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Abstract

The advancement of deep-learning technologies and the pervasive deployment of communication
networks open new possibilities for sensing applications. Deep-learning tools are changing the
paradigm from passive data collection to enhanced possibilities of interpretation andmeaningful
pattern extraction. On the other hand, communications are becoming widespread and play a cru-
cial role in our society, thus the integration of sensing features appears as a natural consequence
of the maximum exploitation of the communication infrastructures and for the enhancement of
communications themselves.
In general, sensing is a fundamental and indispensable ability in our daily existence because

provides information and allows our interaction with the world, thus the possibilities offered by
these relatively new tools have the power to innovate society. In recent years, different domains
have been transformed by sensorization as automation in healthcare, industry, agriculture, auto-
motive, and others.
This thesis contributes to the field of sensing fromdifferent research perspectives. First, remote

sensing is explored for movement monitoring in the clinical gait analysis context. We developed
two multidisciplinary approaches involving computer vision and radar sensing coupled with
deep learning processing neural networks for data processing. Then, we focused on multimodal
acquisition systems. The information derived from different signals collected simultaneously is
considered and enabled. Some practical problems related to the creation of adequate set-ups are
discussed and we proposed both hardware and software solutions to different scenarios. Finally,
we exploited the side information obtained by communications systems for human sensing. This
proposed system is part of amore general scenario of integrated communications and sensing that
is gainingmore relevance due to the features of next-generation communications networks. In the
last chapter, we discuss this interesting double role of communication networks and we propose
a framework to detect human positioning indoors with no hardware specific for sensing.
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1
Introduction

Sensing has a crucial role in our daily lives, in fact, it is the fundamental capability to perceive,
understand, and interpret the world in which we live. Through our bodies and the use of our
five senses, i.e., sight, hearing, touch, taste, and smell, we collect important information about
the environment, enabling us to live everyday situations. Indeed, sensing offers the possibility
to gather information regarding both our survival and the more abstract experiences; we can
detect dangers and find supplies, but also enjoy the beauty, share experiences, andmake informed
decisions.

The existence of biological sensing is fundamental to further enhancements and explains our
attitude of interaction with the world. The human interest to go beyond the already gained ca-
pabilities leads to the continuous technological effort in empowering the sensing possibilities. In
fact, due to the possibility of gathering information about the context, sensing technologies have
contributed to the development of a great amount of fields opening new possibilities. Among
others, we mention some fields that have experienced a particular growth in recent years. In in-
dustry, sensors monitor the conditions, enable to make automatic decisions, assist in predictive
maintenance, and increase the workers’ safety. Smart cities are the concept of the use of sensing
technlogies to improve the quality of residents’ life, e.g., managing traffic, optimizing services,
and reducing consumptions. The smart use of resources in energy management is an example of
a challenge that can be faced also through the use of sensing and, in the more general picture, en-
vironmental monitoring is an important tool to track andmitigate the effects of pollution, climate
change, and natural disasters; e.g., the parameters involved are temperature, humidity, air and
water quality. In agriculture, sensors can help to address human intervention and the resources
management to obtain increased crop yields and a more sustainable agriculture paradigm. Some
established methodologies are related to soil conditions assessment, crop health monitoring, and
irrigation optimization. Sensing is practically related to the capability of acquiring important
information at the right time to enable time- sensitive decisions based on the gained knowledge.

1



Moreover, sensing capabilities enables timemonitoring and the possibility to evaluate the impact
of previous informed decisions.

In this thesis, the sensing solutions are mostly related to healthcare and communication appli-
cations. In healthcare, sensors can continuously monitor vital signs, provide tools for diagnosis,
and real-time feedback for personalized treatment. Wearable sensors and remote monitoring sys-
tems have improved patient outcomes and allowed for early intervention in critical cases.

In telecommunications, network operators exploit the context knowledge to adapt the poli-
cies to deliver their services and in the next generation communication the integrated sensing-
assisted communications is expected to be a key feature as it enables new applications, such as
autonomous driving and augmented/virtual/ mixed reality, that require reliable context infor-
mation in real-time.

On the other hand, throughout human history, many technologies initially designed for a spe-
cific task have been adjusted to address new challenges, often resulting in surprisingly good out-
comes. In fact, the aspects thatmight be seen as a source of errors or disturbance in one context can
sometimes be exploited in a new setting to enable novel applications. In the wireless communica-
tions domain, the exploitation of the multipath effect is a perfect example of the aforementioned
situation. The receiver obtains multiple versions of the transmitted signal that have been delayed,
frequency-shifted, and weakened due to the presence and the nature of the objects in the environ-
ment which reflect the signal in different spatial directions. Despite being a typical communi-
cation hurdle well addressed in the literature, this effect combined with appropriate processing
methods can reveal a great amount of information about location, movements, and properties
of these reflecting objects. Thus, besides the tools specifically designed for sensing, communica-
tions have become an important mean for sensing. Due to the high density of communications
infrastructure in our society, there is a practical convenience to exploit communication signals for
sensing purposes both indoors and outdoors. Moreover, the integration of deep learning tools in
next-generation networks is expected to permit actions based on the network knowledge through
data analysis. Deep learning techniques can be incorporated at various network levels, ranging
from end devices and access points to the network infrastructure and cloud-based applications,
depending on the specific use case[1].

Deep learning integration in communications opens the possibility for frameworks capable of
adapting to changing environmental conditions through sensing. In fact, the recent advent of
deep learning permits the sensing possibilities exploiting the capability to learn patterns from
the data and recognize them in the new inputs; the perspective changes from the data collection
to data interpretation, automatic learning, and interpretation. Many different fields are adopting
deep learning techniqueswith success to improve their results or expand their sensing capabilities.
For example, in computer vision, neural networks can analyze images and videos, enabling object
detection, segmentation, and tracking. Deep learningmodels can process time series from sensors
of any quantity. Referring to this thesis, for example, to monitor the patients’ health and output
predictions in the healthcare domain.

In conclusion, sensing applications are heavily involved in multiple aspects of our lives, and
the evolution of technology continues to create innovation, thus we can expect new sensing solu-
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tions to emerge, further enhancing our ability to monitor, interact, and discover the world around
us. These applications increase the sensing efficiency and can contribute to an improvement of
life quality provided that their use is combined with the awareness of the different tools’ risks.

1.1 Thesis content

In the next chapters, different aspects and solutions related to sensing-enabled environment aware-
ness will be deepened. In Chapter 1 we address the problem of human movement monitoring by
presenting a deep-learning approach applyied to multiview videos. The proposed solution ad-
dresses in particular the lack in literature of a clinical approach that requires a three dimensional
joint movement description. A different perspective to the same problem is presented in Chap-
ter 2 in which we explored the radar sensing as a non-invasive wireless technique to predict the
human pose during gait and to enable clinical gait analisys. Chapter 3 refers to the practical im-
plementation of sensing platforms for multisignals collection. In particular, the first part of the
chapter is devoted to the development of an Android library that manage multiple simultaneous
Bluetooth Low Energy connections and its application to a real case for patients health monitor-
ing. In the second part, we describe the design and realization of a synchronization system for the
data collection of different biological signals during gait. Then, Chapter 4 describes the work for
the realization of a wireless communication-based sensing system for the positioning of a subject
in an indoor environment. Beamforming is a key feature of the 5G (and beyond) communica-
tion links and it is here exploited for sensing purposes. In Chapter 5 we conclude the thesis with
suggestions for future researches and final remarks.
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2
Video markerless motion capture

2.1 Motion capture systems

Quantitative movement monitoring is the object of study of motion caption and finds application
in different fields such as security, entertainment, and autonomous driving as well as in reha-
bilitation and biomedical research which is the field of interest of this project. Gait analysis has
been known to be an effectivemethod to distinguish between healthy and pathological gaits since
the late 1800s [2]. The clinical gait analysis includes different components, i.e., kinematics (joint
angles), kinetics (joint forces), muscular activity, foot pressure, and energetics (measurement of
energy utilized during locomotion). In this thesis are presented some technical approaches and
acquisition systems related to kinematics, thus the measurement of the joint angles in the three-
dimensional space. The state-of-the-art most accurate optical systems record the subject’s move-
ments with a set of synchronized cameras and usually employ a set of active or passive markers
which are attached to the subject’s skin [3]. The markers are tracked by feature extraction al-
gorithms either during the acquisition or in post-processing. However, this procedure requires
expensive instrumentation and long pre- and post-processing time. In addition, issues related to
marker occlusions remain very common [3]. Finally, the subject has to wear only underwear and
could be uncomfortable, this is another weakness considering that clinical application usually in-
volves fragile subjects.
Increasing attention has been dedicated to markerless motion capture technologies as a solution
to these limitations. These approaches usually use subject-specific anatomical models providing
both morphological and kinematic information. The tracking is obtained by iteratively matching
these descriptors to the data extracted from the records, via background subtraction and visual
hull reconstruction, as in [4]. These methods have achieved remarkable precision, but they gen-
erally require controlled experimental conditions and the computational complexity to complete
the processing does not permit a real-time application of those systems [5]. With the advent of
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deep neural networks, the pose estimation field has started to exploit such architectures [6]. The
main limitation is that these models are usually trained to estimate the joints’ positions in the 3D
space because the main public datasets annotate the joint centers [7]–[9]. However, the joint cen-
ter itself is not sufficient to capture the complete range of the joint motion. Moreover, the joints’
centers are not visible because are inside the body, so they are manually inferred considering the
point of view of the picture and obtaining a projection of them on the frame itself. To the best of
our knowledge, this has not been proven to be sufficiently precise in the reconstruction of a 3D
model with anatomical validity.
The method presented in this chapter addresses the problem in a novel way. The estima-

tion procedure aims to predict a set of superficial landmarks defined according to an established
anatomical protocol. The advantages of this approach are summarized as follows:

• to provide a new approach in which the prediction of the superficial keypoints permits the
estimation of three-dimensional angles instead of planar angles between limbs and therefore
to describe the complete motion of the joints.

• the possibility of estimating the original dataset precision with respect to an established
approach. This is not true for the direct annotation of joint centers.

2.2 Related work

The possibility to capture the movement is appealing for a wide range of applications and the
number can increase as the technology becomes more affordable and precise. Considering the
clinical application, it is of paramount importance to completely describe the motion. The com-
mon limitation of a great number of approaches is the direct prediction of the joints’ positions.
The information of the centers permits associating the movement to planar angles defined by the
limb segments, but the range of motion of each joint is described when three-dimensional angles
are estimated. Flexion-extension movement with some approximation could be described as the
planar angle between the joints, in particular for the knee joint. Besides this approximation, a
complete sensing procedure needs to include the abduction-adduction angle and rotations.
Very different technologies and methods have been developed to capture motion: magnetic,

inertial, mechanical, and optical systems. In particular, the standardmethodologies in the clinical
domain are optical because permit the application of a less invasive process and they can reach
very high accuracies.

Themost common approach is camera-basedwith infrared cameras that are used to triangulate
the location of reflective markers attached to the subject. The markers are tracked from different
perspectives and their 2D positions are obtained by means of feature extraction algorithms. The
system is calibrated to obtain a global reference system and the relative position of each cam-
era, thus it is possible to retrieve the 3D position of the marker either during the acquisition or
in the post-processing phase. However, this procedure requires expensive instrumentation that
includes the cameras and the processing system itself it is usually not portable. Moreover, the
pre-processing time is often quite long as it includes the subject preparation with markers on the
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bones’ landmarks and the system calibration. After the data acquisition, there is a data processing
step in which the operator has to deal with the occlusions and sometimes they remain a problem.
In fact, this is the main problem, even in most advanced systems equipped with markers auto-
labeling [3].

Manual video tracking is a method that can be used both with the help of markers or-in some
cases-without them if the bones’ prominencies are evident. In this case, the markers are required
to be visible and adherent to the subject’s skin duringmovement,e.g. tape. In some systems there
are implemented somemechanisms that help to speed up the process. Among all wemention the
auto-tracking, i.e., the landmarks are manually positioned just in the first frame of a video acqui-
sition and, through the application of computer vision-based algorithms, the marker is tracked
across the different frames or at least a tentative position is suggested to the operator. In the soft-
ware Track on Field (BBSof Srl), the algorithm used for the auto-tracking implementation is the
algorithm proposed by Kanade-Lucas-Tomasi (KLT) [10], [11] in which the main idea is to solve
the image registration problem through a local search using gradients of the first and second or-
der. This algorithm have shown to be effective to propose the locations of the markers also in
challenging environments, reducing the required manual intervention [12].

In this context, markerless methods are a research challenge still to be solved but present sev-
eral advantages. The first advantage of markerless techniques is related to the time efficiency in
the data collection. In general, even if markerless requires some processing time for computation,
stereo requires subject preparation and also some post-processing. Moreover, this preparation
has to be done by an expert operator to identify the bones’ prominences correctly, while a mark-
erless method can be usually used by any operator at least for the data acquisition. Another
benefit is the patient comfort that derives from the disuse of markers. The wearing required for
stereophotogrammetry is tight or just underwear.

Somemarkerless approaches employ depth cameras that can estimate depth by computing the
delay from light emission projected towards the object to backscattered light detection. In [13] a
single depth image is used as it is treated as a point cloud and then, the pose is identified as the
best match measuring the similarity within a database of poses. The authors of [14] combine vol-
umetric dynamic reconstruction with data-driven template fitting to simultaneously reconstruct
the pose from a single depth camera. These approaches estimate the pose but the computation of
the kinematics is difficult or impossible because the output of the system is the joints’ centers.

Among the opticalmarkerless approaches based on computer vision techniques, the silhouette-
based can obtain good results in terms of completeness of the data as the 3D motion can be re-
trieved [5]. On the other hand, themain drawbacks of the silhouette-based approach are the great
amount of computational resources required and the very low flexibility to new subjects because
subject-specific models are necessary. Moreover, the model requires manual intervention in each
situation, there is no learning process.

Markerless is gaining even more relevance with the advent of deep-learning techniques that
are able to learn from the context. The change of the paradigm done by deep-learning is from
passive sensing to active prediction based on learning. This opens the door to a great variety of
new tools to empower also gait analysis. Thus, in the last years, a high number of approaches
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have been proposed to solve the problem [15], [16].
Still, there is a lack in the literature of approaches that allow the reconstruction of three-dimensional

reference frames for each joint to compute the joints’ angles completely. Our approach addresses
this problem by predicting the superficial keypoints on the subject’s skin instead of the joints’ cen-
ters. This is possible with a vision-based deep-learning model trained on labeled data. Using the
joint centers, it is possible to define a complete system reference frame for each limb to estimate
the angles while the subject is moving. From this perspective, our project try to fill this gap in the
literature and the results we obtained were published in [17]–[21].

2.3 Dataset for training

The dataset used for the training of the pose estimator was manually labeled by us to include the
position of the markers defined by the IORgait protocol [22]. This protocol was chosen between
the gold standards for the gait analysis because it considers fewer keypoints, i.e., 30, but it per-
mits to build a 3D reference frame for each joint and to estimate the flexion-extension, abduction-
adduction, and internal-external rotation angles. The labeling was done by video tracking with
Track on Field,i.e., manually annotating the visible keypoints indicated by some markers or look-
ing at the bones’ prominences. The auto-tracking implemented suggested the positions, but due
to the noise they needed to be checked by the operator in each frame. After the video track-
ing, there is the triangulation step in which all the annotations on the dataset images are used
to create the three-dimensional trajectories for each marker. The trajectories usually present
some holes due to occlusions that prevent the annotation in the video tracking step. For this
reason, two different strategies are employed to reconstruct the trajectories and we discuss them
in Sec. reconstruction. Finally, the 3Dmarkers trajectories are reprojected frame by frame onto the
cameras image planes. With these steps, we gain the positioning of occluded keypoints.
The design of these steps aims to estimate the position of the points that are occluded from

a certain observation angle. The projection of the reconstructed trajectories permits to increase
the number of markers that could be detectable only by tracking. Moreover, in some cases, the
available data hadmarkers. To create amarkerless system is important to decouple the annotation
from the visible markers in order to permit the model to learn an association between markers
and bones’ prominences, not with markers.
The steps for the dataset creation are summarized in the following:

1. Acquisition: the subjects are recorded while walking.

2. Video tracking: the keypoints are identified in the video frames.

3. Triangulation: the two-dimensional information fromdifferent points of view is triangulated
to obtain 3D keypoints.

4. Reconstruction: the trajectories of the 3D keypoints were reconstructed where needed.

5. Projection: 3D points were projected onto the image planes of the cameras.
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2.3.1 Dataset acquisition

The subjects involved in the experiment are 5 children (Tab. 2.1). Datawere collected from the sub-
jects with stereophotogrammetry, with tape for video tracking, and just walking without markers
for markerless video tracking and testing the proposed approach. All data from each subject was
collected subsequently on the same day. They were asked to walk at a self-paced speed while
recorded by 4 GoPro cameras positioned at the room angles. The walking records had to contain
at least 6 gait cycles, 3 for each side.

Subject Age [years] Height [cm] Weigth [Kg] BMI [kg/m2] Shoe size Gender
Sub1 7 130 33 19.53 35 F
Sub2 6 117 27 19.72 30 M
Sub3 10 151 40 17.54 37 F
Sub4 7 121 27 18.44 35 M
Sub5 9 137 29 15.45 35 M

Table 2.1: Subjects demographic and biometric information.

2.3.2 Video tracking

For each video frame, the keypoints were annotated with the help of Track on Field (BBSof Srl).
The synchronized acquisition videos were trimmed to obtain separated gait cycles. The opera-
tor annotated the markers in the first frame and then the tracking of the markers position was
proposed by the software. The markers IORgait protocol is described in Fig.2.3

The lighting condition and the occlusion due to moving objects with different depths were
challenging for the embedded algorithm, thus all frames were checked manually. Moreover, for
the annotation of the trials in which the subjects did not wear the markers, the algorithm was not
able to identify the bones’ prominences. An example of tracking session is shown in Fig.2.1-2.2.

In Track on Field also the camera calibration is performed and the imagematrices are retrieved.
The standard procedure is to perform both intrinsic and extrinsic calibration with the use of a
checkerboard and the application of the Zhang algorithm [23].

2.3.3 Reconstruction

The three-dimensional predictions are often incomplete due to occlusions and the 3D trajectories
result with holes. The small holes, i.e., less than 5 frames are filled with spline interpolation [24].
While a wider loss of information is retrieved making some assumptions about the body shape.
The first is related to the protocol definition; the human body in the IOR gait model is composed
of 8 segments and for each there are 4 estimated keypoints, three of them are used to compute the
system reference frame and the fourth is a backup point. The other assumption is the rigidity of
these segments: the lengths are considered fixed between them with no modifications due to the
movement.
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Figure 2.1: Screen of the software used for video tracking.

Figure 2.2: Screen of the software used for video tracking - window for tracking.

IORgait protocol description According to [22], the considered landmarks are 4 for each consid-
ered anatomical segment, except the thighs. In thighs, there are three markers and the fourth
point is the center of the femoral head (FH) which is assumed to coincide with the center of the
acetabulum. It is reconstructed using the geometrical prediction method proposed by [25] that
is based on the location of the four anatomical landmarks of the pelvis (RASIS, LASIS, RPSIS,
LPSIS). The segments are defined as follows:

• trunk: the 7th cervical vertebra (C7), acromions of scapulas (RA, LA), the 5th lumbar verte-
bra (L5)

• pelvis: the anterior (A) and posterior (P) iliac spines (RASIS, LASIS, RPSIS, LPSIS)
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• thighs: the most lateral prominence of the great trochanter (RGT/LGT), of the lateral and
medial epicondyle (RLE/LLE, RME/LME) and the hip joint center (RHJC/LHJC)

• shanks: the proximal tip of the head of the fibula (RHF/LHF), the most anterior border of
the tibial tuberosity (RTT/LTT), the lateral prominence of the lateral and medial malleolus
(RLM/LLM, RMM/LMM)

• feet: the achilles tendon insertion on the calcaneous (RCA/LCA), and the dorsal margins
of the first (RIM/LIM), second (RIIT/LIIT) and fifth (RVM/LVM) metatarsal heads, the
ordinal numbers are expressed as roman.

Figure 2.3: IOR-gait protocol description (Sec. 2.3.3).

Considering both the body shape and rigidity of segments, for each segment it is possible to
estimate its position provided that the other three marker positions of that segment were already
estimated. This happens with the help of a static acquisition from which to extract the relative
distances between markers belonging to the same segment. The rigid segment reconstruction is
not exclusively but prominently applied to medial landmarks which are often not visible due to
anatomical occlusions during gait.

2.3.4 Projection

Both intrinsic and extrinsic calibration used for undistortion and triangulation were saved and
used to project the 3Dpoints on the image planes of the cameras. This permits to have the informa-
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tion of the hidden keypoints at the cost of projection error. Each pre-processing step introduces
error and the projection error is measured as root mean squared error (RMSD) and coefficient
of multiple correlation (CMC). The results are in Sec.2.6. For the scope of the estimation of the
projection error, the original manual annotations are assumed to be correct when availables and
the projections are compared to them. The error is measured in pixel units and it is compared
to the average width of the tape area (7-8 pixels) which is assumed to be the maximum impreci-
sion that the operator can introduce when annotating the subjects with tape. In this assumption,
we assume the operator annotate markers correctly where the tape is visible, excluding human
errors as confusion between different keypoints, forgetting markers, and others. Moreover, the
imprecision is related to the operator when annotating the subjects that are not wearing tape. In-
deed, the operator should be well instructed to recognize the bones’ landmarks. Finally, it exists
inter-operator error in the positioning of the markers. The manual annotation is here assumed to
be the ground truth but the real scenario shows a greater complexity.

Figure 2.4: Keypoints after processing.

After the projection step, another interpolation step is done to fill the remained holes consid-
ering the 2D trajectories with spline interpolation.
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Figure 2.5: Processing pipeline - The processing scales with the number of subjects found by the person
detector.

2.4 Deep IOR

2.4.1 Data preprocessing

DeepIOR is a highly modular pipeline that involves an undistortion step, a neural network for
person detection, another deep-learning model to estimate the pose, a triangulation step, and the
angles estimation. The steps are sequential but independent in order to permit further improve-
ments to each step and to access intermediate results, if required. In this section, the pipeline
steps are discussed in the order of the data flow as indicated in Fig. 2.5.

2.4.2 Person detection

For each image, a person detector extracts the boxes. The model used is the Faster R-CNN de-
veloped by [26] in which the main idea is to merge a Region Proposal Network (RPN) and Fast
R-CNN into a single network by sharing their convolutional features in a sort of attention mech-
anism; the RPN component tells the unified network where to look. The authors describe the
RPN as a fully convolutional network that simultaneously predicts object bounds and objectness
scores at each position. The RPN is trained end-to-end to generate high-quality region proposals,
which are then used by Fast R-CNN for detection [26].

Multiperson

Multiple subjects could appear in the scene and the person detector could fail to retrieve the
desired box if the selection is based only on thresholds. Indeed, the desired output of the person
detector is the region of interest associated to the subject. The proposed procedure to select the
boxes is based on the assumption that for the number of people in the scene from each point of
view is fixed and known, for each gait cycle. The procedure startswith the selection of amaximum
number of boxes, i.e., the number of expected subjects in the scene. Then, for each instant, the
retrieved boxes from different points of view are matched to the same subject with the algorithm
described in the following row. Finally, frame by frame the subject is tracked matching the set of
boxes with the previous one considering the distance of the box with respect to the ones in the
previous frame.
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(a) For each view, the person detector return the
bounding boxes that are recognized as people (score

> 0.5).

(b) The boxes are matched: the bounding box
represented with the same color are referring to the

same subject in the real world.

Subject

2

Subject

1

(c) The boxes that are bounding a subject seen from
all the points of view are kept for the next processing

steps.
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N- 1
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1
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2
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(d) The selected boxes are tracked across the
different time instants. The spatial movement of the

subject in the scene is retrieved.

Figure 2.6: Matching and tracking of the boxes across the different frames.

Algorithm for selecting multiperson:

• set howmany boxes (n1,n2,n3,n4) to detect from each point of view. For each box, you obtain
the four corner positions.

• the combinations of different boxes are tested and ordered according to the Learned Percep-
tual Image Patch Similarity (LPIPS) of the set of boxes.

• in the first frame, the best S sets of boxes are kept, where S corresponds to the number of
subjects of interest in the scene. They represent the number of subjects to process and are
assumed to be at the center of the scene or at least their body is entirely visible from all the
cameras. This assumption is not limiting the system possibilities as the need to have the
subject in the scene is necessary for the keypoints estimation.

• in the subsequent frames, the sets of boxes that correspond to the same subjects arematched
to the first sets choosing the best Intersection over Union (IoU) score between the combina-
tions of past (saved) and current (detected by person detector) boxes.
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2.4.3 Pose estimation

Train-val-test dataset

The dataset used for training was obtained after the processing described in Sec. 2.3.

Subject Gait cycles
Markers
presence

Num frames Dataset
Percentage of
total dataset

Sub1 6 yes 756

Training 73.1%
Sub2

6 yes 676
6 no 636

Sub3 6 yes 668

Sub4
6 yes 784
6 no 648 Validation 13.5%

Sub5 6 no 644 Test 13.4%

Table 2.2: Description of dataset for pose estimator training, validation and test.

Data referred to subject 5 were kept to test the model generalization capability on a completely
new subject without markers. Nevertheless, the prediction without markers is the target result.

Architecture

The architecture chosen for the pose estimation is a modified version of HRNet which was origi-
nally designed by [27]. The authors focused on the creation of multi-scale features fusion through
the combination of parallel high-to-low resolution subnetworks that exchange information across
them.

Figure 2.7: Image from [27] illustrating HRNet architecture. The horizontal direction correspond to the
depth of the network and the vertical is the scale of the feature map.

This supervised model requires as input images, a bounding box for each person considered
by the model - if any - and annotations about the keypoints positions- during training. Inside
this region of interest, the joints are computed as a heatmap for each joint which indicates the
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probability map for the position of the joint. The final prediction of the joint position is computed
as the location of themaximum in the heatmap summing a quarter of a pixel in the direction of the
highest adjacent one. The estimation approach rely on the use of multi-resolution subnetworks in
parallel and in [27] the authors claim that themodel demonstrated a good capability in predicting
the human pose even in challenging environments. Armed with these results, the choice was to
keep this architecture and to train it with our dataset.

2.4.4 Triangulation

The pose estimation step outputs the 2D positions of the keypoints from the camera’s point of
view. The joints’ angles computation requires the markers’ positions in the 3D space, thus the
information from the different points of view is combined in the triangulation.

Figure 2.8: Estimated landmarks corresponding to the IOR-gait markers.

The algorithm chosen is the linear least squares triangulation, described for the case of two
points and then generalized to more perspectives. We consider the pinhole model in which the
projection p on the image plane of the point P is defined as:

p′ =MP =







α 0 cx 0

0 β cy 0

0 0 1 0






P =
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0 β cy

0 0 1







[

I 0
]

= K
[

I 0
]

P (2.1)

where α and β are the coefficient to obtain the coordinates on the axes x and y. In the classical
pinhole model formulation they are obtained multiplying the focal distance f by a scale factor
specific for the axis. While cx and cy are the translation value to be considered in the model
when the principal point is not centered in the origin. More details about the pinhole model
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formulation can be found in [28]. Considering the triangulation problem with two views, there
are two cameraswith known camera intrinsic parameters described by the cameramatricesK and
K ′ respectively. The relative orientations R and offsets T of these cameras with respect to each
other are also known. Ideally, there should exist a point P in the three-dimensional space which
corresponds in the images of the two cameras to p and p′ respectively. Although the location of P
is unknown, the exact locations of p and p′ in the images could permit to find the exact location
of P because K, K ′, R, T are known, thus the two lines of sight l and l′, which are defined by
the camera centers O, O′ and the image locations p, p′. Therefore, P can be computed as the
intersection of l and l′.
In the practical real scenario, this formulation has to be adapted because the observations p∗

and p′∗ are noisy and the camera calibration parameters always have an error, thus finding the
intersection point of l and l′ is not straightforward as in most cases, it does not exist because the
two lines may never intersect (Fig. 2.9)

p
p’

O
O’

P

p*=MP p’*=M’P

P*

Figure 2.9: Least squares triangulation. P is the triangulated point in the ideal case. P∗ is the least square
estimate of P .

Considering the two points p∗ and p′∗ in the images that correspond to each other p∗ =MP =

(x, y, 1) and p′∗ = M ′P = (x′, y′, 1). By the definition of the cross product, p ∗×(MP ) = 0 thus,
considering both images, we can create some constraints in the form of an equation:
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3 −M
′

2











P = 0 (2.2)

whereM1,M2, andM3 are the rows of thematrixM . This equation can be solvedwith Singular
ValueDecomposition (SVD) and the homogeneous coordinates of the best estimateP∗ of the point
P is the eigenvector corresponding to the smallest eigenvalue. Considering that a greater number
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of noisy lines is evenmore unlikely to intersect in a single point in the real case, the reasoning done
for two images can be extended and the equations of the images appended to the matrix before
SVD.

2.4.5 Angles estimation

The angles were estimated following the conventions adopted in [22]: the centers of the hip, knee
and ankle joints are taken respectively as the head of the fibula FH, the midpoint between the
epicondyles (LE, ME) and the mid point between the malleolus (LM, MM). Then, the anatomical
reference frames for the body segments are defined as in [29].

Figure 2.10: Reference frames definition. Image modified from [22].

For each joint the movement is measured considering the following three angles:

• flexion/extension: the relative rotation about the medio-lateral axis (Z) of the proximal seg-
ment

• internal/external rotation: the relative rotation about the vertical axis (Y) of the distal seg-
ment

• abduction/adduction: the relative rotation about a floating axis orthogonal to these two at
each collected sample.

This terminology is adopted for the hip and knee joints, but for the special ankle joint these
three rotations are referred to respectively as dorsiflexion-plantarflexion, inversion/eversion, and
abduction/adduction. Spatial rotations of the pelvis, respectively tilt, rotation, and obliquity, are
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calculated considering the virtual joint between the laboratory global frame as proximal and the
pelvis as distal segments.
Each joint angle is computed for the three gait cycles of the corresponding body side, i.e., the

right hip, knee and ankle angles are computed for the right gait cycles and viceversa for left side.
Trunk and pelvis are computed using the GCs of the right side of the body, by convention.

2.5 Validation

To check the performance of the system and the errors induced by the various processing steps,
we performed various analyses. First, we computed the error introduced by the projection step
in data processing. To estimate this error, the projected points are compared to the manually
annotated, where available.
Then, the prediction of the markers by our pose estimator is evaluated by comparing the esti-

mated markers on the test subject to the manually annotated labels. The comparison was done
for the different perspectives.
Finally, the joints’ angles are comparedwith stereophotogrammetric ground truth obtained for

the same subject during a sequential acquisition. Despite they are not exactly the same gait cycles,
thewalking patterns for healthy subjects are assumed to be similar in the acquisition happens near
in time. Thus, each angle profile estimated over three GCs by our system is compared with the
three GCs obtained from the stereophotogrammetric system.

2.5.1 Metrics description

Themetrics used for the evaluation ofDeepIOR results are the rootmean squareddistance (RMSD)
and coefficient of multiple correlation (CMC)[30].

RMSD =

√

∑N

i=1
(xi − yi)2

N
(2.3)

where N is the number of ordered samples in the sets x and y.
While CMC is an index that expresses the correlation betweenwaveforms considering possible

grouping. It is specifically designed to compare different protocols applied to the same gait cycles,
for the definition refer to the original paper [30]. The threshold we set to consider twowaveforms
as correlated is 0.7.

2.6 Results

2.6.1 Projection error

In Fig. 2.12 are shown the results related to the projection step in the dataset preparation. The error
is distinguished by considering the axes separately. For the whole dataset, the (x,y) coordinates
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of the projected markers in the image are compared to the labels that were possibile to annotate
manually. For each trajectory related to a gait cycle, it is obtained a value of RMSD and CMC that
we reported in Fig. 2.11.
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(c) RMSD along the x axis.
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(d) RMSD along the y axis.

Figure 2.11: Estimation of the error due to projection step in data processing.

The metric CMC expresses a high correlation between all the compared trajectories. The aver-
age width of the tapedmarkers is about 7-8 pixels and this can be assumed as the threshold of the
imprecision that the operator can do while annotating manually, excluding errors due to opera-
tor distraction. Thus, we can notice that on average, the RMSD is not higher than this threshold,
only few outliers overcome this value and the maximum is lower than 12 pixels. In general, we
observe that the y coordinate presents an higher error with respect to x. A reason to explain this
difference could be that the camera calibration obtained from Track on Field is more precise for
the area around the feet thus the markers on the upper part of the body suffer of a greater trian-
gulation error. Indeed, the main difference between x and y coordinates is observed for the first
markers.

2.6.2 Markers prediction

The reconstruction of the three-dimensional model based on the markers’ predictions is a crucial
step. In Fig. 2.12, the test subject is shown with the estimated markers and also the ones obtained
by video tracking and the other data processing steps. In Tab. 2.3, the average RMSD and its
standard deviation over the test subject trials. It can be observed that the maximum average
RMSD is approximately double of the error due to annotation, considering the average tapewidth
of 7-8 pixels.
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(a) (b)

Figure 2.12: Keypoints projected after triangulation compared with original labels obtained by video
tracking and the others data processing steps.

2.6.3 Angles estimation

The main goal of DeepIOR is angles estimation.
In Fig. 2.14 the joints’ angles estimated for the test subject are shown. Some patterns are cap-

tured by the system, e.g., the knee and the hip flexion-extension angle, but, in general, the angles
profiles are not perfectly adherent to the stereophotogrammetric curves. However, the normal-
ity bands themselves show a great variability indicating that this type of data present an intrisic
difficulty in its precise measurment and modeling.

In Tab. 2.4 are reported the metrics to evaluate the system performance. The RMSD column
indicates the average root mean distance and its standard deviation considering the comparisons
between the angles profiles obtained from the three gait cycles measured with stereophotogram-
metry and the three analyzed with DeepIOR. The resulting number of comparison is 9. While for
CMC there are reported the number of those comparisons that result in a score greater than 0.7.
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RMSD [pixels] avg std
C7 6.68 0.93
RA 8.64 2.14
LA 10.17 2.05
L5 4.61 0.41

RPSIS 8.03 0.31
LPSIS 7.89 1.68
RASIS 10.83 3.81
LASIS 11.33 3.81
RGT 14.42 6.98
LGT 13.06 6.32
RLE 9.74 3.37
LLE 9.93 3.65
RME 7.75 2.19
LME 8.37 3.22
RHF 10.62 3.63
LHF 10.48 4.15
RTT 9.18 3.52
LTT 9.75 3.63
RLM 12.38 4.93
LLM 10.74 4.27
RMM 10.17 3.76
LMM 9.35 3.76
RCA 13.86 2.87
LCA 9.50 3.71
RVM 14.94 5.45
LVM 13.18 5.51
RIM 9.89 3.02
LIM 11.35 4.58
RIIT 11.49 4.20
LIIT 12.53 4.72

Table 2.3: RMSD between the dataset labels and the estimated keypoints averaged over the gait cycles of
the test subject.

2.6.4 Comparison with baseline

In this section, we compare the results from DeepIOR to a baseline markerless method in liter-
ature [5]. The method belongs to the visual hull reconstruction category. The results in [5] are
expressed as average and standard deviation of the RMSD between the angles computed on the
same trials with both markerless and marker-based techniques. This is a difference with respect
to our method that necessary has to compare the angles obtained by our system with different
trials stereophotogrammetry. Moreover, the results are averaged for the two sides considering
that we are operating with healthy subjects.

It is interesting to notice that besides the value of knee flexion-extension angle, the average
RMSD values are not very different for the two methods. Considering that the stereophotogram-
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(a) (b)

(c) (d)

Figure 2.13: The markers estimated for each camera and the three-dimensional reconstruction at the same
instant. The numbering of the markers in the images is according with the IOR gait protocol.

metry is themethod for the gait analysis in the clinical domain, the results suggest that ourmethod
move a step in the correct direction for the establishment of a robust markerless method. How-
ever, the RMSD error is higher than the marker-based method, thus our approach still requires
more precise dataset for the models training to obtain more reliable results.
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(a) Trunk (b) Pelvis

(c) Right hip (d) Left hip

(e) Right knee (f) Left knee

(g) Right ankle (h) Left ankle

Figure 2.14: The estimated joint angles profiles (red) are compared to the ones obtained with
stereophotogrammetry (blue). In green are shown the normality bands for children.
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Metrics RMSD in degree(◦) - avg ± std CMC > 0.7 (number of comparisons)

Angle
types

Abduction
Adduction

Internal
external
rotation

Flexion
Extension

Abduction
Adduction

Internal
external
rotation

Flexion
Extension

Trunk 5.43 ± 2.07 6.73 ± 2.44 11.01 ± 2.03 2 1 1
Right
hip

9.51 ± 2.46 18.36 ± 3.83 26.64 ± 13.37 1 1 1

Left
hip

5.47 ± 2.46 9.59 ± 1.39 23.19 ± 13.31 0 1 1

Right
knee

11.31 ± 3.34 22.49 ± 2.57 34.88 ± 18.25 2 1 1

Left
knee

6.78 ± 3.60 6.67 ± 2.57 33.39 ± 17.70 0 1 1

Right
ankle

10.11 ± 2.99 10.57 ± 2.43 7.56 ± 1.63 0 1 1

Left
ankle

8.72 ± 3.88 7.05 ± 2.74 8.03 ± 5.27 1 1 1

Pelvis 7.00 ± 1.08 8.08 ± 2.13 12.38 ± 2.05 1 1 1

Table 2.4: The metrics to evaluate the system performance are reported. RMSD is indicated as average
and standard deviation, while for CMC are reported the number of comparisons that result in a score

greater than 0.7.

Metrics RMSD (◦) - avg ± std
DeepIOR Visual hull baseline

Angle
types

Abduction
Adduction

Internal
external
rotation

Flexion
Extension

Abduction
Adduction

Internal
external
rotation

Flexion
Extension

Trunk 5.43 ± 2.07 6.73 ± 2.44 11.01 ± 2.03 NA NA NA
Right
hip

9.51 ± 2.46 18.36 ± 3.83 26.64 ± 13.37 14.1 ± 2.3 21.6 ± 9.3 17.6 ± 3.5

Left
hip

5.47 ± 2.46 9.59 ± 1.39 23.19 ± 13.31

Right
knee

11.31 ± 3.34 22.49 ± 2.57 34.88 ± 18.25 NA NA 11.8 ± 2.5

Left
knee

6.78 ± 3.60 6.67 ± 2.57 33.39 ± 17.70

Right
ankle

10.11 ± 2.99 10.57 ± 2.43 7.56 ± 1.63 7.0 ± 3.6 12.9 ± 7.0 7.2 ± 1.8

Left
ankle

8.72 ± 3.88 7.05 ± 2.74 8.03 ± 5.27

Pelvis 7.00 ± 1.08 8.08 ± 2.13 12.38 ± 2.05 NA NA NA

Table 2.5: Comparison with visual hull markerless [5] results.
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2.7 Conclusions and future directions

The possibility of quantifying the complete range of joints’ motion in a precise way with marker-
less techniques is still a challenge. Despite the results we obtained show a good reconstruction
of the subject 3D model, the angles estimation is still really noisy and not adherent to the stereo
ground truth.
The main limitations we faced during this research were related to the creation of the input

dataset because of the burden of the manual annotation which is time consuming. Thus, this
results in a low amount of data which means low precision in the context of the deep-learning.
Another implication of manual annotation is the great amount of imprecision and human errors
that make the initial dataset not completely reliable for this task.
Our work proved that a deep neural network can be trained to estimate superficial landmarks

instead of the more typical approach in literature in which are estimated the joints’ center. This is
more clinically relevant because permits to build the joints’ 3D reference frames and to compute
the anatomical angles.
Moreover, this approach can be adapted to any different clinical protocol training the pose

estimator with a different dataset. Indeed, the high degree of modularity is a strong point of
the proposed solution. On the other hand, the results suggest that there is still some work to be
done, in particular, we observed that the limitations were mainly due to the original input data
and its labeling. Thus, future research can focus on the production of a precise dataset using
an automatic labeling strategy, e.g., using a marker-based system equipped with autolabeling.
Another approach can consider different types of input data as radar data, as in our more recent
research project discussed in Chapter 2.
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3
Radar-based markerless motion capture

3.1 Introduction

The fundamental concept of radar sensing is the exploitation of communicationdisturbances to ex-
tract information about the environment used for the communication exploiting multiple copies
of the signal received due to the multipath effect. The recent advancements in telecommunica-
tions are in the direction of the use of high frequency transmissions to increase communication
speed and reliability. This feature also permits us to sense the environment with much more pre-
cision. The fields for the application of such capabilities are multiple and very different. In this
project, we applied radar sensing to the clinical and biomedical field for the development of a
markerless motion capture system. As widely discussed in Chapter 1, the markerless approach
presents various advantages but it is still a challenge due to the technical difficulties of predict-
ing the pose in a complete way for a clinical gait analysis. Different technological solutions have
been proposed including cameras, accelerometers, and also some recentmmWave radar solutions
which can offer numerous advantages with respect to the other cited technologies. A markerless
radar-based is portable, so not specifically related to an environment and calibration procedures,
also because radar data are not affected by illumination conditions. Moreover, privacy is pre-
served because the extraction of personal information is less direct than, for instance, from an
RGB video. On the other hand, there are still some challenges that require some research effort
from both the hardware and especially the data processing point-of-view. In fact, the reflected
signals are heavily influenced by noise and unwanted reflections by external sources which can
degrade the results. As the required accuracy on the localization of the body parts is very high,
i.e., in the order of a few millimeters, the content of this chapter is devoted to the development
of a solution to the markerless motion capture problem using a combination of radar sensing
and deep-learning techniques. In particular, we contributed to the development of a complete
pipeline to enable an end-to-end training of deep-learning models from rawmmWave radar data.
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The data collection itself is a process that is not well-established in the literature and the set-up
definition is of paramount importance for any further research. A first version of this project was
presented in [31].

3.1.1 Frequency Modulated Continous Wave (FMCW) radars

Radars are electronic devices built to emit known electromagnetic signals which are reflected
by the environmental obstacles and received delayed, shifted, attenuated, and distorted due to
reflections, scattering, and, in general, noise. From the comparison between the transmitted and
the received signals it is possible to compute properties of interest of the objects encountered by
the signals that are the radar targets, usually the interesting quantities are position and velocity.

The classification of radars includes differences in positioning of TX and RX antennas. Mono-
static is the term to define radars with both types of antennas on the same device, while if the
antennas are physically placed in a different place the term is bistatic. Another criterium for radar
classification is related to the transmitted signal type. For the following description we consider a
monostatic FMCW radar. The Frequency Modulated Continuous Wave (FMWC) radars transmit
sinusoidal waves whose frequency increases linearly during the pulse. Those pulses are called
chirps and are defined by the starting frequency fc, the bandwidth B computed as B = fm − fc

with fm the maximum frequency and the duration Tc. The slope of the chirp S is computed as:

S =
B

Tc
(3.1)

Thus, the instantaneous frequency can be computed as:

f(t) = fc + St (3.2)

with 0 ≤ t ≤ T

Being the phase of the transmitted signal related to the instantaneous frequency by the follow-
ing relation

φ(t) =

∫ t

0

f(t′) dt′ = 2π

(

fct+
S

2
t2
)

(3.3)

it is possible to express the transmitted signal as

s(t) = exp(jφ(t)) = exp
[

j2π

(

fc +
S

2
t

)

t

]

(3.4)

The transmission of a sequence of N equally spaced chirps in time with duration is NTc is de-
noted as frame. At the receiver, a mixer combines the received signal (RX) with the one transmit-
ted, generating the Intermediate Frequency (IF) signal which is a sinusoid whose instantaneous
frequency corresponds to the difference between those of the TX and RX signals. Each chirp is
sampled with sampling period Tf (referred to as fast time sampling) obtaining P points, while
N samples, one per chirp from adjacent chirps, are taken with period Tc (slow time sampling).
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The slow time index p simply corresponds to the chirp number. On the other hand, the fast time
index n assumes that for each pulse, the corresponding continuous beat signal is sampled with
frequency fs to collectN samples within the time duration T . The slow time is usually still faster
than the movement of the targets thus each frame is associated to a single static capture of the
environment at time t.

Range and velocity estimation

Considering a reference antenna, it is possible to extract the target range and velocity with respect
to the radar. Infact, the signal reflected by a target is an attenuated version of the transmitted
waveform with a delay τ that depends both on the distance between the target and the radar and
on their relative radial velocity.
The time it takes a transmitted signal to reach a target object at distance r and, in general, in

relative movement with respect to the radar, the signal reflected back is:

τ =
2(r + vt)

c
(3.5)

which is the Round Trip Time (RTT) for a given distance r, assuming that the velocity of propa-
gation is the speed of light c and the target velocity is v.

Received 

signal

Slow 

time

Fast

time

1

P

2

0 N-1

.
.
.

Figure 3.1: Received signal amplitude in FMCW radar.

A the receiver the signal is mixed and sampled, then assuming single target and neglecting
reflected signal distortions, the FMCW radar receiver output is a function of p and n time in-
dices [32]
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y(n, p) = αexp[jφIF (n, p)] + w(n, p) (3.6)

where p and n are the sampling indices along the slow and fast time, respectively, α is a coef-
ficient accounting for the attenuation effects due to the antenna gains, path loss and Radar Cross
Section (RCS) of the target and w(n, p) is additive white gaussian noise term with zero mean.
Introducing the quantities Doppler frequency fd = 2fcv

c
and beat frequency fb = 2Kr

c
, we

obtain

y(n, p) = αexp j2π
[

(fb + fd)
n

fs
+ fdpTc +

2fcR

c

]

+ w(n, p) (3.7)

From this sample, it is possible to obtain the radar Range Doppler (RD) map, i.e. the matrix
containing all the information provided by a single antenna for a given time frame. This can be
obtained creating the matrix N x P with the samples y(n,p) and, by applying a bi-dimensional
along the fast time and slow time dimensions, the frequency shifts of interest can be extracted
and they contain the range and velocity of each reflector. After the DFT step, the RD is obtained
by taking the square magnitude of each obtained complex value.
The reflections are still noisy due to the background contribution, source of interference and the

fact that each target give multiple reflections. To select the most significant reflections is applyied
the Cell-Averaging Constant False Alarm Rate (CA-CFAR) algorithm. CA-CFAR is described in
[33] and themain idea is the decision of a dynamic threshold on the power spectrum of the output
signal retaining only the points that exhibit a significantly higher reflected power compared to
their local background considering each point of the RD map, called bin. Furthermore, to filter
out reflections from static objects, a high-pass filter known as Moving Target Indication (MTI),
as detailed in [33], is employed. MTI eliminates reflections with Doppler frequencies close to
zero, ensuring that the points likely to be reflected by the static background are not considered,
while the human subject is characterized by rapid Doppler Frequency variations during motion
[34]. The threshold we set to defined a reflection close to zero is ± 0.05 m/s as it is a low velocity
probably not related to a walking subject.
The RDmap obtained after these steps is sparser and along the fast time it is possible to retrieve

the frequency of the IF signal fd+fb ∼ fb, while the peak along the slow time reveals the Doppler
frequency fd. So for each reflector preserved after the filtering steps, the range r and velocity v
can be expressed as

r =
fbc

2S
(3.8)

v =
fdc

2fc
(3.9)

Estimation of azimuth and elevation

In a FMCW radar, the single antenna can be used to to determine the distance and the velocity
of a target object (Sec. 3.1.1). The spatial diversity due to multiple antennas allows to compute
the Angle of Arrival (AoA) of the received signals. The design of the antennas arrays is crucial to
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determine the capability of computing both elevation (EL) and azimuth (AZ) angles, infact, the
quantity of interest for the computation is the phase shift due to the different distance to the target.
If we assume the distance between two subsequent antennas along both azimuth and elevation
dimensions is the same and we denote it as d, the phase shifts along the two dimensions ψAZ and
ψEL can be expressed as:

ψEL ≈
2πfc
c

dsinϕ (3.10)

ψAZ ≈
2πfc
c

dcosθ (3.11)

where θ and ϕ are the AZ and EL angles of a reflecting point. And to compute the phase shift
values, an approach similar to the one used for range and velocity can be used. The peak positions
aterf the DFT across the samples taken at the azimuth and elevation antennas are the desired
values.

Point cloud cartesian coordinates

Using the derived quantities for range, velocity and AoA, the cartesian coordinates for each re-
flector can be expressed as

x = rcosθ = r
ψAZc

2πdfc
(3.12)

y =
√

r2 − x2 − z2 (3.13)

z = rsinϕ = r
ψELc

2πdfc
(3.14)

3.2 Related works

The authors of [35] explore differentmethodologies that can be exploited to predict the pose using
a point cloud as input, including templates, features, and machine learning approaches. They
consider depth point clouds, but some similar conditions and features can be found also in radar
point clouds. In [36] instead, the authors focus mainly on the advancements in neural networks
for point clouds datasets. On the other hand, the potential of the mmWave FMCW radar has
started to be understood for the pose estimation task. In [37], a CNN is used to perform skeleton
estimation with a mmWave FMCW radar by converting the 3D spatial coordinates of the point
clouds to 2D heatmaps. This method does not fully exploit the 3D positions of the points with the
projection step and this could be acceptable for some applications, but not clinically. For the same
reason, the prediction of the joints’ centers only is not sufficient. Moreover, the time correlations
obtained from a sequence of point clouds are not considered as a source of further information.
In [38] the time correlation of the sequences is used and it helps in the prediction, however, it is
not considering a biomedical perspective that requires a 3D reference frame for each joint as well
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as others recently published works [39], [40]. However, the results in [38] inspired our use of the
recurrent layers to exploit the temporal information.

3.2.1 Pointnet++ Architecture

Pointnet++, also referred to as pointnet2, is the object of the the work done in [41] and it is an
extension of the older Pointnet network [42] to include a hierarchical structure. The general idea of
PointNet++ is to partition the set of points into overlapping local regions. Then, themodel extracts
local features that are grouped into larger units and processed to produce higher level features.
The processing is similar to the CNN functioning but it is tailored for non-uniform spaces. This
process is repeated iteratively to learn a set of features that describe the spatial structure of a
point cloud at different resolutions. In [43] the authors present PointRNN which consists of a
RNN that includes the feature extraction technique of Pointnet++ with the aim to predict future
point clouds.

In the following, some more details about the Pointnet++ special layers are presented.

Set Abstraction layer

The Set Abstraction (SA) layer is used to extract the features from the input point set at a given
scale. Given a point cloud C with optional features f , N centroids, and a radius R, the SA layer
computes the set S of N centroids. The algorithm used for the choice of centroids choice is the
Farthest Point Sampling (FPS). FPS is an iterative algorithm used to extract a subset S of points
from a point cloud C. In the space exists a distance function d exists such that the sampled points
are as far as possible among each other, according to d, so that C is a good approximation for S
with a fixed number of points. At the beginning, the first point is selected from C and added to
S, then it is iteratively computed the distance between each point in the cloud C and its nearest
point in the subset S. Based on this the point in C with the maximum distance is added it to S and
the procedure is repeated until the subset reaches the desired number of points.

A certain degree of randomness is implicit in the choice of the first point to add to S, thus the
final outcome depends on the criterium used to choose it, e.g. randomly sampled from a uniform
distribution. Then, the partitioning at the SA layers is obtained with a modified version of the
Ball Query (BQ) algorithm, i.e., given a point cloud, a set of centroids, and a radius, returns all the
points from the cloud that are contained in a sphere with a given radius centered in each centroid.
The modification by the authors is to limit the maximum number of points to associate with each
centroid. Each partition is passed to a convolutional layer with a kernel of unitary size, followed
by an optional Batch Normalization (BN) and, then, they can be used as input to other Multi
Layer Perceptron (MLP) layers with a different number of filters and the final result is obtained
after a max pooling. The output of the abstraction steps is a set of features. From the learning
point of view, our problem is the reconstruction of a scaled version of the original dataset; the
reconstruction role is played by the Feature Propagation (FP) layers.
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Figure 3.2: Schematic of the Set Abstraction layer architecture.

Grouping Strategy

In general, point clouds present different density distributions in the diverse areas. To effectively
capture the cloud structure it is important to extract features that capture both the details and
the wider structures. One of the main contributions of Pointnet++ is its hierarchical architecture
that allows the network to adapt the learning resolution depending on the density of the points.
Point clouds, especially if obtainedwithmmWave radars, contain spaces where the concentration
of points is high and others where it is low, which means that the point clouds have usually
different densities in different areas. The authors in [41] propose two different approaches that
we briefly describe in the following lines. The Multi-Scale Grouping (MSG) approach is based on
the concatenation of features at different scales to create amulti-scale feature. To extract them, the
input set C and the number of centroids N are used as input to multiple SA layers with different
radius r = [r0, ..., rs] and the final features are concatenated. This approach runs local Pointnet at
large scale neighborhoods for every centroid thus it has a high computational burden. The other
approach is the Multi-Resolution Grouping (MRG) in which the features vector at the level Li is
obtained by concatenating the features at each subregion from the lower level Li−1 using the SA
layer and the ones computed processing all raw points in the local region using a single pointnet.

Feature Propagation Layer

The FP layer allows propagating features from the subsampled layer to an upper scaled version
of the features, until the reconstruction of the original set. The new interpolated features are ob-
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tained through the application of an inverse distance weighted average interpolation of k nearest
neighbors and then they are passed to a unit pointnet. In Fig. 3.3 is shown the structure of the
layer.
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Figure 3.3: Schematic of the Feature Propagation layer architecture.

3.3 mmIOR

The proposed solution mmIOR includes a processing framework that exploits radar sensing and
deep-learning techniques for the prediction of the superficial landmarks required by the IOR-gait
biomedical protocol [44]. The first version of our project was presented in [31].
The goal is to estimate the set of superficial points defined by the IOR-gait protocol [44] receiv-

ing as input a sequence of point clouds derived from radar data. The ground truth to train our
model was obtained through the use of a marker-based motion capture system. Contrary to the
majority of the current research on this topic that employs public datasets and tries to identify
the joints’ centers, we aim to predict the position of the protocol markers. This permits to build
a 3D reference frame for each joint, as described in Chapter 1. The prediction of the marker’s
coordinates is obtained by adapting the neural network architecture PointNet++ [41] to receive
as input the point clouds obtained from the processing of radar raw data. After data acquisition,
raw data are processed to extract point clouds. Then, the set of points belonging to the subject is
identified by removing the noise introduced by other objects through clustering techniques. Af-
ter that, the point clouds sequences are synchronized with the ground truth data from the motion
capture system. The resulting dataset is used to train our model. In the following sections, these
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steps are detailed.

3.3.1 Experimental set-up

The acquisition sessions of the datasets for this project were performed in the Biomov research lab-
oratory in the Department of Information Engineering of the University of Padua. The main goal
for the experimental set-up is the simultaneous acquisition of motion data and the corresponding
mmWave radar reflections where the radar data are the input for our model while the motion
capture trajectories are the ground truth for the supervised training of the system. Therefore, the
acquisition system includes the AWRxCascaded Radar RFmmWave (MMWCAS-RF-EVM) radar
from Texas Instruments and a Vicon MX T-Series motion capture system.

Figure 3.4: Set-up for data acquisition with 8 stereophotogrametric cameras.

Motion capture system

The motion capture system records the ground truth of the markers’ trajectories while the subject
is moving. The laboratory we used was equipped with six cameras placed on the two long walls
at the first session of data acquisition, while the other datasets were collected with eight cam-
eras. The markers’ positioning was chosen accordingly with the IOR-gait protocol [44] designed
specifically for the computation of the joints’ angles and to describe the subject movement with
the minimum number of markers.
Before the acquisition phase, the software used to control the motion capture system requires

a subject model that represents the relative positions of the markers with respect to each other.
The version of the motion capture system we used is equipped with auto labeling, thus after the
acquisition is performed, the software fits the subject model on the visible markers and provides
a label for each marker it was possible to associate with the model.
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Figure 3.5: IOR-gait protocol.

Due to the positioning on the subject body, some markers are more difficult to track, in partic-
ular those in the inner side of the legs (Fig. 3.5). As expected, we noticed that a higher number of
cameras usually permits a better reconstruction.

Radar Set-up

The radar used for our project is the AWRx Cascaded Radar RF Evaluation Module (MMWCAS-
RF-EVM) from Texas Instruments. It is equipped with four AWR2243P radar chips, and each
chip includes 4 RX and 3 TX antennas for a total of 16 RX and 12 TX antennas per chip. The range
for the radar operating frequency is from 76 GHz to 81 GHz and for this project, we chose one
configuration among the possible ones, thus we used all antennas with a MIMO setup resulting
a total of 86 non-overlapping virtual antennas.
The radar placement in the laboratory set-up was along the short wall, thus recording the front

or the back of the subjectwhilewalking. For thewalking area definition, it has to be considered the
field of view of the radar both in azimuth and elevation limiting the minimum distance between
the subject and the radar to prevent the reflection to represent only part of the subject’s body. We
set this limit at 1.5 m and the radar was positioned on a table at about 80 cm of height.
We acquired gait trials of different subjects. The first session we acquired a total of 100 se-
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Figure 3.6: MMWCAS-RF-EVM radar during data acquisition. The markers are used to create the radar
reference system with respect to the stereophotogrametric cameras.

quences of 10 seconds. However, in this first data collection session, the actual usable sequences
in which at least one marker is visible amount to around 8 minutes of acquisitions due to lim-
ited number of available Vicon cameras. Moreover, some data were discarded due to the limited
field-of-view of the radar that we did not consider in the first data acquisition.

Then, with the set-up with 8 cameras, we performed about 160 sequences of 10 seconds in
which the markers reconstruction is visibly more accurate but we do not include them in the
training and the results are not considering this parts of data because there are some problems to
be solved in the synchronization between radar and stereo data (Sec. 3.3.2).

Parameter Value
Chirp duration (Tc) 81 µs
Chirps per frame (Nc) 64
Samples per chirp (Ns) 512
Sampling frequency (Fs) 8 MHz
Starting frequency (fc) 76 GHz
Bandwidth 4.16 GHz
FOV Azimuth ±π

3

FOV Elevation ±π
6

Table 3.1: Parameters for radar set-up.

The parameters were chosen to allow a correct acquisition of the distance and velocity ranges
typical of a subject walking in the available laboratory area. Both the range of values and the
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resolutions were considered. With these parameters, the maximum range is

rmax =
Fsc

2S
= 23.36m (3.15)

with a resolution in range of
∆r =

c

2B
= 0.036m (3.16)

While the maximum detectable velocity for the frequencies considered is

vmax =
c

4fcTc
= 12.18m/s (3.17)

The velocity resolution is
∆v =

c

2fcNcTc
= 0.38m/s (3.18)

3.3.2 Data pre-processing

Points cloud creation

The use of an FMCW radar in a MIMO configuration enables the estimation of three-dimensional
spatial coordinates for all the reflection points of the transmitted signal. For each reflector, the
radar’s data include the range, velocity, azimuth, and elevation angles of arrival, and the power
of the reflections. Although the CFAR and MTI application is useful for static objects removal, a
single target can result in a great amount of reflectors and the target’s reflections are mixed with
noise.

Clustering and tracking

The method applied here is taken from [45] and is briefly described in the following. The steps
described in [45] include the application of a clustering algorithm to identify the points reflected
by the different objects and exploiting the clustering stability along time the target can be distin-
guished with respect to the noise and background, then tracked in the sequence of frames.

Thus, first, the clusters detection happens frame by frame using the density-based detection ap-
proach named Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [46]. The
main idea is to identify as clusters the subset of points which are sufficiently dense in a localized
portion of the considered dimensions. The parameter that defines the density threshold is mpts,
i.e. the number of points contained in a sphere of radius ϵ. For each point, it is considered dense
and part of a cluster if the number of points contained in the sphere of radius epsilon centered
in it contains at least mpts points. In this project, the clustering is performed on x and y, the two
dimensions that define the walking plane for the subject. DBSCAN has been successfully applied
to points clouds in literature [47]–[49]. Moreover, this algorithm choice is justified by the capabil-
ity of DBSCAN to correctly identify the clusters as long as the subjects are sufficiently separated
[48]. In this case, the environment is controlled, there is only one subject, thus the clustering is
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not a difficult problem, but the algorithm is unsupervised, thus easily applicable to a multiperson
scenario in which the number of subjects is unknown or changes during the data acquisition.

The subject is detected as a cluster containing multiple points due to the extension of the sub-
ject’s body with respect to the range resolution of the mmWave radar. The spatial extension can
be ignored, i.e. the body is considered as a point reflector with no dimensions, or estimated as in
the approach proposed in [45]. Given a cluster of points n at the time instant k, the true position
of the subject is estimated computing the centroid. It is the weighted mean of the positions of the
points using the normalized received power as weight. The dimensions considered are x and y,
thus the points are defined as pnk = [xnk , y

n
k ]

T and the centroid is

µn
k =

∑

PRX
k pnk (3.19)

where PRX
k is the received power normalized [0,1]. From the covariance matrix, Σn

k , it is possible
to extract the axes lengths of the ellipse that estimate the extension of the target. We denote them
as l̂

n

k and ŵ
n
k and they can be computed as the norms of the eigenvectors of the covariance matrix.

While the orientation of the ellipse ξ̂
n

k has the same direction of the eigenvector corresponding to
the largest eigenvalue of Σn

k .

The tracking step employs a Converted-Measurements Kalman Filter (CM-KF) that estimates
both the position of the targets in Cartesian coordinates and the extension of the subject in the
clustering plane x-y [50], [51]. The state of the track t at the instant k contains different quantities
of interest. It is defined as stk = [xtk, y

t
k, ẋ

t
k, ẏ

t
k, l

t
k, w

t
k, ξ

t
k]

T where (xtk, y
t
k) is the target position,

(ẋtk, ẏ
t
k) are the velocity components, (ltk, w

t
k) represent the extension and ξtk is the orientation

angle. Each track t is then defined as a tuple, T t
k = [ŝtk, P

t
k, Z

t
k−K+1

: k, Itk]
T where ŝtk is the

estimate of the current state with P t
k the associated error covariance matrix as computed by the

model, the collection of the last K clusters associated with the track, Zt
k−K+1:k, and the integer

Itk representing the estimated identity of the subject. While the observation vector contains the
information for a detected cluster n at time k is defined as zkn = [µn

x , µ
n
y , l̂

n

k , ŵ
n
k , ξ̂

n

k ].

Thus, given the sequence of the collected measurements until the instant k, z1:k, the CM-KF
provide an estimate of the state of the track t at the instant k. The motion model is defined by the
matrices F andH, where F is the transitionmatrix that gives the update of the state sk starting from
the previous one sk−1, while H is the observation matrix, which relates the observation vector zk
to the state sk. The system dynamic model can be defined as

sk = Fsk−1 + uk (3.20)

zk = Hsk + rk (3.21)

where uk ∼ N (0,Q) and rk ∼ N (0,Rk).

The matrices F and H are

F = blkdiag

[[

1 ∆t

0 1

]

⊗ I2, I3

]

(3.22)

where blkdiag is the block diagonal matrix and In is an n× n identity matrix.

39



H =

[

I2 02×2 02×3

03×2 03×2 I3

]

(3.23)

where 0n×m is an n×m all-zero matrix and ⊗ refers to the Kronecker product between matrices.
With some assumptions about the noises, it is possible to make some considerations about

the estimation uncertainty and to compute Q and Rk, further details can be found in the original
paper [45].
For the computation of the best association of clusters to the corresponding tracks in subse-

quent frames it is applied the Hungarian algorithm [52] over a matrix in which are arranged all
the scores for each possible association between the new clusters and the tracks. The scores are
the probabilities computed using an approximate version of Joint Probabilistic Data Association
(JPDA), called Cheap Joint Probabilistic Data Association (CJPDA) [53] applied to the kinematic
state, i.e., the components of the KF vector related to the Cartesian position and velocity of the
targets. More details about the scores computation can be found in [45], [53].
The method adopted for the first steps of data processing has been studied to be robust to

blockage of the radar signal and to subjects that move inside or outside the radar sensing area.
Even in a single-subject scenario, the tracking of the cluster is not a straightforward problem
because of noise and in a general situation, a multiperson radar sensing system should deal with
a higher error probability while still keeping a low complexity. The strategy is to consider as a
new trajectory the detections that are detected for at least m out of the last n frames. Then, the
algorithmmaintains the tracks that received amatchwith any of the clusters detected byDBSCAN
for at least m out of the last n frames. This is the so-called m/n logic.

Data synchronization

The synchronization between radar and motion capture system is not obtainable by hardware.
Thus, the point clouds sequence Sr = [r0, r1, ..., rn] and the markers positions Sm = [m0, m1, ...,
mz] have to be aligned to match them frame by frame. The main idea of the synchronization
algorithm is to shift one of the two sets until the best shift is found according to some distance
measure, taking into account the different sampling frequencies of the acquisition systems. As
this is true for our acquisition devices, we assume in the algorithm development that the motion
capture system has a higher sampling frequency with respect to the radar, thus z ≥ n.
The distance function used for the implementation of this synchronization algorithm is the

so-called BQ which is a simple algorithm that, given a set of points S, a set of centroids C, and
a radius R, returns all the points in S that are distant at most R from any point in C. In the
synchronization algorithm, the set of points S is the radar point cloud and the markers have the
role of the centroids. The choice of this distance leads to have the minimum distances when the
markers are surrounded by radar points.
Due to a technical limit in the set-up, only radar provides the timestamp for each frame, while

the motion capture system records only the beginning instant. So the algorithm we developed
so far is based on the assumption that the two independent clocks are not experiencing strong
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drifts, thus that it is still possible to obtain an approximate time difference for the whole sequence.
Moreover, considering that the target action is repetitive there could be more shifts that give a
good match according to the distance-based score, thus the number of overlapping frames is
tracked and is used as a complementary score. Finally, some prior knowledge about the dataset
construction can help to speed-up the computation, e.g., negative shifts can be excluded iif it is
known which system first started acquiring and it is used as a reference.

Algorithm 3.1 Point clouds and markers synchronization.

function look_around(set, indexstart, indexend)
subset← []
for s in set[indexstart, ..., indexend]

subset.insert(size(s))
interval ← (indexend − indexstart)/2
penalty ← [, ..., interval)
penalty ←concatenate(flip(penalty, [0], penalty))
subset← subset− penalty
index←argmax(subset)

return set[indexstart + index]

function compute_shift(Sm, Sr, fpsmarker, fpsradar, d)
n←size(Sr)
z ←size(Sm)
shifts← [−z,−z + 1, ...,−1, 0, 1, ..., z]
distances← []
fpsdiff ←floor((fpsmarker/fpsradar)/2)
for shift in shifts

dshift ← 0
nnon_overlaps ← 0
for i in [0, ..., n)

if i+ shift in [0, ...z)
ri ← Sr[i]
zi ←floor((fpsmarker/fpsradar))
mi ←look_around(Sm, zi + shift− fpsdiff , zi + shift+ fpsdiff )
di ←d(ri,mi)

else
nnon_overlaps ← nnon_overlaps + 1

dshift ← dshift + di

nnon_overlaps ← nnon_overlaps/n
dshift ← dshift ∗ (1− nnon_overlaps)
distances.insert(dshift)

index←argmin(distances)
return shifts[index]
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Dataset preparation

Data normalization is a typical step in deep-learning projects to map the input data to the interval
[0,1] which is better handled by the neural network [54]. In fact, the values not normalized can
bring to an explosion or a vanishing of the gradients involved in the weights computation. More-
over, the dimensions with higher absolute values could be weighted with a higher importance
leading to poor learning.
Various normalization strategies were tested on these data. Some aspects to be considered are

the differences in the data dimensions and monitored quantities. The body shape has different
measures on the three axes, thus a normalization considering them separatelywould lead to loose
the body shape and create a sort of sphere with all the coordinated values in the interval [0,1].
Thus the axes have to be considered together. Moreover, the main variations in values are in
range because the subject is moving back and forth with respect to the radar so the azimuth is
constant, and also the elevation does not have a great excursion during gait.
In this context, we define the frame centroid the point whose coordinates are the average of

the cloud points’ coordinates for each dimension. For each strategy, the translation matrix is
computed using the point cloud and then the markers are shifted by the same translation matrix.

• each frame is centered on its centroid. This normalize each dimensionwith the sameweight
but loose the spatial information due to the motion.

• each frame of the whole sequence is shifted accordingly to the centroid of the first (or the
last) frame to globally maintain the spatial movement.

• each frame is shifted accordingly to the centroid of the previous frame. It is a trade-off
between the previous methods to partially maintain the spatial movement at a local level
but still removing the bias on the direction of walking.

Moreover, due to the network structural requirement to be fedwith data with a constant shape,
the point clouds are required to be with the same number of points that was fixed to 256 points.
This value is close to themaximumnumber of points reached in thewhole dataset. For the frames
with a lower number of points, we repeat some of them, sampled uniformly at random. Finally,
as in [38], the dataset was split into sequences of 30 consecutive frames that is equivalent to 3
seconds of data acquisition, with an overlap of 25 frames. Considering that the frame rate of the
radar is 10 frames per second, those values were tuned to mantain an acceptable complexity of
the model but still provide to the network enough temporal information.

Data Augmentation The use of data augmentation techniques is well established in the deep-
learning domain with the aim to extend the input dataset. The techniques are related to the type
of data but the general idea is to transform the available data in a new set of samples changing
some aspects and thus, for the model it is not obvious that are coming from the same source. In
this project, we considered shifts, permutations, and rotations of the points.

With the considerations reported in Sec. 5.1.1 we obtain in total 1116 sequences of 30 frames
with around 80% overlapping frames. We divide the dataset into 1000 sequences for training and
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116 for test. The test sequences are chosen uniformly from the original set of acquisitions and
correspond to complete captures, which implies that they do not share frames with sequences
from the training set.

3.3.3 mmIOR architecture

The proposed architecture is inspired by Pointnet++ [41] which is considered in literature a good
choice for the extraction of features from point clouds, even when they present a high degree of
sparsity [36], such as the ones produced by mmWave radars.

The architecture of PointNet++ has interesting features for the elaboration of point clouds, but
still, some modifications are needed being the input data and the task different in our case with
respect to the original paper. In the authors’ experiments, the taskswere classification or semantic
segmentation while in this project the problem is related to the prediction of new points. Then,
the datasets used in the original work [55], [56] are about 10 times more dense than the mmWave
radar point clouds in our dataset. Moreover, each instance in our dataset is a frame of a temporal
sequence and the correlations between the subsequent data can be exploited.

Some modifications are required and the models are here distinguished in Baseline and Recur-
rent to investigate the impact of the exploitation of temporal correlations.

Point

clouds

SA 

layer

SA 

layer

SA 

layer

Recurrent 

layer

FP 

layer

FP 

layer

Predicted 

markers

CNN 

layer

FC 

layer
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Figure 3.7: Model schematics. The RNN layer is not present in the baseline model.
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Baseline Model

The input data are first fed to the SA layers. Their parameters need to be adapted to a lower
density with respect to the original architecture, so reduced number of centroid and SA layers
itself. MRG strategy was adopted. Then, the features have to be rescaled through the use of
FP layers that were also reduced in their size. To obtain the final position some extra layers were
appended. After the FP layers, we included a convolutional layer with 32 filters and kernel size [1,
5] followed bymax pooling a final FC layerwith 30×3units to predict the Cartesian coordinates of
the markers. To prevent overfitting, dropout is applied with a probability equal to 0.2. In Tab. 3.2
are reported the parameters after the tuning step.

SA layer 1
Centroids 32
Radius 0.15 m

Points in sphere 8
MLP filters [4,4,8]

SA layer 2
Centroids 16
Radius 0.25 m

Points in sphere 8
MLP filters [8,8,16]

SA layer 3
Centroids 8
Radius 0.4 m

Points in sphere 8
MLP filters [16,16,32]

FP layer 1
MLP filters [32,32]

FP layer 2
MLP filters [32,16]

FP layer 3
MLP filters [16,16,16]

Table 3.2: Layers’ parameters.

Recurrent Models

The design choices are related to the placement, the type, the number of recurrent layers, their
parameters, and how the features are passed in input to the recurrent layers. Regarding the place-
ment with respect to the other layers of the baseline model, the choice was to add them between
SA and FP layers where the features are more compact. Then, both GRU and LSTM layers were
considered to explore the differences between different recurrence types, while in terms of num-
ber of layers the architecture we designed involves one layer as a trade-off between the exploita-
tion of temporal information and complexity. Finally, the structure of the features in input at

44



the recurrent layer was investigated. In the first considered scenario, the features from the SA
layers were all concatenated in a single input vector, we called this architecture ConcatGRU. We
explored also the use of the features from the different SA layers passed to the recurrent layer
sequentially, thus we named this model SequentialGRU.
For ConcatGRU we used a GRU layer with 384 units, while for the SequentialGRU model

with 256 units. In both recurrent models, to prevent overfitting dropout was introduced with
probability 0.2 and L2-regularization with parameter λ = 0.01.

Selective Per-Point Distance (SPPD)

The choice of the loss function is important in general in deep-learning projects, in particular, this
dataset presents some unbalanced representations of the different markers due to their position-
ing on the body. Since the goal of our model is to predict the positions of the markers with an
ordered association across all the outputs, we require the loss to consider each point-by-point
pair between predicted points and ground truth markers, i.e., per-point distance. In particular,
for the dataset acquired with a reduced number of cameras, the ground truth is not available for
each marker in every frame because of the occlusions and reconstruction errors. Only the visible
markers were considered for the loss computation denoted as Selective Per-Point Distance (SPPD)
and defined as

LSPPD =
1

∑N

i=1
vi

N
∑

i=1

d(Mi, Ti)vi (3.24)

where N is the number of protocol landmarks, Ti is the position of the i-th target predicted
point, Mi is the position of the i-th marker and vi can assume value 0 if the i-th marker is not
visible in that frame and 1 otherwise.

Learning strategy

The learning strategy formodel trainingwas not to reduce the learning rate throughout thewhole
training process, unlike the common practice in neural networks. Instead, we reset the optimizer
to its original state and learning rate twice, accelerating convergence after 300 epochs. Subse-
quently, we allowed the optimizer to dynamically adapt the learning rate for the remaining 900
epochs. The total number of training epochs to achieve convergence is 1500. We used Adadelta
optimizer with an initial learning rate value of 0.01.

3.4 Results

In this chapter, wedescribe the results of the proposed system formarkers’ prediction. The dataset
used to obtain these results is limited to the first data acquisition because of the already described
technical problems in the synchronization of the sequences.

In Fig. 3.8 the ground-truth is shown with the mmIOR reconstruction obtained for the same
frame. The pose is well-reconstructed but it presents a shift. The observed shift is not a systematic
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Figure 3.8: Pose reconstruction. The ground-truth (green) is shown with the mmIOR reconstruction (red)
obtained for the same frame.

error of the model that could be corrected. We suppose that it is the effect of a still uncompleted
learning, thus this could be improved training the model using a more complete and increased
dataset.

Model x (m) y (m) z (m)
Baseline 0.11 0.21 0.17

ConcatGRU 0.08 0.13 0.09
SequentialGRU 0.08 0.14 0.10

Table 3.3: Absolute mean distance between predicted points and ground truth for the tested models.

Tab. 3.3 reports the absolute mean distance between the predicted points and the ground truth
for the tested models. There is a clear improvement in the overall results with the addition of the
RNN layers with respect to the Baseline model. A slight error decrease is obtained concatenating
the features from the SA layers instead of sequentially passing the SA layers.

From Tab. 3.3, there is a prevalent error for all models in the depth dimension, i.e., along the
y-axis. A source of error can be the sequence synchronizationwhich operatesmostly along that di-
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mension. Another reason is the implicit difficulty of the task along that dimensionwhich includes
a change of direction. In Tab. 3.4 are reported the mean distances obtained across the dataset for
the ConcatGRU model for each dimension. It can be noticed that the bias is comparable for sym-
metric markers and for similar positions on the body, e.g., the last 12 markers that are all on the
feet. Even if the precision required for clinical gait analysis is higher, the errors we obtained have
the order of centimeters and this is similar to the results in literature [38]–[40].

Marker x (m) y (m) z (m)
C7 0.05 0.12 0.08
LA 0.12 0.11 0.08
RA 0.11 0.12 0.09
L5 0.05 0.10 0.06

RPSIS 0.05 0.11 0.06
LPSIS 0.07 0.11 0.06
RASIS 0.09 0.10 0.07
LASIS 0.10 0.09 0.07
RGT 0.14 0.09 0.07
LGT 0.10 0.10 0.08
RLE 0.10 0.11 0.07
LLE 0.10 0.11 0.08
RME 0.06 0.11 0.07
LME 0.04 0.12 0.08
RHF 0.10 0.11 0.09
LHF 0.10 0.12 0.09
RTT 0.09 0.14 0.10
LTT 0.07 0.12 0.11
RLM 0.08 0.14 0.12
LLM 0.08 0.14 0.12
RMM 0.06 0.14 0.12
LMM 0.06 0.14 0.11
RCA 0.07 0.15 0.11
LCA 0.07 0.17 0.12
RVMH 0.09 0.15 0.11
LVMH 0.10 0.15 0.12
RIMH 0.06 0.16 0.13
LIMH 0.07 0.16 0.11
RIIT 0.08 0.16 0.11
LIIT 0.08 0.16 0.11

Table 3.4: Mean distance from the ground truth for each markers for ConcatGRU.

3.5 Conclusions and future directions

In this chapter, the capabilities of radar sensing for motion capture application were explored. In
particular, the advantages of radar sensing are the adaptability to any illumination conditions
both outdoor and inside a laboratory, then the subject privacy is preserved, and the combination
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with deep-learning tools can lead to markerless system, i.e, no need to an expert for positioning
and long subject preparation time. We proposed and built a pipeline for the creation of a FMCW
radar-based markerless motion capture system, even if the applicability to a real gait analysis
scenario is still a challenge. Our current results show that the learning process requires a greater
amount of data and some technical problems have to be solved to increase it, but still the recon-
struction is coherent with the expected body structure. Moreover, in the first dataset, there was a
strong noise due to the positioning of the radar too close to the subject’s walking area.
Furthermore, the results comparison between baseline and the models with recurrence show

that the recurrent layers can improve the prediction by exploiting the temporal correlation in
the sequences of data from radar. This also suggests that in the presence of more data and at
the expense of slightly greater complexity, the markers prediction could further improve. Future
developments could tackle different aspects to improve the applicability of the radar-basedmark-
erless solution. First of all, the implementation of a more robust synchronization algorithm could
help to exploit a greater amount of training data which seems to be the main limitation. Then, the
radar can be combined in a sensing network and the information coming from different points of
view with respect to the walking direction could improve the marker reconstruction.
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4
Multimodal sensing platforms

he possibility to sense simultaneouslymultiple quantities enables the exploitation of more knowl-
edge coming from the quantities themselves and the correlation between them. However, to
obtain some reliable results it is of paramount importance to properly design the set-up for the
experimental data collection. In this chapter, two practical solutions for multimodal sensing are
discussed. Both the systems presented are designed for research purposes. In the first case, Open-
MBIC is more oriented to the general case of multiple simultaneous Bluetooth connections and
the contribution is in the creation of a framework that can be adapted to different research needs
while offering a practical use case. On the other hand, the second contribution is specifically
oriented to solve a practical scenario of multi-signals data acquisition during gait and the main
aspect is the synchronization requirements and their impact on this kind of data.

4.1 Motivation to develop Open-MBIC

Bluetooth is a consolidated and widely used communication technology to connect wearable de-
vices [57]. Bluetooth Low Energy (BLE) is a version of the Bluetooth technology which has been
conceived and ismostly used for applications. First, since the BLE is designed for the communica-
tions with wireless sensors, e.g., microphone, and transducers, e.g. headphone, any BLE learner
needs to know the application coding paradigm. This being granted, learners find they have ac-
cess to a vast amount of information about this technology, but also that the available resources
are not well organized, and that it is often difficult to organically access them. In particular, the
BLE documentation provides explanation for typical client-server configurations, where a single
server and a single client are involved in the data exchange. However, the management of multi-
ple and simultaneous connections is not duly described.
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Our contribution is the development of the Open-MBIC library which has been implemented
to ease the setup of BLE links across multiple devices concurrently, providing a multi-client com-
munication framework towards a single server that receives and manages different information
flows by avoiding inter-flow interference and related packet losses. The library is easy to un-
derstand, as only official BLE resources are used. Also, libraries provided by third-parties are
avoided to facilitate the understanding of the basic concepts involved in the protocol workflow
and to allow connecting new sensors with minimal extra effort.

To demonstrate the Open-MBIC functionalities, in this chapter we showcase the use of the
library for the acquisition of vital signals from Covid-19 patients (Sec. 4.4). In this use case, a
finger tip pulse oxymeter, a chestband heart monitor and an Inertial Measurement Unit (IMU)
are connected to the patient or the caregiver smartphone through a custom Android application
built on top of Open-MBIC, allowing the collection of vital signs during physical exercise for the
assessment of the disease progression and recovery.

4.2 Related works

4.2.1 Android libraries for BLE

The use of multiple connections exploiting the Bluetooth communication technology has been
extensively investigated so far.
During the development of Open-MBIC many projects were analyzed, but none of them pro-

vided a clear code to be inspected to verify the working phases of the protocol, and none was
easy to adapt and reshape to other means, such as connecting different sensors or controlling
the communication and connection procedures. An example is provided by the Redfang library
from [58] where a Bluetooth communication framework is developed, but the code is only par-
tially shown. In this way, the user may understand the general working flow, but finds it rather
hard to manipulate the code for a specific use case of interest. Also, the connection is established
using the classic Bluetooth protocol: this is a common problem in the literature, where only the
creation of standard Bluetooth connections is explained/exemplified in depth, while Bluetooth
Low energy communication is justmentioned, but never treated in detail. On the other hand, BLE
communicating devices are usually sold with a working application that can be used to collect
data from their internal sensors. The collected data is usually aggregated or processed depending
on the seller interests, and they way in which this is done is hardly documented. In addition, raw
data is rarely accessible: some manufacturers provide the code along with the compiled applica-
tion and this permits to adapt the code and retrieve it. If the project is not open-source, the extra
work also includes a lot of reverse engineering and this increases the burden on developers. The
Open-MBIC library is here proposed to fill these gaps: it exploits the general properties of the
BLE communication system, providing a simple to use and developer-friendly environment that
can be useful for everyone whowould like to use BLE in IoT scenarios. The extra work is reduced
and guided through some steps in the library code, so that the communication procedures can be
promptly adapted to different needs.
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4.2.2 BLE and E-health

E-health and its branch, telehealth, are emerging fields in both the clinical and technological do-
mains. They are becoming increasingly important giving the emergence of new diseases, an age-
ing population in most developed countries and the pervasiveness of modern digital and com-
munication technologies.

We advocate that most E-health services could be offered, at a low cost, using standard smart-
phones, acting as digital hubs to retrieve health data from the users and send it via secure channels
to the clinic. An added benefit of such technology is that end users are already acquainted with
them, which makes their adoption natural and fast. For these reasons, many E-health applica-
tions rely on smartphone technology, and this is gaining momentum, to the point that the term
mobile-health (m-health) was recently coined. Two examples of smartphone-sensors systems for
heart monitoring are proposed in [59] for IOS devices and in [60] for Android ones.
The environment in which the monitoring has to be accomplished is a main aspect to consider
in the design of m-health applications. One example is provided by the SMS-based monitoring
system of [61], where mobile technology is utilized to provide communication in geographical
regions that are not reached by the standard Internet. If standard cabled Internet communication
is available, more sophisticated methods become possible: for example, in [62] and [63] ZigBee
based systems are exploited. A recent and more suitable protocol to perform remote sensing is
BLE. The authors of [64] perform an analysis of medical data streaming using BLE, concluding
that it is very efficient to send small amounts of data during short term connections. Moreover,
in [65] a comparative study between BLE and ZigBee shows that, for intensive monitoring ap-
plications, BLE is the least energy-expensive solution. For these reasons, BLE is becoming quite
popular for the development of monitoring platforms. For instance, in [66], the authors demon-
strate the robust acquisition and transmission of several health signals using BLE and different
sensors. This is very useful in a clinical scenario, where diverse data types have to be recorded,
usually from wearable sensing devices.

4.3 Open-MBIC

Multiple Ble for Iot Connections (Open-MBIC) is a Java library that can be promptly integrated
into modern Android applications: it can be a valuable tool towards developing IoT solutions
involving BLE communications. For a practical example of its use, please refer to Section 4.4.

4.3.1 Main functionality

For a description of the working principles of BLE, the communication protocol and the related
terminology, the reader is referred to [57]. The library is developed around the MainActivity
class, which performs the following activities:

• Require the permission to access the device location.
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• Scan the environment using the ScanResultAdapter class, to populate a list on the User
Interface (UI).

• Activating the connection at the General ATTribute Profile (GATT) level in case a connection
is selected by the user: the connection state is returned and, if the attempt was successful,
the device services are discovered.

• Handling notifications and indications. This means that the client (the Open-MBIC app) re-
ceives a notification when some server (device) characteristics change. Only the characteris-
tics that have the ”notify” or ”indicate” property can be enabled and, in turn, generate/send
notifications.

• Handling the reception of notifications, and the processing of the received data packets,
which are decoded according to the producer’s encoding/decoding rules, to retrieve data
and temporarily store it into local buffers.

• Data from different sensors can be saved locally in the Android device storage. Moreover,
upon receiving the data on the smartphone, it can be forwarded to a server: Open-MBIC
supports the relay of data via TCP/IP.

Figure 4.1: Open-MBIC main functionalities.

4.3.2 Software and hardware requirements

Open-MBICwas designed towork on commercial Android devices. Its functionalitieswere tested
on different smartphones and Android versions, as reported in the following Table 4.1.
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Device model Android version

Samsung s8 Android 9
Redmi Note 8T Android 10
Galaxy A71 Android 11
OnePlus Nord2 5G Android 11

Table 4.1: Tested smartphones and OS versions.

4.3.3 Using Open-MBIC

The code can be easily adapted to different problems, setups and devices. There are some proper-
ties of the devices that should be known or found out by the user to adapt the library to the specific
use case. First of all, the Universally Unique IDentifier (UUID) associated with the device needs
to be selected and defined in the GattAttributes.java file. Some profiles are standard, e.g.,
the heart rate monitor, others are custom-defined by manufacturers. For custom-defined profiles,
modifications to the library are to be implemented through the enableNotifications and the
onCharacteristicChanged functions, which respectively define which characteristics - data
source -are enabled for each notification and how the received data is to be collected and accessed.
Some typical mutually exclusive configurations are:

• one service for each data type.

• a control service tomanage the communication and adata service to handle the transmission
of the sensor data. As the latter service can group more characteristics, different data types
can be transmitted within the same packet.

• a unique service grouping more characteristics specifying data structures and control rules.

Finally, the data could be encoded prior to its transmission and so the packet decoding could
change according to the connected device. Usual conversions are supported and specified in
the Utils.java file: it includes the translation from hexadecimal strings to byte arrays and
viceversa.

4.4 Use case: REMOCOP

The use case we now discuss is a home telemedicine system for REhabilitation MOnitoring of
Covid-19 survivors and Chronic Obstructive Pulmonary disease patients (REMOCOP) that was
object of a collaboration with a hospital. Open-MBIC and the use case described in the following
sections resulted in publications to international conferences in the field [67]–[69]. Moreover, RE-
MOCOP platform was used with didactic purpose in different courses for master degree in ”ICT
for Internet and Multimedia” at the University of Padua.
The typical REMOCOP connectivity architecture for data sensing and acquisition is shown

in Fig. 4.2. First of all, it includes the REMOCOP Android application based on Open-MBIC,
managing all the connections. It has to be installed on an Android smartphone which can be used
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Figure 4.2: The REMOCOP system.

by the patient or the caregiver. Then, multiple sensors are connected via BLE to the smartphone
that receives data from them. In the considered setup, the first sensor is a chestband heartmonitor
to collect Heart Rate (HR) and single-lead ECG. Then, there is a pulse oxymeter measuring the
peripheral oxygen blood saturation (SpO2) and the photoplethysmogram (PPG). The last sensor
is an IMU used to measure both three-axis acceleration and angular velocity. The application
allows the user to either store the data locally or transmit it to a server and, in turn, save it into
the patient electronic health records (EHR). In our study case, the EHR was emulated using a
personal computer in the lab. Some Python scripts complete the library: providing functions to
process the data offline in case they were stored on the smartphone, or at runtime, if received
in streaming mode. The TCP/IP connection is also managed by the server by the means of a
dedicated Python script.

We now discuss some key functionalities of Open-MBIC. As a first step, in Fig. 4.5 the smart-
phone is scanning the environment to find devices to communicatewith. After the user selects the
sensors, the communication is set up and the information exchange can start. The last necessary
step to receive data is to perform the reading operation. The acquired data is stored into a mem-
ory buffer and, depending on the user’s choice, Open-MBIC can be utilized to save data locally
into a file or to stream it through a TCP/IP channel to a server. In Fig. 4.7, the procedure to locally
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Figure 4.3: A subject equipped with sensors.

Figure 4.4: An example of 10 seconds of data collection.

save data is shown. For the data forwarding to a server, knowledge of the server IP address in the
local network is required. The data received by the server is managed by an adapted version of
the Open-MBIC Python script. In our case, only the real-time visualizationwas implemented, but
any other operation to store or process data can be implemented on the server side, depending
on the use case.
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Figure 4.5: The permission to access the device
location is required for the scanning.

(a) The user can
select the correct
devices from a list.

(b) The notifications
from sensors are

captured and data is
received.

Figure 4.6: Receiving data from the field sensors
on the smartphone.

(a) Data are saved
on the smartphone
since the user

decides to save them.

(b) A snapshot of
the file manager.

Figure 4.7: Saving data locally.

(a) Saving and
trasmitting can be

performed
simultaneously.

(b) Input the IP
address to reach the
remote server.

Figure 4.8: Transmitting data to a server.
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4.5 Conclusions and future directions

Open-MBIC is an easy to use framework to fill the still-open gap towards developing Android-
BLE applications. The proposeduse case showshow it can be used to build applications to interact
with and receive data from multiple BLE sensor devices. Research teams can use the library as a
starting point to tackle their use cases and accelerate their researchwork. Moreover, the simplicity
of theOpen-MBIC codemakes it suitable for educational purposes, to teach how to set upBLE con-
nections and how to collect data from sensors. Indeed, to be adapted to a new sensing application
it requires only few guided steps. Present and future endeavours include adaptations to automate
some of the operations that are now required from the user and the addition of support for the in-
teraction with desktop applications. Open-MBIC is an open source project and the code is shared
with the community, via GitHub repository at https://github.com/silvzamp/Open-MBIC.
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4.6 Motivation to develop our trigger box

In the following sections, we discuss the importance of the simultaneous collection of biosignals
with the help of a practical scenario and the solution we developed. The work described was the
set-up used for data collection in [70].

4.6.1 Gait analysis

Gait Analysis (GA) is a process of evaluation of walking ability through a instrumented measure-
ment [71]. In the clinical domain, the subjects are patients with locomotion impairments and the
aim is to provide information to support clinical decisions, rehabilitation monitoring, and other
related situations. The measurement of joint angles (kinematics), joint forces (kinetics), muscular
activity, foot pressure, and energetics (measurement of energy utilized during locomotion) allows
the physician to design procedures adapted to the individual needs of patients as long as two con-
ditions are satisfied. The first is the presence of an adequate instrumentation for measurements
and the second is the knowledge about healthy and pathological walking [72].

Figure 4.9: Gait cycle phases.

Since late 1800 it is known that the individual joint angles, the displacements of segments, and
of the whole body are essential measurements to distinguish between healthy and pathological
gaits [2]. The pioneers techniques included interrupted light, reflective strips, manual goniome-
ters, and photography [73]. With the evolution of vision technologies, the development of visual
markers-based techniques has reached great level of precision becoming the gold-standard tech-
nique for gait analysis.

58



4.6.2 EEG signal

electroencephalogram (EEG) is the signal obtained recording the electrical activity of the brain
measuring the currents that flow during synaptic excitation in the cerebral cortex. It is a non-
invasive technique in which the EEG traces are obtained by placing electrodes on the scalp. The
frequency range of the EEG of an healthy subject is 1-30 Hz with maximum amplitudes about
100µV . While the spatial resolution is very limited, the temporal resolution is of the order of
milliseconds and makes the EEG a source of valuable information. Indeed, this signal contains
information about the whole status of the body and it can be used for research purposes and to
informmedical diagnosis [74]. Contrary to other high-resolution anatomical imaging techniques,
as magnetic resonance imaging (MRI) and computed tomography (CT), EEG can be recorded
during movement. Despite the gait introduces some noises in the signal, this makes the EEG a
good choice among neural signals for gait decoding and analysis at the present time.

4.6.3 EMG signal

Electromyography (EMG) is the signal that records the muscular electrical activity, in particu-
lar, surface electromyography (sEMG) the EMG signal recorded on the surface of the skin, in the
rest of the chapter we refer to that simply as EMG. The frequencies of interest are usually lower
than 150 Hz and the maximum typical amplitude is about 10 mV. When acquired during gait,
EMG study permits to retrieve a great amount of information about the subject’s motor health.
In particular, the force exerted by muscles is related to the EMG amplitude, so the correct enve-
lope estimation and derived quantities are important sources of information for the movement
analysis[75]. This information have been proved to be sufficient to decode gait cycle phases[76]
that can be useful for the gait analysis itself, but also to control some devices based on the gait
phases. Moreover, the pattern of muscular activations are indicators of the subject health in terms
of activation frequency, involved muscles, and timing with respect to the movement[77]. Thus
the EMG study is a tool for both research, diagnosis, and assistive devices control.

4.7 Related works

In this section, we explore the literature related to the study of EEG and EMG signals during gait.

The information contained in EEG and EMG signals have been shown to be sufficient to clas-
sify the gait phases with the use of different classification tools. First, considering the EMG signal,
it has proven to be informative for the gait decoding. This finds application for a deeper under-
standing of the gait biomechanics, in the clinical domain, and to control assistive devices. For
example, in [76] hidden Markov models are used to decode the gait cycle phases considering
five different states. More recently, in [78] the combination of features and the neural networks
have been investigated to find the more suitable for the multiclass discrimination of seven gait
phases. More in general, the literature report a growing interest in the research of more precise
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tools for gait decoding [79], [80]. EMG gait-related information have been used also to classify
pathological subjects demonstrating that this signal is informative for the purpose [81].
On the other hand, the EEG signal encodes the information of the whole state of the body, gait

included. The authors of [82] were able to train an LSTM model to predict the stance and swign
gait phases. While in [83] the authors investigated the gait decoding through the estimation of
joints’ angles using EEG signal combined with different learning algorithms and obtained the
reconstruction of the angles’ profiles during gait.
In [82], the authors propose a human-machine interface that interact using the motion infor-

mation coming both from the brain signals and from the muscular activity to decode gait. From
this perspective the information fusion enhance the reliability of the control system. The work
published in [84] explore the use of both EEG and EMG features for the monitoring of the drug
treatment in Parkinson disease patients showing that the information they carry is sufficient to
detect anomalies due to bad drug dosages. The great amount of information contained in these
signals is exploited also in [85] in which different set of features were analyzed for gesture recog-
nition in IoT for healthcare applications. In general, the combined use of the two signals enhance
the estimation performance in the studies that consider both EEG and EMG [86].

The general picture depicted by the recent literature suggests the importance of studying the
EEG and EMG for different applications. Moreover, it seems that the joint investigation of the two
signals during gait can offer new perspectives for a better comprehension of the motor control
mechanisms. However there is still a lack of standards for joint EEG and EMG study during
gait and the definition of an effective set-up is a first important step. According to our literature
review, the set-up aspect can be further investigated to create a standard that assures reliability.

4.8 Proposed sensing platform

Due to the importance of the EEG and EMG study during gait, we propose a sensing platform that
practically create the conditions for the collection of these data. It is of paramount importance to
study and prepare the correct set-up before starting any further research. Our contribution is in
the creation a practical, low cost and effective set-up and its validation against a commercial one.
The common feature we can control for all the considered acquiring systems it is the beginning of
the data collection. The external input that causes the beginning of the data acquisition process
is defined as ”trigger”.

4.8.1 EMG acquisition system

The systemwe considered in the sensing platform integration is ”Wave Plus” by Cometa which is
a multi-channel wireless surface electromyographic system (Fig. 4.10). The sensors are attached
to the subject skin with certified double side tape and the sensors’ transmission modules commu-
nicate wirlessly with the base unit in order to avoid to create obstacles in the subject movement.
The trigger mechanism for the acquiring device is controlled by a 1-bit signal with logic high

level at 5 V and low level corresponding to 0 V. The data acquisition starts and continues while
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Figure 4.10: EMG acquisition system (Cometa Wave Plus) - figure from the device user manual

the level is high and, viceversa, it stops when it is low.

4.8.2 EEG acquisition system

The system we used is the AntNeuro kit, including cap with electrodes and the amplifier. The
processing and recording unit is integrated in the amplifier (Fig. 4.11). The communication be-
tween the sensors in contact with the subject’s head and the amplified is wired. Thus, the system
can be used with a backpack to allow the subject to move while recording.

Figure 4.11: EEG acquisition system (AntNeuro) - figure from the device user manual

The system can receive start and stop triggers from external signal but it can also record other
events. The amplifier can receive a 8 bit signal as external trigger, thus 256 values can be encoded
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and associate to different events in the data collection with an experimental protocol.

4.8.3 Motion capture system

The system we connected for the gait anaylsis is a Vicon stereophotogrammetric system of MX-T
series equipped with infrared cameras controlled by the hub called Giganet MX. The recording
system accepts triggers for both the start and the stop events. Differently from EMG acquisition
system that operates with the level change, the hub to control these cameras operates a state
transition when the signals in the start and stop triggers correspond to one of the combinations
in Tab. 4.2.

Start High Low High Low
Stop High High Low Low

Trigger
action

Signal held high until
the pin in pulled to
GND. This is also the
default system setting
when no device is
connected.

Remote Start
pin is pulled to
GND and capture
starts at the next
video frame.

Remote Stop
pin is pulled to
GND and capture
stops at the next
video frame.

Undefined
(do not use).

Table 4.2: Signals triggering combinations for Giganet.

In Fig. 4.12 is shown the electronic circuit to be implemented in an external device to trigger
the stereophotogrammetric system.

Figure 4.12: External trigger mechanism (Vicon) - figure from the device user manual
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4.8.4 Trigger box

Given the information about requirements for the triggering of the three devices, we developed
an Arduino-based trigger box.

Figure 4.13: Trigger box hardware.

In the microcontroller it is possible to commute simultaneously a set of 8 registers representing
the digits of a byte. Thus, we connected two of these registers to the Giganet, one to the Cometa
device and the remainings to the AntNeuro. The connection for the Cometa is the simplest and
just change the TTL level between 0 V and 5 V according to the logic of the user inputs. For the
Giganet, more electronic components were necessary to map the start and stop events; one of
the signals usually held high has to be pulled to GND to activate the trigger. The schematic we
follow is the one in Fig. 4.12. Finally, the five bits remaining are used to record events in the EEG
data series. The software we implemented maps the numbers [0-31] in the five bits, keeping the
combination of five zeros as the one dedicated for starting trigger. The sofware was implemented
with a combination of a C++ code for the low level logic to be loaded in the microcontroller and
a Python script for the user interaction.

4.9 Validation

4.9.1 Methods

The validation was performed through the use of waveform generator. Both the EEG and the
EMG acquisition system were connected through their sensors to the generator and we injected
square waves with period T = 1s, 25% duty cycle, voltage level [0-5]V. For both systemswe chose
two channels to further check the synchornization. We used channel 4 and 5 from EMG and chan-
nel Oz and Bip from the EEG acquistion system. Due to the non-electric nature of the acquired
signals, we could not test with the waveform generator input the synchornization of stereo sys-
tem. The sampling frequency of EMG acquisition device is 2000 Hz, while the EEG amplifier was
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set to 1024 Hz. The values are typically used in the real data aquisition. Before extracting the
wavefronts instants, a resampling was operated to have the same sampling frequency for both
signals.
After the data collection, an edgedetectorwas applied to extract thewavefronts in an automatic

way. We used the open source MATLAB implementation of the Canny algorithm [87] available at
https://cismm.web.unc.edu/resources/tutorials/edge-detector-1d-tutorial/.

Figure 4.14: Wavefronts indentified by the edge detector.

Then, the samples corrisponding to the samewavefronts were compared to find the time shifts
and we computed both intrasignal and intersignal delays.

Finally, the same tests we repeated triggering the systems with a commercial trigger box sold
by the same company that produces the EEG acquisition system. The control software for this
box is given by manifacturers and is implemented in MATLAB.

4.9.2 Error correction

From the first experimental results we noticed that the delay is incremental (Sec. 5.4). Thus, a
simple solution is to keep the data acquisition shorter than a maximum duration. This maximum
duration can be defined as the corresponding duration of themaximum tolerated error in terms of
samples delay. Amore accurate solution is to add a correction term to the samples approximating
the error to a staircase function. The solution we propose is not computationally expensive but
it could permit to increase the precision of the data collection. The staircase pattern can be fitted
with a staircase function in which the parameters to be learned in the fitting are the number d of
discontinuities and the lenght l of each step. Moreover, it has to be considered during the function
fitting is that the samples shifting is a discrete process, thus the fitting function need to assume
only integer values. We define this function as follows:
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Algorithm 4.1 Error correction.

function steps(instants, d, l)
result← data
result(instants < a)← 1
result(instants > a)← 0
for index in 1 : l

result(instants > a ∗ index)← −index
return result

Then, with the non-linear least squares error it is possibile to find d and l and to obtain the
correction function for the set-up based on a previous acquisition for error calibration.

4.9.3 Results

From the analysis, both systems compensate the delays between their own channels and the in-
trasignal delay is limited to ±1 sample of delay. However, the different clocks start to diverge
and the intersignal delay is accumulated during the data acquisition session; in the analysis of the
two synchronized systems there is an incremental delay that appears to follow a staircase trend.

Figure 4.15: Intrasignal delays - Different channels of the same device are compared.

Fig. 4.15 shows both the intrasignal and intersignal delays, while in table 4.3, the average delay
obtained comparing the detected wavefronts’ instants. After the simple error correction proce-
dure we implemented, the error decreased for each test. In Tab. 4.4 are reported the total number
of samples of delay for each test and sampling frequency. While in Fig. 4.16 is shown the intersig-
nal delay pattern considering the correction, it is clear that the correction impacts positively.
Finally, the comparison of the tests performed with our box and th commercial one shows that

the errors have the same order of magnitude and are comparable.
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Test AVG error ± STD [ms]
Fs = 1024 Hz Fs = 2000 Hz

Test 1 -1.25 ± 1.35 -1.07 ± 1.31
Test 2 -1.62 ± 1.35 -1.64 ± 1.29
Test 3* -3.81 ± 1.17 -3.76 ± 1.29
Test 4* -2.99 ± 1.34 -3.01 ± 1.31

Table 4.3: The average delays between acquisition systems, recording duration of 4 min and 27 sec,
according to the shortest test. The symbol * indicates the tests with the commercial trigger box.

Test Before [samples] After [samples] Fs [Hz] Duration [min]

Test 1 809 209 1024 4.27
1471 667 2000 4.27

Test 2 4784 745 1024 5.89
9197 4313 2000 5.89

Test 3* 3400 2241 1024 5.85
6508 4682 2000 5.85

Test 4* 6165 1250 1024 5.39
11895 4919 2000 5.39

Table 4.4: Error results before and after the application of the correction algorithm.

Figure 4.16: Intersignal delay and error correction.

4.10 Conclusions and future directions

Wedeveloped a platform to collect simoultanously the EEG andEMG signal from a subject during
gait proposing a solution based on commercially available devices. The enabling of simultaneous
data collection is of paramount importance to the advancement of the research for EEG and EMG
during gait. We propose also a simple and effective methodology for the validation of the set-
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up induced error. The results we obtained suggest that a technical limitation is the absence of a
feedback signal from the sensing devices. Infact, the systems are designed with the possibility to
trigger the beginning and, in some cases, also other events, but to support future research that
will require extreme temporal precision, the design could include a feedback signal for the clocks
synchronization. In absence of this kind of mechanism in their devices, the researchers should be
aware of this problem and they could apply different strategies depending of the precision level
required.
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5
Positioning at 28 GHz

5.1 Introduction

Considering an indoor context, environment sensing and human position estimation are useful
for different emerging use cases of the Sixth Generation (6G) of communication systems; e-Health,
smart buildings and the optimization of energy consumption, augmented and virtual reality, in-
dustry 4.0, and pervasive connectivity[88]–[90]. In this holistic context, sensing, and communi-
cation are strictly connected [88]. Due to the increasing ubiquity of communication devices, the
requirements for listed smart applications and processes can be satisfied using wireless commu-
nication to sense the environment with the advantage of exploiting existing devices. Moreover,
wireless sensing is also device-free, i.e. the subject is not required to wear any sensor [89].

Despite opening possibilities for sensing, some key features of 5G and 6G, i.e. millimeterWave
(mmWave) and Multiple Input Multiple Output (MIMO), imply the usage of narrow beams in
mmWave communications. This poses some challenges due to the increased sensitivity to block-
ages. In particular, the human blockages are disruptive at mmWave frequencies and they are
a frequent event in the scenario of indoor communications [91], [92]. Thus, it is of paramount
importance to identify the human blockages in order to adapt the beamforming schemes and to
preserve the link quality [93]. In other words, sensing can improve the communications itself
exploiting the knowledge of the blockage directions due to human presence.
The novelty in the presented work is in the exploitation of the RSSI information to predict hu-

man positioning in the context of narrow and directional communication beams in 5G and 6G
scenarios. The rest of the chapter is organized as follows: first, in Section 5.2 we describe the
context of wireless sensing coupled with communication purposes, exploring both full Channel
State Information (CSI) and Received Signal Strength Indicator (RSSI)-based solutions. Then, Sec-
tion 5.3 discusses in detail the proposed system with details about the hardware, experimental
set-up, Radio Frequency (RF) data collection, and processing. After that, Section 5.4 presents the

69



results of our predictions considering different subject positions. Finally, in Section 5.5 the future
work is proposed.

5.2 Related works

Considering the indoor localization task, RSSI has been extensively studied due to its availability.
The error obtained in previous RSSI-based approaches in literature was high; ranging from about
one to a few meters in the indoor case [94]. Due to the omnidirectional radiation patters of user
equipment in previous telecommunication generations, better results were, in general, achiev-
able with combinations of multiple access points (AP), and some evidences have been presented
by the community to support the intrinsic limits of RSSI fingerprinting [95]. However, this was
before the introduction of beamforming which is a key feature of our used 5G NR mmWave val-
idation system 5gchampion and a previous work showed that the methodology of the proposed
framework is promising [96], thus we decided to extend it considering a more complex scenario.

The full CSI has been extensively used for sensing with good accuracy in tasks like indoor
positioning [97], activity recognition [98], and even finer approaches for gesture recognition [99].
Despite its reliability, the use of full CSI information is still difficult because it is vendor-specific.

Other approaches in the literature consider modeling the environment [100], [101]. Despite
they can achieve good results, those are obtained at the price of increased complexity because the
factors that influence the communication must be included in the model. Then, they usually lack
of generalizability due to the specific conditions of the modeled environment. Our approach is
instead model-free.

Finally, somemulti-modal solutions employes additional hardware to improve the beam align-
ment such as radars, lidars, or even cameras [102]–[104]. Despite multi-modality being an op-
portunity for future systems, there are still some open problems related to data fusion, such as
hardware synchronization and the need to maintain multiple devices over time. Moreover, in the
case of cameras, privacy issues have to be taken into account. In this work, the use of an already-
existing 5g mmWave communication link simplifies the hardware need and the related possible
issues, providing a good solution, while multi-modal approaches can be necessary for solving
more complex tasks.

5.3 Proposed system

The 5G New Radio (NR) beamforming protocol starts with a four-stage Synchronisation Signal
(SS) block-based Initial Access (IA) followed by different random beam selection procedures such
as exhaustive, hierarchical and other fast beam alignment algorithms [105]. Under this proto-
col, each SS burst followed by beam selection appears periodically after 20ms [106]. The beam-
selection process during communication essentially provides spatial information of the environ-
ment as the side information. Such information is helpful to observe dynamic changes in the
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radio environment over multiples of these periodic bursts during communication and to sense
human static positions, blockages, activities, etc. over time.

In this work, we employ the traditional exhaustive beam-search methodology to scan human
static positions in mmWave RF environment and capture the RSSI characteristics at IF around
4 GHz using a Vector Network Analyzer (VNA). We defined the RSSI characteristic information
captured during each beam-selection procedure as RSSI fingerprint and it is used to estimate the
indoor human static positions near the radio link during communication.

5.3.1 Experimental hardware

We consider an indoor environment consisting of mmWave 5G radios, VNA, and a camera. The
used 5G mmWave radio system [107] consists of TX and RX radio units located at ≈ 4m distance
from one another at two corners of the room (Figure 5.1). Both RX and TX units are connected
to the VNA which can measure both the amplitude and phase responses seen by the RX radio
unit. The VNA is an RF measurement device used to measure amplitude and phase responses.
In this work, we used the Keysight VNA N5247 device to measure the signal responses at RX
and captured their s-parameters. A Microsoft LifeCam camera is mounted on the rooftop for the
aerial view to capture the human static locations in the indoor environment as shown in Figure 5.2.
The captured camera information is used to verify the subjects’ adherence to the experimental
procedure. We note here that the antennas at both TX and RX are at a fixed height of 162 cm from
the ground.

(a) (b) (c) (d)

Figure 5.1: (a)-(b) TX and RX with their supports in the room. (c)-(d) TX and RX boards.

5.3.2 Experiments design

In Figure 5.2, the set-up is represented from the top-view. The distances d1 and d2 measure re-
spectively 45 cm and 69.5 cm. The angle that the beam forms with respect to the Line-of-Sight
(LoS) follows the sign convention indicated in Figure 5.2, i.e. assumes a negative sign if pointing
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Figure 5.2: Schematic of the set-up from the top-view. The numbered positions represent the different
classes, i.e. positions.

to the left of the device and viceversa. In this work, we refer to LoS positions to indicate P1, P2,
and P3 (Figure 5.2) that table are along the LoS, thus where the angle is 0◦.

A MATLAB interface is used to synchronize and select beam steering directions of TX and RX
using computing resources R1 and R2, respectively (Figure 5.2). For both RX and TX, the consid-
ered steering angles are [−25◦,+25◦] with a resolution of 5◦, resulting in 11 directions for each
link side. In this work, we chose to implement the exhaustive beam-search scanning protocol to
distinguish the human static positions in mmWave RF environment capturing the RSSI charac-
teristics at RX using VNA. Thus, the RX angle is fixed and the TX scans all the considered angles
and then it is repeated for a new RX direction until the end of all the 121 combinations of beam
directions. The entire procedure is repeated for each of the frequencies of interest by the VNA. A
set of orange position markers is arranged between the two radio transceivers to indicate to the
subjects the positions to occupy during the measurements (Figure 5.2).

In Table 5.1 are reported the beam angles for both TX and RX for each position marker. We
note that we set the resolution to 5 degrees but the human body is wider than the marker size; d1
is comparable with the average distance between the shoulders of the volunteers. So we expect
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Angle P1 P2 P3 P4 P5 P6 P7
TX angle (◦) 0 0 0 -10 10 22 -22
RX angle (◦) 0 0 0 22 - 22 -10 10

Table 5.1: TX and RX beam angles for each position.

to observe a human-induced impact even in some intermediate angular positions, i.e. 22°. In
this work, all markers are symmetrically placed (Figure 5.2) by measuring their angular positions
with respect to TX and RX radio units. The experiments are designed to verify the applicability
of the method in order to distinguish symmetric positions with respect to the LoS and to the
perpendicular line (Table 5.2). However, the proposed method is not limited to this assumption
and can be extended to different indoor human movements in the future. Moreover, our interest
is also in the impact of the blockage along the LoS and the capability of our system to distinguish
the empty environment.

Experiment Classes (positions) Description
E1a 4-5 Symmetric w.r.t. LoS
E1b 6-7
E2a 3-4-5 Symmetric w.r.t. LoS
E2b 2-6-7 considering LoS positions
E3a 4-5-ER Symmetric w.r.t. LoS
E3b 6-7-ER considering empty room
E4a 5-6 Same side w.r.t. LoS
E4b 4-7
E5a 1-5-6 Same side w.r.t. LoS
E5b 1-4-7 considering LoS positions
E6a 5-6-ER Same side w.r.t. LoS
E6b 4-7-ER considering empty room

E7 1-4-5-6-7-ER LoS, empty room and
all nLoS positions

Table 5.2: Experiments description. ER is the empty room.

5.3.3 Data collection

The dataset consists of radio signals collected from 28 volunteers with each subject standing in the
pre-defined set of positions between the TX and RX (Figure 5.2). RGB videos while the subject
is performing the task were also collected to further verify the adherence of the subject to the
procedure and retrieve the standing orientation. The volunteers were 19 males and 9 females
and the following features are expressed as average ± one standard deviation unit: age 34 ± 11
years, height 172.8± 9.4 cm, and distance between shoulders 45.3± 3.6 cm. The distance between
shoulders is a measure of the width of the volunteer’s body. Each volunteer signed an informed
consent form before data acquisition.
The measuring procedure consists in controlling the TX and RX radio units to perform an ex-
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haustive beam search (Section 5.3.1) for each standing position and the whole procedure is re-
peated three times per each volunteer. During the acquisition, the measurement environment
was isolated from external factors by closing the door, thus to communicate to the volunteer
about the position to occupy, we used a traffic light and an associated color code. The volunteer
could freely decide their standing orientation, thus leading to higher variability in the dataset, in
fact, the subject standing in the same position can have a different impact on the RX signal due
to the body orientation. The only condition we required was to be able to check the traffic light
color.

Furthermore, the RX signal during the exhaustive beam search was collected for the empty
room. We considered a trial as incorrect if the subject did not perform according to the procedure
(i.e. standing for the whole exhaustive beam search procedure in the same position). Moreover,
the data corresponding to two of the subjects were discarded because the TX beamforming was
not correctly set due to an error in the control system. After discarding the incorrect trials, the
dataset is composed of 69 examples for each class, except for the empty roomwhich has 66 exam-
ples.

5.3.4 Pre-processing

For each pre-processing approach, the first step is the extraction of the RSSI signal as follows.

RSSI = 10 log10 ∥V ∥
2
= 10 log10

(

I2 +Q2
)

(5.1)

where V denote the received signal amplitude, I and Q are the real and imaginary coefficient of
it, ∥.∥ is the L2 norm, and .2 is the square power. Each RX signal has 121 samples corresponding
to the 121 combinations of TX and RX beam angles scanned in time, so each sample corresponds
to a signal measurement.

Time Domain Fingerprints

The RSSI in the time domain carries the spatial information due to the design of the experiment.
We refer to this signal as ”direct fingerprints”. Figure 5.3 shows the RSSI signal for the different
classes and it can be noticed that for LoS positions (1,2,3) the fingerprints present more variability,
while the cleanest signal is in the case of the empty room. For the other classes, themost noticeable
perturbation of the signal corresponds to the subject presence, e.g. for position 4 (RX angle equal
to 22◦) it is in correspondence of the last two main peaks, i.e. RX angle equal to 20◦ and 25◦. Due
to the symmetric role played by TX and RX, we considered also the signal artificially reordered
to invert the scanning roles between RX and TX, thus resulting in the TX fixed with RX scanning
all the considered directions and then repeated for each beamforming angle at the TX. We refer
to this signal as ”inverse fingerprints”.
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Figure 5.3: One exhaustive search for each position in the time domain. For better visualization, the plot
represents only the instances considered for the training in the first fold.

FFT-based Fingerprints

Following this approach, we considered as fingerprints the coefficients obtained through Fast
Fourier Transform (FFT) applied to the signal in the time domain. The FFT was computed after
applying Hanning windowing with window size corresponding to the lenght of the signal to re-
duce the effect of side oscillations. To build the fingerprints, real and imaginary coefficients were
concatenated to create a single-channel vector or a double-channels vector, adjusting the learning
framework in accordancewith this choice (Section 5.3.5). We tested a number of coefficients vary-
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ing between [10, 60] with a step of 10 coefficients to search for an appropriate trade-off between
the amount of information carried by coefficients and the complexity of the classification model.

RSSI Difference

the fingerprints were built with coefficients obtained after windowing and FFT, as in the previous
method with FFT-based fingerprints, over the changes in the RSSI signal between subsequent
samples. The real and imaginary coefficients were considered either concatenated to create a
single-channel vector or a double-channel vector and the learning model was then adapted to the
shape of the fingerprint (Section 5.3.5).

Wavelet Transform

for each instance, the fingerprint is the RSSI signal converted to the scale domain through the
application of the Continous Wavelet Transform (CWT)[108] resulting in a set of coefficient for
each considered scale. Different types of wavelets were considered (”mexh”, ”moral”, ”gaus1”,
”shan”) and the relevant scales were found to belong to [0, 50]. The coefficients obtained at the
different scales were considered as separate channels or as pixels of an image and the learning
framework was adjusted accordingly (Section 5.3.5).

5.3.5 Learning framework

In this work, we adopted a supervised approach with the classes’ labels obtained by the acqui-
sition procedure and verified through the inspection of the top-view videos. The fingerprints
obtained after pre-processing are used to feed a neural network, the 10% is reserved for final test-
ing, while the remaining 90% is used to train the model with a 9-fold cross-validation strategy.
The folds are obtained through StratifiedKfold from scikit-learn Python package, a tool designed
to preserve the percentages of the classes in each fold with respect to the complete dataset. In our
case the dataset is balanced, thus it prevents the selection of unbalanced folds. The number of
folds is chosen to obtain the validation fold with a similar size to the final test set. While the other
hyperparameter choices were tuned accordingly to the results obtained on the validation set.
We considered feed-forward neural networks and combinationswith 1D and 2D convolutional

layers. Depending on the pre-processing approaches, the fingerprints result in different shapes,
thus the learning model was adapted to them. In particular, with 1D features the learning layers
implied were feed-forward or 1D convolutions. For 2D input data, the convolutional layers were
1D with multiple channels or 2D convolutional layers with a single channel. If convolutional lay-
ers were included, they were followed by max pooling layers. We tested also the inclusion of
Dropout and Random Gaussian Noise layers. In all the models we tested, the activation func-
tion was rectified linear unit (ReLu) for all the layers but for the predictions, where Softmax was
used. Then, the loss was the categorical cross-entropy and the model was updated using Adam
optimizer with a learning rate (lr) equal to 0.0001, with the exception of models implying 2-D
convolutions where we adopted lr = 0.001. For the implementation, we used Tensorflow. Among
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Figure 5.4: Proposed feed-forward neural network (FFNN).

the considered, we found the best combination of pre-processing approach and learningmodel to
be the use of time-domain direct fingerprints with a feed-forward neural network built with the
following layers (Figure 5.4): Input layer, GaussianNoise layer (standard deviation equal to 0.1),
Dense layer (same size of the input), BatchNormalization layer, Activation layer (ReLu), Dense
layer (size equal to the number of considered classes).

5.3.6 Metrics

In the evaluation of supervised classification problems, for each considered class, each instance
can belong to the true positives (TP) group if the actual label and the predicted label are both
belonging to the considered class. Instead, the instance belongs to false positives (FP) if themodel
predicts it to be an instance of the considered class but the actual label is different. Similarly, true
negatives (TN) and false negatives (FN) are defined. The metrics used for the model evaluation
are accuracy, recall, precision and F1-score, defined using the amounts of positive and negative
predictions.
Accuracy (ACC) expresses the fraction of overall correctly classified instances in a specific class

and is defined as follows:
ACCc =

TPc +TNc

TPc + FPc + FNc +TNc

(5.2)

where c is the class index.
Recall (REC)measures the ratio of samples correctly predicted as positivewith respect to the to-

77



tal number of actual positives, while precision (PRE) is the ratio of the correct positive predictions
to the total number of positive predictions:

RECc =
TPc

TPc + FNc

and PREc =
TPc

TPc + FPc

(5.3)

Finally, F1-score is the harmonic mean of precision and recall

F1c =
2PREcRECc

PREc +RECc

(5.4)

In thismulti-class classification context, the overallmetrics are computed as the average among
the scores obtained for each predicted classes (Table 5.3). The F1-score computed as the average
across the F1-scores of each classes is denoted in literature as macro F1-score [109].

5.4 Results

In this Section, we note the results referred to the best configuration of pre-processing and learn-
ing framework among the considered and described in Sections 5.3.4 and 5.3.5. The results we
obtained suggest that the information retrieved from the RSSI signal during the exhaustive beam
search protocol is sufficient for position prediction.

Considering the results we obtained over the validation set in the preliminar analysis for the
classification of the positions, we found the frequency 27.502 GHz to be the most informative for
this classification task, so the following analysis considers results obtained at that frequency.

We observed that the classification of the LoS position (P1, P2 or P3) is usually the sharpestwith
respect to other classes (Figure 5.5d, 5.5i, 5.5j, 5.5m) with the exception of experiment E2a where
P3 is the only label with one misclassification (Figure 5.5c). The empty room shows an opposite
behavior with respect to the LoS positions, in fact, it is, in general, one of the most misclassified
classes (Figure 5.5e, 5.5f, 5.5l, 5.5m) with the exception of E6a (Figure 5.5k). This suggests that the
impact of the blockage along the LoS is easier to be recognized by the model with respect to the
empty room or the other position patterns. This is something we could expect from the different
appearances of the fingerprints (Figure 5.3).

Some experiments are highly symmetric, we call them ”paired experiments”. Then, we ob-
served that, in general, the paired experiments (a) - (b) results show less than 10% difference for
each metric which indicates in this work that one of the paired experiments (a) - (b) misclassifies,
in the worst case, one more instance with respect to the other (Figure 5.5). Experiments E6 are
the only exception with more misclassifications in version E6a (Table 5.3, Figure 5.5k-5.5l). How-
ever, experiment E7 is themost complete and shows good performances in recognizing all classes
with the highest number of errors due to some false positives for the empty room (Figure 5.5m,
Table 5.3).

It is interesting to remember that the subjects’ orientation was left as a personal choice to the
volunteers, with the only condition they could see the traffic light. Position P4 was observed
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Experiment Accuracy Recall Precision F1-score
Experiment 1a 1.00 1.00 1.00 1.00
Experiment 1b 0.93 0.93 0.94 0.93
Experiment 2a 0.97 0.95 0.96 0.95
Experiment 2b 0.94 0.90 0.93 0.90
Experiment 3a 0.94 0.90 0.91 0.90
Experiment 3b 0.97 0.95 0.96 0.95
Experiment 4a 0.93 0.93 0.94 0.93
Experiment 4b 0.93 0.93 0.94 0.93
Experiment 5a 0.94 0.90 0.90 0.90
Experiment 5b 0.97 0.95 0.96 0.95
Experiment 6a 0.81 0.71 0.70 0.70
Experiment 6b 0.94 0.90 0.91 0.90
Experiment 7 0.95 0.86 0.88 0.86

Table 5.3: Overall classification metrics for test set computed as average with respect to the scores
obtained for each class.

from the videos to be the one in which subjects chose more different standing orientations but
the classification of position P4 seems to be not penalized with respect to the other classes and,
in general, the subject position was retrieved correctly with good performances (Table 5.3) also
allowing free orientation. Thus, our proposed framework can capture information related to the
position excluding the orientation factor.

5.5 Conclusions and future directions

In thiswork, we proposed a novel learning-based solution for human position estimationwith the
purpose of improving also the communication itself in the context of mmWave communications.
The design of this solution exploits a feature already implemented in the IA of the communi-
cation procedure and the information provided by the RSSI signal. We build the experimental
dataset by designing and performing the data collection described in the previous Sections and
we analyzed them considering multiple pre-processing approaches and learning procedures for
the classification.

Our results suggested that the RSSI in directional communications contains enough informa-
tion to retrieve indoor positioningwith a resolution of positions comparable to subject dimensions
which was obtainedmeasuring the distance between the shoulders. The future work will include
more realistic scenarios from the communication side, for example using universal software radio
peripheral reproducing Orthogonal Frequency DivisionMultiple access (OFDM) communication
schemes. Then, the exhaustive beam-searching protocol is an experimental choice, thus other
protocols, and their correspondent fingerprints could be explored. Moreover, a more realistic
environment can include multiple subjects and non-static activities.
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Figure 5.5: Test set confusion matrices for each experiment.
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6
Conclusions

Sensing is expected to evolve and continuously change different aspects of our society. Different
sensing perspectives and applications have been analyzed and explored in this thesis.

First, we analyzed the application of deep learning tools to images and video analysis for
biomechanical sensing. The opportunity and limitations related to this approach have been pre-
sented and we underlined the importance of the collected dataset to create a measurement tool
based on deep-learning. Indeed, the quality and quantity of data is of paramount importance for
the prediction of the subject’s keypoints.

Then, the same keypoints estimation problem was tackled combining radar sensing with neu-
ral networks. Despite radar sensing being a promising approach some technical limitations are
still challenging for the realization of a clinically oriented tool. However, the radar sensing ap-
proach opens the doors to a completely new type of sensing for gait analysis. This project is a
step towards a profitable contamination between different research areas. The perspective is to
exploit the contamination to develop innovative solutions to complex problems.

In Chapter 4, we explored the data acquisition platforms including wearable sensors. The
multimodal acquisitions enable the possibility to tackle challenging problems due to the combi-
nations of different perspectives. In both the proposed systems this aspect is crucial for the design
and the time synchronization problem is accounted and discussed. The temporal correlations be-
tween signals are an important aspect for the extraction of information about context and the
synchronization error could influence the evaluation of the situation.

Finally, a communications-based framework for human sensing is proposed, experimented,
and discussed. Next-generation communications networks are expected to be more integrated
with sensing features and the possibility to detect human positioning indoors through the com-
munication hardware creates the possibility for new applications.
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6.1 Future directions

In this thesis, we explored the synergies between different research areas with the aim to address
complex challenges. In fact, the efficacy of sensing can benefit from amultidisciplinary approach,
as it brings together expertise from diverse fields and, besides the progress within the individual
fields, a multidisciplinary approach can contribute to cross-disciplinary breakthroughs that have
the potential to change entire research and industrial sectors. In the future, sensing research will
definitely have to consider the great potential of combining different perspectives to address real
problems that usually present a high degree of complexity.
Moreover, the data collected by the great amount of sensors has to be analyzed and interpreted

to create knowledge about the context. To this aim, the advancement of deep learning techniques
is closely linked to the technical ability to understand increasingly deeper and more complex
mechanisms in a more precise and useful way for our society.
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