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ABSTRACT
Two-level quantum systems are fundamental physical models that continue to attract growing interest due to their crucial role as a building
block of quantum technologies. The exact analytical solution of the dynamics of these systems is central to control theory and its applications,
such as that to quantum computing. In this study, we reconsider the two-state charge transfer problem by extending and using a methodology
developed to study (pseudo)spin systems in quantum electrodynamics contexts. This approach allows us to build a time evolution operator
for the charge transfer system and to show new opportunities for the coherent control of the system dynamics, with a particular emphasis on
the critical dynamic region around the transition state coordinate, where the avoided crossing of the energy levels occurs. We identify and
propose possible experimental implementations of a class of rotations of the charge donor (or acceptor) that endow the electronic coupling
matrix element with a time-dependent phase that can be employed to realize controllable coherent dynamics of the system across the avoided
level crossing. The analogy of these rotations to reference frame rotations in generalized semiclassical Rabi models is discussed. We also
show that the physical rotations in the charge-transfer systems can be performed so as to implement quantum gates relevant to quantum
computing. From an exquisitely physical–mathematical viewpoint, our approach brings to light situations in which the time-dependent state
of the system can be obtained without resorting to the special functions appearing in the Landau–Zener approach.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188749

I. INTRODUCTION
Two-level quantum systems (namely, models that can describe

a quantum system when only two of its states play a nonnegligi-
ble role in the dynamic problem study) are of paramount impor-
tance in a myriad of problems in physics1–7 and chemistry,7–13

with their nanotechnological applications. They are important at
a fundamental level, as a dynamical problem in itself14 and as the
main building block of quantum technologies.3 The practical rele-
vance of the two-level approximation is further increased by recent
experiments, which show, for example, the coherent evolution of
molecules behaving like two-level systems inside suitable optical
microcavities.11

It was recognized long ago (e.g., see Ref. 1) that any two-
level system that is not made of a 1/2 spin can be described as
a fictitious spin 1/2 particle in a magnetic field. This representa-
tion may have far-reaching conceptual and practical implications for
research in the field of charge transfer (CT), which have essentially

not been explored so far. For example, in a methodological per-
spective, the solution of two-state CT dynamic problems can benefit
from methods generally used to solve the dynamics of spin systems
or (pseudo)spin systems in quantum electrodynamics and quan-
tum computing contexts, such as those of Barnes–Das Sarma,15–17

Messina–Nakazato,18 and other recently proposed ones.19,20

Exact analytical solutions to two-level dynamics depending on
the initial conditions are important in control theory, with impli-
cations for the implementation of quantum technologies,4,21 among
which are quantum computing21–25 (where the qubit plays a central
role and is described by a two-level quantum system10), quantum
information creation/processing,4,5,26–31 quantum metrology,29,30,32

and quantum sensing.33–36 As is conveniently emphasized in Ref. 37,
quantum computing requires not only having well-defined qubits
but also being able to initialize and measure them precisely. This
depends on the time evolution of qubits, whose control becomes
critical at avoided crossings.3,38–42
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In CT systems, the diabatic states describing the initial and
final localizations of the charge (which are, ideally, independent
of nuclear coordinates43) can be used as a basis to describe the
state of the system. The two-electronic state model is used as a
valid approximation to describe a myriad of CT systems near the
avoided crossing of electronic energy levels, where the electronic
transmission coefficient of the rate constant determines the occur-
rence of the CT and its rapidity.8,9,44–46 As the transition state
coordinate that marks the avoided level crossing is approached, the
coupling between the two electronic states is the main determinant
of the excess-charge dynamics.9,47,48 Even at the avoided crossing,
the vibronic coupling is to be considered in the case of proton-
coupled electron transfer,48 which is, however, out of the scope of
the present study. The charge transition between the two diabatic
states (whence a nonadiabatic evolution of the system) can gener-
ally occur near the transition state coordinate, where the minimum
level splitting is twice the electronic coupling (Fig. 1), and is usu-
ally described with the Landau–Zener (LZ) formulation,9,48–53 where
the coupling is approximated as a constant (independent of nuclear
coordinates and without an explicit dependence on time),40,44,53

leading to descriptions of the dynamical problem in terms of Weber
special functions.49–51,53 The formalism was extended to cases in
which the coupling is nonzero over a finite time interval by Vitanov
and Garraway.54 In many cases, the dependence of the electronic
coupling on nuclear degrees of freedom in flexible molecular systems
does not allow the approximation of constant coupling.9,48,55–59 In
different contexts relevant to molecular electronics, control theory,
and quantum computing, the electronic coupling can be tuned to
drive the dynamics of CT systems, or that of qubits in quantum elec-
trodynamics and other quantum computing setups, using the phase
of the coupling as a control parameter.39,41,60–72 This is also in the
spirit of the well-known coupled-mode theory, where two modes
are coupled in time and/or in space, and the coupling strength is
endowed with a phase that depends on time or space.73 The evolu-
tion of the relative phase between two states of a two-level system

FIG. 1. Energy profile of the two-level system as a function of a parameter Q,
which can be a nuclear reaction coordinate. The dashed lines represent the diag-
onal terms of H(t), namely, the diabatic state energies ω1(Q(t)) = Ω(t) and
ω2(Q(t)) = −Ω(t). The solid lines describe the instantaneous eigenvalues of
the Hamiltonian H(t), that is, the ground (ωg) and excited (ωe) adiabatic state
energies, which are split near the transition state coordinate QT. Their minimum
separation occurs at QT, where it is twice the modulus of the electronic coupling
between the diabatic states ∣1⟩ and ∣2⟩ (ω0).

(or, in general, the relative phases among quantum states of mul-
ticomponent, multilevel systems74) driven by a given Hamiltonian,
namely, the phase associated with their electronic coupling matrix
element, is a determinant of the time evolution of the system that is
increasingly taken into account in studies of the presence and func-
tion of quantum coherence in physical and chemical systems.74–76 In
a recent quantum thermodynamics study,77 a time-dependent inter-
action with an oscillatory phase between a qutrit and a qubit was
used to conceive a heat engine operating between baths with positive
and negative temperatures.77 Reaching coherent control of coupled
systems is a critical step to enable next-generation technologies for
information processing based on quantum mechanical principles,
as it has long been recognized in the field of quantum optics for
example.66,78 The time dependence of the coupling, including its
phase, as in some driven Landau–Zener problems,3 can also be
related to detuning or other energy parameters that depend on the
nature of the system.62,63,75,76,79 Particular attention to the coupling
phase has been devoted in earlier studies, such as Ref. 80 or Ref. 38,
where the two system levels were coupled by an oscillating field.

This is the general context of the present study, where we
reconsider the CT dynamics in two-level systems from a perspective
that connects it to approaches and dynamical problems in quan-
tum optics, quantum control theory, and quantum computing. First,
we identify physical conditions that consist of suitable rotations
of the charge donor (and could be similarly applied to the accep-
tor) and allow us to change the phase of the electronic coupling
between the diabatic states of CT two-level systems. Then, we for-
mally extend the Messina–Nakazato method18 in such a way that
it can be used to find the time evolution operator over arbitrary
time ranges. The conditions on the coupling phase that characterize
the possible solutions afforded by the method include the proposed
experimental implementations of CT systems with time-dependent
phases. These conditions are exploited here to achieve controllable
coherent dynamics of CT two-level systems in their evolution across
avoided crossings. Furthermore, these dynamics can be solved with-
out resorting to special functions to represent the evolving state of
the system. Finally, we show that the rotation of the charge donor (or
acceptor) can be performed so that the evolution operator realizes a
quantum gate useful to quantum computing at given time instants
or asymptotically.

II. RESULTS AND DISCUSSION
A. Generating diabatic states with time-dependent
coupling phase

In units such that h = 1, the generally time-dependent Hamil-
tonian describing a quantum two-level system can be written in the
following matrix form:

H(t) =
⎛
⎜
⎝

Ω(t) V12(t)

V∗12(t) −Ω(t)

⎞
⎟
⎠
≡

⎛
⎜
⎜
⎝

Ω(t)
1
2
ω0(t)e−iϕ(t)

1
2
ω0(t)eiϕ(t)

−Ω(t)

⎞
⎟
⎟
⎠

(1)

(ω0 is twice the modulus of the effective electronic coupling V12) on

the basis of eigenstates ∣1⟩ = (1

0
) and ∣2⟩ = (0

1
) of the unperturbed

Hamiltonian
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H0(t) =
⎛
⎜
⎝

Ω(t) 0

0 −Ω(t)

⎞
⎟
⎠

, (2)

which describes the system for zero electronic coupling V12 (note
that ∣1⟩ and ∣2⟩ correspond to ∣0⟩ and ∣1⟩, respectively, in the usual
qubit notation). Alternatively, using Pauli matrices and the matrices
representing the related ladder operators σ± = 1

2(σx ± σy), we write
the Hamiltonian in the equivalent forms (for example, cf. Refs. 1, 71,
and 81),

H(t) = Ω(t)σz +
ω0(t)

2
[cos ϕ(t) σx + sin ϕ(t) σy]

= Ω(t)σz +
ω0(t)

2
[e−iϕ(t)σ+ + eiϕ(t)σ−]. (3)

The use of opposite diagonal elements does not reduce the gen-
erality of the 2 × 2 Hermitian matrix of Eq. (1) or (2). In fact, any
other choice of the diagonal terms would amount to shift the energy
zero by a time-dependent quantity, that is, to add a time-dependent
matrix proportional to the identity matrix 1, thereby leading to
an unimportant time-dependent overall phase factor in the time
evolution operator.76

In Eqs. (1)–(3), Ω(t) is real and, since here we are especially
interested in CT systems, we refer to ∣1⟩ and ∣2⟩ as two diabatic
electronic states, which describe the transferring excess charge (that
is, an excess electron or electron hole) localized in one of two suf-
ficiently separated electronic potential energy wells determined by
the molecular system at stake. It is worth noting that Eq. (1) also
describes the general matrix form of Hamiltonians widely used in
quantum optics. For example, with a suitable specialization of the
matrix elements in Eq. (1), one obtains the Hamiltonian matrix that
describes the Jaynes–Cummings model in any of its dynamically
invariant two-dimensional subspaces.82 Moreover, even in the cases
(such as the present one) in which Eq. (1), or (3), does not describe
a spin-1/2 particle, it is always possible to find a fictitious magnetic
field such that this Hamiltonian represents a fictitious spin 1/2 sub-
ject to such a field.1 In particular, ifΩ(t) = Ω0 and ϕ(t) = ωt, Eq. (3)
gives the Hamiltonian of a spin 1/2 in a magnetic field composed
of a constant component of modulus 2Ω0 in the z direction and a
component of modulus ω0 rotating on the xy plane with the angular
frequency ϕ(t) = ωt. This dynamic problem is exactly solvable (as
is shown, for example, in Ref. 1) and belongs to the infinite class of
problems solvable by the Messina–Nakazato (MN) method18 (vide
infra).

In this study, the coupling generally depends on time, although
we treat in more detail the cases in which its modulus is the con-
stant ω0/2, while its phase ϕ changes over time. To clarify the

FIG. 2. A simple example of CT system in which the coupling phase can be made
time dependent by a periodic switch of the orientation of molecule 1 along the x
axis. ψ1(x) is an odd function of x.

meaning of this kind of electronic coupling and explore its actual
implementation, we first consider the simple situation depicted in
Fig. 2, where the diabatic wave function ψ1(r) = ⟨r∣1⟩ is an odd
function of x, namely, ψ1(x) = f (x) with f (x) = − f (−x), while
ψ2(x) = f (x − d). Assuming a constant coupling strength between
the two states, which varies as a function ξ of an effective distance
d between the two localized distributions of the excess charge, the
electronic coupling matrix element can be written as V12 = ω0(d)/2
with

ω0(d) = 2ξ(d)∫
∞

−∞
f (x) f (x − d)dx ≡ 2ξ(d)S12(d). (4)

If the molecule, or other charge donor group or system, at the ori-
gin of the reference frame (hereafter called molecule 1, while the
other molecular component involved in the CT is called molecule 2)
is rotated by π around the z axis, its wave function becomes
ψ1 = f (−x) = − f (x) and the electronic coupling changes sign.
Therefore, depending on the orientation of molecule 1 along the x
axis, it is

V12(d,ϕ) =
ω0(d)

2
e−iϕ withϕ = 0,π. (5)

This means that, if molecule 1 can be reoriented in response to a
square wave signal, the phase of V12 changes as a square wave with
amplitude π.

Next, consider that the initial charge distribution on molecule
1 is described by a hydrogen-like p orbital ψ1(r, θ,φ) = f (r, θ)eiφ

and ψ2(r′, θ′,φ′) = f (r′, θ′)eiφ′ with r′ = ∣r − x̂ d∣. We also assume
that molecule 1 is rotated clockwise around the z axis with an
angular frequency ω and that this molecule can be described as a
rigid rotor. This approximation means, in particular, that the effect
of the rotation on the relative spatial distribution of ψ1(r, θ,φ)
can be neglected. This is a good approximation for any reason-
able value of ω in many biomolecular systems in which the local
electronic charge distribution is determined by very strong local
fields.83–89 Then, the rotation of molecule 1 affects the Hamilto-
nian of the CT system in two ways: as a time-dependent term
in H11(t), which describes the kinetic energy of the rigid rotor,
and as a rotation of the molecular orbital on molecule 1 that
changes the electronic coupling between the initial and final
electronic states. The first effect is taken into account by set-
ting the energy zero to the value 1

2 [H11(t) +H22(t)] so that the
diagonal elements of the Hamiltonian can still be written as in
Eq. (1).1 The second effect arises from the fact that the initial dia-
batic state is changed to ψ1 such that ψ1(r, θ,φ − ωt) = ψ1(r, θ,φ),
from which ψ1(r, θ,φ) = ψ1(r, θ,φ + ωt) = f (r, θ)ei(φ+ωt) and the
electronic coupling acquires a time-dependent phase,

V12(t) =
ω0

2
e−iωt , (6)

namely, ϕ(t) = ωt. In particular, one can also choose ω = ω0, which,
at the transition state coordinate, amounts to the separation between
the adiabatic energy levels (see Fig. 1). Incidentally, the simplest,
formally akin dynamical problem for spin systems consists of a spin-
1/2 particle with a constant energy difference 2Ω0 between the two
spin states, subject to a magnetic field with a component that rotates
with the resonance angular frequency ω = 2Ω0; then, the coupling
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matrix element acquires the phase ϕ(t) = 2Ω0t = ∫
t

0 Ω0dt′ and the
analytical solution of this dynamical problem is known.1

Returning to the CT problem, the above context can be
expanded in two ways: (i) considering that the diabatic states
localized on the charge donor and acceptor groups are generally
described by more complicated wave functions and (ii) rotating
the donor at a time-dependent angular frequency ω(t). Here, we
focus on point (ii), as we treat the CT dynamic problem at a fun-
damental level that applies to any system amenable to the two-state
approximation.

We stress that ϕ(t) = 2Ω0t represents an interesting physical
condition also in the present context of CT, as well as in control
theory methods.39 Moreover, we generalize this condition consid-
ering the rotation of the charge donor (similar considerations apply
to the rotations of the acceptor) with a variable angular frequency
ω(t) such that ϕ(t) = ∫

t
0 ω(t

′
)t′ satisfies

ϕ(t) = 2∫
t

0
Ω(t′)dt′. (7)

The physical significance of this ϕ(t) is enhanced by the fol-
lowing arguments. In the unperturbed system represented by H0(t),
which describes the limit of vanishing electronic coupling between
the excess charge localizations on the donor and acceptor, ∣1⟩ and ∣2⟩
are the eigenstates of the Hamiltonian operator and evolve over time
into the physically indistinguishable instantaneous diabatic states,

∣ψ1(t)⟩ = e−i∫
t

0 Ω(t
′
)dt′
∣1⟩ (8a)

and

∣ψ2(t)⟩ = ei∫
t

0 Ω(t
′
)dt′
∣2⟩, (8b)

respectively. It is worth noting that, by definition, the charge local-
ization in the diabatic states does not depend on their coupling and
is already built in Eq. (2). This is the reason why ∣ψ j(t)⟩ ( j = 1, 2)
can be defined as the instantaneous diabatic states of the CT system.
Moreover, since ∣ψ j(t)⟩ are both the evolved states starting from ∣ j⟩
(j = 1, 2) and the eigenstates of H0(t) at time t, the Berry phases
associated with such states are β j(t) = (−1) j−1

∫
t

0 Ω(t
′
)dt′, as is

easily derived from the expressions for ∣ψ j(t)⟩. If ϕ(t) satisfies con-
dition (7), it represents the accumulated phase difference between
states 2 and 1 evolved up to time t, or the corresponding difference
in Berry phase between states 1 and 2. In the system described by
the complete Hamiltonian H(t) of Eq. (1), the electronic states (8a)
and (8b) are no longer eigenstates of the Hamiltonian. These states
are now coupled, and their coupling has a generally time-dependent
phase,

⟨ψ1(t)∣H(t)∣ψ2(t)⟩ = e2i∫
t

0 Ω(t
′
)dt′
⟨1∣H(t)∣2⟩

=
ω0(t)

2
e−i[ϕ(t)−2∫

t
0 Ω(t

′
)dt′]. (9)

Denoting Hϕ=0(t) the Hamiltonian (1) with ϕ(t) = 0 (namely, the
Hamiltonian of the physical system without the rotation that pro-
duces a phase ϕ in the electronic coupling), Eq. (9) yields (also, cf.
the particular pregnant cases treated in Refs. 1 and 90)

⟨ψ1(t)∣H(t)∣ψ2(t)⟩ =
ω0(t)

2
= ⟨1∣Hϕ=0(t)∣2⟩. (10)

Namely, the physical rotation that generates the phase ϕ(t) of Eq. (7)
in the electronic coupling exactly counterbalances the phase dif-
ference accumulated by the instantaneous diabatic states at each
instant of time t, in such a way that the instantaneous electronic cou-
pling between the instantaneous diabatic states equals the coupling
between the time-independent diabatic states in the system without
the rotation of the donor (D) or acceptor (A) molecular component.
In particular, if the magnitude of the electronic coupling does not
depend appreciably on time, Eq. (10) becomes

⟨ψ1(t)∣H(t)∣ψ2(t)⟩ =
ω0

2
= ⟨1∣Hϕ=0∣2⟩. (11)

While ∣ j⟩ and ∣ψ j(t)⟩ describe the same physical state of the
system and the transition probability from this state to ∣k⟩ or ∣ψk(t)⟩
(k ≠ j) depends on ω2

0(t)/4, the state of the system at time t is

∣ψ(t)⟩ = C1(t)e−i∫
t

0 Ω(t
′
)dt′
∣1⟩ + C2(t)ei∫

t
0 Ω(t

′
)dt′
∣2⟩

= C1(t)∣ψ1(t)⟩ + C2(t)∣ψ2(t)⟩, (12)

and its time evolution also depends on the relative phases of the
expansion coefficients in the diabatic basis. In Sec. II B, we will
solve the general dynamical problem ultimately described by such
coefficients.

It is worth noting that we propose the rotation of part of
the molecular system as a general scheme for future experimental
implementations of situations in which the phase of the electronic
coupling depends on time. Realistic experimental parameters to be
used (in particular, the angular velocity of rotation) will clearly
depend on the specific system and implementation considered. In
general, the charge donor and acceptor can belong to two differ-
ent molecules (as in intermolecular CT) or be parts of the same
molecule (intramolecular CT). In both cases, we envisage that the
rotation of one of the two molecular groups with respect to the other
could be performed by a suitable interaction with the local envi-
ronment or application of a local field (for example, an electric or
a magnetic field suitably applied through STM91–97 that causes the
rotation of one of the two molecular components due to its local
excess charge density or spin density). In the second case, the rel-
ative rotation of the charge donor and acceptor requires a proper
flexibility at least of part of the molecular bridge between the two
redox centers (as can be achieved, for example, in C-clamp molec-
ular structures with CT function98,99) and, for example, a periodic
rotation in an alternating direction of the charge donor or accep-
tor may serve the purpose. Furthermore, the same general scheme
may be applied to other nanostructures with two embedded redox
centers, where a local field can be applied to one of the redox sites.

B. Time evolution operator
The general Hamiltonian (1) has a time-evolution operator

that belongs to SU(2) (e.g., through parameterization in terms of
Cayley–Klein parameters), and it is written as18,100,101

U(t) =
⎛
⎜
⎝

a(t) b(t)

−b ∗
(t) a ∗

(t)

⎞
⎟
⎠

, (13)
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where ∣a(t)∣2 + ∣b(t)∣2 = 1, and, since U(0) is the identity operator,
it is a(0) = 1 and b(0) = 0. Here, we will extend the MN method to
obtain U(t) in parametric form at any time t.

The most profitable implementation of the MN method to our
two-level dynamic problem requires the construction of the real
function,18

Φ(μ; t) =
1
2

√

1 + μ2
∫

t

0
ω0(t′)dt′ ≡

√

1 + μ2κ(t), (14)

where we introduced the real positive parameter μ and a dimension-
less “dynamical time,”18,82

κ(t) =
1
2∫

t

0
ω0(t′)dt′ (15)

(incidentally, it is worth noting that this quantity corresponds to half
the pulse area in pulse techniques for quantum control, such as the
robust inverse optimization method in Refs. 102 and 103). Then,
with the present notation, the MN method gives

a(t) =

¿
Á
ÁÀμ2

+ cos2 Φ(μ; t)
1 + μ2 e−i[ ϕ(t)

2 +ϑ(μ;t)] (16a)

with

ϑ(μ; t) = Arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ
√

1 + μ2
tan Φ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(16b)

(in the notation, we stress the parametric dependence of Φ and ϑ on
μ) and

b(t) =
sin Φ(μ; t)
√

1 + μ2
e−

i
2 [ϕ(t)+π], (17)

provided that the condition

ϕ̇(t) = 2Ω(t) − μω0(t) (18)

is satisfied [for comparison, note that μω0 is the detuning in
studies of semiclassical Rabi systems71 and quantum control,102

where Eq. (7) amounts to the resonance, or zero detuning, con-
dition]. It is worth noting that, given condition (18), changing μ
amounts to changing the rotation of the donor and thus the phase
of the coupling in the Hamiltonian. The integration of Eq. (18)
gives

ϕ(t)
2
= ∫

t

0
Ω(t′)dt′ − μκ(t), (19)

where, without loss of generality, it is assumed that ϕ(0) = 0. In
Ref. 18, Eq. (16b) is written as a relation between the tangents of
ϑ and Φ, and the expressions for a and b implicitly assume that the
sines of the two angles, as well as their cosines, have the same signs
at any time. This fact can be easily derived by the inspection of Eqs.
(14), (16), (18), and (20) in Ref. 18. Then, strictly speaking, the pro-
vided solution to the dynamic problem applies to a time interval in
which 0 ≤ Φ(μ; t) < π

2 and ϑ(μ; t) is defined by the principal value
of the inverse tangent as in Eq. (16b).

The MN approach can describe the time evolution of the
two-level system at all times by properly extending the definition
of the angle ϑ. In particular, Arctan must be replaced by arc-
tan in Eq. (16) so that ϑ becomes an increasing multivalued
function of its argument in the range [0, 2π [. More precisely
(see the Appendix),

(i) As t increases, Φ(μ; t) grows continuously according to
Eq. (14), while tanΦ(μ; t) is clearly not defined at the times
t = tπ/2(μ), t3π/2(μ), etc., in which Φ(μ; t) = π

2 , 3π
2 , etc.

(ii) While Φ(μ; t) takes on values in the interval [0, 2π [, and
excluding the times tπ/2(μ) and t3π/2(μ), ϑ is assigned values in
the intervals [0, π2 [, ]

π
2 , 3π

2 [, and ] 3π
2 , 2π[ by replacing Arctan

with arctan in Eq. (16b).
(iii) At the time instants tπ/2(μ) and t3π/2(μ), ϑ (which is a contin-

uous and derivable function of time in the MN method18) is
described, in terms of its relationship with Φ, by an analytic
continuation: ϑ(μ; tπ/2(μ)) = Φ(μ; tπ/2(μ)) = π

2 and similarly
for t = t3π/2(μ).

(iv) As Φ(μ; t) grows above [0, 2π[, ϑ(μ; t) can anyway be cycli-
cally assigned values in the interval [0, 2π [ as prescribed by
points (ii) and (iii).

Alternatively, and equivalently, ϑ can be defined as

ϑ(μ; t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ
√

1 + μ2
tan Φ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for t ≠ t(2n−1)π/2(μ)

(2n − 1)
π
2

for t = t(2n−1)π/2(μ)

(n ∈ N), (20)

which is the same as defining ϑ(μ; t) as lim
x→t

{arctan [ μ
√

1+μ2
tan Φ(μ; x)]} at any time. In particular,

for sufficiently large μ values, ϑ(μ; t) ≅ arctan [tan Φ(μ; t)]
= Φ(μ; t) ∀t. The same formalism holds for t ≤ 0, but n is a

non-positive integer, and the arctan function is accordingly valued
over the intervals ] − π

2 , 0[, ] − 3π
2 + nπ,− π2 + nπ[. Note that the

extended ϑ(μ; t) is also derivable, as is necessary, since the deriva-
tive of the multivalued arctan function tends to zero on both sides
of t = t(2n−1)π/2(μ).
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At this point, we can write the time evolution operator

U(t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

¿
Á
ÁÀμ2

+ cos2 Φ(μ; t)
1 + μ2 e−i[ ϕ(t)

2 +ϑ(μ;t)]
−i

sin Φ(μ; t)
√

1 + μ2
e−i ϕ(t)

2

−i
sin Φ(μ; t)
√

1 + μ2
ei ϕ(t)

2

¿
Á
ÁÀμ2

+ cos2 Φ(μ; t)
1 + μ2 ei[ ϕ(t)

2 +ϑ(μ;t)]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (21)

and, for any initial time t0 (including t0 < 0, depending on the time
origin chosen),

U(t, 0) = U(t, t0)U(t0, 0)→ U(t, t0) = U(t, 0)U−1
(t0, 0)

= U(t, 0)U†
(t0, 0). (22)

Equation (21) will be next used to obtain the evolution of the system
state.

C. Coherent control of CT dynamics at avoided
crossings

For a system initially in the state

∣ψ(0)⟩ = C1(0)∣1⟩ + C2(0)∣2⟩, (23)

the evolution operator (21) yields ∣ψ(t)⟩ = U(t)∣ψ(0)⟩ in the first
form (12) with

C1(t) =
⎡
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀμ2

+ cos2 Φ(μ; t)
1 + μ2 e−iϑ(μ;t)C1(0)

− i
sin Φ(μ; t)
√

1 + μ2
C2(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

eiμκ(t) (24a)

and

C2(t) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−i
sin Φ(μ; t)
√

1 + μ2
C1(0) +

¿
Á
ÁÀμ2

+ cos2 Φ(μ; t)
1 + μ2

× eiϑ(μ;t)C2(0)
⎤
⎥
⎥
⎥
⎥
⎦

e−iμκ(t). (24b)

We first examine the two limiting cases of Eq. (24) with respect
to the value of μ. For μ≫ 1 (a large detuning regime71), Eq. (14)
gives

Φ(μ; t) ≅ μκ(t) (25)

and Eqs. (24a) and (24b) become

{
C1(t) ≅ C1(0),
C2(t) ≅ C2(0),

(26)

that is, the dynamics of the system is inhibited. It is worth not-
ing that a quenching of the dynamics of the atomic population

inversion for μ≫ 1 has recently been found for time-dependent
Jaynes–Cummings models.82

The study of the opposite limiting case, μ = 0, amounts to an
extension of the MN method, which, for simplicity, was originally
set in the parameter range 1/μ ∈]0,∞[ (note that the parameter
employed in Ref. 18 becomes 1/μ in the present notation). ϑ must
take on the values nπ or otherwise alternate between 0 and π, while
Φ(μ; t) grows with time and tanΦ(μ; t) correspondingly alternates
between positive and negative values. In this way, tan ϑ remains zero,
while the cosines of ϑ and Φ have the same sign at all times. Fur-
thermore, the temporal continuity of the solution to the dynamical
problem requires that ϑ is properly defined also at the time instants
in which tanΦ(μ; t) is not defined. Taking these considerations into
account, the MN method is extended to the case μ = 0 using (see the
Appendix)

ϑ(0; t) =
⎧⎪⎪
⎨
⎪⎪⎩

0 for t(− 1
2+2n)π ≤ t < t( 1

2+2n)π

π for t( 1
2+2n)π ≤ t < t( 3

2+2n)π
(n ∈ Z), (27)

and therefore,

e±iϑ(0;t)
∣cos Φ(0; t)∣ = sgn [cos κ(t)]∣cos κ(t)∣ = cos κ(t), (28)

which ensures the continuity and the derivability of the evolution
operator (21) for μ = 0. In Eq. (27), the notation was simplified by
writing tk ≡ tk(0).

Through the differential equation iU̇(t, 0) = H(t)U(t, 0), it is
easy to verify that inserting Eq. (28) into Eq. (21) leads to the cor-
rect evolution operator for the Hamiltonian (1) under condition (19)
with μ = 0, that is, Eq. (7). Incidentally, it is worth noting that Eq. (7)
also describes the phase of the electronic coupling that appears in the
interaction representation of two-level models, where, however, this
phase results from the representation change, the two basis states are
accordingly changed, and the diagonal elements of the Hamiltonian
matrix consequently become zero.80

Using Eq. (28), Eqs. (24a) and (24b) with μ = 0 read

C1(t) = cos κ(t)C1(0) + sin κ(t)e−i π2 C2(0), (29a)

C2(t) = − sin κ(t)ei π2 C1(0) + cos κ(t)C2(0). (29b)

Note that Eqs. (29a) and (29b) describe an oscillatory behavior of the
coefficients only when κ depends linearly on time.

Equations (14), (20), (24), (27), and (29) show that the expan-
sion coefficients, C1 and C2, depend on time only through the
dynamic time κ. According to Eq. (12), this consideration applies
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to all quantities that depend on the moduli of C1 and C2. Let us add
incidentally that universal properties in terms of the timescale κ also
appear in the dynamical evolution of Jaynes–Cummings models.82

It is also worth noting that Eqs. (29a) and (29b) describe a rotation
on the Bloch sphere of the system state, at a fixed azimuthal angle
of π/2, and 2κ represents the polar angle on this sphere. Moreover,
if the modulus of the electronic coupling takes a constant value ω0,
Eq. (15) gives

κ(t) =
ω0t
2

, (30)

and the state expansion coefficients are also periodic over the real
timescale. In this case,

C1(t) = cos
ω0t
2

C1(0) + sin
ω0t
2

e−i π2 C2(0) (31a)

and

C2(t) = − sin
ω0t
2

ei π2 C1(0) + cos
ω0t
2

C2(0) (31b)

describe a coherent Rabi oscillation between the two diabatic states.
Next, we analyze the physical meaning of parameter μ. We

begin by showing that varying μ, one can generate physical situa-
tions ranging from a locked dynamics, in which the system is frozen
in its initial state, as in Eq. (26), to a coherent oscillation, in which
the system periodically reaches a maximum transition probability.
Namely, we analyze the meaning of μ as a parameter related to the
diabatic energy difference and coupling by Eq. (19) that can be used
to control the dynamics of a two-level system (in the present case,
the two energy levels correspond to two localized charge states of a
CT system), with relevance to research on quantum control through
nonadiabatic transitions.3

For simplicity, we assume that the system is initially in the
localized state ∣1⟩. This state virtually coincides with one of the two
adiabatic electronic states if the nuclear coordinate Q is sufficiently
far from QT (i.e., further to the left, or to the right, in the energy dia-
gram of Fig. 1), while it is appreciably different from both adiabatic
states near QT. ∣1⟩ is not an instantaneous eigenstate of the Hamilto-
nian at any time, as it represents a transient diabatic state generated
by the initial charge localization, e.g., as in Giese’s experiments on
hole transfer through DNA.104 The probability of finding the system
in state ∣2⟩ at time t is derived from Eq. (24b) as

P1→2(t) = ∣C2(t)∣2 =
sin2 Φ(μ; t)

1 + μ2 . (32)

Equation (32) is also derived in Ref. 71, within the context of gener-
alized semiclassical Rabi models, where it is recognized that the main
effect of μ is to attenuate the transition probability by 1 + μ2. In fact,
Eq. (32) expresses the quenching of the CT dynamics with increas-
ing μ in agreement with Eq. (26). To grasp the more general and
profound physical meaning of parameter μ within the CT context,
we use Eqs. (15), (18), and (19) to write

μ =
2∫

t
0 Ω(t

′
)dt′ − ϕ(t)

2κ(t)
=

2∫
t

0 [Ω(t
′
) − 1

2 ϕ̇(t
′
)]dt′

∫
t

0 ω0(t′)dt′

≡
2∫

t
0 Ωeff(t′)dt′

∫
t

0 ω0(t′)dt′
=

2⟨Ωeff⟩t
⟨ω0⟩t

. (33)

In Eq. (33), we denoted ⟨Ωeff⟩t the average of Ωeff over the time
interval [0, t]. ⟨ω0⟩t is the average magnitude of the coupling over
the same time range. 2Ωeff ≡ 2Ω − ϕ̇ appears as an effective energy
difference between the two diabatic electronic states. In fact, in the
semiclassical Rabi model105 and its generalizations,71 a similar quan-
tity, named detuning, emerges as the energy difference between the
two spin-1/2 levels in the effective Hamiltonian obtained by a suit-
able rotation of the reference frame, which thereby appears as the
formal analog of the physical rotation within the CT system. In
this Hamiltonian, which is also the starting point of recent robust
approaches to optimal quantum control,102,103 the rotation leads to
the appearance of the effective detuning in the diagonal elements,
while only the modulus of the electronic coupling remains in the
off-diagonal elements. In such contexts, the resonance condition (7)
corresponds to zero detuning, while parameter μ generally appears
as a constant of proportionality in the expression for the detuning.71

Moreover, for μ = 0, as Φ = κ tends to π/2 (which corresponds to a
pulse area of π in pulse techniques for quantum control), P1→2 tends
to unity (the so-called π-pulse transfer102,103,106). In the present CT
context, the diagonal elements of Hamiltonian matrix (1) describe
the actual energy difference between the diabatic states, while the
phase of the electronic coupling is physically generated (e.g., through
the experimental schemes proposed in Sec. II A) to control the CT
dynamics.

Let us first consider the case in which ϕ(t) = 0. In this case,
Ωeff(t) = Ω(t) and condition (19) for the dynamical evolution of
the system described by Eq. (21) requires that the electronic cou-
pling and energy splitting between the two diabatic electronic states
change in the same way with time so that their ratio remains
unchanged (otherwise, μ would depend on t at least in some time
range). In particular, this condition holds for constant Ω(t) = Ω0
and ω0(t) = ω0, which produce a standard Rabi oscillation. In fact,
in this case, the insertion of Eqs. (14), (30), and (33) into Eq. (32)
gives

P1→2(t) =
1

1 + μ2 sin2
(

√

1 + μ2ω0t
2
)

=
ω2

0

4Ω2
0 + ω2

0
sin2
(

√

4Ω2
0 + ω

2
0

t
2
), (34)

where μ = 2Ω0/ω0. In CT theory, the ratio between the energy sep-
aration and the electronic coupling of the diabatic electronic states
is a measure of the distance from the transition state coordinate QT,
where the avoided crossing occurs, with the maximum entanglement
between nuclear and electronic degrees of freedom.48 Therefore, sus-
taining condition (19) (which amounts to a constant μ parameter
and underlies the time evolution operator derived above) without
acting on ϕ requires either to freeze the nuclear coordinates at some
distance from QT (in particular, μ = 0 for Q = QT) or to make in
such a way that the modulus of the coupling changes proportion-
ally to the diabatic state energy difference (the analogous condition
in the case of a spin 1/2 under a time-dependent magnetic field, in
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the rotating reference frame, is the proportionality of the perpen-
dicular field intensity to the detuning1,18,71). This last situation is
compatible with the expression for the diabatic-state electronic cou-
pling. Writing the adiabatic ground state as the linear combination
∣ψg(Q(t))⟩ = a(Q(t))∣1⟩ + b(Q(t))∣2⟩ (note that here we assume
that the rigorously diabatic, and hence coordinate-independent, set
{∣1⟩, ∣2⟩} can properly describe the state of the system over the range
of nuclear coordinates explored, although this is clearly an approx-
imation, since infinitely many strictly diabatic states are generally
required to this end43,48), the magnitude of the effective electronic
coupling has the following general expression:12,59,107

∣V12∣ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣
pq

p2
− q2ΔE12(1 +

p2
+ q2

2pq
S12)

1
1 − S2

12
∣ (ΔE12 ≠ 0),

ΔEv

2
(ΔE12 = 0),

(35)
where ΔEv is the vertical adiabatic energy splitting, p = ⟨1∣ψg⟩,

q = ⟨2∣ψg⟩, and, in the present case, S12 = ⟨1∣2⟩ = 0 and ΔE12 = 2Ω.
Therefore, V12 and ΔE12 are related by a proportionality constant
only if p and q do not change, or change by a same factor, with
Q(t). In principle, this can be consistently realized since p and q

only depend on the ratio ΔE12/

√

ΔE2
12 + 4∣V12∣

2.59,108 For example,
the physical meaning of keeping p and q constant while varying V12
proportionally toΔE12 is that the magnitude of the coupling needs to
be increased (reduced) to maintain a given spreading of ∣ψg(Q(t))⟩
over ∣1⟩ and ∣2⟩ as ∣ΔE12∣ increases (decreases), and hence, the charge
would tend to localize on one of the two sites (to equally delocalize
over the two sites) otherwise. Changes in the size of the electronic
coupling mean a breakdown of the Condon approximation, which
can be realized by the involvement of inducing55 nuclear modes.

Let us now consider the case in which ϕ(t) ≠ 0. In this case, μ
takes on the meaning of an effective distance from QT, which can be
fixed through a suitable rotation of the charge donor or acceptor that
produces the necessary time-dependent phase ϕ(t) of the electronic
coupling, prescribed by Eq. (19). When the modulus of the coupling
has a constant value ω0, the denominator of μ in Eq. (33) depends
linearly on time, and therefore, ϕ̇(t) must differ from 2Ω(t) by a
constant to ensure that the numerator of μ is also a linear function
of time, i.e., that 2Ωeff is a constant. Then, Eq. (32) describes a Rabi
oscillation at a fixed effective distance from QT that is characterized
by the effective diabatic energy difference 2Ωeff, with an oscillation

amplitude of ω2
0/(4Ω2

eff + ω
2
0). In particular, if ϕ(t) satisfies condi-

tion (7), μ = 0 and the CT system is effectively maintained in the Rabi
oscillation with a unit amplitude characteristic of Q = QT, where the
two diabatic states are degenerate.

When the modulus of the electronic coupling is not a con-
stant, the insertion of Eqs. (14) and (15) into Eq. (32) shows that
the time evolution of the CT system is no longer a Rabi oscillation.
For example, for71

ω0(t) = 2ν sech(νt) (36)

and μ = 0, the transition probability smoothly increases to unity as

P1→2(t) = tanh2
(νt). (37)

For

ω0(t) =
2

√

1 + μ2
ḟ (t)sech f (t) with f (t) = νt + η sin (υt),

(38)
using the chain rule for derivatives and the integral 2.423.9 of
Ref. 109, it is easily seen that the transition probability grows to
1/(1 + μ2

) while oscillating (see Fig. 3),

P1→2(t) =
1

1 + μ2 tanh2
[νt + η sin (υt)]. (39)

In light of the above analysis, the quenching of the transition
probability with increasing values of μ can be read as a quenching
of nonadiabatic electronic transitions with increasing effective dis-
tance from the avoided crossing. In general, Eq. (18) or its integral
form in Eq. (19) emerges as a condition on rotation ϕ for controlling
the nonadiabatic dynamics of the two-level CT system, which can be
implemented in an infinite number of ways. It is worth emphasizing
that P1→2(t) becomes the transition probability for two degenerate
electronic states when μ = 0, and this condition can also be achieved
for nondegenerate charge-localized states if ϕ(t) satisfies condition
(7). As we noticed, this rotation cancels the effect on the coupling
of the phase difference accumulated by the instantaneous diabatic
states due to their energy difference. In particular, if the absolute
value of the electronic coupling does not depend on t, this means
that the instantaneous diabatic states are coupled by ω0/2 at any
time, as is described by Eq. (11), and thus, the transition probability
per unit time can only depend on ω2

0. Looking at it in another way,
we can interpret Eqs. (9) and (11) in the interaction representation,

FIG. 3. Transition probability P1→2 as a function of s = νt, given by Eq. (32) for (a) μ = 0 and ω0(t) = ω0 ≡ 2ν, (b) μ = 0 and ω0(t) given by Eq. (36), and (c) μ = 1 and
ω0(t) given by Eq. (38) with η = 0.25 and υ = 20ν. The initial condition is {C1(0) = 1, C2(0) = 0}.
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where the two instantaneous diabatic states ∣ψ1(t)⟩ and ∣ψ2(t)⟩ are
transformed to the time-independent initial diabatic states ∣1⟩ and
∣2⟩, respectively, while Eq. (9) and its complex conjugate describe
the off-diagonal matrix elements of the perturbation Hamiltonian.
The rotation ϕ in Eq. (7) removes the dependence of these matrix
elements on the diabatic level splitting, which then is no longer a
determinant of P1→2.

D. Identifying interesting dynamical scenarios
Figure 3 shows just a few examples of the many opportuni-

ties provided by the above approach to define desired temporal
evolutions of the CT system, which means controlling its dynamic
evolution in the theory and in its feasible experimental imple-
mentations. In physical–mathematical terms, these opportunities
are closely related to the implications of the approach presented
for the solution of two-level dynamics through avoided crossings.
Therefore, in this section, we treat some further examples of con-
trollable dynamics by comparison with the traditional approach to
the solution of the dynamical problem through the time-dependent
Schrödinger equation, so as to highlight opportunities for simple
identification of easily solvable evolutionary paths afforded by the
use of the MN construction.

Inserting the Hamiltonian (1) and the state (12) into the
Schrödinger equation, we obtain51,53

iĊ1(t) =
1
2
ω0(t)e−i[ϕ(t)−2∫

t
0 Ω(t

′
)dt′]C2(t), (40a)

iĊ2(t) =
1
2
ω0(t)ei[ϕ(t)−2∫

t
0 Ω(t

′
)dt′]C1(t). (40b)

In the conventional Landau–Zener (LZ) problem, which should
be more precisely called the Landau–Zener–Stückelberg–Majorana
(LZSM) problem,3 the magnitude and phase of the electronic cou-
pling are both assumed to be constant, and Eqs. (40a) and (40b)
are decoupled by their further derivation and arrangement to give
(for brevity, we do not indicate the obvious time dependence of C1
and C2 unless it is necessary to distinguish their values at t = 0 and
t ≠ 0)53

C̈1 − 2iΩ(t)Ċ1 +
ω2

0

4
C1 = 0, (41a)

C̈2 + 2iΩ(t)Ċ2 +
ω2

0

4
C2 = 0. (41b)

These equations lead to expressions for C1 and C2 in terms of
parabolic cylinder (Weber) functions,3,53,54,110 which are treated
numerically or using asymptotic expansions and describe a nonpe-
riodic time evolution of the system.

Condition (18) leads to equations different from (41a) and
(41b), and, in physical terms, this implies that it opens new scenar-
ios and offers new means to control the dynamics of the system,
with great relevance to a plethora of dynamical problems relevant
to quantum technologies, including quantum computing, in which
quantum two-level systems play critical roles.2,3,38,40,79,111–121 To see
this fact, we begin with deriving Eq. (40) with respect to time for

generally time-dependent electronic couplings. From Eq. (40a), we
obtain

iC̈1 =
1
2
{ω̇0(t)C2 − i [ϕ̇(t) − 2Ω(t)]ω0(t)C2 + Ċ2ω0(t)}

× e−i[ϕ(t)−2∫
t

0 Ω(t
′
)dt′], (42)

and, by the insertion of Eqs. (40a) and (40b),

C̈1 =
1

ω0(t)
ω̇0(t)Ċ1 − i [ϕ̇(t) − 2Ω(t)] Ċ1 −

ω2
0(t)
4

C1

= −i[ϕ̇(t) − 2Ω(t) + i
d
dt

ln ω0(t)]Ċ1 −
ω2

0(t)
4

C1 (43)

whence

C̈1 − i[2Ω(t) − ϕ̇(t) − i
d
dt

ln ω0(t)]Ċ1 +
ω2

0(t)
4

C1 = 0, (44a)

which is the generalization of Eq. (41a) for time-dependent elec-
tronic couplings. Similarly,

C̈2 + i[2Ω(t) − ϕ̇(t) + i
d
dt

ln ω0(t)]Ċ2 +
ω2

0(t)
4

C2 = 0. (44b)

By limiting the following analysis to cases in which the modulus
of the coupling is a constant ω0 while its phase is time dependent,
we will identify some classes of situations emerging from (namely,
controlled by) condition (7), or (18), and Eq. (44), in which the
coherent dynamics of the system is described without resorting to
special functions. When condition (7) is satisfied (μ = 0), Eqs. (44a)
and (44b) become

C̈1 +
ω2

0

4
C1 = 0, C̈2 +

ω2
0

4
C2 = 0, (45)

which lead to the expressions for the expansion coefficients C1 and
C2 in Eqs. (31a) and (31b), obtained above using the extended MN
approach. Under condition (18) (μ ≠ 0), we obtain, instead,

C̈1 − iμω0Ċ1 +
ω2

0

4
C1 = 0, C̈2 + iμω0Ċ2 +

ω2
0

4
C2 = 0. (46)

Setting C1(t) = eηt , with η independent of time, one obtains the
quadratic equation

η2
− iμω0η +

ω2
0

4
= 0, (47)

whose solutions are

η± =
iω0

2
(μ ±

√

1 + μ2
). (48)

The general solution of Eq. (46) can be written as

C1(t) = e
iμω0 t

2 (C11 e
iω0 t

2

√

1+μ2

+ C12 e−
iω0 t

2

√

1+μ2

),

C2(t) = e−
iμω0 t

2 (C21 e
iω0 t

2

√

1+μ2

+ C22 e−
iω0 t

2

√

1+μ2

),
(49)
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where C11, C12, C21, and C22 are constants whose values are
fixed through the initial conditions. For example, with the initial
condition

C1(0) = 1, C2(0) = 0, (50)

Eqs. (40) and (49) give

C1(t) =
1
2

eiμ ω0 t
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

1 −
μ

√

1 + μ2

⎞
⎟
⎠

ei
√

1+μ2 ω0 t
2

+
⎛
⎜
⎝

1 +
μ

√

1 + μ2

⎞
⎟
⎠

e− i
√

1+μ2 ω0 t
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= eiμ ω0 t
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos(
√

1 + μ2ω0t
2
) − i

μ
√

1 + μ2

× sin(
√

1 + μ2ω0t
2
)] (51a)

and

C2(t) = −
1

√

1 + μ2
e− iμ ω0 t

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ei
√

1+μ2 ω0 t
2 − e−i

√

1+μ2 ω0 t
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −
i

√

1 + μ2
sin(
√

1 + μ2ω0t
2
). (51b)

For μ = 0, Eqs. (51a) and (51b) reduce to (31a) and (31b), while for
μ→∞, they reduce to (26).

It is worth noting that, once the molecular rotation satisfies
condition (19), which depends onΩ(t) and the absolute value of the
coupling, the time evolution of any property that only depends on
the square moduli of the expansion coefficients in Eq. (12) shows a
universal behavior, independent of the level energyΩ(t) and depen-
dent on t only through the dynamical time κ. This is exemplified by
the time evolutions predicted by Eq. (49), where κ(t) = ω0t/2.

Finally, we reconsider the LZSM problem, where the coupling is
generally assumed to be a constant (Condon approximation for the
electronic coupling) and Eqs. (41a) and (41b) are at stake. Moreover,
its treatment in Ref. 53 uses both the standard expression for the
time-dependent level energy

Ω(t) =
αt
2

(52)

and a more realistic expression for their experimental context given
by

Ω(t) =
ατ
2
(

1
1 + e−4t/τ −

1
2
). (53)

Here, we assume ω0 constant, but we use a time-dependent coupling
phase ϕ that satisfies condition (19). Then,

Φ(μ; t) =
√

1 + μ2κ(t) =
1
2

√

1 + μ2ω0 t. (54)

Inserting Eqs. (52) and (53) into Eq. (19), we obtain

ϕ(t) = 2∫
t

0
Ω(t′)dt′ − 2μκ(t) =

αt2

2
− μω0t (55)

and

ϕ(t) = ατ∫
t

0
(

1
1 + e−4t′/τ −

1
2
)dt′ − 2μκ(t)

= −
ατ
2

t −
ατ2

4 ∫
−4t/τ

0

1
1 + ex dx − μω0t

=
ατ
2

t +
ατ2

4
ln (1 + e−4t/τ

) − μω0t, (56)

respectively (in the last equation, we integrated by parts and used
the fact that x = ln ex). At this point, the expansion coefficients that
describe the evolving state of the system are given by Eqs. (20)–(22)
with the insertion of the quantity in Eq. (54).

E. CT quantum gate
It is worth noting that, under suitable physical conditions (that

is, for suitable physical parameters), the evolution operator matrix
built above can realize some quantum gates or relevant linear combi-
nations of quantum gates at given instants or at infinite time, which
practically means after the conclusion of the passage through the
avoided crossing of the two levels. For example, let us consider the
time

t0 =
π

ω0

√

1 + μ2
. (57)

It is Φ(μ; t0) = π/2 = ϑ(μ; t0). Requiring that ϕ(t0) = −π, and
assuming that Ω(t) = Ω0 and ω0(t) = ω0, relation (19) gives

−
π
2
=

Ω0π

ω0

√

1 + μ2
−

μπ

2
√

1 + μ2
→

√

1 + μ2

= μ −
2Ω0

ω0
→ μ = 1 −

ω0

4Ω0
, (58)

which is possible forΩ0 ≥ ω0/4 since μ cannot be negative. Then, we
obtain

U(t0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

¿
Á
ÁÀ μ2

1 + μ2
1

√

1 + μ2

−
1

√

1 + μ2

¿
Á
ÁÀ μ2

1 + μ2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (59)

which has the form of one of the alternative unitary operations
applied to an ancilla qubit in Ref. 122 to construct a quantum
algorithm for simulating Hamiltonian dynamics based on linear
combinations of unitary operators (that is, quantum gates).122–125

The operator (59) can be alternatively obtained at the end of the
nonadiabatic passage. To this end, we consider, for example, the
Gaussian-like time-dependent coupling magnitude,

ω0(t) =
4
√
πσ

e−
t2

σ2 (t ≥ 0), (60)

which gives
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κ(∞) =
2
√
πσ∫

∞

0
e−

t′2

σ2 dt′ = 1, (61)

where we used the shorthand notation κ(∞) for lim
t→∞

κ(t). From

Φ(μ;∞) =
√

1 + μ2
= π/2 = ϑ(μ;∞), we obtain μ =

√
π2

4 − 1, and
condition (18) with ϕ(∞) = −π gives

−
π
2
= ∫

t

0
Ω(t′)dt′ −

√

π2

4
− 1→ ∫

t

0
Ω(t′)dt′ =

√

π2

4
− 1 −

π
2

.
(62)

This condition can be satisfied for

Ω(t) =

√

π2
− 4 − π
√
πσ

e−
t2

σ2 (t ≥ 0) (63)

(while negative values of Ω are allowed, positive values can also be
readily obtained). Equation (59) follows again.

III. CONCLUDING REMARKS
We have proposed a new theoretical approach to the study

of two-state CT systems that offers new opportunities for engi-
neering and controlling the CT dynamics, with implications for
its use in next-generation quantum technologies where two-level
systems physically realize the fundamental unit of information.
Our approach uses the MN method,18 which has been previously
employed to investigate spin systems in time-dependent magnetic
fields and quantum electrodynamics contexts. In this regard, our
study aims to profitably merge methodological and conceptual
ingredients from this research area with CT theory. Since the MN
method was developed within an inverse-problem philosophy with
the aim of generating solvable Hamiltonians for two-level quan-
tum systems, it is particularly appropriate for engineering CT sys-
tems with desired dynamic evolutions of possible use for quantum
information and computation tasks.

Through several examples, we show that suitable rotations of
the charge donor or acceptor can be used to experimentally realize
condition (7) on the phase of the electronic coupling between the
initial and final (diabatic) charge states and that this condition is a
subset of a more general set of conditions represented by Eq. (19),
which correspond to a vast class of exactly solvable Hamiltonian
models with time evolution operators as in Eq. (21). The system
evolutions described by these operators depend on a parameter, μ,
which is here given a physical meaning in Eq. (33), as a measure of
the system’s ability to experience a nonadiabatic dynamics through
the avoided level crossing region. The discussion of μ also gives us
the opportunity to highlight similarities between the rotation in the
charge-transfer system and the rotation of the reference frame in
semiclassical Rabi models.

We extend the MN method in terms of its applicability to
any time interval and then use it to solve the two-state charge
transfer problem in some interesting cases. We emphasize that uni-
versal features of system dynamics emerge on a coupling-dependent
dynamic timescale defined as in Eq. (15). As exemplified above,
the MN approach to the solution of the CT dynamical problem
clearly matches its traditional solution in terms of time-dependent
Schrödinger equation, where both approaches are applicable. How-
ever, the MN approach highlights since the outset circumstances

in which this solution does not require the use of Weber’s special
functions, thus avoiding the related limitations in terms of further
analytical elaborations.

We finally show that the CT time evolution operator in Eq. (21)
offers opportunities to realize quantum gates. More generally, the
theoretical framework of the present study is proposed as a natural
approach to the engineering and analysis of CT systems (as well as
other classes of two-level systems that are characterized by similar
formal descriptions) with controllable coherent dynamics relevant
to quantum information and computation applications.

ACKNOWLEDGMENTS
A.M. acknowledges funding from the European

Union–NextGenerationEU, within the National Center for HPC,
Big Data and Quantum Computing (Project No. CN00000013, CN1
Spoke 10: “Quantum Computing”).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Agostino Migliore: Conceptualization (lead); Formal analysis
(lead); Funding acquisition (lead); Investigation (lead); Methodol-
ogy (equal); Software (lead); Supervision (equal); Validation (equal);
Visualization (lead); Writing – original draft (lead); Writing –
review & editing (equal). Antonino Messina: Conceptualization
(supporting); Formal analysis (supporting); Methodology (equal);
Supervision (equal); Validation (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article.

APPENDIX: EXTENSION OF THE MN METHOD

Here, we derive Eqs. (20) and (27), which extend the MN
method to all times and to the limit case μ = 0, respectively. We first
consider the extension of the method over time, starting from the
analysis in Ref. 18. For the cases studied here and in the present
notation, the magnitude of the coupling for nonzero μ is expressed,
in Ref. 18, as the following function of θ:

ω0(t)
2
=

μ
μ2
+ sin2 ϑ(t)

ϑ̇(t), (A1)

which gives (using the integral 2.562.1 on p. 177 of Ref. 126)

Φ(μ; t) =
√

1 + μ2
∫

ϑ(μ;t)

0

μdϑ
μ2
+ sin2 ϑ

= arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√

1 + μ2

μ
tan ϑ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A2)
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from which

tan ϑ =
μ

√

1 + μ2
tan Φ. (A3)

In Ref. 18, Φ(μ; t) is directly expressed as an integral, while ϑ(μ; t)
is obtained from Eq. (A3). At this point, it is necessary to note that
the expression of b(t) reported in Eq. (17) is obtained from Eqs.
(14) and (16) of Ref. 18 in terms of sin ϑ and then written in terms
of sinΦ by deriving the relationship between the two sines from
Eq. (A3), with the assumption that they have the same sign. This
sign choice, together with Eq. (A3), implies that cos ϑ and cosΦ
also have the same sign. However, the standard definition of ϑ from
Eq. (A3) consists of taking the principal value of the inverse trigono-
metric function as is done in Eq. (16b), and this results in jumps in
the sign of a(t), while b(t) continuously varies with sinΦ(μ; t). In
other terms, the original formalism applies from t = 0 to the time
t = tπ/2(μ) at whichΦ = π

2 , while the signs of a(t) and b(t)would be
inconsistent after this time.

The extension of the method to Φ ∈ [0, 2π [, and thus to any
larger value of Φ, is easily performed by noting that Φ is defined
by Eq. (14) as a continuously growing function of time and that
the use of the multivalued arctan function in the expression for ϑ
restores the continuity in the phase of a(t) and maintains, at times
t > tπ/2(μ), the consistency of the phase choice made by writing b(t)
as a function of sinΦ.

To conclude the temporal extension of the method, we must
notice that, although ϑ tends to π

2 and 3π
2 when Φ does, Eq. (A3)

cannot be set at tπ/2(μ) and t3π/2(μ) because the two trigonometric
functions are not defined at these times. Therefore, if we want to
express ϑ from its relationship with Φ, we need to use an analytic
continuation as follows:

ϑ(μ; tk) = lim
t→tk(μ)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ
√

1 + μ2
tan Φ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= k

for k =
π
2

,
3π
2

.

(A4)

At this point, Eq. (20) immediately follows from the above.
Next, we consider the extension of the MN method to μ = 0,

where the variable ϑ is discretized. We need to express ϑ again as a
multivalued trigonometric function,

ϑ(μ; t) = arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ
√

1 + μ2
tan Φ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (A5)

For 0 < t < tπ/2(μ), it is (note that μ tends to zero from the right)

ϑ(0; t) = lim
μ→0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

arctan

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ
√

1 + μ2
tan Φ(μ; t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= 0. (A6)

For tπ/2(μ) < t < t3π/2(μ), we use the next higher branch of arctan,
thus obtaining ϑ(0; t) = π, and so forth. In compact form, we can
write

ϑ(0; t) = lim
μ→0+

ϑ(μ; t)

=

⎧⎪⎪
⎨
⎪⎪⎩

(n + 1)π for t(n+ 1
2 )π
< t < t(n+1)π

nπ for tnπ ≤ t < t(n+ 1
2 )π

(n ∈ N0).

(A7)

Extending to negative times,

ϑ(0; t) =
⎧⎪⎪
⎨
⎪⎪⎩

0 for t(− 1
2+2n)π < t < t( 1

2+2n)π

π for t( 1
2+2n)π < t < t( 3

2+2n)π
(n ∈ Z). (A8)

At this point, the values can be assigned to ϑ for t = t(± 1
2+2n)π as in

Eq. (27), but they are, indeed, unimportant, because the complex
exponential function with argument ϑ appears only multiplied by
∣ cosΦ(0; t) ∣=∣ cos κ(t) ∣ in the expression of a for μ = 0.

Finally, Eq. (28) results from the fact that

sgn [cos κ(t)]

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 = e±iϑ(0;t) for t(− 1
2+2n)π < t < t( 1

2+2n)π

0 for t = t(± 1
2+2n)π

−1 = e±iϑ(0;t) for t( 1
2+2n)π < t < t( 3

2+2n)π

(n ∈ Z).

(A9)
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63S. Zeytinoğlu, M. Pechal, S. Berger, A. A. Abdumalikov, Jr., A. Wallraff, and
S. Filipp, “Microwave-induced amplitude- and phase-tunable qubit-resonator
coupling in circuit quantum electrodynamics,” Phys. Rev. A 91, 043846 (2015).
64H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise
control of coupling strength in photonic molecules over a wide range using
nanoelectromechanical systems,” Sci. Rep. 6, 24766 (2016).

J. Chem. Phys. 160, 084112 (2024); doi: 10.1063/5.0188749 160, 084112-13

© Author(s) 2024

 22 Septem
ber 2024 20:37:39

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevlett.109.060401
https://doi.org/10.1103/physreva.88.013818
https://doi.org/10.1103/physrevb.91.161405
https://doi.org/10.1088/1751-8113/47/44/445302
https://doi.org/10.3390/e25010096
http://arxiv.org/abs/2211.03342
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.22331/q-2023-03-09-943
https://doi.org/10.1103/revmodphys.92.015003
https://doi.org/10.1103/physrevlett.105.123003
https://doi.org/10.1103/physrevlett.116.023602
https://doi.org/10.1016/j.physleta.2020.126743
https://doi.org/10.1364/prj.461283
https://doi.org/10.1364/prj.461283
https://doi.org/10.1002/andp.202200304
https://doi.org/10.1007/s11128-018-1815-z
https://doi.org/10.1063/1.2001634
https://doi.org/10.1103/revmodphys.90.035005
https://doi.org/10.1073/pnas.1502000112
https://doi.org/10.1103/physrevlett.124.020501
https://doi.org/10.1364/ome.483188
https://doi.org/10.1103/physrevapplied.13.024066
https://doi.org/10.1007/s11467-022-1249-z
https://doi.org/10.1088/1367-2630/7/1/218
https://doi.org/10.3390/e25020212
https://doi.org/10.1088/0034-4885/79/7/074401
https://doi.org/10.1088/0034-4885/79/7/074401
https://doi.org/10.1038/s41598-018-35741-5
https://doi.org/10.1038/s41598-018-35741-5
https://doi.org/10.1103/physrevb.99.174416
https://doi.org/10.1063/1.443853
https://doi.org/10.1021/ja00167a016
https://doi.org/10.1021/acs.jctc.9b00518
https://doi.org/10.1021/acs.chemrev.5b00298
https://doi.org/10.1021/cr4006654
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1098/rspa.1933.0095
https://doi.org/10.1103/physreva.23.3107
https://doi.org/10.1103/physreva.53.4288
https://doi.org/10.1063/1.1601600
https://doi.org/10.1073/pnas.0409047102
https://doi.org/10.1073/pnas.0409047102
https://doi.org/10.1103/physrevlett.101.158102
https://doi.org/10.1080/00268976.2018.1504997
https://doi.org/10.1063/1.3232007
https://doi.org/10.1021/la301237p
https://doi.org/10.1039/c3cs35527f
https://doi.org/10.1103/physrevx.4.041010
https://doi.org/10.1103/physreva.91.043846
https://doi.org/10.1038/srep24766


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

65S. Restrepo, S. Bohling, J. Cerrillo, and G. Schaller, “Electron pumping in
the strong coupling and non-Markovian regime: A reaction coordinate mapping
approach,” Phys. Rev. B 100, 035109 (2019).
66I. Boventer, C. Dorflinger, T. Wolz, R. Macedo, R. Lebrun, M. Klaui, and
M. Weides, “Control of the coupling strength and linewidth of a cavity
magnon-polariton,” Phys. Rev. Res. 2, 013154 (2020).
67A. M. Berghuis, V. Serpenti, M. Ramezani, S. J. Wang, and J. Gómez Rivas,
“Light-matter coupling strength controlled by the orientation of organic crystals
in plasmonic cavities,” J. Phys. Chem. C 124, 12030 (2020).
68Z. Gong, M. Li, X. W. Liu, Y. T. Xu, J. J. Lu, A. Bruch, J. B. Surya, C. L. Zou, and
H. X. Tang, “Photonic dissipation control for Kerr soliton generation in strongly
Raman-active media,” Phys. Rev. Lett. 125, 183901 (2020).
69H. Hwang, H. Heo, K. Ko, M. R. Nurrahman, K. Moon, J. J. Ju, S. W. Han,
H. Jung, H. Lee, and M. K. Seo, “Electro-optic control of the external coupling
strength of a high-quality-factor lithium niobate micro-resonator,” Opt. Lett. 47,
6149 (2022).
70S. Valianti and S. S. Skourtis, “The role of bridge-state intermediates in singlet
fission for donor-bridge-acceptor systems: A semianalytical approach to bridge-
tuning of the donor-acceptor fission coupling,” J. Phys. Chem. Lett. 13, 939 (2022).
71R. Grimaudo, A. S. Magalhães de Castro, H. Nakazato, and A. Messina, “Classes
of exactly solvable generalized semi-classical Rabi systems,” Ann. Phys. 530,
1800198 (2018).
72P.-L. Giscard and C. Bonhomme, “Dynamics of quantum systems driven
by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and
applications to NMR,” Phys. Rev. Res. 2, 023081 (2020).
73H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505
(1991).
74G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F.
Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K.
McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano,
K. B. Whaley, and X. Y. Zhu, “Using coherence to enhance function in chemical
and biophysical systems,” Nature 543, 647 (2017).
75F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, and Q. H. Gong, “Phase control
of entanglement and quantum steering in a three-mode optomechanical system,”
New J. Phys. 19, 123039 (2017).
76N. E. Abari, A. A. Rakhubovsky, and R. Filip, “Thermally-induced qubit
coherence in quantum electromechanics,” New J. Phys. 24, 113006 (2022).
77M. L. Bera, T. Pandit, K. Chatterjee, V. Singh, M. Lewenstein, U. Bhattacharya,
and M. N. Bera, “Steady-state quantum thermodynamics with synthetic negative
temperatures,” arXiv:2305.01215v1 (2023).
78D. F. Walls and G. F. Milburn, Quantum Optics (Springer-Verlag, Berlin, 2008).
79M. Rodriguez-Vega, E. Carlander, A. Bahri, Z.-X. Lin, N. A. Sinitsyn, and G. A.
Fiete, “Real-time simulation of light-driven spin chains on quantum computers,”
Phys. Rev. Res. 4, 013196 (2022).
80B. M. Garraway and N. V. Vitanov, “Population dynamics and phase effects in
periodic level crossings,” Phys. Rev. A 55, 4418 (1997).
81W. Li, “Invariant-based inverse engineering for fast nonadiabatic geometric
quantum computation,” New J. Phys. 23, 073039 (2021).
82A. S. M. de Castro, R. Grimaudo, D. Valenti, A. Migliore, H. Nakazato, and A.
Messina, “Analytically solvable Hamiltonian in invariant subspaces,” Eur. Phys. J.
Plus 138, 766 (2023).
83D. P. Sun, D. I. Liao, and S. J. Remington, “Electrostatic fields in the active sites
of lysozymes,” Proc. Natl. Acad. Sci. U. S. A. 86, 5361 (1989).
84P. J. Aittala, O. Cramariuc, and T. I. Hukka, “Electric-field-assisted electron
transfer in a porphine–quinone complex: A theoretical study,” J. Chem. Theory
Comput. 6, 805 (2010).
85I. T. Suydam, C. D. Snow, V. S. Pande, and S. G. Boxer, “Electric fields at the
active site of an enzyme: Direct comparison of experiment with theory,” Science
313, 200 (2006).
86S. D. Fried, S. Bagchi, and S. G. Boxer, “Measuring electrostatic fields in both
hydrogen-bonding and non-hydrogen-bonding environments using carbonyl
vibrational probes,” J. Am. Chem. Soc. 135, 11181 (2013).
87S. D. Fried and S. G. Boxer, “Measuring electric fields and noncovalent
interactions using the vibrational Stark effect,” Acc. Chem. Res. 48, 998 (2015).
88S. D. Fried and S. G. Boxer, “Electric fields and enzyme catalysis,” Annu. Rev.
Biochem. 86, 387 (2017).

89M. Saggu, S. D. Fried, and S. G. Boxer, “Local and global electric field asymmetry
in photosynthetic reaction centers,” J. Phys. Chem. B 123, 1527 (2019).
90Q. Zhang, P. Hänggi, and J. Gong, “Nonlinear Landau–Zener processes in a
periodic driving field,” New J. Phys. 10, 073008 (2008).
91A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger, “Realizing all-
spin-based logic operations atom by atom,” Science 332, 1062 (2011).
92C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, “Spin coupling in engineered
atomic structures,” Science 312, 1021 (2006).
93S. Yan, D. J. Choi, J. A. J. Burgess, S. Rolf-Pissarczyk, and S. Loth, “Control of
quantum magnets by atomic exchange bias,” Nat. Nanotechnol. 10, 40 (2015).
94K. Tao, V. S. Stepanyuk, W. Hergert, I. Rungger, S. Sanvito, and P. Bruno,
“Switching a single spin on metal surfaces by a STM tip: Ab initio studies,” Phys.
Rev. Lett. 103, 057202 (2009).
95B. Bryant, A. Spinelli, J. J. T. Wagenaar, M. Gerrits, and A. F. Otte, “Local con-
trol of single atom magnetocrystalline anisotropy,” Phys. Rev. Lett. 111, 127203
(2013).
96I. N. Sivkov, D. I. Bazhanov, and V. S. Stepanyuk, “Switching of spins and
entanglement in surface-supported antiferromagnetic chains,” Sci. Rep. 7, 2759
(2017).
97R. Grimaudo, A. Isar, T. Mihaescu, I. Ghiu, and A. Messina, “Dynamics of
quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic
fields,” Results Phys. 13, 102147 (2019).
98A. Troisi, M. A. Ratner, and M. B. Zimmt, “Dynamic nature of the intramolec-
ular electronic coupling mediated by a solvent molecule: A computational study,”
J. Am. Chem. Soc. 126, 2215 (2004).
99S. S. Skourtis, D. H. Waldeck, and D. N. Beratan, “Fluctuations in biological and
bioinspired electron-transfer reactions,” Annu. Rev. Phys. Chem. 61, 461 (2010).
100M. Weissbluth, Atoms and Molecules (Academic Press, New York, 1978).
101D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory
of Angular Momentum (World Scientific Publishing, Singapore, 1988), p. 25.
102G. Dridi, K. P. Liu, and S. Guérin, “Optimal robust quantum control by inverse
geometric optimization,” Phys. Rev. Lett. 125, 250403 (2020).
103X. Laforgue, G. Dridi, and S. Guérin, “Optimal quantum control robust against
pulse inhomogeneities: Analytic solutions,” Phys. Rev. A 106, 052608 (2022).
104B. Giese, J. Amaudrut, A. K. Köhler, M. Spormann, and S. Wessely, “Direct
observation of hole transfer through DNA by hopping between adenine bases and
by tunnelling,” Nature 412, 318 (2001).
105I. I. Rabi, N. F. Ramsey, and J. Schwinger, “Use of rotating coordinates in
magnetic resonance problems,” Rev. Mod. Phys. 26, 167 (1954).
106U. Boscain, G. Charlot, J. P. Gauthier, S. Guérin, and H. R. Jauslin, “Optimal
control in laser-induced population transfer for two- and three-level quantum
systems,” J. Math. Phys. 43, 2107 (2002).
107R. D. Teo, K. Terai, A. Migliore, and D. N. Beratan, “Electron transfer char-
acteristics of 2’-deoxy-2’-fluoro-arabinonucleic acid, a nucleic acid with enhanced
chemical stability,” Phys. Chem. Chem. Phys. 20, 26063 (2018).
108A. Migliore, S. Corni, R. Di Felice, and E. Molinari, “First-principles density-
functional theory calculations of electron-transfer rates in azurin dimers,”
J. Chem. Phys. 124, 064501 (2006).
109I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th
ed. (Elsevier, Inc., 2007).
110B. T. Torosov and N. V. Vitanov, “Pseudo-Hermitian Landau-Zener-
Stückelberg-Majorana model,” Phys. Rev. A 96, 013845 (2017).
111Y. Ban, X. Chen, and G. Platero, “Fast long-range charge transfer in quantum
dot arrays,” Nanotechnology 29, 505201 (2018).
112Y.-C. Li and X. Chen, “Shortcut to adiabatic population transfer in quan-
tum three-level systems: Effective two-level problems and feasible counterdiabatic
driving,” Phys. Rev. A 94, 063411 (2016).
113S. Masuda, K. Y. Tan, and M. Nakahara, “Theoretical study on spin-selective
coherent electron transfer in a quantum dot array,” Universe 6, 2 (2020).
114T. Kiran and M. Ponmurugan, “The invariant-based shortcut to adiabaticity
for qubit heat engine operates under quantum Otto cycle,” Eur. Phys. J. Plus 137,
394 (2022).
115R. Couturier, E. Dionis, S. Guérin, C. Guyeux, and D. Sugny, “Characterization
of a driven two-level quantum system by supervised learning,” Entropy 25, 446
(2023).

J. Chem. Phys. 160, 084112 (2024); doi: 10.1063/5.0188749 160, 084112-14

© Author(s) 2024

 22 Septem
ber 2024 20:37:39

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevb.100.035109
https://doi.org/10.1103/physrevresearch.2.013154
https://doi.org/10.1021/acs.jpcc.0c00692
https://doi.org/10.1103/physrevlett.125.183901
https://doi.org/10.1364/ol.472956
https://doi.org/10.1021/acs.jpclett.1c03700
https://doi.org/10.1002/andp.201800198
https://doi.org/10.1103/physrevresearch.2.023081
https://doi.org/10.1109/5.104225
https://doi.org/10.1038/nature21425
https://doi.org/10.1088/1367-2630/aa9c9a
https://doi.org/10.1088/1367-2630/ac9a66
http://arxiv.org/abs/2305.01215v1
https://doi.org/10.1103/physrevresearch.4.013196
https://doi.org/10.1103/physreva.55.4418
https://doi.org/10.1088/1367-2630/ac12df
https://doi.org/10.1140/epjp/s13360-023-04375-6
https://doi.org/10.1140/epjp/s13360-023-04375-6
https://doi.org/10.1073/pnas.86.14.5361
https://doi.org/10.1021/ct9003417
https://doi.org/10.1021/ct9003417
https://doi.org/10.1126/science.1127159
https://doi.org/10.1021/ja403917z
https://doi.org/10.1021/ar500464j
https://doi.org/10.1146/annurev-biochem-061516-044432
https://doi.org/10.1146/annurev-biochem-061516-044432
https://doi.org/10.1021/acs.jpcb.8b11458
https://doi.org/10.1088/1367-2630/10/7/073008
https://doi.org/10.1126/science.1201725
https://doi.org/10.1126/science.1125398
https://doi.org/10.1038/nnano.2014.281
https://doi.org/10.1103/physrevlett.103.057202
https://doi.org/10.1103/physrevlett.103.057202
https://doi.org/10.1103/physrevlett.111.127203
https://doi.org/10.1038/s41598-017-02972-x
https://doi.org/10.1016/j.rinp.2019.02.083
https://doi.org/10.1021/ja038905a
https://doi.org/10.1146/annurev.physchem.012809.103436
https://doi.org/10.1103/physrevlett.125.250403
https://doi.org/10.1103/physreva.106.052608
https://doi.org/10.1038/35085542
https://doi.org/10.1103/revmodphys.26.167
https://doi.org/10.1063/1.1465516
https://doi.org/10.1039/c8cp04816a
https://doi.org/10.1063/1.2166233
https://doi.org/10.1103/physreva.96.013845
https://doi.org/10.1088/1361-6528/aae0ce
https://doi.org/10.1103/physreva.94.063411
https://doi.org/10.3390/universe6010002
https://doi.org/10.1140/epjp/s13360-022-02592-z
https://doi.org/10.3390/e25030446


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

116J. Johansson, M. H. S. Amin, A. J. Berkley, P. Bunyk, V. Choi, R. Harris, M.
W. Johnson, T. M. Lanting, S. Lloyd, and G. Rose, “Landau-Zener transitions in a
superconducting flux qubit,” Phys. Rev. B 80, 012507 (2009).
117I. F. Nyisomeh, J. T. Diffo, M. E. Ateuafack, and L. C. Fai, “Landau–Zener
transitions in coupled qubits: Effects of coloured noise,” Physica E 116, 113744
(2020).
118D. Zueco, P. Hänggi, and S. Kohler, “Landau–Zener tunnelling in dissipative
circuit QED,” New J. Phys. 10, 115012 (2008).
119P. Hänggi, M. Wubs, S. Kohler, K. Saito, and Y. Kayanuma, “Bell-state gen-
eration in circuit QED via Landau-Zener tunneling,” AIP Conf. Proc. 922, 501
(2007).
120F. Forster, G. Petersen, S. Manus, P. Hänggi, D. Schuh, W. Wegscheider, S.
Kohler, and S. Ludwig, “Characterization of qubit dephasing by Landau-Zener-
Stückelberg-Majorana interferometry,” Phys. Rev. Lett. 112, 116803 (2014).

121Z.-C. Shi, Y.-H. Chen, W. Qin, Y. Xia, X. X. Yi, S. B. Zheng, and F. Nori, “Two-
level systems with periodic N-step driving fields: Exact dynamics and quantum
state manipulations,” Phys. Rev. A 104, 053101 (2021).
122A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combina-
tions of unitary operations,” Quantum Inf. Comput. 12, 901 (2012).
123D. W. Berry, A. M. Childs, and R. Kothari, in 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science Hamiltonian (IEEE, Berkeley, CA,
2015), p. 792.
124M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating
analytic gradients on quantum hardware,” Phys. Rev. A 99, 032331 (2019).
125N. Suri, J. Barreto, S. Hadfield, N. Wiebe, F. Wudarski, and J. Marshall,
“Two-unitary decomposition algorithm and open quantum system simulation,”
Quantum 7, 1002 (2023).
126I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th
ed. (Academic Press, Inc., San Diego, 1994).

J. Chem. Phys. 160, 084112 (2024); doi: 10.1063/5.0188749 160, 084112-15

© Author(s) 2024

 22 Septem
ber 2024 20:37:39

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevb.80.012507
https://doi.org/10.1016/j.physe.2019.113744
https://doi.org/10.1088/1367-2630/10/11/115012
https://doi.org/10.1063/1.2759729
https://doi.org/10.1103/physrevlett.112.116803
https://doi.org/10.1103/physreva.104.053101
https://doi.org/10.26421/qic12.11-12-1
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.22331/q-2023-05-15-1002

