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Abstract 

Contrary to the extensive research on processing subliminal and/or unattended emotional facial 

expressions, only a minority of studies have investigated the neural correlates of consciousness 

(NCCs) of emotions conveyed by faces. In the present high-density electroencephalography (EEG) 

study, we first employed a staircase procedure to identify each participant’s perceptual threshold of 

the emotion expressed by the face and then compared the EEG signals elicited in trials where the 

participants were aware with the activity elicited in trials where participants were unaware of the 

emotions expressed by these, otherwise identical, faces. Drawing on existing knowledge of the neural 

mechanisms of face processing and NCCs, we hypothesized that activity in frontal electrodes would 

be modulated in relation to participants’ awareness of facial emotional content. More specifically, we 

hypothesized that the NCC of fear seen on someone else’s face could be detected as a modulation of 

a later and more anterior (i.e. at frontal sites) event-related potential (ERP) than the face-sensitive 

N170. By adopting a data-driven approach and cluster-based statistics to the analysis of EEG signals, 

the results were clear-cut in showing that visual awareness of fear was associated with the modulation 

of a frontal ERP component in a 150–300 ms interval. These insights are dissected and contextualized 

in relation to prevailing theories of visual consciousness and their proposed NCC benchmarks. 

 

 

 

 

 

 

 

 

 

1. Introduction  
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A host of research has shown that emotions conveyed by faces can be successfully detected 

even when faces are unaware and/or unattended. Subliminal facial expression, for instance, can elicit 

expression-specific oculomotor actions (Vetter et al., 2019) as well as a range of different 

psychophysiological responses in neurologically intact individuals, including skin conductance 

responses (e.g., Esteves et al., 1994), facial muscle activity (Dimberg et al., 2000; Tamietto & de 

Gelder, 2008), and pupillary dilation (e.g., Jessen et al., 2016). Individuals with dense retinal 

scotomas or affected by blindsight following V1 lesions often show the residual ability to recognize 

facial expressions (de Gelder et al., 1999). Neuroimaging studies have shown that, in humans, the 

processing of subliminal facial expressions recruit vast cortical and subcortical networks including 

the amygdala (e.g., de Gelder et al., 1999; Dolan & Vuilleumier, 2003; Morris et al., 1998; Öhman, 

2002; Tamietto & De Gelder, 2010; see also Mudrik & Deouell (2022) for a critical perspective on 

non-conscious emotion processing). 

Considerably less research has been carried out on the neurophysiological correlates of the 

awareness of emotions conveyed by faces. Here, we aimed to isolate the neural activity accompanying 

the subjective experience of seeing/understanding emotions in other people expressed by their faces.  

The methodological approach we employed here is based on the established tradition in the 

search for the neural correlates of consciousness (NCCs; Crick & Koch, 1998). Content-specific 

NCCs (Koch et al., 2016) are defined as the minimal neuronal mechanisms jointly sufficient for a 

specific conscious experience, for instance, of colors, oriented lines, faces, and buildings (e.g., Boly 

et al., 2017). One way to isolate the NCC is to use the contrastive method (Baars, 2005; see also 

Dehaene et al., 2014), i.e., by subtracting the neural activity elicited by the stimulus/feature of interest 

in a condition where the participant lacks awareness (on the basis of their report) from the neural 

activity elicited by the same stimulus/feature in a condition of awareness (i.e., aware-minus-unaware). 

The assumption behind this approach is that this subtraction cancels out the neural activity commonly 

elicited in the two conditions, unveiling the neural activity that is uniquely related to the awareness 

of the stimulus of interest (but see Aru et al. 2012; Lepauvre and Melloni 2021; Miller 2007; de Graaf 
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et al. 2012; Tsuchiya et al. 2015). By using this approach, neuroimaging studies have found that these 

NCCs are content-dependent, such that, for instance, the phenomenal conscious experience of color 

is linked to the recruitment of the extrastriate area V4/V8 (Zeki, 1973, 1983), that of places to the 

parahippocampal place area (Mégevand et al., 2014; e.g., Tong et al., 1998), and that of faces to the 

fusiform gyrus (e.g., Tong et al., 1998). For what concerns conscious face perception, compatible 

with fMRI evidence, electrocorticography (ECoG) studies using continuous flash suppression and 

backward masking as blinding methods have provided evidence that the content-dependent NCC of 

conscious face perception corresponds to the activity in the ventral and lateral side of the temporal 

lobe (Baroni et al., 2017). 

With respect to the processing of suprathreshold visible faces, the most empirically supported 

neural model of face processing considers a distributed network: a “core system” for the visual 

processing of faces comprising regions in the posterior occipitotemporal cortex (i.e., lateral fusiform 

gyrus [fusiform face area: FFA], inferior occipital gyrus [occipital face area: OFA], and superior 

temporal sulcus [pSTS]), and an “extended system” comprising more anterior brain regions for 

additional processing, including the attribution of emotional meaning to facial expressions (Haxby et 

al., 2000; Haxby & Gobbini, 2011). The extended network for facial expression processing includes 

the frontal operculum (FO; inferior frontal gyrus and anterior insula), the premotor cortex, and the 

somatosensory cortex (Haxby et al., 2000). There is also evidence that the FO contains distributed 

representations of facial expressions decodable by means of fMRI (Said et al., 2010).  

In the context of EEG studies, few well-characterized event-related potential (ERP) 

components are sensitive to specific categories or attributes of stimuli. Among these, the best known 

is the N170, an ERP deflection with negative polarity and latency of about 170 ms enhanced in 

amplitude for face compared to non-face stimuli (such as objects and buildings; Bentin et al., 1996; 

Rossion et al., 2000) estimated to stem from activity in the occipitotemporal areas corresponding to 

the “core system” (Herrmann et al., 2005; Itier & Taylor, 2004; Watanabe et al., 2003). N170 is 

postulated to reflect structural encoding of a face, since disrupting the organization of the visual 
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features that make up a face leads to the reduction of its amplitude (e.g., Rossion & Jacques, 2008). 

Some research suggests that the N170 may be sensitive to the presence of faces regardless of whether 

they are consciously perceived or not (e.g., Eimer, 2000). However, other research has found that the 

N170 is more strongly associated with the conscious perception of faces, particularly when the face 

is the focus of attention (e.g., Tanskanen et al., 2007; Harris et al., 2011; Rodríguez et al., 2012; 

Navajas, Ahmadi, & Quiroga, 2013; Rossion, 2014; Maffei et al., 2021). 

In support of the distributed face processing network, the processing of suprathreshold visible 

emotional faces compared to that of neutral faces is associated with modulations of other ERP 

components in addition to the N170 spanning the scalp (Batty & Taylor, 2003; Blau et al., 2007; 

Eimer et al., 2003; Eimer & Holmes, 2007). These include the mid-latency N2 and Early Posterior 

Negativity (EPN) and the late P3 and Late Positive Potential (LPP) (Maffei et al., 2021; Jaspers-Fayer 

et al., 2022; Schindler & Bublatzky, 2020), advocating for the involvement of the “extended system” 

for the attribution of emotional meaning.  

In terms of the NCC of emotional faces, a few traditional ERP studies have manipulated the 

visibility of emotional faces. Importantly, the goal of these studies was to isolate the NCCs of a face 

with an emotional expression rather than explicitly isolating the NCCs for the emotional attribute. 

The NCC of a face with an emotional expression may reflect the recruitment of the core and/or the 

extended systems. Meanwhile, the NCC for the emotional attribute would ideally isolate the 

experience of seeing an emotion coming along with a face. Most previous studies were designed to 

pursue the former goal, employing backward masking and the contrastive approach. There, the 

authorscontrasted and compared different “physical stimuli” under the supraliminal and subliminal 

conditions (see table in Supplementary Materials) (Liddel et al., 2004; Williams et al., 2004; Balconi 

& Lucchiari, 2005; Balconi, 2006; Balconi & Lucchiari, 2007; Pegna et al., 2008; Kiss and Eimer, 

2008; Balconi & Mazza, 2009; Zhang et al., 2012; De Pascalis et al., 2020). The overall pattern of 

the results from these studies are inconclusive and inconsistent with respect to response modulations 

(in terms of amplitude and/or latency) as a function of consciousness:  N170 (Zhang et al., 2012; 
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Wierzchoñ et al., 2016; De Pascalis et al., 2020), the EPN (Wierzchoñ et al., 2016), the N2 (Balconi 

& Lucchiari, 2005; Balconi, 2006; Balconi & Lucchiari, 2007; Pegna et al., 2008; Kiss and Eimer, 

2008; Balconi & Mazza, 2009; De Pascalis et al., 2020), and the P3 (Liddel et al., 2004; Kiss and 

Eimer, 2008; Wierzchoñ et al., 2016; De Pascalis et al., 2020).   

One of the major limitations of this traditional ERP research, which has been overcome by 

more contemporary methodologies, is their use of a priori selection of the electrodes and/or ERP 

components (Liddel et al., 2004; Williams et al., 2004; Balconi & Lucchiari, 2005; Balconi, 2006; 

Balconi & Lucchiari, 2007; Pegna et al., 2008; Kiss and Eimer, 2008; Balconi & Mazza, 2009; Zhang 

et al., 2012; Wierzchoñ et al., 2016; De Pascalis et al. 2020). This methodological approach is known 

to result in over-generosity in quantifying statistical effects. Its weakness has been pointed out 

discerningly by Luck and Gaspelin (2017) and has been criticized since. Such methodological 

inclinations might explain seemingly contradictory results.  

Additionally, it is crucial to distinguish the NCC of a face with an emotional expression from 

the NCC for the emotional attribute. Drawing upon the seminal model of face processing by Haxby 

& Gobbini (2011), the act of attributing emotion to a face engages neural territories extending beyond 

the confines of the core visual cortices, especially venturing into the frontal region.  

With these perspectives in mind, our data-driven methodology offers a more refined 

instrument attuned to the multifaceted nature of face and emotion processing.In particular, our present 

investigation embraces an unbiased statistical approach, as championed by Luck and Gaspelin (2017). 

Our intent is not merely to address these methodological quandaries but to further elucidate the 

intricate interplay underlying conscious emotional processing. Using this methodological and 

analytical approach, we expected to observe ERP modulations in anterior electrodes as a function of 

the emotion’s awareness (i.e., following the contrastive approach aware-minus-unaware). 

In a high-density EEG (hd-EEG; 256 sensors) study, we optimized methodological choices to 

isolate neural activity linked with awareness of an emotion of fear conveyed by a face. In other words, 

awareness of “fear” conveyed by a face rather than awareness of “a face expressing fear” was the 
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objective of our contrastive approach. Firstly, we used threshold stimuli calibrated for each 

participant before the main EEG experimental session using a double staircase procedure. Secondly, 

since the study of consciousness requires measuring subjective experience, in this investigation, we 

opted for a variant of the PAS (Overgaard & Sandberg, 2021; Ramsøy & Overgaard, 2004) to obtain 

introspective participants’ reports of their awareness of seeing an emotion of fear conveyed by a face. 

The trials were divided into unaware and aware conditions of the emotion expressed by the faces (for 

details, see Methods), and the neural activity was then contrasted between the two conditions: aware 

fearful vs. unaware fearful. 

With regard to the use of threshold stimuli, faces were presented with Gaussian noise with 

varying intensity. The Gaussian noise was adaptively adjusted based on the participant’s response to 

identify stimuli in which emotion awareness occurred in ~50% of the trials. In general, NCCs have 

often been isolated using similar stimuli but with different physical characteristics (e.g., in terms of 

duration (Koivisto et al., 2016; Pins & Ffytche, 2003), intensity (Auksztulewicz & Blankenburg, 

2013; Wyart & Tallon-Baudry, 2008) or masking (Del Cul et al., 2007)) such that they could produce 

different experiences, i.e., seen vs. unseen. As already mentioned in a previous paragraph, this is also 

the case for previous EEG/ERP studies investigating the NCCs for emotional faces since almost all 

of them used subliminal/unconscious and supraliminal/conscious emotional faces that differed in 

terms of duration within the context of a backward masking paradigm (Liddel et al., 2004; Williams 

et al., 2004; Balconi & Lucchiari, 2005; Balconi, 2006; Balconi & Lucchiari, 2007; Pegna et al., 

2008; Kiss and Eimer, 2008; Balconi & Mazza, 2009; Zhang et al., 2012; De Pascalis et al., 2020). 

Here, instead, we contrasted neural activity between the conditions of emotion awareness and 

unawareness by presenting identical physical stimuli that only differed in terms of participants’ 

experience.  

For our purpose, we also employed a modified version of the PAS. In its most used version, 

PAS includes four different levels that map the experience from “No experience” (PAS 1; no 

impression of the stimulus) to “Clear experience” (PAS 4; non-ambiguous experience of the stimulus; 
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Ramsøy & Overgaard, 2004), where PAS 1 reports are typically regarded as unconscious trials. In 

the present study, we employed a 5-level PAS to monitor the clarity of the experience of the emotion 

expressed by the face (see Method). Our choice to use such a tool is based on the view that the study 

of consciousness should primarily be based on subjective experience reports and that there is a (close) 

one-to-one relationship between subjective reports and inner states (Overgaard & Sandberg, 2021).  

To characterize the space-time distribution of these NCCs, we opted for a data-driven 

approach, and more specifically for the massive univariate nonparametric permutation approach 

(Groppe et al., 2011) combined with a cluster-based approach (Bullmore et al., 1999) also in order to 

appropriately deal with the large number of contrasts that typically arise with high-density EEG 

recordings. 

Finally, we explored if functional connectivity between the core and the extended systems for 

facial expressions processing would differ as a function of awareness of the emotional expression 

presented. This latter analysis may help clarifying whether content-dependent localized and possibly 

reverberant activity is sufficient for specific consciousness contents to arise (Lamme, 2006; Lamme 

& Roelfsema, 2000; Pascual-Leone & Walsh, 2001; e.g., Pins & Ffytche, 2003; Ress et al., 2000; 

Ress & Heeger, 2003; Supèr et al., 2001; Tong, 2003; Zeki, 2003, Seth & Bayne, 2022; Koch et al., 

2016; Mashour et al., 2020), or complex long-range neural dynamics are necessary (Beck et al., 2001; 

Lumer & Rees, 1999; Marois et al., 2004; e.g., Rees et al., 2002; Tononi, 2004; Vuilleumier et al., 

2001).  

 

2. Method 

2.1 Participants  

Forty participants (35 females and 5 males, mean age = 23.4 y, sd = 1.9 y) were recruited to 

take part in this experiment. Participants were undergraduate students from the University of Padova, 

with no history of neurological or psychiatric diseases with normal or corrected-to-normal vision. 
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They were paid 10 € for their participation. The study received approval from the University of 

Padova ethics committee for psychological studies (protocol n° 4032). All the procedures were 

carried out according to the principles expressed in the Declaration of Helsinki for human research. 

No power analysis ws performed to determine the sample size and no part of the study procedures or 

analysis plans was preregistered prior to the research being conducted. In the following sections we 

report how we determined all data exclusions, all inclusion/exclusion criteria, whether 

inclusion/exclusion criteria were established prior to data analysis, all manipulations, and all 

measures in the study. 

2.2 Experimental task and procedure 

Each participant completed 1) a psychophysical calibration procedure in order to estimate the 

facial expression detection threshold and 2) the main experimental session with the EEG recordings.  

As facial stimuli, we selected 8 identities (4 females and 4 males) from the Karolinska 

Directed Emotional Faces database (KDEF; Lundqvist et al., 1998) with neutral and fearful facial 

expressions for a total of 16 faces. Each stimulus was converted to grayscale and cropped using an 

oval mask. 

For the psychophysical calibration, we used a 1-up-1-down staircase (Levitt 1971) varying 

the amount of Gaussian visual noise added to the face stimulus in order to manipulate the visibility. 

The Gaussian noise was added to each pixel with a varying level of the variance (with fixed the mean 

to be zero). The larger the variance, the stronger the masking effects to reduce the visibility of the 

underlying face. For this calibration, we used the Palamedes toolbox (Kingdom & Prins, 2016) and 

the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB. The trial started with a 

fixation cross for 1000 ms. Then the face stimulus (with superimposed Gaussian stimuli) appeared 

for 50 ms and was immediately followed by a mask stimulus for 500 ms. The mask was created by 

randomly scrambling the face stimulus using a custom MATLAB function which, first randomly 

creates a new image by dividing the original image into n = 100 squares, and then randomizes the 

position of each square. Then participants were required to report the face visibility using a modified 
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version of the PAS, which included the following alternatives: PAS 0 = no experience of a face nor 

of its expression; PAS 1 = experience of a face but not of its expression; PAS 2 = experience of a 

face and a brief glimpse of its expression; PAS 3 = experience of a face and almost clear experience 

of its expression; PAS 4 = experience of a face and clear experience of its expression. Labels for PAS 

1 to 4 were derived by translating in Italian the original 4 PAS labels (Sandberg & Overgaard, 2015), 

stressing the focus of the awareness question on the emotional expression conveyed by the face. The 

additional level was defined by using the lower edge of the traditional PAS (No experience), but 

asking the participants about both the face and its expression. Before starting the experiment, the 

participants were familiarized with the different alternatives of the PAS so that they learned to map 

their subjective experiences using this tool. This consisted in reading a series of written instructions 

where the meaning of each PAS level according to Ramsøy and Overgaard (2004), was explained, 

and practiced its use in 10 practice trials.  The Gaussian noise was decreased after a PAS 1 response, 

while it was increased after a PAS 2, 3, or 4 response. Finally, for trials in which participants reported 

facial expression awareness (i.e., PAS 2, 3, and 4), they were also asked if they saw a neutral or 

fearful face. The intertrial interval was a blank screen presented for 1500 ms. The decreasing step 

size was 0.04, and the increasing step size was 0.04 multiplied by 0.871, corresponding to the optimal 

factor for a 1up-1down staircase (García-Pérez, 2001). The final threshold was estimated by 

averaging all reversals, excluding the first two. Each face was presented 5 times, and we also included 

16 catch trials (where the face was replaced by the mask) for a total of 96 trials. 

The experimental EEG session consisted of the presentation of the face stimuli, convolved 

with the amount of Gaussian noise estimated individually for each participant in the calibration phase, 

followed by the PAS (and emotion discrimination in a subset of trials, see above). The trial was 

structured in the same way as the calibration session. The only difference was the intertrial interval, 

where the duration was randomly set between 1400 and 1700 ms. 

 Trials for which participants’ response on the PAS was 0 or 1 were considered Unaware trials 

with regards to emotional expression. Trials for which participants’ response was 2, 3 or 4 were 
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considered Aware trials with regard to emotional expression. Additionally, for Aware trials only, 

participants were probed with a second question in which they were asked to report which expression 

they saw. Only trials for which participants correctly recognized the expressions were considered for 

the subsequent analysis. An example of the trial structure with the possible response alternatives is 

presented in Figure 1B.  

 

[Figure 1 (A and B) here] 
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Figure 1. Panel A shows examples of face stimuli (with neutral and fearful expressions) with added levels of 

Gaussian noise (on the left) and an example from one participant of the structure of the psychophysical 

calibration procedure (1-up-1down) used to identify the perceptual threshold for the emotional expression (on 

the right). Panel B shows an example of a trial structure. When the participant responded with PAS0 and PAS1, 

the trial was considered Unaware; when the participant responded with PAS2, PAS3, and PAS4 the trial was 

considered Aware. 

 

The experiment consisted of 800 trials, grouped in 4 blocks to minimize participants’ fatigue. 

For each block, 80 trials consisted of fearful expressions (320 in total), 80 trials consisted of neutral 

expressions (320 in total), and the remaining 40 were catch trials (160 in total). Stimuli were presented 

on a 21.5’’ LCD monitor with 60Hz refresh rate The whole procedure lasted around 90 minutes. 

 

2.3 EEG recording and preprocessing 

EEG activity was collected continuously using a 256-channel HydroCel Geodesic Sensor Net 

connected to an EGI NetAmp 400 amplifier with a sampling rate of 256 Hz. The vertex channel was 

used as the online reference, and all channels’ impedance was kept below 50 kΩ. 

Data preprocessing consisted of 1) high-pass filtering at 0.5 Hz, with a Kaiser windowed FIR 

filter; 2) automatic detection of bad channels using the clean_rawdata routine (v. 2.5) implemented 

in EEGLab marking a channel as bad according to any of the following parameters: a) 5 seconds or 

more of flatline recording; b) less than 0.8 correlation with nearby channels; c) 4 standard deviations 

of more of line noise relative to signal; the average number of bad channels detected was 26.28 (sd = 

15.96) 3) segmentation of the continuous recording into epochs starting -1000 ms and ending 1000 

ms around stimulus onset. According to participants’ responses to the PAS, epochs have been 

assigned to one of the following conditions: Neutral Aware, Neutral Unaware, Fear Aware, Fear 

Unaware; 4) application of ICA to reduce the data to 40 independent components; 5) semi-automatic 

rejection of artifactual components using the ICLabel plugin (v.1.3) implemented in EEGLab (Pion-

Tonachini et al., 2019). The average number of discarded ICs was 16.5; 6) reconstruction of activity 
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from artifact-free ICs, interpolation of missing channels, and re-referencing to the average of all 

channels; 7) reduction of epoch length to -200 ms to 600 ms around stimulus onset and baseline 

correction; 8) automatic rejection of epochs with a peak-to-peak amplitude exceeding ± 100 μV in 

any channel using a moving window procedure (window size = 200 ms, step size = 200 ms) in order 

to discard epochs contaminated by residual artifacts; 9) averaging the activity of artifact-clean epochs. 

The average number of epochs for each condition was: Fear Aware = 198.9, Fear Unaware = 118.5, 

Neutral Aware = 189.5, Neutral Unaware = 128; 10) Finally, we performed a low-pass filtering of 

the averaged waveforms at 30 Hz using a 2nd-order Butterworth filter. 

Due to excessive noise in the recordings (less than 60% of artifact-free trials), data from 8 

participants were discarded during preprocessing. The final sample for statistical analyses included 

32 participants. EEG/ERP data quality assessment is provided in the Supplementary Materials. 

In order to have a fine-grained assessment of information flow within the face processing 

network we computed the routing efficiency, a graph theoretical metric suited to capture the 

integration of information within a network, which has been successfully used in the investigation of 

the network dynamics subtending emotional face processing. Following the approach described in 

Maffei and Sessa (2021) we first projected EEG activity in the source space using  a three-layer 

boundary element method (BEM) as forward model, and the weighted Minimum Norm Estimation 

(wMNE) as the inverse solution. Then, we downsampled the source activity to the cortical parcels 

included in the Destrieux atlas (Destrieux et al., 2010), and computed the pairwise connectivity in the 

alpha (8-12 Hz) frequency range using the corrected imaginary part of the phase-locking value 

(ciPLV). Finally, we computed the maximum routing efficiency between a node belonging to the 

Core System (CS) and a node belonging to the Extended System (ES) of the face processing network. 

Preprocessing was performed in MATLAB (v. 2019a) employing functions from EEGLab (v. 

2019, Delorme & Makeig, 2004), ERPLab (v. 8.3, Lopez-Calderon & Luck, 2014), Brainstorm (Tadel 

et al., 2011) and the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). 

 

Jo
urn

al 
Pre-

pro
of



15  

2.4 Statistical analysis 

Statistical modeling of event-related activity was performed within a massive univariate 

nonparametric permutation framework (Groppe et al., 2011). This approach consists in performing a 

statistical test (like a t-test or ANOVA) for every point in the electrode by time plane, then iteratively 

permuting the within-subject condition assignments (i.e., conditions labels) and performing the test a 

sufficient number of times to have an empirical null-distribution of the test statistic under the null 

hypothesis of no difference between conditions. This empirical null distribution is then used to derive 

the exact probability of the observed difference and thus perform the statistical inference. This 

statistical framework, combined with a cluster-based approach to handle the problem of multiple 

comparisons (Bullmore et al., 1999), represents the gold standard for EEG/ERP analysis (Maris & 

Oostenveld, 2007), allowing for relaxing the rarely satisfied assumptions of parametric models and 

for exploiting the full multidimensional structure of EEG/ERP data. 

In the present research, we contrasted the activity elicited by fearful faces in the Aware 

condition with the activity elicited by fearful faces in the Unaware condition and contrasted the 

activity elicited by neutral faces in the Aware condition with the activity elicited by neutral faces in 

the Unaware condition. In order to test our hypotheses regarding both the timing and the spatial 

distribution of conscious access to emotional expressions, we performed these contrasts separately 

for a subset of anterior and posterior sensors and in an early time interval comprising time points 

between 150 ms and 300 ms (to monitor for ERP components such as the N170, the EPN, the visual 

awareness negativity (Förster et al., 2020), and the anterior N2) and a late time interval between 300 

ms and 500 ms (to monitor for the P3b and the LPP ERP components). The two electrode subsets 

were created by splitting the scalp into two regions, one anterior and one posterior, according to the 

central line (Figure 2; the complete list of sensors included in the two subsets is provided in the 

Supplementary Materials). Our approach resulted in four sets of contrasts, one for each combination 

of clusters (Anterior and Posterior) and time-window (early and late). For each test, statistical 
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significance was assessed using α = 0.05, the number of permutations employed was 5000, and the 

alpha level used as the cluster-forming threshold was set at 0.05. In the results section, we report the 

sum of the t-values comprising a significant cluster as a test statistic and the extent of this cluster as 

the number of adjacent points in the spatiotemporal plane. Statistical analysis was performed using 

Fieltrip's ft_timelockstatistic function accessed from Brainstorm. 

[Figure 2 (A and B) here] 

 

Figure 2. Panel A shows the sensors in the anterior cluster considered for the statistical analysis. Panel B shows 

the sensors in the posterior cluster considered for the statistical analysis. 

3. Results 

3.1 Behavior 

 

Figure 3A shows the percentage of PAS responses for catch trials and valid trials, split by 

emotion category of the valid stimulus. The distribution of responses across the different PAS levels 

demonstrates that the calibration phase was successful. The proportion of PAS 0 responses for catch 

trials is substantially higher than the proportion of PAS 0 responses for valid trials, as shown by a 

multilevel logistic regression modeling the proprotion of unaware trials as a function of trial type 

(logOR = 4.122, SE = 0.393, z = 10.487, p < 0.001). Furthermore, for the latter, the responses tend 
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to be distributed over all the PAS levels, with a clustering of responses for the PAS 1 and PAS 2 

levels as expected from using threshold face stimuli. 

Figure 3B shows the percentages of emotion categorization for fearful and neutral faces, at 

each PAS level corresponding to awareness of the emotional feature of the face (PAS2-4). The results 

from a multilevel logistic regression predicting the accuracy in the emotion categorization indicate 

that at the PAS 2 participants already show above-chance discrimination of fearful (ACC = 0.634, 

SE = 0.040, 95% CI = [0.553, 0.708], z = 3.202, p = 0.001) and neutral expressions (ACC = 0.837, 

SE = 0.024, 95% CI = [0.785, 0.878], z = 9.443, p < 0.001).  

 

[Figure 3 (A and B) here] 
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Figure 3. Panel A shows the percentage of PAS responses for catch trials and valid trials, split by emotion 

category of the valid stimulus, for the whole sample. Panel B shows the percentages of emotion categorization 

for fearful and neutral faces, at each PAS level corresponding to awareness of the emotional feature of the face 

(PAS2-4). 

 

3.2 Event-related activity 

The analysis of the event-related activity as a function of participants’ awareness and 

separately for fearful and neutral faces revealed a significant difference in the cortical activity elicited 

by fearful faces. The contrast between ERP response to fearful expressions subjectively perceived by 
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participants with ERP responses to fearful expressions not consciously perceived yielded a significant 

result in the test considering the early time window and the anterior scalp sites (tsum = 1299, cluster 

size = 517, p = 0.02). 

Figure 4 shows the grand average waveforms of the anterior electrodes cluster for the Aware 

and Unaware trials, separately for Fearful faces (on the left) and Neutral faces (on the right), while 

Figure 5 shows on scalp maps the significant effect found. 

 

[Figure 4 here] 

 

 
Figure 4. Grand average waveforms displaying average activity within the significant anterior electrode 

cluster. The left panel shows the activity for Fearful faces as a function of participants’ awareness. The right 

panel shows the activity for Neutral faces as a function of participants’ awareness. The red borders mark the 

time window for which the difference was significant. 

 

[Figure 5 here] 
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Figure 5.  Scalp maps show the significant statistical effect for the contrast between Fearful Face Aware (PAS 

2-4) and Fearful Face Unaware (PAS 0-1) in the early time window (150–300 ms). Electrodes comprising the 

significant cluster are marked in red. 

 

The other statistical tests performed (reported in Table 1) did not reveal significant results.  

 

CONTRAST WINDOW STATISTIC P-VALUE 

Fear Aware vs Fear Unaware 150-300 ms tsum = 1299 p = 0.02 

Fear Aware vs Fear Unaware 300-500 ms tsum = 1364 p = 0.052 

Neutral Aware vs Neutral Unaware 150-300 ms tsum = 4 p = 0.99 

Neutral Aware vs Neutral Unaware 300-500 ms tsum = 190 p = 0.44 

 

Table 1: Results of the statistics performed according to our a-priori hypothesis. 
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The only notable exception was the contrast between Fear Aware vs Fear Unaware in the late 

time window, for which the probability to reject the null hypothesis was p = 0.052.  

In light of our findings and the existing literature, we identified intervals of interest for our 

ERP effects. However, during our analysis, we also noted intriguing patterns in the 200-400 ms 

window (also visible in Figure 3 for the fear condition). To ensure the robustness of our findings and 

address concerns of potential double-dipping (Kriegeskorte et al., 2009), we present our detailed 

exploratory analysis of this interval in the Supplementary Materials. Readers interested in a 

comprehensive understanding of the observed effects in this window are encouraged to refer to this 

supplementary section. The primary manuscript focuses on the main findings (about the confirmatory 

analysis of the a-priori determined time interval of 150-300 and 300-500 ms), ensuring alignment 

with the established literature and maintaining clarity. 

The analysis of the information flow between the two portions of the face processing system 

with the routing efficiency did not reveal any difference (t = 0.78, p = 0.44, BF01 = 3.93) in the levels 

of integration between the core and the extended systems during processing of fearful expressions as 

a function of awareness (Figure 6). Analogous result was observed for the neutral expressions (t = 

0.04, p = 0.97, BF01 = 5.29). 

 

[Figure 6 here] 
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Figure 6. Boxplots showing the levels of the routing efficiency between the Core (red nodes) and the Extended 

(blue nodes) system of the Face Processing Network, as a function of awareness of fearful expressions. 

 

Finally, in Figure 7, we outline the average ERP amplitude for each distinct PAS level. PAS 

0 denotes an absence of visual experience—neither recognizing the face nor its expression. PAS 1 

represents the conscious recognition of a face without its expression. PAS 2 through 4 sequentially 

chart the varying degrees of consciousness associated with identifying a facial expression of fear. 

The variation in ERP across PAS levels offers an interesting perspective on the nature of 

consciousness. Drawing upon Windey and Cleeremans (2015), the neural representations between 

PAS 0 and PAS 1 suggest a graded consciousness consistent with low-level stimuli/features. In 

contrast, the transition from simply recognizing a face to interpreting its emotional expression (from 

PAS 1 to subsequent levels) seems to reflect high-level processing, where a more all-or-none nature 
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of consciousness becomes evident. This interpretation, while thought-provoking, aligns with the 

gradations proposed by Windey and Cleeremans. 

 

[Figure 7 here] 

 
Figure 7. Mean amplitude and standard error of the anterior cluster ERP activity in the early time window 

(150–300 ms), split for the levels of participants’ awareness during the presentation of fearful faces. 

 

However, it is crucial to underline that our experimental design was not specifically tailored 

to delve deeply into the subtle differences of neural activity evoked by various PAS levels. Our study 

lacks the statistical power for definitive conclusions in this realm. Thus, while this data offers 

qualitative insights and could inspire subsequent research trajectories, we abstain from delving deeper 

into these findings in the Discussion section, treating them primarily as preliminary observations. 

 

4. Discussion 
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In the present investigation, we used high-density EEG and an optimized experimental 

paradigm to isolate the NCCs for an emotion conveyed by a face. We employed threshold stimuli so 

that the neural activity contrasted to identify the NCCs was elicited by stimuli with identical physical 

properties. This strategy should strongly limit the possibility that activity elicited posteriorly by 

higher visible stimuli in the supraliminal condition (vs. the subliminal condition) could improperly 

lead to conclude that activity of the core system for face processing is (part of) the NCC of emotion 

seen on others’ faces. Furthermore, we used the perceptual awareness scale to assign trials into aware 

and unaware conditions (rather than requiring a dichotomous response, i.e., aware/seen vs. 

unaware/unseen). This procedure minimizes the risk of categorizing “experience of a face with a brief 

glimpse of expression” as unaware. If participants were to be asked to categorize trials as either visible 

or invisible, they might do so based on the visibility of the face per se or the expression. Our explicit 

instruction and 5 levels of PAS reduces such an ambiguity. Specifically, according to our PAS system, 

we regarded that participants were unaware of expression, even if they saw a face (PAS=1) and they 

were aware of expression if PAS>=2 as long as expression was experienced even as a brief glimpse. 

Figure 2B shows that at the PAS=2 participants already show significant discrimination of fearful 

and neutral expressions.   

In a recent perspective discussing visual consciousness, Lamme suggested that the experience 

of emotions associated with facial expressions might rely on recurrent interactions between neurons 

representing various facial features and specialized neurons signaling emotional content. These 

specialized neurons are believed to be located in subcortical structures such as the amygdala or in 

ventromedial prefrontal cortices (Lamme, 2020; p. 7). The results of our investigation conceptually 

confirmed this prediction because, focusing on the component of “fearfulness” conveyed by the face, 

we observed a pattern of activity on the scalp compatible with the recruitment of frontal regions for 

the processing of emotions (specifically, fear). More specifically, our results corroborate the 

hypothesis ⎼ grounded on the knowledge of face processing ⎼ that the NCC of fear (on someone 
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else’s face) entails neural activity following, in time, the N170 ERP component and elicited in 

anterior sensors. 

Although in line with the body of evidence and predictions discussed in the introductory 

section, these results must also be discussed in the context of the ongoing debate about 

electrophysiological markers of consciousness. Indeed, two main ERP markers of consciousness have 

been so far suggested, each with a unique spatiotemporal signature: 1) an earlier ERP with a scalp 

distribution dependent on the stimulus’ sensory modality, which arises 120–200 ms following the 

stimulus and is likely generated within the underlying sensory cortices, i.e., the perceptual awareness 

negativity (Dembski et al., 2021), and 2) a later ERP with an onset latency of around 300 ms and a 

parietal distribution, i.e., the P3b/Late Positivity (LP; Dehaene et al., 2014; Dehaene & Changeux, 

2011; Del Cul et al., 2007; Naccache et al., 2016; Sergent et al., 2005; Sergent & Naccache, 2012). 

The discussion on which of the two ERP responses is the “true marker” of consciousness fuels the 

controversy on the early/late onset of consciousness (see Förster et al., 2020 for a critical review on 

this topic), with the perceptual awareness negativity supporting an early onset vs. the P3b/LP 

supporting a late onset. These two ERP markers are also compatible with different localization of the 

brain regions critical for consciousness, thus feeding the intricacy of the overall scenario. These two 

viewpoints may not be necessarily mutually exclusive, as the two ERPs responses could be neural 

indexes of two different kinds of consciousness, namely sensory consciousness (i.e., indexed by the 

perceptual awareness negativity) and reflective/access consciousness (i.e., indexed by P3b/LP).  

Nonetheless, our results do not fit with either one or the other ERP marker of consciousness 

(sensory and access). In fact, our findings do not align with neither the perceptual awareness 

negativity nor the P3b/LP as markers of consciousness in terms of scalp distribution, polarity, and 

timing. Indeed, the isolated neural activity as the NCC for fear seen on another’s face has negative 

polarity, frontal distribution and emerges in an intermediate time window (between 150 and 400 ms) 

between the perceptual awareness negativity and the P3b.  
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How can we reconcile the present results with this previous literature?  

The starting point is a suggestion provided by Northoff and Lamme (2020), who argued how 

the phenomena that the diverse theories try to explain (i.e., “explananda”) are fundamentally different 

from each other. As a consequence, the different kinds of phenomenal experiences under scrutiny 

lead to different predictions regarding NCC. On the one hand, the theories that hypothesize a central 

role of the posterior regions of the brain in the generation of consciousness (e.g., Recurrent Processing 

Theory; RPT; Lamme, 2006, 2010; Lamme & Roelfsema, 2000) and consider relatively early neural 

responses as potential markers of consciousness (i.e., perceptual awareness negativity) aim to explain 

consciousness of (visual) sensory contents (see, e.g., Boly et al., 2017; Tsuchiya et al., 2015). On the 

other hand, theories that regard frontal/prefrontal regions as crucial (Global Neuronal Workspace 

Theory; GNWT; Dehaene et al., 1998, 2014; Dehaene & Changeux, 2011; Dehaene & Naccache, 

2001; and the Higher-Order Thought Theory; HOT; Brown et al., 2019; Gennaro, 2018; Lau & 

Rosenthal, 2011), along with the associated late neural responses (i.e., P3b/LP), tag a different aspect 

of consciousness related to higher-level cognitive processing such as context updating (Donchin, 

1981). 

This acknowledgment is pivotal to tailoring hypotheses and systematizing knowledge. 

Furthermore, upon closer reading, the Integrated Information Theory (IIT; Tononi, 2004) offers a 

theory-based solution since it posits that every conscious experience is associated with a specific 

pattern of integrated information, that is, a complex structure that describes how parts of the system 

causes and effects specifically to the whole of the system in a specific way (see IIT 4.0, Albantakis 

et al., 2022 for more details; for computation of a proxy of the integrated information structure from 

empirical neural recordings, see Haun et al 2017, and Leung et al 2021), i.e. consciousness arises 

from the particular patterns of integrated information generated by an experience-related network. 

From this follows that the physical substrate of consciousness (PSC) is not fixed and not necessarily 

located posteriorly (the so-called posterior “hot zone”). In fact, the authors predict that the “PSC can 
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shrink, expand or move during normal wakefulness” (Tononi, Boly, Massimini & Koch, 2016; p. 

455), for example, as a function of functional connectivity.  

Moving carefully within this very contrastive debate, we suggest that there is no evidence that 

a single ERP marker of an aspect of consciousness must exist, even though the scientific debate has 

long stalled between the advocates of perceptual awareness negativity and those of the P3b/LPP 

(Förster et al., 2020). Rather we suggest that the ERP marker of consciousness, in terms of distribution 

and timing, might critically depend on the subjective experience studied and experimentally isolated. 

With the spatial resolution offered by the EEG/ERP technique, the hypothesis of multiple, content-

dependent, NCCs may be hard to test under certain circumstances, also when considering perceptual 

awareness only. For instance, when investigating the subjective experience of seeing simple visual 

stimuli, such as oriented lines and colors, neural responses elicited on the scalp tend to overlap 

(although the underlying cortical source might partially differ), leading to the possibly incorrect 

conclusion that they share the same NCC in terms of ERP (e.g., the perceptual awareness negativity, 

and in particular, the visual component). 

An additional point we want to raise regards the debate around the localizationist/anti-

localizationist positions. Our findings align with the view that content-dependent localized and 

possibly reverberant activity is sufficient for specific consciousness contents to arise, and, more 

specifically, in the context of this investigation, this type of localized and perchance reverberating 

activity measured on frontal sensors is a correlate of the awareness of an emotion of fear conveyed 

by a face. However, caution is necessary, as we cannot exclude that the spatial resolution of the high-

density EEG might not be adequate to detect complex long-range neural dynamics. Furthermore, 

high-density EEG is unsuitable for detecting subcortical structures’ activation, likely involved in the 

conscious processing of facial emotion (see Pessoa, Japee, Sturman, & Ungerleider, 2006 for clear-

cut evidence that amygdala responses vary as a function of fearful faces visibility).  

While in our study we endeavored to implement various methodological enhancements, it did 

not eliminate all potential confounds in identifying the “true” NCC for fear perception. In particular, 
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our experimental design requested participants to report on facial stimuli (both neutral and fearful) in 

all trials. This task-relevance has been pointed out as a potential confound for identifying the NCC 

(Miller, 2007; Aru et al., 2012; de Graaf et al., 2012; Tsuchiya et al., 2015) 

Indeed, recent EEG and MEG studies that adopt “no-report” paradigms or related designs tend 

to find that late positivity (LP) as a neural correlate of post-perceptual processes tied to reporting 

rather than actual consciousness (Förster et al., 2020). In these studies, actual conscious seeing of 

stimuli in the no-report condition is either inferred from obviously visible stimuli (e.g., long exposure, 

no mask etc.) or confirmed in separated blocks. When recording EEG in the no-report condition, 

neural activity such as LP prominently reduces, implying LP is reflecting the report process.  

Meanwhile, other components, especially the perceptual awareness negativity (in particular the visual 

component, i.e. visual awareness negativity/VAN) seem to remain intact under the no-report 

conditions (Pitts et al., 2012, 2014; Shafto & Pitts, 2015; Dellert et al., 2021; Kronemer et al., 2022). 

With respect to the experiences of faces, a standout effort in teasing apart genuine NCCs 

comes from Kronemer et al. (2022). Their approach blended EEG, thalamic depth recordings, and 

fMRI to examine conscious visual perception, adeptly bypassing issues related to overt reporting. 

Their findings spotlighted ERPs, notably the VAN, as a credible, report-independent visual 

consciousness indicator. Yet, it is important to underscore that their approach, while enlightening, 

centered on face stimuli with neutral expression. 

Emotional aspects of face were investigated by Sun et al. (2023), who employed the three-

stage inattentional blindness paradigm (Pitts et al., 2012; Pitts et al., 2014; Shafto & Pitts 2015) to 

make face stimuli, including fearful ones, task-irrelevant. Their findings with neutral faces were 

largely consistent with previous experiments with faces (Shafto & Pitts 2015; Dellert et al., 2021). 

With happy and fearful faces, however, they found both VAN and LP to be correlated with the 

conscious processing of emotional faces, after removing confounds of task-relevance (as seen in their 

Fig. 2, panels A and B). Although their methodological and analytical approaches differ substantially 

from ours—including the use of schematic faces and a traditional ERP electrode selection—their ERP 
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patterns are consistent with our observations, particularly concerning the late modulation associated 

with awareness of fearful faces. Remarkably, in both our study and Sun et al.’s work, aware fearful 

faces elicited a more pronounced positive activity on fronto-central electrodes within a similar 

temporal window, compared to faces not consciously perceived (further details can be found in the 

Additional Materials). A key divergence between the two studies lies in the experimental design of 

choice: their 3-stage inattentional blindness to tease apart task-relevance from the NCC vs. our trial-

by-trial detailed probing of awareness in the masking paradigm. It would be an interesting future 

paradigm to combine our paradigm with the no-report condition as done by Cohen and colleagues 

(2020) or Sergent and colleagues (2021).  

Despite the limitations inherent in our study, particularly concerning manipulation of the task-

relevance of the face stimuli, it remains encouraging to see our results in alignment with the 

investigation that explored the conscious perception of happy and fearful faces deemed task-

irrelevant. 

To conclude, our study casts light on a significant association between conscious processing 

of facial emotions, notably fear, and distinctive modulations in frontal ERP components. We have 

precisely localized neural activity to the anterior region of the scalp within a 150-300 ms timeframe, 

crucially during the discernment of fear in another’s facial expression. Given the wide-ranging 

spectrum encompassed by consciousness research, our findings underscore the necessity for 

methodological precision. Our study serves as an initial exploration, prompting more exhaustive 

future inquiries into these neural correlates, also integrating various neuroimaging techniques, and 

considering an expansive array of neurological and clinical profiles.Furthermore, our research has 

centered predominantly on the emotion of fear, leaving a fertile ground for subsequent studies to 

investigate the manifestation of neural correlates of awareness for other facial emotions and their 

potential variations across distinct individuals and conditions. In relation to clinical implications, our 

identified neural signatures hold substantial promise, particularly for addressing challenges in face 

and emotional processing found in conditions like prosopagnosia, autism, and alexithymia. 
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Deciphering the intricacies of these neural markers might open the door to the development of 

targeted therapeutic interventions for conditions impinging on facial and emotional recognition. 

Questions remain, such as whether modulating these frontal ERP components (e.g., for instance by 

means of transcranial magnetic stimulation) could facilitate recognition of facial emotions for 

individuals with prosopagnosia, or aid those with autism in emotion processing. 
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Captions 

Figure 1. Panel A shows examples of face stimuli (with neutral and fearful expressions) with added 

levels of Gaussian noise (on the left) and an example from one participant of the structure of the 

psychophysical calibration procedure (1-up-1down) used to identify the perceptual threshold for the 

emotional expression (on the right). Panel B shows an example of a trial structure. When the 

participant responded with PAS0 and PAS1, the trial was considered Unaware; when the participant 

responded with PAS2, PAS3, and PAS4 the trial was considered Aware. 

 

Figure 2. Panel A shows the sensors in the anterior cluster considered for the statistical analysis. Panel 

B shows the sensors in the posterior cluster considered for the statistical analysis. 

 

Figure 3. Panel A shows the percentage of PAS responses for catch trials and valid trials, split by 

emotion category of the valid stimulus, for the whole sample. Panel B shows the percentages of 

emotion categorization for fearful and neutral faces, at each PAS level corresponding to awareness 

of the emotional feature of the face (PAS2-4). 
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Figure 4. Grand average waveforms displaying average activity within the significant anterior 

electrode cluster. The left panel shows the activity for Fearful faces as a function of participants’ 

awareness. The right panel shows the activity for Neutral faces as a function of participants’ 

awareness. The red borders mark the time window for which the difference was significant. 

 

Figure 5.  Scalp maps show the significant statistical effect for the contrast between Fearful Face 

Aware (PAS 2-4) and Fearful Face Unaware (PAS 0-1) in the early time window (150–300 ms).  

Electrodes comprising the significant cluster are marked in red.   

 

Figure 6. Boxplots showing the levels of the routing efficiency between the Core (red nodes) and the 

Extended (blue nodes) system of the Face Processing Network, as a function of awareness of fearful 

expressions. 

 

Figure 7. Mean amplitude and standard error of the anterior cluster ERP activity in the early time 

window (150–300 ms), split for the levels of participants’ awareness during the presentation of fearful 

faces. 
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