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Abstract: The Adriatic sturgeon, Acipenser naccarii (Bonaparte, 1836), is a critically endangered
tetraploid endemism of the Adriatic region; it has been targeted, over the last 20 years, by different
conservation programs based on controlled reproduction of captive breeders followed by the release
of their juvenile offspring; its preservation would greatly benefit from the correct and coordinated
management of the residual genetic variability available in the different captive stocks. In this sense,
the setup of an efficient parental allocation procedure would allow identifying familiar groups and
establishing informed breeding plans, effectively preserving genetic variation. However, being the
species tetraploid, the analyses often deal with complex genome architecture and a preliminary
evaluation of allele segregation patterns at different chromosomes is necessary to assess whether the
species can be considered a pure tetraploid, as previously observed at some loci, or if a more complex
situation is present. Here we study the segregation at 14 microsatellites loci in 12 familiar groups.
Results support in different families the tetrasomic segregation pattern at 11 markers and the disomic
segregation at three markers. The Adriatic sturgeon thus shows a mixed inheritance modality. In this
species, and likely in other sturgeons, accurate knowledge of the loci used for paternity analysis is
therefore required.

Keywords: acipensaeridae; autotertraploid; allopolyploid; Adriatic sturgeon; disomic segregation;
inheritance; microsatellites; tetrasomic segregation

1. Introduction

Sturgeons are the most endangered group of species, according to the International
Union for Conservation of Nature (IUCN, July 2021) (http://www.iucnredlist.org, accessed
on 8 August 2022). For this reason, sturgeons are targeted by several conservation efforts
that often include restocking programs with juveniles produced in captivity; these ex-situ
conservation activities must necessarily be supported by studies aimed at preserving the
residual genetic diversity through long-term breeding programs [1]. However, genetic
analyses on sturgeons deal with complex genomes and various levels of ploidy, due to
independent events of whole-genome duplication [2,3]. The first event of duplication
took place in the Acipenseriformes’ common ancestor starting from sixty chromosomes.
Then, secondary events of duplication occurred in the Pacific and Atlantic clades leading
to a total of 240 chromosomes [2]. Finally, a third event led to the unique number of
360 chromosomes observable in Acipenser brevirostrum (Lesueur, 1818) [4]. The number
of chromosomes associated with the distinct levels of ploidy has been the subject of an
extensive debate between two main positions. The first argues that, since the condition with
120 chromosomes results from a duplication event in the common ancestor, the species with
120 and 240 chromosomes must be considered tetraploid and octaploid, respectively. The
second position, taking into account the functional reduction of ploidy that follows whole
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genome duplications, attributes to the two groups a condition of diploidy and tetraploidy,
respectively [5]. The two views use different criteria to define the nominal ploidy, the
number of duplications and the functional activity of genes, respectively, and are both
correct and fully compatible [3].

The Adriatic sturgeon, Acipenser naccarii (Bonaparte, 1836), a species with 240 chromo-
somes, is in general considered a functional tetraploid based on the analyses of 28S and 5S
rDNA through in situ hybridization [6]; this is also confirmed by most of the microsatellites
analysed in this species which mostly show up to 4 alleles per individuals. However, some
loci consistently showed more than 4 alleles in many individuals [7]; this could be due
to the duplication of the region of such microsatellites but, a still incomplete process of
functional reduction following genome duplication cannot be excluded as already proposed
also for other sturgeon species [8,9].

For these reasons, loci to be used for applied purposes, such as parental allocation and
kinship analysis, should be carefully selected and their functional ploidy should be prelimi-
narily assessed. Moreover, these applications require a careful preliminary investigation
also on the segregation modalities which, in tetraploids, can be of different types. In fact,
polyploidization can originate through the fusion of unreduced gametes at intraspecific or
interspecific levels, leading to two types of conditions in tetraploids, called autotetraploidy
and allotetraploidy, respectively. The origins of polyploidization have important implica-
tions on the segregation patterns of the alleles within gametes. In complete autotetraploids,
there are always four homologous chromosomes, and random pairs of bivalents and quadri-
valents are possible during meiosis (see Figure 1 for graphical support) [10]; this condition
leads to tetrasomic inheritance, which means that all allelic combinations within gametes
are possible; this is not the case in complete allotetraploids, where each tetrad is composed
of two sets of homeologous chromosomes, originating from the two parental species. In this
situation, the homeologous chromosomes do not form pairs, leading to disomic inheritance,
where only four out of six allelic combinations are possible [10]; these are two extreme
cases and intermediate conditions are observable when the chromosomes have different
degrees of preferential pairing. Indeed, the inheritance may shift from tetrasomic to disomic
or vice versa [10]. For example, in autotetraploids, fertility and karyotype stability can
be negatively impacted by imperfect multivalent pairing, thus promoting diploidization
and consequent shifting to disomy; on the contrary, in allotetraploids, the homeologous
chromosomes from two distinct parental species could maintain some degree of genetic
affinity permitting the competition with the homologous pair during meiotic interactions
with a certain degree of tetrasomic inheritance [11]. Understanding the mechanisms of chro-
mosomal segregation in a tetraploid species can have important conservation implications,
for example when the development of parental allocation methods is required.

In the Adriatic sturgeon, allele segregation was previously investigated at only 7 loci
using microsatellite markers [12]. All loci showed a tetrasomic inheritance pattern, point-
ing at the probable autopolyploidization origin of this species. However, as secondary
differentiation of some homologous chromosomes cannot be excluded and different segre-
gation patterns can be followed by different chromosomes, we took advantage of the recent
availability of new complete family groups and new isolated and tested microsatellite loci
not yet explored, to provide a deeper insight into the mode of chromosome segregation in
this species.

This is a key step not only to have a better understanding of the karyotype in the
Adriatic sturgeon but also for the correct interpretation of the genetic analysis and parental
allocation which in this species can have multiple applications. Firstly, the distinction of
extremely rare individuals of wild origin from released ones. Secondly, the identification
of groups of siblings existing in the different farms by assigning everyone to his pair of
parents of the F0 generation. Finally, knowing the segregation patterns is crucial when the
generation of virtual genotypes starting from observed genetic profiles is needed [13,14].
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Figure 1. Expected segregation patterns under pure disomy (a) or tetrasomy (b), respectively 
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Figure 1. Expected segregation patterns under pure disomy (a) or tetrasomy (b), respectively expected
in Autotetraploid and Allotetraploid genomes.

Thanks to the possibility of making 12 distinct crosses and raising their progeny sep-
arately within the project ENDEMIXIT (https://endemixit.com/, accessed on 8 August
2022), many new informative familiar groups became available for the analysis of seg-
regation patterns at a much higher number of loci than those available in the past. The
main purpose of the present study is therefore to exhaustively describe the modalities
of microsatellite alleles inheritance in the Adriatic sturgeon with the following objec-
tives: (a) verifying if the inferred pure tetrasomy is confirmed on a high number of loci,
(b) providing a significant contribution to the management of the residua genetic diversity
of this critically endangered species, and (c) shedding light on the functional ploidy level
across its genome.

2. Materials and Methods
2.1. Samples and DNA Purification

Most samples analyzed in the present study were obtained from the aquaculture
plant Storione Ticino (Cassolnovo, Italy). The reproduction of six females (F2, F4, F5, F6,
F7, and F8) and six males (M2, M4, M5, M6, M7, and M8) was performed in different
combinations. For each parent, a fin clip was collected for genotyping and, for each cross,
the progeny was reared in captivity and spontaneously dead animals were collected and
stored in ethanol. Moreover, five familiar groups (Nacc7 ♀× Nacc5 ♂, Nacc8 ♀× Nacc31 ♂,
Nacc19 ♀× Nacc17 ♂, Nacc19 ♀× Nacc30 ♂, Nacc28 ♀× Nacc23 ♂) derived from crosses
performed in the past and for which fingerlings were available were also used. In total,
21 adult parents (12 parent pairs) and 376 fingerlings (with about 30 individuals per family)
were collected (Table 1).

Genomic DNA was extracted from breeder’s fin clips (10–100 mg) and from offspring’s
muscular tissue, using Euroclone spinNAker Universal Genomic DNA mini kit (Euroclone)
and stored at −20 ◦C till their processing for microsatellite analysis.

2.2. Selection of Loci and Genotyping

Loci analysed in the present study were selected based on the possibility of unambigu-
ously tracing the genetic contribution of at least one of the two parents in at least one of the

https://endemixit.com/
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available families. For this reason, all loci in which there were no complete heterozygotes
or there were individuals with more than four alleles were discarded. In fact, it is known
that the Adriatic sturgeon presents a minority of loci at which more than four alleles were
can be observed in different individuals; thus, segregation anomalies cannot be detected [7];
these extra numerary alleles could originate from duplication or from a locally unreduced
octaploid condition. In fact, we recall that the Adriatic sturgeon is functionally a tetraploid
but evolutionarily it is an octaploid [3]. Nevertheless, segregation anomalies were also
observed in some individuals of each family that were accordingly excluded from the
analysis.

Table 1. Screening of microsatellite loci.

Locus Ref Ta Size Family Parents Genotypes Genotyped Fingerling (Y/N) #

LS-39 15 52 ◦C 116–155 Not informative - - N -

AfuG113 16 Td 326–364 Not informative - - N -

AfuG132 16 61 ◦C 259–346

F5 ♀× M6 ♂ F5 ♀
M6 ♂

293/309/318/330
313/318/322 Y 32

F6 ♀× M7 ♂ F6 ♀
M7 ♂

313/318/342
293/309/318/322 Y 32

F8 ♀× M2 ♂ F8 ♀
M2 ♂

304/318/322
313/338/342/346 Y 30

AfuG41 16 58 ◦C 156–198

F8 ♀× M2 ♂ F8 ♀
M2 ♂

212/234/293
203/255/259/285 Y 30

F2 ♀×M4 ♂ F2 ♀
M4 ♂

247/255/259/285
212/255/293/305 Y 30

F4 ♀×M4 ♂ F4 ♀
M4 ♂

212/217/242/259
212/255/293/305 Y 30

F6 ♀×M7 ♂ F6 ♀
M7 ♂

212/242/259/278
203/225/229/259 Y 32

Nacc7 ♀×Nacc5 ♂ Nacc7 ♀
Nacc5 ♂

225/229/252/259
203/225/247/305 Y 32

Nacc8♀×Nacc 31♂ Nacc8 ♀
Nacc31 ♂

212/242/293/305
203/234/305 Y 32

An20 * 17 62 ◦C 159–213 F7 ♀×M8 ♂ F7 ♀
M8 ♂

160/164/194
160/172/182/186 Y 30

Anac-15214 7 61 ◦C 259–285 Not informative - - N -

Anac-2589 7 63 ◦C 224–294 Not informative - - N -

Anac-6784 7 62 ◦C 311–346 Nacc19 ♀× Nacc17 ♂ Nacc19 ♀
Nacc17 ♂

311/322/330/334
322/326 Y 32

Anac-3133 7 56 ◦C 164–178 F7 ♀× M8 ♂ F7 ♀
M8 ♂

164/174
164/166/170/172 Y 30

AnacA6 * 18 62 ◦C 289–313 F5 ♀× M6 ♂ F5 ♀
M6 ♂

307/313
293/297/301/307 Y 32

AnacB11 18 60 ◦C 132–162
F6 ♀× M7 ♂ F6 ♀

M7 ♂
148/150

138/144/148/162 Y 32

Nacc19 ♀× Nacc17 ♂ Nacc19 ♀
Nacc17 ♂

132/136/138/144
132/150/162 Y 32

AnacB7 18 60 ◦C 152–198
F6 ♀× M7 ♂ F6 ♀

M7 ♂
166/172/174/176
154/156/164 Y 32

Nacc19 ♀× Nacc30 ♂ Nacc19 ♀
Nacc30 ♂

156/166/174
154/170/174/176 Y 32

AnacC11 18 50 ◦C 167–193 Not informative - - N -

AnacE4 * 18 58 ◦C 326–354 F5 ♀× M6 ♂ F5 ♀
M6 ♂

332/340/346/354
336/346 Y 32

AoxD161 19 60 ◦C 111–155

F4 ♀× M5 ♂ F4 ♀
M5 ♂

123/127/131/139
131/135/155 Y 30

F8 ♀× M2 ♂ F8 ♀
M2 ♂

123/131/135/139
127/131 Y 30

Nacc7 ♀× Nacc5 ♂ Nacc7 ♀
Nacc5 ♂

123/127/131/143
131/135/139 Y 32
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Table 1. Cont.

Locus Ref Ta Size Family Parents Genotypes Genotyped Fingerling (Y/N) #

AoxD234 * 19 52 ◦C 215–275

F2 ♀× M4 ♂ F2 ♀
M4 ♂

219/223/243/255
227/243 Y 30

F4 ♀× M5 ♂ F4 ♀
M5 ♂

227/243/247/251
235/239/255/259 Y 30

Nacc28 ♀× Nacc23 ♂ Nacc28 ♀
Nacc23 ♂

219/243/247/263
239/243/251/255 Y 24

F6 ♀× M7 ♂ F6 ♀
M7 ♂

227/243/247/255
219/239/247 Y 32

AoxD241 * 19 57 ◦C 156–196 F7 ♀× M8 ♂ F7 ♀
M8 ♂

168/176/180
164/172/176/184 Y 30

AoxD64 * 19 60 ◦C 216–260 Not informative - - N -

Spl-120 20 55 ◦C 263–303 Not informative - - N -

Spl-163 20 63 ◦C 166–233 F2 ♀× M4 ♂ F2 ♀
M4 ♂

207/215/220
166/215/224/229 Y 30

Spl-168 10 63 ◦C 200–314

F7 ♀× M8 ♂ F7 ♀
M8 ♂

232/240/294
218/236/271/273 Y 30

F4 ♀× M5 ♂ F4 ♀
M5 ♂

209/232/257/273
218/232/279/282 Y 30

F6 ♀× M7 ♂ F6 ♀
M7 ♂

227/236/271/286
240/245/264/269 Y 32

Nacc19 ♀× Nacc17 ♂ Nacc19 ♀
Nacc17 ♂

218/227/269/294
227/240/286/314 Y 32

Nacc7 ♀× Nacc5 ♂ Nacc7 ♀
Nacc5 ♂

232/245/264/294
214/240/273/279 Y 32

Nacc8 ♀× Nacc31 ♂ Nacc8 ♀
Nacc31 ♂

209/236/271/279
218/249/273/279 Y 32

Loci were used for genotyping of breeders for the selection of informative family/locus combinations for which
progeny was also processed. References, annealing temperatures used, and size are reported. For each informative
family/locus combination, the genotypes of each parent at such loci are also reported and the parent’s genotypes
for which the allele segregation was followed in the progeny is in bold. The total number of fingerlings processed
for each informative family is reported in the last column. * Loci for which the segregation inheritance pattern
was already explored in other familiar groups of the same species [12]. Y = Yes, N = Not processed. # = number of
analyzed individuals.

All breeders were genotyped at 21 microsatellite loci (Table 1) [7,15–20] to select the
informative Family/Locus combinations for the assessment of chromosomal segregation.
For each selected combination, the progeny was also amplified and genotyped. Tracking
segregation in the progeny requires the satisfaction of some features, such as (i) the complete
heterozygosity (four different alleles) of at least one parent to ensure that each allele can
unambiguously mark the segregation of its own chromosome and (ii) no more than an
allele shared by the two parents to avoid ambiguity in following the alleles transmission to
the progeny [12].

A total of 33 Family/Locus combinations were finally selected and approximately
30 fingerlings each were genotyped (Table 1). In 22 out of 33 case studies only one breeder
of the parent pair was completely heterozygote and therefore informative to follow the
segregation of the alleles, while for the remnant 11 Family/Locus combinations the seg-
regation pattern was followed for both breeders of the parent pair as both they showed
completely heterozygous genotypes with a single allele shared at most (Table 1).

Microsatellite loci were amplified from genomic DNA in a 10 µL reaction: 1X Master
Mix Buffer (QIAGEN), 0.2 µM of each primer and about 50 ng of genomic DNA. Amplifica-
tions were performed on SimpliAmp Thermal Cycler (Thermo Fisher Scientific, Bologna,
Italy). Amplifications were checked on 1.8% agarose gel in TBE1X stained with GelRed
(BIOTIUM, Fremont, Canada, GelRed™ Nucleic Acid Stain). Genotyping was performed
on ABI PRISM 310 Genetic Analyzer (external service, BMR Genomics, Padova, Italy).
For microsatellite scoring the software GeneMarker Version 1.95 (SoftGenetics LLC, State
College, PA, USA) was used.
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2.3. Data Analyses

Scoring was performed by two operators, independently, with GeneMarker Version
1.95 (SoftGenetics LLC). The final dataset was carefully checked, and each individual was
controlled for perfect Mendelian inheritance within his Family/Locus combination under
the assumption that the observed genotypes at a given locus should be compatible with
the inheritance of two allele copies from each parent. Individuals that for different possible
reasons discussed later did not match this assumption were discarded. Since discordances
with the above-accepted criterion can be attributed to anomalies in chromosomal segrega-
tion in the gametes of one parent, which are independent of what happened in the mating
partner’s gametes, it was decided not to discard those animals whose segregation anomaly
was due to a problem in the uninformative parent. Limiting our observations to those
animals that met standard inheritance of two out of four alleles, we consciously excluded
possible genotypes that were not necessarily derived from segregation anomalies such as
the case of double reduction, a phenomenon widely observed in autotetraploid plants in
which the four homolog chromosomes may form multivalents [21,22] in which identical
alleles carried on the sister chromatids may enter the same gamete with consequent segre-
gation of two copies of the same allele even if it was present in a single copy in the parental
genome [23]. We have decided to limit ambiguities by disregarding this phenomenon and
excluding all the individuals that could be compatible with it focusing on animals in which
alleles were unambiguously traceable.

As proposed by Stift et al. (2008) [10], Likelihood Ratio Tests (LRT) with 1 df were
applied to compare the null model of tetrasomy with the other alternative models inter-
mediate between disomic and tetrasomic. For each parent-locus combination and each
alternative inheritance model, the log-likelihood was estimated from constrained nonlin-
ear regression models, using SPSS syntax as reported in the original reference [10]. The
Sequential Bonferroni correction [24] was applied to adjust significance levels (p < 0.05) for
multiple comparisons across loci and families.

3. Results

From 22 to 32 individuals for each family-locus combination were successfully geno-
typed. In some cases, a few animals were discarded for unreliable profiles or, after the
allele scoring, due to the presence of segregation anomalies of alleles inherited from the
informative parent (Table 2).

At 11 (AfuG132, AfuG41, An20, Anac6784, Anac3133, AnacA6, AnacB11, AnacB7,
AnacE4, AoxD234, AoxD241) out of 14 informative loci the LRT did not lead to the rejection
of the null model of inheritance thus supporting the hypothesis of tetrasomy. At almost all
these loci, indeed, all six allele combinations were observed in almost all tested families
(Figure 1a, Table 2, Figure A1 of Appendix A). The only exceptions were the loci AoxD234
and Anac-3133 at a single family each showing only five allele combinations. However,
in both cases, the strict disomic inheritance was excluded after correction for multiple
tests (Table 2). In these two families, the sixth combination is expected to be detectable
by increasing the sample size. Five (An20, AnacA6, AnacE4, AoxD234, and AoxD241) of
the 11 loci showing tetrasomic inheritance were already tested to assess the inheritance
pattern in different familiar groups of Adriatic sturgeon [12] and their tetrasomy has been
here confirmed. Specifically, the locus AnacA6 here analysed at a single family showed
only four allele combinations but, missing combinations are not compatible with disomic
inheritance modality and even in this case the null model was not rejected.

On the contrary, a significant rejection of the null model was observed at three loci,
Spl163, AoxD161, and Spl168, analysed respectively at one, three and six families and
never analysed before in other studies. In some cases, the analysed families have both
parents informative for segregation and agree in suggesting a disomic mode of inheritance
(Table 2, Figure 1b, Figure A1 Appendix A). The disomic model fitted the observed allele
combination frequencies significantly better than the null model, and the parameter τ equal
to zero indicates a full disomic inheritance at almost all Family/Locus combinations. The
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only two exceptions were observed in the segregation of the alleles of female F8 at locus
AoxD161 and male Nacc31 at locus Spl168 (Table 2). In these two cases, five combinations of
alleles were present, the parameter τ assumed a very low value confirming a strong degree
of preferential pairing during meiosis but the rejection of the null model was not significant
after the Bonferroni correction, thus suggesting possible imperfect preferential pairing.

Table 2. Likelihood Ratio Test.

Locus Family Informative
Parent

N (Nd) Null Model (T = 1)
Likelihood Obs

Best Intermediate Model
Model

Comparison: LRT p-ValuesPairing
Alleles T Likelih-ood

Obs

Afug132

F5 ♀× M6 ♂ F5 ♀ 22 (8) 39.42 AC/BD 0.82 39.23 0.19 0.3322

F6 ♀× M7 ♂ M7 ♂ 29 (1) 51.96 AD/BC 0.83 51.74 0.22 0.3185

F8 ♀× M2 ♂ M2 ♂ 29 (1) 51.96 AB/CD 0.83 51.74 0.22 0.3185

Afug41

F8 ♀× M2 ♂ M2 ♂ 27 (3) 48.38 AC/BD 0.89 48.29 0.09 0.3853

F2 ♀× M4 ♂
F2 ♀ 27 (3) 48.38 AB/CD 0.78 48.03 0.35 0.2776

M4 ♂ 27 (3) 48.38 AB/CD 0.44 45.98 2.39 0.0609

F4 ♀× M4 ♂
F4 ♀ 29 (1) 51.96 AC/BD and

AD/BC 0.93 51.93 0.03 0.4259

M4 ♂ 29 (1) 51.96 AD/BC 0.83 51.74 0.22 0.3185

F6 ♀× M7 ♂
F6 ♀ 28 (2) 50.17 AD/BC 0.86 50.02 0.15 0.3509

M7 ♂ 28 (2) 50.17 AB/CD 0.86 50.02 0.15 0.3509

Nacc7 ♀× Nacc5 ♂
Nacc7 ♀ 28 (4) 50.17 AD/BC 0.64 49.21 0.96 0.1631

Nacc5 ♂ 28 (4) 50.17 AD/BC 0.75 49.71 0.46 0.2489

Nacc8 ♀× Nacc 31♂ Nacc8 ♀ 31 (1) 55.54 AD/BC 0.77 55.13 0.41 0.2603

An20 * F7 ♀× M8 ♂ M8 ♂ 30 (0) 53.75 AD/BC 0.70 53.03 0.72 0.1984

Anac6784 Nacc19 ♀× Nacc17 ♂ Nacc19 ♀ 30 (2) 53.75 AC/BD and
AD/BC 0.91 53.68 0.08 0.3912

Anac3133 F7 ♀× M8 ♂ M8 ♂ 29 (1) 51.96 AB/CD 0.41 49.06 2.90 0.0444 ª

AnacA6 * F5 ♀× M6 ♂ M6 ♂ 29 (1) 51.96 AB/CD and
AC/BD 0.72 51.38 0.58 0.2225

AnacB11
F6 ♀× M7 ♂ M7 ♂ 26 (4) 46.59 AB/CD 0.58 45.31 1.28 0.1290

Nacc19 ♀× Nacc17 ♂ Nacc19 ♀ 26 (6) 46.59 AB/CD 0.81 46.34 0.25 0.3088

AnacB7
F6 ♀× M7 ♂ F6 ♀ 27 (3) 48.38 AB/CD 0.67 47.57 0.80 0.1849

Nacc19 ♀× Nacc30 ♂ Nacc30 ♂ 32 (0) 57.34 AD/BC 0.94 57.30 0.03 0.4295

AnacE4 * F5 ♀× M6 ♂ F5 ♀ 28 (2) 50.17 AB/CD and
AD/BC 0.96 50.16 0.01 0.4622

AoxD161
F4 ♀× M5 ♂ F4 ♀ 29 (1) 51.96 AB/CD 0.00 40.20 11.76 0.0003
F8 ♀× M2 ♂ F8 ♀ 30 (0) 53.75 AC/BD 0.10 45.28 8.47 0.0018 ª

Nacc7 ♀× Nacc5 ♂ Nacc7 ♀ 32 0) 57.34 AD/BC 0.00 44.36 12.97 0.0002

AoxD234 *

F2 ♀× M4 ♂ F2 ♀ 27 (3) 48.38 AD/BC 0.89 48.29 0.09 0.3853

F4 ♀× M5 ♂
F4 ♀ 28 (2) 50.17 AD/BC 0.86 50.02 0.15 0.3509

M5 ♂ 28 (2) 50.17 AD/BC 0.64 49.21 0.96 0.1631

Nacc28 ♀× Nacc23 ♂
Nacc28 ♀ 23 (1) 41.21 AB/CD 0.78 40.93 0.28 0.2972

Nacc23 ♂ 23 (1) 41.21 AC/BD 0.26 37.29 3.92 0.0239 ª

F6 ♀× M7 ♂ F6 ♀ 29 (1) 51.96 AC/BD 0.52 50.07 1.89 0.0844

AoxD241 * F7 ♀× M8 ♂ M8 ♂ 29 (1) 51.96 AC/BD 0.72 51.38 0.58 0.2225
Spl163 F2 ♀× M4 ♂ M4 ♂ 28 (2) 50.17 AC/BD 0.00 38.82 11.35 0.0004

Spl168

F7 ♀× M8 ♂ M8 ♂ 26 (4) 46.59 AB/CD 0.00 36.04 10.54 0.0006

F4 ♀× M5 ♂ F4 ♀ 30 (0) 53.75 AB/CD 0.00 41.59 12.16 0.0002
M5 ♂ 30 (0) 53.75 AB/CD 0.00 41.59 12.16 0.0002

F6 ♀× M7 ♂ F6 ♀ 29 (1) 51.96 AB/CD 0.00 40.20 11.76 0.0003
M7 ♂ 29 (1) 51.96 AB/CD 0.00 40.20 11.76 0.0003

Nacc19 ♀× Nacc17 ♂
Nacc19 ♀ 23 (9) 41.21 AB/CD 0.00 31.88 9.33 0.0011
Nacc17 ♂ 23 (9) 41.21 AB/CD 0.00 31.88 9.33 0.0011
Nacc17 ♂ 23 (9) 41.21 AB/CD 0.00 31.88 9.33 0.0011

Nacc7 ♀× Nacc5 ♂ Nacc7 ♀ 32 (0) 57.34 AB/CD 0.00 44.36 12.97 0.0002
Nacc5 ♂ 32 (0) 57.34 AB/CD 0.00 44.36 12.97 0.0002
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Table 2. Cont.

Locus Family Informative
Parent

N (Nd) Null Model (T = 1)
Likelihood Obs

Best Intermediate Model
Model

Comparison: LRT p-ValuesPairing
Alleles T Likelih-ood

Obs
Nacc8 ♀× Nacc31 ♂ Nacc8 ♀ 29 (3) 51.96 AB/CD 0.00 40.20 11.76 0.0003

Nacc31 ♂ 29 (3) 51.96 AB/CD 0.10 43.86 8.10 0.0022 ª

Results of Likelihood Ratio Test between the null model of tetrasomy (TAU = 1) and the best fitting intermediate
one (TAU estimated). Significant p-values (after Bonferroni correction) that reject the null hypothesis of tetrasomy
are highlighted in grey. ª not significant values after Bonferroni correction for multiple tests. * Loci for which the
segregation inheritance pattern was already explored in other familiar groups of the same species [12].

Expected allele combinations in tetrasomic and disomic mode of inheritance in tetraploids.
(a) Observed allele combinations inherited from a complete heterozygote parent in au-
totetraploids in which tetrads are generated during meiosis and random segregation of
allele pairs is expected. In brackets, the number of individuals carrying the relative allele
combination is reported. (b) Observed allele combinations inherited from a complete
heterozygote parent in allotetraploids in which a preferential pair between homologous
chromosomes occurs. Only four possible gametes are expected. Alleles of the parent for
which the segregation is reported in each table are marked in bold and by a letter used to
indicate the observed combinations. Complete tables for all loci are reported in Appendix A.
(Created with BioRender.com, accessed on 8 August 2022).

4. Discussion

The segregation pattern observed in the present study at most loci indicates that the
Adriatic sturgeon can be considered predominantly tetraploid with a tetrasomic inheritance
pattern. The presence of three disomic loci, however, indicates that the functional diversi-
fication process is at different stages in different parts of the genome, with some regions
possibly still octaploid, most tetraploid, and some others in which the degree of divergence
has gone up to a condition of double diploidy. We also observed the presence of two loci
with a marked tendency to disomy with a few unexpected allele combinations, pointing
to a possible imperfect preferential pairing expected at intermediate stages of functional
diploidization [10,11]; this coexistence of different ploidy levels was previously described
in other organisms. In plants, for example, the co-existence of different segregation patterns
(e.g., tetrasomic and disomic) with different intermediate degrees of preferential pairing
among chromosomes provides evidence of a process of functional reduction of ploidy
which reasonably cannot occur simultaneously throughout the genome, but which is the
result of a progressive differentiation [11,25].

As for the sturgeons, in other species the presence of different degrees of ploidy has
been deduced based on the maximum number of alleles per individual present at the
different loci [16] and, in some cases, the Mendelian transmission in the progeny has
also been verified [15,26,27]. However, the selection of the cross/locus combinations to
allow the traceability of every single allele and consequently to distinguish between the
different modes of tetraploid segregation (e.g., disomic, tetrasomic or intermediate) has
been conducted to our knowledge only on the Adriatic sturgeon.

The evidence that the level of homology between chromosomes within the Adriatic
sturgeon genome is likely to vary from chromosome to chromosome and that different
parts of the genome may consequently have different degrees of functional ploidy (2 to
8) should be considered when characterizing the genome of this species and probably of
sturgeons in general. Genome assembly procedures must contemplate the possibility that
different regions are present with a variable number of copies.

Whatever the evolutionary origin and implications of our results, which can be better
investigated only when the genome of this species will be available, the identification of
different inheritance pattern at different markers may have practical consequences for the
conservation of the Adriatic sturgeon. In fact, our findings suggest that before developing
parental allocation methods, a preliminary analysis of the loci used is recommended; this
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would ease the reconstruction of individual genealogies of animals kept as captive breeders
and the reallocation of any individual recaptured after release. Another interesting and
relatively unexplored aspect of sturgeon ex situ conservation in which a clear knowledge of
the inheritance patterns at different loci could be useful is the monitoring of the genomic im-
pact of breeding protocols. Captive breeding is usually performed following standardized
protocols of hormonal induction of egg and milt release and fertilization is done in an excess
of sperms. Then, the resulting viable progeny is released without verifying if the procedure
used had some effect on their genomic asset, for example, by inducing aneuploidies, which
are a common phenomenon in some captive sturgeon stocks [28]. The release in nature of
genetically anomalous individuals should be avoided as the consequences that this can
have on the following generations and on their reproductive efficiency is unknown and, in
the case of animals with long generation times, could be revealed after decades. Random
screening of familiar groups to verify the correct parents-to-progeny segregation at both
disomic and tetrasomic loci could significantly contribute to reducing the potential impact
of genomic anomalies on natural populations.

5. Conclusions

Thanks to the availability of some family groups not previously analyzed, it was
possible to better investigate the patterns of chromosomal segregation in the polyploid
Adriatic sturgeon. The picture that emerged is that of an extremely dynamic genome in
which it is possible to find the co-existence of regions with different degrees of ploidy, some
of which retain the legacy of ancient duplications and others show a dynamic reduction of
functional ploidy; this pattern is probably shared with other polyploid sturgeons in which
different patterns of segregation have been observed [27], but it is not known whether the
same genomic regions are involved.

Additional studies are required to better characterize the distribution of ploidy across
the genome; this will likely contribute to explaining some specific features of the sturgeons,
such as the ability of species with different degrees of ploidy to hybridize and produce
viable offspring [29]; this extreme genomic plasticity could somehow be linked to a high de-
gree of genomic redundancy; it would also be very interesting to verify whether the regions
with different segregation patterns are somehow related to the size of the chromosomes,
which in sturgeons is known to be very variable, with a small number of large chromosomes
and a high number of micro-chromosomes. However, until complete genomes of good
quality are available, it is difficult to move beyond speculation on these topics.
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Figure A1. Total segregation results. Single-locus microsatellite inheritance for each studied stur-
geon family. Microsatellite alleles of parents are reported as sizes in bp. For families in which both 
parents are informative, two different schemes are shown. The 4 alleles of the informative parents 
are highlighted in bold and marked with capital letters A, B, C, D for females and E, F, G, H for 
males, also used to label allele combinations observed in the progeny. The number of F1 in which 
each combination has been observed is reported in brackets. Missing combinations are marked in 
grey. 
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Figure A1. Total segregation results. Single-locus microsatellite inheritance for each studied sturgeon
family. Microsatellite alleles of parents are reported as sizes in bp. For families in which both
parents are informative, two different schemes are shown. The 4 alleles of the informative parents are
highlighted in bold and marked with capital letters A, B, C, D for females and E, F, G, H for males,
also used to label allele combinations observed in the progeny. The number of F1 in which each
combination has been observed is reported in brackets. Missing combinations are marked in grey.
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