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Abstract. Given a finite group G, the invariably generating graph of G is defined as the
undirected graph in which the vertices are the nontrivial conjugacy classes of G, and two
classes are adjacent if and only if they invariably generate G. In this paper, we study this
object for alternating and symmetric groups. The main result of the paper states that if
we remove the isolated vertices from the graph, the resulting graph is connected and has
diameter at most 6.

1 Introduction

Given a finite group G and a subset ¹x1; : : : ; xtº of G, we say that ¹x1; : : : ; xtº
invariably generatesG if hxg1

1 ; : : : ; x
gt

t i D G for every g1; : : : ; gt 2 G. This con-
cept was introduced by Dixon with motivations from computational Galois theory;
see [5] for details. Note that invariable generation can be thought of as a property
of conjugacy classes, rather than individual elements.

1.1 The invariably generating graph

Given a finite group G, we define the invariably generating graph ƒ.G/ of G as
follows. The vertices are the conjugacy classes of G different from ¹1º, and two
vertices xG and yG are adjacent if and only if ¹x; yº invariably generates G. The
purpose of this paper is to initiate the study of this object for finite (almost) simple
groups, and more precisely, for alternating and symmetric groups. It was proved by
Kantor–Lubotzky–Shalev [12], and Guralnick–Malle [9] independently, that finite
simple groups are invariably generated by two elements so that, in this case,ƒ.G/
is nonempty. It is also known that Sn is invariably generated by two elements if
and only if n ¤ 6 (see [15, Proposition 4.10]). Set

P D

²
qd � 1

q � 1
W q is a prime power and d > 2

³
:

The first two results of the paper are the following.
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Theorem 1.1. Assume n > 5, and letG 2 ¹An; Snº. Thenƒ.G/ does not have iso-
lated vertices if and only if G D An and n is a prime satisfying n … P [ ¹11; 23º

and n � �1 mod 12.

Theorem 1.2. The following statements hold.

(1) Let .Gi / be a sequence of alternating or symmetric groups so that jGi j ! 1.
Assume that, for every i , Gi is not alternating of prime degree. Then the num-
ber of isolated vertices of ƒ.Gi / tends to infinity.

(2) Assume n is a prime not contained in P [ ¹11; 23º. Then the number of iso-
lated vertices of ƒ.An/ is at most 2.

In Theorem 1.1, we assumed n > 5. We will keep this assumption through-
out the paper; see Lemma 2.15 for the remaining cases. For the sake of clar-
ity, we mention that ƒ.A11/ and ƒ.A23/ have 5 and 6 isolated vertices, respec-
tively (Lemma 3.2). The only case not addressed in Theorem 1.2 is G D An with
n 2 P prime. In Remark 3.3, we will obtain a partial result, dealing with the case
n D .qd � 1/=.q � 1/ with d !1.

Once Theorems 1.1 and 1.2 are proved, one may ask what happens if the iso-
lated vertices are removed fromƒ.G/. With this purpose, we define a graph„.G/
which is obtained from ƒ.G/ by removing the isolated vertices. The next result
states that, except in case G D S6, this graph is connected with bounded diameter
(we already recalled that S6 is not invariably generated by two elements, hence
„.S6/ is the null graph).

Theorem 1.3. Assume n > 5, and let G 2 ¹An; Snº, with G ¤ S6. Then „.G/ is
connected with diameter at most 6.

In many cases, we prove better estimates on the diameter.

Theorem 1.4. Assume n > 5. IfG D Sn and n is odd, or ifG D An and n is even,
then d.„.G// 6 4. If G D An and n … P is prime, then d.„.G// 6 3.

The proofs of Theorems 1.3 and 1.4 rely on some recent results, proved in [11]
and [8], which classify the primitive subgroups of Sn containing elements having
certain cycle types. These results depend on the Classification of Finite Simple
Groups.

The upper bound in Theorem 1.3 is attained since d.„.S8// D 6 (Lemma 3.7).
However, we conjecture that this can happen only for finitely many groups.

Conjecture 1.5. Let G 2 ¹An; Snº. If n is sufficiently large, then d.„.G// 6 4.
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In Section 4, we obtain a partial result towards a proof of this conjecture. It is
interesting to observe that, in this partial result, we use the Prime Number The-
orem, but we do not use the CFSG. See also Lemma 4.5, which establishes that
d.„.Sn// > 4 for all primes n > 7, so the bound in Conjecture 1.5, if true, is
attained infinitely often.

Theorem 1.3 suggests a natural question for all finite simple groups.

Question 1.6. Let G be a finite simple group. Is the graph „.G/ connected?

1.2 Some context

The invariably generating graph is the analogue, for invariable generation, of the
so-called generating graph �.G/ of a finite group G. This is defined as follows.
The vertices are the nonidentity elements of G, and two vertices x and y are adja-
cent if and only if hx; yi D G.

Many properties of generation of a finite simple group by two elements can
be stated in terms of the generating graph. Guralnick and Kantor [10] proved
that if G is a finite simple group, then, for every 1 ¤ x 2 G, there exists y 2 G
such that hx; yi D G. Later, Breuer, Guralnick and Kantor [3] showed that if
1 ¤ x1; x2 2 G, then there exists y 2 G such that hx1; yi D hx2; yi D G. These
properties can be stated respectively as follows: �.G/ has no isolated vertices, and
it is connected with diameter at most 2.

Theorems 1.1 and 1.2 say that, for alternating and symmetric groups, the invari-
ably generating graph has quite different properties; it usually has isolated vertices,
and the number of isolated vertices usually grows as the order of the group grows.

On the other hand, Theorem 1.3 says that if we remove the isolated vertices,
we obtain a graph which in some sense shares similarities with the generating
graph �.G/.

1.3 An alternative definition

In light of Theorem 1.2, one could ask how the proportion of isolated vertices
of ƒ.G/ behaves as jGj tends to infinity. The elementary approach used in the
proof of Theorem 1.2 is not sufficient to address this problem. Here, however, one
comment is in order. We have chosen the vertices of ƒ.G/ to be the nontrivial
conjugacy classes of G. One could define a graph ƒe.G/ in which the vertices
are the nontrivial elements of G, and two vertices are adjacent if and only if they
invariably generate G. Of course, the property of connectedness and the value of
the diameter are the same in the two graphs. However, when one counts the edges,
or the vertices having certain properties, the situation can radically change. Indeed,
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in ƒe.G/, there is a dependence on the size of the conjugacy classes which does
not exist in ƒ.G/.

Probabilistic invariable generation has always been considered in terms of el-
ements (cf. [5, 6, 13, 14]). Still, we believe it is worth exploring the problem of
counting conjugacy classes – although, in this paper, we do not address any ques-
tion of this kind.

2 Notation and preliminary results

In this section, we fix some notation, and we gather some preliminary lemmas and
observations that we will use throughout the paper.

2.1 Notation

The vertices of our graphs are conjugacy classes of alternating and symmetric
groups. We will identify conjugacy classes of Sn with their cycle type, i.e., we
will represent conjugacy classes of Sn as partitions of n. We now introduce some
terminology about partitions.

Let H 6 Sn, and let p be a partition of n. We will say that p belongs to H ,
or that p is contained in H , if H contains elements with cycle type p. If C is
the conjugacy class of Sn corresponding to p, this is equivalent to the condition
H \ C ¤ ;. Of course, this condition depends only on the Sn-conjugacy class of
the subgroup H . Therefore, in the above terminology, we are allowed, if we wish,
to replaceH by its conjugacy class, and to say that p belongs to the Sn-conjugacy
class of H .

Let p1 and p2 be two partitions of n. If p1 and p2 both belong toH , we will say
that p1 and p2 share H . When p 2 Si � Sn�i , with 1 6 i < n, we will say that i
is a partial sum in p. This is indeed equivalent to the condition that the integer i
can be written as the sum of some parts of p. In a partition, im will mean m parts
of length i . Therefore, .am1

1 ; a
m2

2 ; : : : ; a
mt

t / will mean m1 parts of length a1, m2
parts of length a2, . . . , and mt parts of length at .

Occasionally, given a partition p and a positive integer i , we will write pi to
denote “the i -th power of p”, namely the partition obtained by replacing each part
of length ` by d parts of length `=d , where d D .`; i/. Note that if x 2 Sn has
cycle type p, then xi has cycle type pi .

Finally, we define

P D

²
qd � 1

q � 1
W q is a prime power and d > 2

³
:
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2.2 Maximal overgroups of certain elements

Most of the arguments will rely heavily on the knowledge of the maximal over-
groups of certain elements in Sn; specifically, cycles, or elements having few orbits
in the natural action on n points. The intransitive maximal subgroups are easily de-
termined. For convenience, we now isolate some elementary observations regard-
ing transitive imprimitive subgroups, while then moving to the more difficult case
of primitive subgroups. We use some of the language introduced in the previous
subsection. The following two lemmas are a consequence of [2, Theorem 2.5].

Lemma 2.1. Let n be a natural number,m a nontrivial divisor of n and 1 6 i < n.
The partition .a1; a2/ belongs to Sm o Sn=m if and only if either m divides a1 or
n=m divides a1.

Proof. If .a1; a2/ belongs to Sm oSn=m, the induced permutation on the blocks has
at most two cycles. If it has two cycles, then m divides a1. If it is an .n=m/-cycle,
then n=m divides a1. The converse implication is proved in the same way.

Lemma 2.2. Let n be a natural number,m a nontrivial divisor of n and 1 6 i < n.
The partition .a1; a2; a3/ belongs to Sm o Sn=m if and only if one of the following
conditions is satisfied:

(a) m divides ai for every i ;

(b) n=m divides ai for every i ;

(c) there exist 1 6 t < n=m and i ¤ j 2 ¹1; 2; 3º such that

ak D tbk for k D i; j; with bi C bj D m:

Proof. Similar to the previous lemma. In case (a), the induced permutation on the
blocks has cycle type .a1=m; a2=m; a3=m/. In case (b), it is an .n=m/-cycle. In
case (c), it has cycle type .t; a`=m/, where ` 2 ¹1; 2; 3º n ¹i; j º.

We now move to primitive subgroups. Our main tool is a theorem which clas-
sifies the primitive subgroups of Sn containing a cycle, and which relies on the
CFSG. This should be seen as a generalization of a classical theorem of Jordan
(see e.g. [16, Theorem 13.9]) stating that there are no proper primitive subgroups
of Sn different from An containing a cycle of prime length fixing at least 3 points.
Since we will apply this result several times, for convenience, we report here the
statement.

Theorem 2.3 ([11]). Let G be a primitive permutation group of finite degree n,
not containing the alternating group An. Suppose that G contains a cycle fixing k
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points, where 0 6 k 6 n � 2. Then one of the following holds:

(1) k D 0 and

(a) either Cp 6 G 6 AGL1.p/ with n D p prime,

(b) or PGLd .q/ 6 G 6 P�Ld .q/ with n D .qd � 1/=.q � 1/ and d > 2 for
some prime power q,

(c) or G D PSL2.11/, M11 or M23 with n D 11; 11 or 23, respectively.

(2) k D 1 and

(a) either AGLd .q/ 6 G 6 A�Ld .q/with nD qd and d > 1 for some prime
power q,

(b) or G D PSL2.p/ or PGL2.p/ with n D p C 1 for some prime p > 5,

(c) or G DM11, M12 or M24 with n D 12; 12 or 24, respectively.

(3) k D 2 and PGL2.q/ 6 G 6 P�L2.q/with nD qC 1 for some prime power q.

Note that the statement implies that there are no proper primitive subgroups
of Sn different from An containing a cycle fixing at least 3 points, generalizing
indeed Jordan’s theorem. We note the following immediate consequence.

Corollary 2.4. Assume x 2 Sn is such that a suitable power of x is a nontrivial
cycle fixing at least 3 points. Then x does not lie in proper primitive subgroups
of Sn different from An.

We also mention that we will make essential use of the main result from [8],
which classifies the primitive subgroups of Sn containing an element having at
most 4 cycles.

We will shortly apply the previous results to certain elements (or partitions) of
particular interest to us.

2.3 Conjugacy classes of An

If a partition of n is made of distinct odd parts, the corresponding Sn-conjugacy
class splits into two An-conjugacy classes (and vice versa), giving rise to two
vertices of ƒ.An/. Often, this does not represent a serious change; the following
technical lemmas give conditions under which the two vertices may be essentially
thought of as a unique vertex.

Lemma 2.5. Let x 2 An, and let H 6 Sn be such that HAn D HSn . Then H
contains elements belonging to xAn if and only if it contains elements belonging
to .x0/An for every x0 2 xSn .
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Proof. Assume xz 2 H with z 2 An, and assume x0 D xzg with g 2 Sn. Then
x0 D xzg 2 Hg D Hh for some h 2 An by hypothesis, hence .x0/h

�1

2 H . This
concludes the proof.

Notation 2.6. Assume x; y 2 An are such that .x0/An is adjacent to .y0/An in
ƒ.An/ for any x0 2 xSn and for any y0 2 ySn . Under these assumptions, we say
with slight abuse of notation that xSn is adjacent to ySn in ƒ.An/.

This notation will be convenient, as we will represent Sn-conjugacy classes as
partitions, and we will be allowed to say that “a partition q is adjacent to a par-
tition p”, rather than “any An-conjugacy class of elements with cycle type q is
adjacent to any An-conjugacy classes of elements with cycle type p”. We will now
see that, in many cases, the assumption of Notation 2.6 is satisfied.

Lemma 2.7. Let x 2 An, and assume hxiAn D hxiSn . Let y 2 An. Then xAn is
adjacent in ƒ.An/ to yAn if and only if xSn and ySn are adjacent (in the termi-
nology of Notation 2.6).

Proof. Choose x0 2 xSn . We show first that if yAn is not adjacent to xAn , then
yAn is not adjacent to .x0/An . By assumption, we can write x0 D .xi /z for some
integer i and for some z 2 An. Again by assumption, ¹xg1 ; yg2º � H for some
g1; g2 2 An, and for some proper subgroup H of An. Then

.x0/z
�1g1 D .xi /g1 D .xg1/i 2 H;

whence ¹.x0/z
�1g1 ; yg2º � H and yAn is not adjacent to .x0/An , as required.

Assume now y0 2 ySn . We show that if yAn is not adjacent to xAn , then .y0/An

is not adjacent to xAn . This will conclude the proof. We may assume yAn ¤ .y0/An

and xAn ¤ xSn ; otherwise, the statement is easy. Choose x0 2 xSn n xAn . By the
previous paragraph, if yAn is not adjacent to xAn , then it is not adjacent to .x0/An

so that ¹xg1 ; yg2º � H for some proper subgroup H of An, some g1 2 Sn n An
and g2 2 An. Then ¹x; yg2g

�1
1 º � Hg�1

1 , and since yg2g
�1
1 isAn-conjugate of y0,

the proof is concluded.

We now apply the previous considerations to certain elements and subgroups
of Sn.

Lemma 2.8. Let H be a maximal subgroup of Sn which is either intransitive, or
transitive and imprimitive. Then HAn D HSn .

Proof. We may assume n > 3. We haveHAn DHSn if and only if NSn
.H/ŠAn.

In our case, H Š An since every maximal intransitive or imprimitive subgroup
of Sn contains transpositions.
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Lemma 2.9. Assume x 2 An belongs to no proper primitive subgroup of Sn dif-
ferent from An. Let y 2 An. Then xAn and yAn are adjacent inƒ.An/ if and only
if xSn and ySn are adjacent (in the terminology of Notation 2.6).

Proof. By assumption, x lies in no proper primitive subgroups different from An.
Therefore, xAn is adjacent to yAn if and only if, for every g1; g2 2 An, hxg1 ; yg2i

is primitive or, equivalently, is not contained in intransitive or imprimitive maximal
subgroups. By Lemmas 2.5 and 2.8, this condition depends only on the cycle type
of the elements, rather than on their An-conjugacy class. The lemma follows.

Lemma 2.10. Let 2 6 i 6 n=2 be coprime with n. Then .i; n � i/ does not belong
to proper primitive subgroups different from An, and does not belong to transitive
imprimitive subgroups.

Proof. The fact that .i; n � i/ does not lie in imprimitive subgroups follows from
Lemma 2.1. Regarding primitive subgroups, .i; n � i/n�i D .i; 1n�i / ¤ .1n/, and
n � i > 3 (the conditions on i imply n > 5); hence the statement follows from
Corollary 2.4.

Theorem 2.3 can be used to generalize the previous lemma to the case i D 1;
one just needs to take care of some specific examples of primitive subgroups. The
following easy lemma will be used with this purpose.

Lemma 2.11. Let q be a prime power and d a positive integer.

(1) An element of AGLd .q/, in the natural action on qd points, either is a de-
rangement, or fixes a number of points equal to qs for some 0 6 s 6 d .

(2) Assume g 2 P�L2.q/ fixes at least 3 points in the natural action on q C 1
points. Then g fixes a number of points having the same parity of q C 1. More-
over, if g 2 PGL2.q/, then g D 1.

Proof. (1) If g 2 AGLd .q/ fixes some point, we may assume that it fixes 0. Hence,
g 2 GLd .q/. Now just observe that the set of fixed points of an element of GLd .q/
is an Fq-subspace of Fdq .

(2) Consider P�L2.q/ acting (on the right) on the set � of 1-dimensional sub-
spaces of F2q . Write q D pr with p prime. For � 2 Gal.Fq=Fp/, denote by f�
the permutation of � induced by the mapping .�1; �2/ 7! .�

�
1 ; �

�
2 / of F2q . Then

we may express each element g 2 P�L2.q/ as g D xf� , where x 2 PGL2.q/ and
� 2 Gal.Fq=Fp/.

Note that P�L2.q/ is 3-transitive on �. Hence, if g D xf� 2 P�L2.q/ fixes at
least 3 points, we may assume that it fixes h.1; 0/i, h.0; 1/i and h.1; 1/i. It follows
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that x D 1 and g D f� . Then g fixes p` C 1 points, where ` is a divisor of r ; in
particular, it fixes a number of points having the same parity of q C 1. Moreover,
if g 2 PGL2.q/, then f� D 1. The lemma is proved.

Lemma 2.12. Assume n is either an odd prime, or n � 3 mod 4. Assume x 2 An
is an n-cycle. Then hxiAn D hxiSn .

Proof. If n > 3 is an odd integer, then an n-cycle is normalized by elements having
cycle type .1; 2.n�1/=2/. If n is an odd prime, then an n-cycle is normalized by an
.n � 1/-cycle. In particular, if x is as in the statement, then NSn

.hxi/ Š An, from
which hxiAn D hxiSn .

We deduce another consequence of the previous lemmas.

Lemma 2.13. Assume n > 4, and let x 2 An. Then, for every g 2 Sn, xAn and
.xg/An are not adjacent in ƒ.An/.

Proof. By Lemma 2.8, we may assume that x is not contained in intransitive or
imprimitive subgroups. It follows that n is prime and x is an n-cycle. The statement
follows then by Lemma 2.12.

This lemma suggests a natural question for all finite simple groups.

Question 2.14. Let G be a finite simple group. Let x 2 G, and let � 2 Aut.G/. Is
it possible that ¹x; x�º invariably generates G?

It is easy to check that the statement is true for G D A6, in which case, S6 has
index two in Aut.G/. This, together with Lemma 2.13, implies that the question
has a negative answer for G D An.

2.4 Small degrees

The main theorems are stated for n > 5. For completeness, we address here the
cases of degree n 6 4. We assume n > 3 in order to avoid trivialities.

Lemma 2.15. Let 3 6 n 6 4, and assume G 2 ¹An; Snº. Then ƒ.G/ has isolated
vertices if and only if G D S4. Moreover, „.G/ is connected with diameter at
most 2.

Proof. This is an easy check. The graphs „.A3/, „.S3/, „.S4/ have diameter 1,
while „.A4/ has diameter 2; the two classes of 3-cycles are connected by a path
of length 2 passing through the class .22/. In ƒ.S4/, the vertices corresponding to
.12; 2/ and .22/ are isolated.
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3 Proofs

In this section, we prove the theorems stated in the introduction.

3.1 Proof of Theorems 1.1 and 1.2

We begin with a lemma which proves Theorem 1.2 (2) and the “if” part of Theo-
rem 1.1.

Lemma 3.1. Let n > 5 be an odd prime. Then .1; 2.n�1/=2/ and .1; 3.n�1/=3/
are isolated in ƒ.An/ (when they make sense and are even permutations). If
n … P [ ¹11; 23º, then there are no other isolated vertices in ƒ.An/.

Proof. The two mentioned vertices are not adjacent to .n/ (this terminology makes
sense by Lemma 2.7, Lemma 2.12 and Notation 2.6) because they are contained
in AGL1.n/. Therefore, they might be adjacent only to some An-conjugacy class
with cycle type .a1; : : : ; at /, with t > 3. Every 1 6 i 6 .n � 1/=2 is a partial sum
in .1; 2.n�1/=2/, so this vertex is isolated (recall Lemmas 2.8 and 2.5), and the
values of i that are not partial sums in .1; 3.n�1/=3/ are exactly those that satisfy
i � 2 mod 3. If a1; a2 � 2 mod 3, then a1 C a2 � 1 mod 3, so one among a1; a2
and a1 C a2 is a partial sum. We conclude that .1; 3.n�1/=3/ is indeed isolated.

Assume now n … P [ ¹11; 23º. Let xAn be a vertex of ƒ.An/ different from
the two above; we want to show it is not isolated. If x … AGL1.n/, we deduce
from Theorem 2.3 that xAn is adjacent to .n/. On the other hand, if x 2 AGL1.n/,
then either it is an n-cycle, or it has cycle type .1; t .n�1/=t /, with t > 4. As just
remarked, a class of n-cycles is not isolated. If t > 5, by Corollary 2.4, xAn is ad-
jacent to .22; n � 4/. If t D 4, for the same reason, xAn is adjacent to .32; n � 6/.

For the sake of clarity, we deal with the cases n D 11; 23.

Lemma 3.2. The graphs ƒ.A11/ and ƒ.A23/ have 5 and 6 isolated vertices, re-
spectively.

Proof. Recall Theorem 2.3. Let n 2 ¹11; 23º. Let 1 ¤ x 2 An. If x does not be-
long to M11 (for n D 11) and M23 (for n D 23), the same argument as in the
previous lemma shows that xAn is adjacent to .n/ (note that PSL2.11/ can be em-
bedded in M11). Inspection (using for instance GAP) shows that if n D 11 and
1 ¤ x 2M11, then xAn belongs to

¹.13; 24/; .13; 42/; .12; 33/; .2; 3; 6/; .1; 2; 8/º:

These are not adjacent to .n/ because of M11. By looking at partial sums, we see
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that these are all isolated. If n D 23 and 1 ¤ x 2M23, then either xAn is adjacent
to one between .22; 19/ and .32; 17/, or xAn belongs to

¹.15; 36/; .13; 54/; .17; 28/; .1; 22; 32; 62/; .13; 22; 44/; .1; 2; 4; 82/º:

These are all isolated for the same reason as above.

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. In the proof, we will use Lemmas 2.5, 2.7 and 2.8
with no further mention. Recall also Notation 2.6.

We begin with Theorem 1.2. Item (2) follows from Lemma 3.1; hence we focus
on item (1). Let G D An or Sn, with n nonprime if G D An. For every n, we will
define In, a subset of the set of isolated vertices of ƒ.G/, whose cardinality, as
n!1, goes to infinity. This will prove Theorem 1.2. For every m, denote by
pEm the set of all partitions of m different from .1m/ which correspond to even
permutation.

We first assume that, whenever n is odd, G D Sn. Define In as the set of all
partitions of n of the form .1bn=2c;p/, where p is whatsoever partition of pE

dn=2e
.

Let q 2 In. Every 1 6 i 6 n=2 is a partial sum, so q is not adjacent to classes
of elements with at least two cycles. If n is even, then q is not adjacent to .n/
since n=2 is a partial sum in q, hence q 2 Sn=2 o S2. If n is odd, thenG D Sn, and
q is not adjacent to .n/ since q corresponds to even permutations. Therefore, In
consist of isolated vertices. Clearly, the size of In goes to infinity as n!1.

Assume now that G D An and n is odd and not prime. Fix n, and let pn be the
smallest prime divisor of n. Define In as the set of all partitions of n of the form
.1n.pn�1/=pn ;p/, where p is any partition of pE

n=pn
.

If q 2 In, then q 2 Sn=pn
o Spn

; the first pn � 1 blocks are fixed pointwise.
Therefore, q is not adjacent to .n/. Moreover, every 1 6 i 6 n=2 is a partial sum,
so q is not adjacent to classes of elements having at least 2 cycles. It follows that
q is isolated. Note now that n=pn >

p
n; hence the size of In goes to infinity as

n!1. This concludes the proof of Theorem 1.2.
We now move to Theorem 1.1. Note that Lemma 3.1 proves the “if” part.

We now prove the “only if” part. Assume first that n is prime and G D An. If
n 6� �1 mod 12, by Lemma 3.1, there are isolated vertices in ƒ.An/. The cases
n D 11; 23 have been considered in Lemma 3.2. If n D .qd � 1/=.q � 1/, let x be
any involution lying in a subgroup of Sn conjugate to P�Ld .q/. The fact that n is
odd implies that every 1 6 i 6 n=2 is a partial sum in (the cycle type of) x; hence
xAn might only be adjacent to a class of n-cycles. However, this does not happen
because of the containment in P�Ld .q/. Therefore, xAn is isolated.

The caseG D An with n prime is therefore proved. For the remaining cases, we
apply what we proved for Theorem 1.2. We define q D .1n�3; 3/. This partition
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belongs to In, as defined in this proof; hence it is an isolated vertex of ƒ.G/. This
concludes the proof.

Remark 3.3. The unique case not discussed in Theorem 1.2 is the case G D An
and n 2 P prime. We obtain here the partial result that if ni D .qdi � 1/=.q � 1/

is prime and di !1, then the number of isolated vertices of ƒ.Ani
/ tends to

infinity. Note that since ni is prime, di must be prime. To establish whether in-
finitely many such primes (i.e., primes d such that .qd � 1/=.q � 1/ is prime for
some prime power q) do actually exist, however, is a hard open problem in number
theory; see for instance [4].

Assume first n D .qd � 1/=.q � 1/with q (and d ) odd. The action of PGLd .q/
on the 1-dimensional subspaces of Fdq gives an embedding PGLd .q/ < Sn. For
every 1 6 r < d=2, let x D x.r/ be a diagonal matrix of GLd .q/ with 1’s and
�1’s on the diagonal, and assume the number of �1’s is r . Let Nx denote the im-
age of x in PGLd .q/ < Sn. Then Nx has .qr C qd�r � 2/=.q � 1/ fixed points.
In particular, any two distinct 1 6 r < d=2 give rise to elements of Sn which
have a different number of fixed points, and which therefore belong to different
Sn-conjugacy classes. It is easy to check that the element Nx arising in this way
belongs to An. The number of possibilities for r in order to obtain such an ele-
ment is .d � 1/=2. As remarked in the previous proof, . Nx/An is isolated inƒ.An/;
therefore, the number of isolated vertices of ƒ.An/ is at least .d � 1/=2.

Assume now q is even. For every 1 6 ` 6 d=2, consider a unipotent element
x D x.`/ of SLd .q/ with ` Jordan blocks of size 2, and with the other Jordan
blocks of size 1. This is an involution of SLd .q/. Denote again by Nx the image of
x in PSLd .q/ < Sn. Then Nx has .qd�` � 1/=.q � 1/ fixed points; hence any two
distinct 1 6 ` 6 d=2 give rise to elements belonging to different Sn-conjugacy
classes. Moreover, Nx 2 An (unless .q; d/ D .2; 2/, but recall we are assuming
n > 5), and . Nx/An is isolated in ƒ.An/. Hence the number of isolated vertices
of ƒ.An/ is at least .d � 1/=2.

3.2 Proof of Theorems 1.3 and 1.4

In this subsection, we prove Theorems 1.3 and 1.4.
One brief comment about the terminology we will adopt. The proofs will begin

with a sentence of the type “Let p be a vertex of „.G/”, without any preliminary
consideration showing that „.G/ is not the null graph. However, along the proof
suitable edges will be exhibited inƒ.G/ so that the initial choice of p will be licit.
(In other words, we are saying that, although we will not state it explicitly, in the
proofs, it will be shown that the groups are invariably generated by two elements.)

We begin by proving Theorem 1.4 (in two separate results).
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Theorem 3.4. Assume n > 5 is a prime and n … P . Then„.An/ is connected and
d.„.An// 6 3.

Proof. Let x 2 An, and assume xAn is a vertex of „.An/. If n ¤ 11; 23, in the
proof of Lemma 3.1, we showed that xAn is adjacent to one among .n/, .22; n � 4/
and .32; n � 6/ (see Lemma 2.12). These vertices are pairwise adjacent by Corol-
lary 2.4; hence we have indeed d.„.An// 6 3. If n D 11 or 23, we observed in
the proof of Lemma 3.2 that a class inside M11 or M23 is either isolated, or adja-
cent to one between .22; n � 4/ and .32; n � 6/. Therefore, by Corollary 2.4, also
in this case, d.„.An// 6 3.

For a later use, we point out that the same estimate holds for the groups A13
and A17.

Assume n D 13 D .33 � 1/=.3 � 1/. Inspection shows that every class lying
in PGL3.3/ is either isolated or adjacent to .33; 7/; hence d.„.A13// 6 3 by
the same argument as in the proof of the previous theorem. Assume finally that
n D 17 D 16C 1. Here every class lying in P�L2.16/ is either isolated or adja-
cent to one between .32; 11/ and .42; 9/. It is easy to deduce that d.„.A17// 6 3.

Theorem 3.5. Let n > 5 be an integer.

(1) If n is odd, then „.Sn/ is connected and d.„.Sn// 6 4.

(2) If n is even, then „.An/ is connected and d.„.An// 6 4.

Proof. (1) Let p be a vertex of „.Sn/. Assume p is not adjacent to .i; n � i/ for
any 2 6 i 6 n=2 coprime with n. Then, by Lemma 2.10, every such i is a partial
sum in p. Since p is a vertex of „.Sn/, p will be adjacent to some vertex q.
Necessarily, no 2 6 i 6 n=2 coprime with n is a partial sum in q. Hence, again by
Lemma 2.10, q is adjacent to .i; n � i/ for every such i .

Now note that the .i; n � i/’s, with i as above, are pairwise adjacent. From this,
it follows that, for any fixed 2 6 i 6 n=2 coprime with n, any vertex p of „.Sn/
has distance at most 2 from .i; n � i/. This concludes the proof.

(2) The statement for n D 6 can be checked explicitly; hence we assume n > 8.
Then the proof is identical to (1). Recall Lemmas 2.5 to 2.10, and Notation 2.6.

Now we move to the proof of the general case, i.e., Theorem 1.3. We are left
with symmetric groups of even degree and alternating groups of odd degree.

In Theorem 3.5, the strategy was to look for edges with conjugacy classes of
elements having two cycles. This approach is not available anymore. Indeed, in
alternating groups of odd degree, elements with two cycles do not exist, and in
symmetric groups of even degree, such elements belong to An; hence one must
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take care of the parity of elements when dealing with generation. For these ele-
mentary reasons, our strategy will be to look for edges with elements having three
cycles. This is where we will make use of [8] which, as already mentioned in the
introduction, classifies the primitive permutation groups having elements with at
most four cycles.

Theorem 3.6. Let n> 8 be an even integer. Then„.Sn/ is connected, and we have
d.„.Sn// 6 6.

Proof. We first assume n > 12 and consider the remaining cases at the end of the
proof. Let p and q be two vertices of „.Sn/ joined by an edge. One of the two,
say p, must correspond to odd permutations. Assume p is not adjacent to .i; n � i/
for any 1 6 i 6 n=2 coprime with n. By Lemma 2.10, every such i , with i ¤ 1, is
a partial sum in p. We now show that also i D 1 is a partial sum in p. Assume this
is not the case. Since p is not adjacent to .1; n � 1/, we deduce from Lemma 2.1
and Theorem 2.3 that p is contained in one between AGLd .2/, PGL2.p/, M11,
M12,M24. The last three are excluded because they are subgroups of An. Assume
p 2 AGLd .2/ or PGL2.p/. Since every 3 6 i 6 n=2 coprime with n is a partial
sum, p must have odd parts; let a be the smallest such part. Since i D 1 is not
a partial sum, we have a > 3. On the other hand, by assumption, p corresponds to
odd permutations; hence it has even parts. It follows that .1n/ ¤ pa fixes a num-
ber of points which is greater or equal to 3, and which is a multiple of a. This
contradicts Lemma 2.11. Therefore, i D 1 is indeed a partial sum in p.

Now we divide the cases n � 2 mod 4 and n � 0 mod 4.
Assume n � 2 mod 4. Then n=2 � 2 is coprime with n; hence it is a partial sum

in p. Write p D .a1; : : : ; at /, and assume n=2 � 2 D
Ph
iD1 ai . If ak D 1 for some

k 2 ¹1; : : : ; hº, then n=2 � 3 is a partial sum in p. Otherwise, n=2 � 1 is a partial
sum in p. We show that q is adjacent in the first case to a1 D .1; n=2�3; n=2C2/,
and in the second case to a2 D .1; n=2�2; n=2C1/.

By the considerations above, q and ai do not share intransitive subgroups.
Moreover, a1 and a2 correspond to odd permutations, and belong to no transitive
imprimitive subgroups by Lemma 2.2. Finally, a1 and a2 belong to no core-free
primitive subgroups by [8, Theorem 1.1]. We have therefore our desired edge be-
tween q and a1 or a2.

Assume n � 0 mod 4. We employ the same argument as above, with n=2 � 2
replaced by n=2 � 1. The same reasoning lead us to look for an edge between q

and b1 D .1; n=2 � 2; n=2C 1/ or b2 D .1; n=2; n=2 � 1/. Again, q and bi do
not share intransitive subgroups. It follows from [8, Theorem 1.1] that b1 and
b2 are not contained in core-free primitive subgroups (for b2, we may also use
Corollary 2.4). Regarding maximal transitive imprimitive subgroups, we only have
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that b2 is contained in Sn=2 o S2. However, by construction, we consider b2 only
when n=2 is a partial sum in p so that p belongs to Sn=2 o S2. Since p and q are
adjacent, we deduce that q is not contained in Sn=2 o S2. Therefore, we have an
edge between q and b1 or b2.

Now we deduce the connectedness of „.Sn/ and the bound to the diameter.
The considerations above imply that an edge with ai and bi concerns only intran-
sitive subgroups (i.e., partial sums), except for b2, where one has to deal also with
Sn=2 o S2.

Assume first n � 2 mod 4. The argument given above shows that every ver-
tex of „.Sn/ has distance at most 2 from one among a1; a2 and .i; n � i/ for
some 1 6 i 6 n=2 coprime with n. Hence, in order to conclude, it is sufficient to
show that these vertices have pairwise distance at most 2. For n D 14, this can be
checked directly. Assume then n > 14. We show that all these vertices are adja-
cent to .22; n � 4/, which clearly concludes the proof. For all the vertices except
.1; n � 1/, this follows from Lemma 2.10 and from the considerations of the pre-
vious paragraph. For .1; n � 1/, by Theorem 2.3, we need to exclude the sharing
of AGLd .p/, PGL2.p/, M24. The last is contained in An, while .22; n � 4/ is
not. Moreover, n � 2 mod 4; hence n is not a power of 2 and we do not have
affine subgroups. Finally, .14; n � 4/ D .22; n � 4/2 fixes at least 4 points; hence
it does not belong to PGL2.p/ by Lemma 2.11(2). This concludes the proof in
case n � 2 mod 4.

Assume now n � 0 mod 4. We assume first n > 12. As in case n � 2 mod 4, in
order to conclude, it is sufficient to prove that the vertices b1;b2 and .i; n � i/
with 1 6 i 6 n=2 coprime with n have pairwise distance at most 2. The ver-
tices b1;b2 and .i; n � i/ with 1 6 i 6 n=2 coprime with n and i ¤ 3; 5 are ad-
jacent to .2; 3; n � 5/. The vertices .i; n � i/ with 1 6 i 6 n=2 coprime with n
and i ¤ 1; n=2 � 1 are adjacent to both b1 and b2. The vertices .i; n � i/ with
2 6 i 6 n=2 coprime with n are adjacent to .22; n � 4/. By [8, Theorem 1.1]
(which in the affine case relies on [7, Theorem 1.5]), we deduce that .22; n � 4/ is
not contained in affine subgroups; hence also .1; n � 1/ is adjacent to .22; n � 4/.
These considerations imply that the vertices have pairwise distance at most 2.

Consider now the case n D 12. The argument of the previous paragraph does
not work, and we need more detailed inspection. Let p and q be as at the beginning
of the proof, with p corresponding to odd permutations, and such that 1 and 5 are
partial sums in p. If 2 is not a partial sum and 4 is a partial sum, then it is easy to
deduce p D .1; 4; 7/. If 2 and 4 are not partial sums, then p D .1; 5; 6/. Assume
now 2 is a partial sum. If 3 is not a partial sum, then it is easy to check that p

must have four cycles, false. If 3 is a partial sum and 4 is not a partial sum, then
5 cannot be a partial sum, false. If 4 is a partial sum, then p is isolated unless 6 is
not a partial sum and p is adjacent to .12/. With this more detailed information, it
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.3; 5/

.8/ .1; 2; 5/ .42/.13; 5/

.22; 4/ .1; 7/ .2; 32/.12; 6/

Figure 1. The graph „.S8/.

is not difficult to deduce d.„.S12// 6 6. The proof of the theorem for n > 12 is
now concluded. In the next lemma, we consider the case n D 8. The case n D 10
can be dealt with similarly, and we omit the details.

We compute the exact diameter of „.S8/; this shows that the upper bound in
Theorem 1.3 can be attained.

Lemma 3.7. The graph „.S8/ is connected with diameter 6.

Proof. In Figure 1, we have drawn the graph „.S8/. The group S8 has 21 non-
trivial conjugacy classes; one can compute explicitly the neighborhood of each of
them inƒ.S8/. We can save some computations in view of the following observa-
tions. Whenever 4 is a partial sum in a partition p, p is not adjacent to partitions
having only parts of even length because of the sharing of S4 o S2. It follows that
if, in a partition p, the integers 1, 3 and 4 are partial sums, then p is isolated. This
implies that the set of vertices of „.S8/ is a subset of

A´ ¹.13; 5/; .12; 6/; .1; 2; 5/; .1; 7/; .3; 5/;

.2; 32/; .42/; .2; 6/; .24/; .22; 4/; .8/º:

Note also that partitions which, for every odd integer `, have an even num-
ber (possibly zero) of parts of length ` are not adjacent to partitions having only
parts of even length because of S2 o S4. We observe finally that the only core-
free maximal primitive subgroups of S8 are AGL3.2/ and PGL2.7/ (up to con-
jugation). Among the partitions in A, AGL3.2/ contains .1; 7/, .42/, .2; 6/, .24/,
and PGL2.7/ contains .12; 6/, .1; 7/, .42/, .24/, .8/. It is now easy to draw the
graph.

The last case to consider is alternating groups of odd degree.

Theorem 3.8. Let n > 5 be an odd integer. Then„.An/ is connected, and we have
d.„.An// 6 6.

Proof. The cases n D 5; 7; 9 can be checked explicitly; we omit the details and
assume n > 11. The cases n D 11; 13; 17; 19 have been considered in Theorem 3.4
and in the comments following it. Therefore, we need to consider the cases n D 15
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and n > 21. We first assume n > 21, and deal with the case n D 15 at the end of
the proof. Throughout the proof, recall Lemmas 2.8 and 2.5.

Let x; y 2 An, and assume xAn is adjacent to yAn in „.An/. We will show
that xAn or yAn is adjacent to at least one among .12; n � 2/, .22; n � 4/, every
class with cycle type .1; 3; n � 4/, .1; 4; n � 5/ and .2; 8; n � 10/. This will show
that every vertex of „.An/ has distance at most 2 from one of these vertices.
The argument given in the next two paragraphs shows that all these vertices are
adjacent to .62; n � 12/. It will follow that every vertex of „.An/ has distance at
most 3 from .62; n � 12/, which clearly will conclude the proof.

Let us analyze the classes .12; n � 2/, .22; n � 4/, .1; 3; n � 4/, .1; 4; n � 5/
and .2; 8; n � 10/. By Lemma 2.2, only .1; 4; n � 5/ and .2; 8; n � 10/ belong to
some maximal transitive imprimitive subgroup; they are contained in S5 o Sn=5.
Regarding maximal core-free primitive subgroups, by Theorem 2.3, .12; n � 2/
belongs only to P�L2.q/ with n D q C 1. Moreover, .22; n � 4/, .2; 8; n � 10/
and .1; 3; n � 4/ belong to no core-free primitive subgroups, the first two by Corol-
lary 2.4, the last by [8, Theorem 1.1]. Again by [8, Theorem 1.1], .1; 4; n � 5/
belongs possibly only to AGLd .5/.

Now consider the class .62; n � 12/. The maximal transitive imprimitive sub-
groups it is contained in are S3 o Sn=3 and Sn=3 o S3. Moreover, by Lemma 2.11,
it belongs neither to AGLm.p/ nor to P�L2.q/. Therefore, as claimed .12; n � 2/,
.22; n � 4/, every class with cycle type .1; 3;n� 4/, .1; 4;n� 5/ and .2; 8;n� 10/
are adjacent to .62; n � 12/.

Hence, in order to conclude the proof, it is sufficient to prove the initial claim,
that is, to prove that xAn or yAn is adjacent to at least one among .12; n � 2/,
.22;n� 4/, every class with cycle type .1;3;n� 4/, .1;4;n� 5/ and .2;8;n� 10/.
In a previous paragraph, we determined the maximal overgroups of these classes.
In the following, we will freely use this information with no further mention.

Denote by c.x/ and c.y/ the cycle types of x and y, respectively. Assume there
exists z 2 ¹x; yº such that 1 and 2 are not partial sums in c.z/; without loss of
generality, z D x. Then, by Theorem 2.3, either xAn is adjacent to .12; n � 2/, or
x 2 P�L2.q/. If moreover 4 is not a partial sum in c.x/, then xAn is adjacent to
.22; n � 4/. Assume then that 4 is a partial sum in c.x/. The unique possibility is
c.x/ D .4; : : :/, from which 1 ¤ x4 fixes an even number of points greater than 3,
from which x … P�L2.q/ by Lemma 2.11 (2).

Therefore, we assume (without loss of generality) that 1 is a partial sum in c.x/
and 2 is a partial sum in c.y/, that is, c.x/ D .1; : : :/ and c.y/ D .2; : : :/. Then
either xAn is adjacent to .22; n � 4/, or 4 is a partial sum in c.x/. In the latter case,
we have c.x/ D .1; 3; : : :/ or c.x/ D .1; 4; : : :/. If c.x/ D .1; 3; : : :/, then yAn is
adjacent to .1; 3; n � 4/. If c.x/ D .1; 4; : : :/, then yAn is adjacent to .1; 4; n � 5/
unless y is contained in AGLd .5/ or S5 o Sn=5. The option y 2 AGLd .5/ is ex-
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cluded by Lemma 2.11 (1) because y2 fixes 2 points. If y 2 S5 o Sn=5, since 5 is
a partial sum in c.x/, the unique possibility for the 2-cycle is to act as a 2-cycle
on the blocks, from which c.y/ D .2; 8; : : :/. Now, since certainly x … S5 o Sn=5,
xAn is adjacent to .2; 8; n � 10/. This concludes the proof in case n > 21.

There remains the case n D 15. Let x; y 2 An, and assume xAn is adjacent
to yAn in „.An/. We prove that xAn or yAn is adjacent to at least one between
.12; 13/, .1; 72/ and .15/ (this makes sense by Lemmas 2.7 and 2.12). By Theo-
rem 2.3 and Lemma 2.2, .12; 13/ and .15/ are adjacent. Moreover, .1; 72/ and .15/
are both adjacent to .22; 11/, and .1; 72/ and .12; 13/ are both adjacent to .32; 9/.
It follows that .12; 13/, .1; 72/ and .15/ have pairwise distance at most 2, from
which indeed d.„.A15/ 6 6.

By Theorem 2.3, if xAn and yAn are not adjacent to .12; 13/, then (without loss
of generality) c.x/ D .1; : : :/ and c.y/ D .2; : : :/. Assume now xAn and yAn are
not adjacent to .15/. We consider the various possibilities. Notice that x … S3 o S5
because otherwise 2would be a partial sum in c.x/. Direct inspection (using for in-
stance GAP) shows that if x 2 PGL4.2/, then it must be c.x/ D .1; 72/; hence we
may assume this is not the case. Therefore, by Theorem 2.3, it must be x 2 S5 o S3,
and y 2 S3 o S5 or y 2 PGL4.2/. Since x 2 S5 o S3, we have c.x/ D .1; 4; : : :/;
hence 4 is not a partial sum in c.y/. Inspection immediately implies y … PGL4.2/,
from which y 2 S3 o S5. In c.y/, the 2-cycle either acts trivially on the blocks, or
acts as a 2-cycle on the blocks. In the first case, 1 is a partial sum in c.y/, and in
the second case, 4 is a partial sum in c.y/. In both cases, we get a contradiction,
and the proof is finished.

Now the proof of Theorem 1.3 and Theorem 1.4 follows immediately from
Theorems 3.4, 3.5, 3.6 and 3.8.

4 Some comments on Conjecture 1.5

Conjecture 1.5 states that if G 2 ¹An; Snº, then, up to finitely many exceptions,
one has d.„.G// 6 4. Here we reduce this conjecture to the following one (and
in fact to something much weaker, see Remark 4.4).

Conjecture 4.1. Let G 2 ¹An; Snº. There exists an absolute constant c > 0 such
that if xG is a vertex of „.G/, then xG is adjacent to a class which has at most c
cycles.

A way to think about this is that, since xG is a vertex of„.G/, by definition, xG

is adjacent to some other class yG . It seems conceivable that, summing the parts
of the cycle type of y in a suitable way, one obtains that xG is indeed adjacent to
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some zG , where z has a bounded number of cycles. In fact, we believe that the
value of c should be rather small, say at most 4; by [8], only a “few” core-free
primitive subgroups contain elements having at most 4 cycles.

We now record a consequence of the Prime Number Theorem.

Theorem 4.2. Fix � > 0. Denote by �.n/ the number of primes less or equal to n.
Then �..1C �/n/ � �.n/ is asymptotic to �n=lnn.

Proof. The Prime Number Theorem states that �.n/ is asymptotic to n=lnn; hence
the statement follows from an easy computation.

Theorem 4.3. Conjecture 4.1 implies Conjecture 1.5.

Proof. It is sufficient to show that, for n large, vertices which have at most c cycles
have pairwise distance at most 2 in „.G/. Let xG and yG be two such vertices,
and denote by c.x/ and c.y/ the cycle type of x and y, respectively.

We first claim that if n is sufficiently large, then there exist distinct prime num-
bers p and r such that

(a) n=3 < p; r 6 n=2,

(b) p; r and p C r are not partial sums in c.x/ and in c.y/,

(c) p; r and p C r do not divide n.

Let us prove the claim. By Theorem 4.2, the number of primes contained in the
interval .n=3; n=2� is asymptotic n=6 lnn. The number of divisors d.n/ of n is
much smaller; it is known that d.n/ D o.n�/ for every fixed � > 0 (cf. [1, Theo-
rem 13.12, or Exercise 13, p. 303]).

Notice now that there are at most 2cC1 D O.1/ integers i such that i is a partial
sum in at least one between c.x/ and c.y/.

The claim now follows because the number of primes in the interval .n=3; n=2�
is much larger than all the other quantities considered above; hence, among all
possibilities for p and r , we certainly find one satisfying (b) and (c).

At this point, we conclude the proof. IfG D An and n is even, orG D Sn and n
is odd, then both xG and yG are adjacent to .p; n � p/. Indeed, by (c) .p; n � p/
is not contained in transitive imprimitive subgroups, and a power of .p; n � p/ is
a p-cycle, hence does not lie in core-free primitive subgroups by a classical theo-
rem of Jordan [16, Theorem 13.9]. Assume now G D An with n odd, or G D Sn
with n even. Then we claim that both xG and yG are adjacent to every class with
cycle type .p; r; n � p � r/. It is easy to deduce from Lemma 2.2 and from (c)
above that .p; r; n � p � r/ does not belong to transitive imprimitive subgroups
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of Sn. Moreover, since min¹p; rº > n=3, we have n � p � r < min¹p; rº. It fol-
lows that a power of .p; r; n � p � r/ is a p-cycle, hence does not belong to core-
free primitive subgroups by Jordan’s theorem.

We have shown that xG and yG have distance at most 2 in„.G/, and the proof
is concluded.

Remark 4.4. In the proof of the previous theorem, we have used a much weaker
hypothesis than the validity of Conjecture 4.1. Indeed, the same argument works
provided each vertex xG of „.G/ is adjacent to a vertex yG such that the number
of integers i which are partial sums in (the cycle type of) y is at most ın=logn for
some explicit fixed constant ı. This statement seems more suitable for a combina-
torial proof. Any proof of this sort would very likely avoid the use of the CFSG.

We conclude with a lemma providing a lower bound to d.„.G// in some cases.

Lemma 4.5. Assume n > 7 is prime. Then d.„.Sn// > 4.

Proof. The strategy is to define two partitions p and q such that p is adjacent in
„.Sn/ only to .n/, and q is adjacent in „.Sn/ only to .1; n � 1/. Since .n/ and
.1; n � 1/ are not adjacent because of the sharing of AGL1.n/, this will prove
indeed that d.„.Sn// > 4.

Define

p D

´
.1.n�1/=2; .nC 1/=2/ if n � 3 mod 4;
.1.nC1/=2; .n � 1/=2/ if n � 1 mod 4:

Note that p corresponds to odd permutations. Moreover, every 1 6 i 6 n=2 is
a partial sum in p; hence p is not adjacent to partitions having at least 2 parts.
Finally, p is adjacent to .n/ by Theorem 2.3.

Now define

q D

´
.2.n�3/=2; 3/ if n � 3 mod 4;
.2.n�9/=2; 33/ if n � 1 mod 4:

Note that q corresponds to even permutations, so it is not adjacent to .n/. It is
easy to check that every 2 6 i 6 n=2 is a partial sum in q; hence q is adjacent
to nothing different from .1; n � 1/. Finally, since q … AGL1.n/, we deduce by
Theorem 2.3 that q is indeed adjacent to .1; n � 1/. This concludes the proof of
the lemma.

Similar methods should suffice to give sensible lower bounds to d.„.G// in all
the various cases. However, the details would become slightly technical, as one
would need to specialize the argument depending on the arithmetic of n.
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