ψNIG = ν2 + (λ/σ)2, respectively. Additionally, it’s worth noting that

K0.5(x) = K−0.5(x) =
√
π/2x−0.5 exp{−x}.

By applying Bayes’ rule, it can be deduced that the conditional distribution

of the mixing random variable W given X = x follows a Generalized Inverse

Gaussian (GIG) distribution with parameters κNIG = −1, χNIG = χNIG, and

ψNIG = ψNIG. Consequently, the k-th moment of W given X = x can be

readily calculated using equation (B.2).

– The variance-gamma distribution: The Variance-Gamma (VG) distribu-

tion is derived from the Generalized Hyperbolic (GH) distribution by specific

parameter settings, namely, setting χ = 0 and κ > 0. This results in a

distinct distribution that has important applications in various fields. The
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probability density function (PDF) for the VG distribution is expressed as

follows:

fV G(x;µ, λ, σ
2, κ, ψ) =

ψκKκ−0.5

(√
χV GψV G

)

2κ−1
√
2πσ2Γ(κ)(

√
χV G/ψV G)

0.5−κ
exp

{(x− µ)λ

σ2

}
,

Here, χV G = δ(x, µ, σ2) and ψV G = ψ2 + (λ/σ)2. Notably, this distribution

possesses distinctive properties that make it valuable in modeling various

financial and statistical phenomena.

Furthermore, by applying Bayes’ rule, it can be established that the con-

ditional distribution of the mixing random variable W given X = x fol-

lows a Generalized Inverse Gaussian (GIG) distribution with parameters

(κ − 0.5, χV G, ψV G). Additionally, leveraging equation (B.2), it is possible

to determine the k-th moment of W given X = x for the VG distribution.

This mathematical relationship is vital for understanding the behavior of the

VG distribution in different contexts.

– The skew Laplace distribution: The Skew Laplace (SL) distribution is a

probability distribution that emerges when the mixing random variable, de-

noted as W in equation 3.1, follows an exponential distribution with a mean

of 0.5, represented as W ∼ Exp(0.5). The Skew Laplace distribution is valu-

able in various statistical applications, especially when modeling asymmetric

data. Its probability density function (PDF) is defined as:

fSL(x;µ, σ
2, λ) =

1

2τσ
exp

{
−τ |x− µ|

σ
+
λ(x− µ)

σ2

}
,

Here, τ =
√

1 +
(
λ
σ

)2
is a crucial parameter that characterizes the shape and

skewness of the distribution.

By employing Bayes’ rule, it can be deduced that the conditional distribution

of W given X = x follows a Generalized Inverse Gaussian (GIG) distribution

with parameters (0.5, χST , ψST ), where χST = δ(x, µ, σ2) and ψST = k2.

Therefore, it is possible to compute the k-th moment of W given X = x by

utilizing equation (B.2). This expression provides essential insights into the

behavior and statistical properties of the Skew Laplace distribution.

– The normal mean-variance Birnbaum-Saunders distribution: The

Normal Mean-Variance Birnbaum-Saunders (NMVBS) distribution is a prob-

abilistic model obtained by assuming that the mixing random variable W
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in equation (3.1) follows a Birnbaum-Saunders (BS) distribution (Birnbaum

and Saunders, 1969) with shape and scale parameters α and β, denoted as

W ∼ BS(α, β).

The probability density function (PDF) of the BS distribution can be ex-

pressed as a mixture of two Generalized Inverse Gaussian (GIG) distributions,

as given in (Desmond, 1986):

fBS(w;α, β) =
1

2
fGIG

(
w;

1

2
,
β

α2
,

1

αβ2

)
+

1

2
fGIG

(
w;−1

2
,
β

α2
,

1

αβ2

)
.

If we assume that W ∼ BS(α, 1), we obtain the Normal Mean-Variance

Birnbaum-Saunders distribution, denoted as fNMV BS(x;µ, λ, σ
2, α), with the

following PDF:

fNMV BS(x;µ, λ, σ
2, α) =

1

2
fGH

(
x;µ, λ, σ2,

1

2
,
1

α2
,
1

α2

)
+fGH

(
x;µ, λ, σ2,−1

2
,
1

α2
,
1

α2

)
.

For any integer r = ±1,±2, ..., the rth moment of W given X = x can be

calculated as follows:

E(W r|X = x) =
(χBS
ψBS

)k/2{
p(x)R(0, r)

(√
χBSψBS

)
+(1−p(x))R(−1, r)

(√
χBSψ

∗
BS

)}
,

where χBS = δ(x, µ, σ2) + α−2, ψBS = (λ/σ)2 + α−2 , and

p(x) =
fGH

(
x;µ, λ, σ2, 1

2
, 1
α2 ,

1
α2

)

fGH
(
x;µ, λ, σ2, 1

2
, 1
α2 ,

1
α2

)
+ fGH

(
x;µ, λ, σ2,−1

2
, 1
α2 ,

1
α2

) .

This expression enables the calculation of moments for the NMVBS distri-

bution, providing valuable insights into its statistical characteristics and ap-

plications.

– The normal mean-variance Lindley distribution: The Normal Mean-

Variance Lindley (NMVL) distribution, introduced in (Naderi et al., 2018),

describes a random variable Y where the mixing random variableW follows a

Lindley distribution (Lindley, 1958). The probability density function (PDF)

of the Lindley distribution is proportional to α2(1 + w2)e−αw, where α is a

positive parameter and w is positive. The PDF of X is expressed as the
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mixture of two Generalized Hyperbolic (GH) distributions:

fNMV L(x;µ, σ
2, λ, α) =

α

α + 1
fGH

(
x;µ, λ, σ2, 1, 0, 2α

)
+

1

α + 1
fGH

(
x;µ, λ, σ2, 2, 0, 2α

)

The expected value of W r conditioned on X = x can be calculated for r =

±1,±2, ... as follows:

E(W r|X = x) =
(χLI
ψLI

)k/2{
p(x)R(0.5, r)

(√
χLIψLI

)
+(1−p(x))R(1.5, r)

(√
χLIζLI

)}
,

where χLI = δ(x, µ, σ2), ψLI = (λ/σ)2 + 2α , and

p(x) =
αfGH

(
x;µ, λ, σ2, 1, 0, 2α

)

αfGH
(
x;µ, λ, σ2, 1, 0, 2α

)
+ fGH

(
x;µ, λ, σ2, 1, 0, 2α

) .

In the paper by (Browne and McNicholas, 2015), a new parameterization

was proposed for the Generalized Inverse Gaussian (GIG) distribution due to

an identifiability issue. The issue is that fGH
(
x;µ, λ, σ2, κ, χ, ψ

)
is equal to

fGH
(
x;µ, aλ, aσ2, κ, χ/a, aψ

)
for any positive constant a, which leads to an

identifiability problem. To resolve this, (Browne and McNicholas, 2015) set

χ = ωη and ψ = ω/η and showed that the finite mixture of GH distributions

is identifiable with this new parameterization. This reparameterization is

also consistent with the notation used in the paper by (McNeil et al., 2015).
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Bayesian inference for shape mixtures of skewed distributions, with application

to regression analysis. Bayesian Analysis 3(3), 513–539.

Azzalini, A. (1985) A class of distributions which includes the normal ones. Scan-

dinavian Journal of Statistics pp. 171–178.

Azzalini, A. (2013) The skew-normal and related families. Volume 3. Cambridge

University Press.

Azzalini, A. and Capitanio, A. (1999) Statistical applications of the multivariate

skew normal distribution. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 61(3), 579–602.

113



114 Bibliography

Azzalini, A. and Capitanio, A. (2003) Distributions generated by perturbation of

symmetry with emphasis on a multivariate skew t-distribution. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 65(2), 367–389.

Azzalini, A. and Genton, M. G. (2008) Robust likelihood methods based on the

skew-t and related distributions. International Statistical Review 76(1), 106–

129.

Azzalini, A. and Valle, A. D. (1996) The multivariate skew-normal distribution.

Biometrika 83(4), 715–726.

Bai, Z.-D., Krishnaiah, P. R. and Zhao, L.-C. (1989) On rates of convergence of

efficient detection criteria in signal processing with white noise. IEEE Transac-

tions on Information Theory 35(2), 380–388.

Barndorff-Nielsen, O. and Halgreen, C. (1977) Infinite divisibility of the hyper-

bolic and generalized inverse gaussian distributions. Zeitschrift für Wahrschein-

lichkeitstheorie und verwandte Gebiete 38(4), 309–311.

Basford, K., Greenway, D., McLachlan, G. and Peel, D. (1997) Standard errors of

fitted component means of normal mixtures. Computational Statistics 12(1),

1–18.

Basso, R. M., Lachos, V. H., Cabral, C. R. B. and Ghosh, P. (2010) Robust mixture

modeling based on scale mixtures of skew-normal distributions. Computational

Statistics & Data Analysis 54(12), 2926–2941.

Billio, M. and Caporin, M. (2005) Multivariate markov switching dynamic condi-

tional correlation garch representations for contagion analysis. Statistical Meth-

ods and Applications 14(2), 145–161.

Billio, M., Caporin, M. and Gobbo, M. (2006) Flexible dynamic conditional cor-

relation multivariate garch models for asset allocation. Applied Financial Eco-

nomics Letters 2(02), 123–130.

Birnbaum, Z. W. and Saunders, S. C. (1969) A new family of life distributions.

Journal of applied probability 6(2), 319–327.
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