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Abstract

Two state-space representations, also known as state-space models (SSMs), are pro-

posed to estimate dynamic spatial relationships from time series data. At each time

step, the weight matrix, which captures the latent state, is updated in the context of

a spatial autoregressive process. Specifically, two types of SSMs are considered: the

first one identifies the spatial effects in the form of multivariate regression, where the

higher orders of the spatial matrix are introduced to the regression coefficient, while

the second one updates the spatial matrix taking advantage of the likelihood function

of a spatial autoregressive (SAR) model. Different filtering algorithms are proposed to

estimate the latent state. The simulation results show that the first state-space rep-

resentation performs better in both lower-dimensional and higher-dimensional cases,

while the performance of the second representation is sensitive to the state dimension.

In a real-world case study, the time-varying weight matrices are estimated with weekly
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credit default swap (CDS) data for 16 banks, and the results show that the methods

can identify communities that are consistent with the country-driven partition.

Keywords: state-space model, dynamic network, spatial dependence, sequential fil-

ters.

JEL Codes: C32, C33 and C51.

1 Introduction

Panel spatial econometrics has seen increasing popularity and has been applied in a wide

range of fields, from regional science to social science (Anselin, 2010). By specifying and

estimating the latent connections among the observations collected from different subjects

or regions, one could gain a more in-depth understanding of the underlying relationships or

network structures. However, there are two main problems that arise when applying spatial

econometric models in practice. First, the weight matrix has to be prespecified based on

certain prior knowledge, and an inappropriate spatial weight matrix can introduce extra

model uncertainties (LeSage and Pace, 2014; LeSage and Fischer, 2008; Getis and Aldstadt,

2004). Second, conventionally, in spatial models, the weight matrix is always assumed to be

time invariant. This might be true for the cases where the geographical/physical distance

between subjects is fixed and known a priori; but when it comes to other fields, such as social

sciences, the relationship between subjects could be time varying. For instance, in the field

of finance, the network effects across financial institutions, which are strongly connected to

systemic risk, could evolve in a dynamic fashion over time (Billio et al., 2016; Alter and

Beyer, 2014; Elliott et al., 2014; Diebold and Yılmaz, 2014; Billio et al., 2012) in response to

a variety of causes, such as changing debt relationships between banks, or newly listed risky

assets in the balance sheet of a bank.

The estimation of spatial model is well discussed in the literature, but, as mentioned
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above, the weight matrix is assumed to be known or could be parametrised. Some commonly

used estimation methods include maximum likelihood (Ord, 1975; LeSage and Pace, 2007)

and, generalised method of moments (Kelejian and Prucha, 1999). There are also approaches

for estimating the weight matrix on a bivariate basis, i.e. estimating the presence of each

edge. As for estimating the full weight matrix, one of the early proposals is reported in

Meen (1996), where the ordinary least squares (OLS) method is applied for the matrix

estimation. Bhattacharjee and Jensen-Butler (2013) estimate the full weight matrix based on

the assumption that the matrix is symmetric. In recent years, several papers have proposed

estimating the full weight matrix by two-stage least squares estimation; see, among others,

Ahrens and Bhattacharjee (2015) and Lam and Souza (2019). When it comes to estimating

the time-varying full weight matrix, to our knowledge, there have been few such attempts.

One of the related methods is the time-varying Vector Auto Regression (VAR) (Kimura et al.,

2003; Haslbeck et al., 2020), which can also estimate the network matrices dynamically, but,

rather than the simultaneity that is assumed in spatial models, it assumes a cross-lagged

dependency.

To tackle these problems, we propose innovative methods for estimating the time-varying

spatial dependencies across subjects. Specifically, we integrate a spatial model into a state-

space model such that the weight matrix, as the hidden state, can be updated at each step.

There are different specifications for spatial models, such as the SAR model, the spatial error

model (SEM) and the spatial Durbin model (SDM) (LeSage and Pace, 2009). Without losing

generality, we illustrate our method with a simple spatial autoregression, which includes only

a spatial lag term. One could easily extend the methods by integrating them into spatial

models characterised by different levels of complexity.

In particular, we propose two state-space representations for updating simultaneous de-

pendencies. In the first specification, the hidden weight matrix is updated as a coefficient

matrix, while, in the second one, the spatial autoregression is fully applied, and the matrix
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is updated by building on the model likelihood. Simulations show that, although the first

specification interprets the simultaneous effects differently from a spatial model, by intro-

ducing higher order of the weight matrix it could efficiently deliver a reasonable and robust

model estimation. By contrast, the second model works well in low-dimensional cases, but

does not perform as well in higher dimensions. Moreover, the simulations show that the

filter performances require relative long time series for appropriate identification of the la-

tent network dynamic. After comparing the two representations using simulated data, we

consider a real-case study. Specifically, we apply the models on a credit default swaps (CDS)

dataset and show that the country-driven communities can be successfully identified from

the estimated matrices.

The paper is organised as follows. In Section 2, we introduce the two state-space repre-

sentations and the corresponding filtering algorithms for state estimation. The simulation

results are then reported in Section 3, while the sensitivity analyses are presented in Section

4. In Section 5, we present the empirical results for weekly CDS data. Section 6 concludes

the paper.

2 The model and the state-space representations

We start with a SAR process,

yt = ρW̃yt + εt, εt ∼ N (0, σ2
ε ID), (1)

where yt is a D × 1 column vector representing D subjects observed at time t, εt is a vector

of independent and homoscedastic errors with variance σ2
ε and ID denotes a D×D identity

matrix. Moreover, W̃ is a D × D matrix that captures the static dependencies between

each pair of time series. The diagonal entries of W̃ are zeros, and the matrix is usually row
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normalised. In addition, W̃yt is usually called spatial lag, echoing the term “time lag”used

in the autoregressive model (AR). Typically, ρ is a scalar coefficient with |ρ| < 1, which

measures the average strength of the spatial relationships. The constraint on ρ together

with the row-normalization of W̃ ensure the invertibility of I−ρW̃ . As discussed in Caporin

and Paruolo (2015), ρ could be generalised to a diagonal matrix; in this case, model (1)

becomes more flexible, as it allows for defining distinct diagonal entries instead of an unique

ρ, such that the strength of the spatial effects can be specified or estimated for each subject.

To estimate a sequence of time-varying weight matrices, i.e. Wt, we propose setting up

a model with a proper state-space representation whose observation equation has a form

similar to model (1). The difference is that, in model (1), W is a constant; but in our model,

Wt is regarded as the state and, thus, has a dynamic evolution. Specifically, we propose the

following model (in state-space form),

 yt = Wtyt + εt, εt ∼ N (0, σ2
ε ID)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (2)

where ρW̃ from (1) is replaced with Wt, denoting the scaled full weight matrix that is to be

updated at each step. In the second equation (the transition equation), the state xt is the

vectorisation of the off-diagonal elements of Wt, and Dx denotes the dimension of the state

Dx = D × (D − 1). Finally, εt and ηt are the vectors of independent and homoscedastic

noises, with a constant variance σ2
ε and σ2

η, respectively.

Notice that ρt is not estimated directly in (2) but by further specification, and both W̃t

and ρt can be recovered from Wt. In this paper, we define the scalar ρt as the maximum row

sum of Wt, i.e.

ρt = max
i

D∑
j=1

Wi,j,t,

such that the normalised weight matrix W̃t can be obtained by W̃t = Wt/ρt. The maximum
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row sum of W̃t is always equal to 1. The constraint |ρt| < 1 is still required to achieve the

invertibility of I−ρtW̃t. However, we find that it is not necessary to implement this constraint

specifically for model identification. As shown in the simulation analysis, ρt always converges

with Wt, thus excluding the possibility of exploding patterns, associated with singularities

in the I − ρtW̃t sequence.

The structure of out model does not exclude residuals correlation. Applied works often

suggest that spatial dependence could be also present among residuals, and this might be

captured by adopting a SEM, where the spatial dependence matrix is usually known. In

our setting, we are forced to introduce a hypothesis of orthogonality among the innovations

for identification reasons. In fact, it would be, in general, impossible to disentangle a latent

time varying spatial dependence typical of a SAR-type model from the correlation among

innovations; the latter would be at least partly captured by the dynamic evolution of Wt

that would thus proxy for the possible presence of correlation among the εt.

Searching for the optimal parameters for model (2) is not straightforward. On the one

hand, one could simplify the model and regard the observation equation as a regression.

This option might lead to biased estimates, as we will see below, but the model, in its

simplest form, could easily be solved using a Kalman filter (KF). On the other hand, one

could update Wt strictly according to the spatial model. The challenge along this direction

is that the state is high-dimensional and only interacts with the covariance matrix of the

observations. In the following subsections, both options are investigated by designing two

alternative state-space representations, named M1 and M2.

2.1 The state-space representation M1

The first attempt to estimate the time-invariant weight matrix within a spatial error model

by an OLS estimator was made by Meen (1996). Although OLS estimation for SAR is biased

and inconsistent (Anselin, 2013; Kelejian and Prucha, 2002; Lee, 2002), the method provides
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a simple solution for the state-space model (2) in the sense that the observation equation

can be regarded as a normal multivariate regression and Wt can be updated dynamically as

the coefficient matrix.

To better understand the relationship between the coefficient matrix in the context of

least squares and the weight matrix in the spatial model, we resort to a linear model repre-

sentation. In fact, the spatial model (1) can be more properly represented in the form of a

linear model, i.e.,

yt = Wyt + εt, εt ∼ N (0, R), (3)

where R is a general covariance matrix that measures the correlations among the disturbance

term. Thus, the spatial effects, which are driven solely by the weight matrix in a spatial

model, might be captured by two matrices here, i.e. W and R in (3). To estimate time-

varying spatial effects with an SSM while allowing for the presence of correlation among

innovations at each time step t, one possible solution is to regard both matrices Wt and

Rt as the state (thus allowing for possible time variation in R), such that they can be

estimated dynamically. However, this would double the number of parameters without

giving a clear solution to the possible joint effect between the two sources of contemporaneous

interdependence. In fact, we might expect Wt to also capture the spatial effects that would be

represented by Rt, as we commented in the previous section when touching the identification

issue.

To tackle the problem, we first consider the following series expansion of the SAR model

(Debreu and Herstein, 1953; Horn and Johnson, 2012)

yt = (I −W )−1εt = (I +W +W 2 +W 3...)εt. (4)

Here the spatial effect is decomposed into elements with different orders of W , which repre-

sent the different orders of the spillover effect. For example, W 2 measures the indirect effect
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of second-order neighbours (LeSage, 2008). Thus, the simultaneous effect can be interpreted

as a combination of the direct effects, addressed by W , and the indirect effects, addressed

by the power of W (i.e., W k, with k > 1).

Inspired by the expansion form in (4), we propose augmenting the state-space model

(2) with higher orders of Wt. This modification allows us to take into account the indirect

effects and has benefits with regard to the estimation of Wt. The proposed state-space

representation, denoted M1, becomes then as follows


yt =

K∑
k=1

W k
t yt + εt, εt ∼ N (0, σ2

ε ID)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (5)

where k is the order of Wt and k = 1, 2, ..., K. We note that R in (3) is not introduced

in this state-space representation, as we expect that Wt and its higher orders in (5) can

capture also the interdependence among disturbances. Thus, εt is assumed to be independent

and identically distributed. We stress that such a model might be misspecified; this holds

when data combine a time varying Wt with correlations in the residuals, i.e. R is not

diagonal. Nevertheless, the introduction of powers of Wt would be of help in capturing the

interdependence among observations when this is governed by two different forces.

The state-space representation (5) cannot be solved by the Kalman filter (KF) when

K > 1, as the state-space is non-linear. We suggest using the Stochastic Ensemble Kalman

Filter (SEKF) (Burgers et al., 1998; Houtekamer and Mitchell, 1998), which is a Monte Carlo

method based on the framework of the Kalman filter.

A.1 and A.2 include pseudo-algorithms for KF and SEKF, respectively. Here, we briefly

describe the filtering process specifically adopted for the state-space representation (5) under

SEKF. First, we generate N initial samples from a multivariate normal distribution, i.e.

x
(i)
0 ∼ N (µ0, σ

2
0IDx) (i = 1, ..., N), where µ0 and σ2

0 are the initial guesses for the state mean
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and variance, respectively. We assume the same initial state mean, i.e. µ0 = 1µ0, with 1

being a vector of ones, and µ0 being a scalar. The initial state variance is a diagonal matrix,

as the states are assumed to be independent. Thus, each sample x
(i)
0 is a vector of dimension

D(D − 1)× 1, which is then transformed into a sample weight matrix W
(i)
0 . Similar to KF,

each iteration of SEKF includes a forecast step and an update step. In the forecast step,

we forecast the i-th state x̃
(i)
t and the i-th observation ỹ

(i)
t by propagating the sample x

(i)
t−1,

which is obtained from the previous step through the state equation and the observation

equation given in (5), respectively. In the update step, the Kalman gain is estimated from

sample forecasts, as both the covariance matrix Cov(x̃t, ỹt) and the variance V ar(ỹt) can

be calculated from x̃
(i)
t and ỹ

(i)
t . Then, the sample forecasts x̃

(i)
t are updated to x

(i)
t with

the Kalman gain, and the state mean xt is equal to the sample mean, i.e. 1
N

N∑
i

x
(i)
t . Note

that, as SEKF propagates the samples through the state space and estimates the first two

moments of the state at each iteration, it is capable of dealing both with linear and non-linear

state-space representations, with the only requirement being that the sample state should

be properly propagated. Like KF, SEKF also assumes that the distribution of the states is

Gaussian.

In the following, we also label the representation adopting the maximum order of Wt,

such as M1,K=1 for model M1 with K = 1, M1,K=2 for model M1 with K = 2, etc.

2.2 The state-space representation M2

The second approach we propose relies on the likelihood function of SAR.

Ord (1975) was the first to propose the use of maximum likelihood for the estimation of a

spatial model; maximum likelihood asymptotic properties are summarised in Anselin (2013).

In our case, we use the model likelihood within a filtering algorithm. We first rewrite the
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state-space model (2) in a reduced form,

 yt = (ID −Wt)
−1εt, εt ∼ N (0, σ2

ε ID)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (6)

and denote it as representation M2.

To solve the filtering problems associated withM2, we consider Sequential Monte Carlo

(SMC), which estimates the posterior distribution by importance sampling. The simplest

form of SMC is the Standard Particle Filter (SPF), which assumes that the proposal distri-

bution is identical to the prior distribution, i.e. qt(xt|xt−1) = p(xt|xt−1), where qt(xt|xt−1)

denotes the proposal density at step t, and p(xt|xt−1) and p(yt|xt) denote the prior den-

sity and the likelihood, respectively. Thus, the importance weights are proportional to the

likelihoods, i.e.,

w
(j)
t ∝

p(yt|x(j)t )p(x
(j)
t |x

(j)
t−1)

qt(x
(j)
t |x

(j)
t−1)

= p(yt|x(j)t ),

where w
(j)
t denotes the importance weight of particle j at step t. In the case ofM2, applying

the SPF is straightforward as its log-likelihood function is well-studied, i.e.

l(Wt|yt) = −D
2

log(2π)− D

2
log(σ2

ε ) + log |At| −
1

2σ2
ε

(Atyt)
T (Atyt), (7)

where At = ID −Wt, and |At| denotes the determinant of At.

The SPF has, however, some shortcomings. In fact, the particle filter suffers from the

so-called curse of dimensionality (Snyder et al., 2008). Even for a small network matrix,

such as D = 10 or D = 20, the state dimension can be in the order of hundreds, which

is a daunting task for the SPF. In the literature, different methods have been proposed to

improve the performance of the particle filter in high-dimensional cases; see Khan et al. (2005)

and Andrieu et al. (2010), among many others. Here, we choose to apply the variational
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sequential Monte Carlo (VSMC), which has been recently introduced by Naesseth et al.

(2018). VSMC estimates the state with a variational method, where the Kullback-Leibler

(KL) distance monitors the divergence between the posterior distribution of the state and

the proposed distribution. Different from KF and SEKF, which are online methods, VSMC

is often defined as an offline method, as it optimises the filter over the whole dataset.

In this paper, we use a proposal distribution qt(xt|xt−1) = N (αt + xt−1, σ
2
qIDx), where

αt, a Dx × 1 vector, is the only parameter to be optimised, while the variance σ2
q in the

proposal distribution is set to be equal to the state variance σ2
η in the prior distribution.

The optimisation process for the state-space representation (6) works as follows; to avoid

confusion, from now on, we use the notation am,t, where m = 1, ...,M and t = 1, ..., T , which

indicate the optimisation step and the filtering step, respectively. First, we generate a series

of initial proposal parameters {am=0,t=1,...,T}. Each element of vector a0,t is generated from a

normal distribution N (0, 0.01). Then, we start the optimisation process, which includes M

iterations. In each optimisation step, the sequence {am,t=1,...,T} is optimised to {am+1,t=1,...,T}

by calculating the gradients of the surrogate evidence lower bound (ELBO), which can be

obtained empirically by averaging the sample weights in SMC, i.e.
∑T

t=1 log
(

1
N

∑N
j=1w

(j)
t

)
.

In particular, the weight of the j-th particle at step t is measured by

w
(j)
t ∝

p(yt|x(j)t )p(x
(j)
t |x

(j)
t−1)

qt(x
(j)
t |x

(j)
t−1, αm,t)

.

In the end, the final state mean is estimated by running a SPF with optimal parameter

{αm=M,t=1,...,T}. We refer to A.3 for details of the VSMC algorithm.
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3 Simulations

To study the performance of the two state-space representations and of the associated filter-

ing algorithms, we first generate the series {yt,Wt} and then examine whether the hidden

matrices can be correctly estimated from the observation {yt}. Specifically, two scenarios

for the data generation are considered (see Algorithms 1 and 2 below). In the first sce-

nario, Wt is designed to have some given patterns such that we could visualise the similarity

between the generated and estimated weight matrices. In the second scenario, to mimic

real-world instances, we let Wt evolve stochastically. In each scenario, two different matrix

sizes are tested, i.e. D = 10 and D = 20. Note that, in both data generating processes,

the observations are generated according to a SAR model. In theory, this would give M2

some advantage, as it integrates the same SAR process, while M1 implies a different way

for estimating W .

As discussed in the previous section, M1 is estimated by SEKF, and M2 is estimated

by VSMC. The performance of the filter can be influenced by its sample/particle size. After

a preliminary testing (available upon request, see Section 4 for a sensitivity analysis), we

decided to use the following parameter values, which lead to an optimal balance between the

performance of the filters and their computational cost.

For SEKF, we apply N = 10000 samples. As for VSMC, we set the number of optimisa-

tion iterations as M = 100 (Algorithm 6) and the number of particles N = 10 (Algorithm

7). After obtaining the optimised proposal parameter αM , the state is estimated by running

the particle filter once with optimal αM . For the final state estimation, we use N = 10000

particles.
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3.1 Scenario 1: The patterned Wt

In the first scenario, we assume that Wt is sparse and the non-zero entries only exist in the

blocks along the diagonal of the matrix. This is a baseline model that can allow to point

out also visually the performance of the proposed methods. To that end, the initial weight

matrix W0 is generated in a specific block form

W10×10 =

W5×5 0

0 W5×5

 , W20×20 =



W5×5 0 0 0

0 W5×5 0 0

0 0 W5×5 0

0 0 0 W5×5


, (8)

where WD×D denotes the D×D weight matrix, and the entries for each diagonal block W5×5

are generated randomly by

 Wij ∼ U(0, 0.3), i 6= j

Wij = 0, i = j
, (9)

where U(a, b) denotes the uniform distribution between a and b. As there are four non-zero

entries on each row of W0 and the row sum must be less than one, we choose b = 0.3 such

that the average row sum is expected to be 0.6.

The series of observations {yt} and the latent states {xt} are generated according to

Algorithm 1, where T = 500, σ2
ε = 1 and σ2

η = 1× 10−2. xt and x0 are the vectorisation of

the off-diagonal entries of Wt and W0, respectively. In this scenario, Wt is, in fact, a series

of perturbed W0 such that the pattern is kept invariant.

We consider B = 100 runs for D = 10 and D = 20, separately. In fact, the evaluation

for even a single run is based on a large set of data (500 observations and a big tensor

containing the series of the hidden matrices, such as 20× 20× 500 when D = 20). We apply
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Algorithm 1 : The data-generating process for Scenario 1

Generate initial weight matrix W0 with (8) and (9).
for t = 1, ..., T do

xt = x0 + ηt, ηt ∼ N (0, σ2
ηIDx)

yt = (I −Wt)
−1εt, εt ∼ N (0, σ2

ε ID)
end for
Output: {xt, yt}, t = 1, ..., T

the state-space representation M1 and M2 on each set of data and compare the estimated

weight matrices, denoted as Ŵt, with the generated matrices Wt. As input for the filters, we

set the initial parameter as follows: µ0 = 1/D, σ0 = 1/D, σ2
ε = 1 and σ2

η = 1× 10−6. Notice

that a very small value is chosen for the state variance, which is different from the value

applied in the data generating process, as, with smaller variance, the estimation is expected

to be rather smooth and stable.

First, we evaluate the outcome by visualising the recovered pattern from a single run in

case of D = 10. Figure 1 presents the generated matrix Wt and the estimated matrices Ŵt at

the final step (t = 500). As described before, we generate the sparse weight matrix W10×10

with two communities, which could be easily identified in Panel (a). Similar patterns could

also be observed in the other three panels (b, c and d); this implies that both models are

effective, at least, in terms of extracting some key features of the hidden matrix.

Second, to compare the performance, we compute the mean squared errors (MSE), which

represents the distance between the generated and the estimated weight matrices, defined as

follows:

MSE(Wt, Ŵt) =
1

D2

D∑
i=1

D∑
j=1

(Wi,j,t − Ŵi,j,t)
2.

Panels (a) and (b) in Figure 2 report the average MSE at each step for D = 10 and D = 20,

respectively. As the filter SEKF for M1 is an online method, we notice it requires around

100 steps to converge when D = 10 and around 200 steps when D = 20. The curves forM1

with a larger K (i.e., K > 3), which are available upon request, exhibit similar properties.
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(a) W500 (true) (b) W500 ( 1, K = 1)

(c) W500 ( 1, K = 2) (d) W500 ( 2)

0.3
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Figure 1: (a) the 500th generated weight matrix; (b) the 500th weight matrix estimated
using M1,K=1; (c) the 500th weight matrix estimated using M1,K=2; (d) the 500th weight
matrix estimated using M2.

In contrast, as M2 is solved by an offline method, the estimates (the blue line) are more

stable over time.

Further, we summarise the quantiles of MSEs for each state-space model in Panels (c)

and (d) in Figure 2. The MSEs obtained during the warm-up period (i.e., 200 steps) are
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omitted, so there are 100× 300 = 30000 MSEs available for each model. The representation

M1 is evaluated for value of K up to five. Similar evidence is observed for D = 10 (Panels

(a) and (c)) and D = 20 (Panels (b) and (d)).

First, Panels (c) and (d) indicate that K = 2 is an optimal truncating point for M1.

Compared to M1,K=1, the performance of M1,K=2 improves significantly. But as K further

increases, the performance stops improving; in contrast, the median MSE begins mildly

targeting the opposite direction. The possible reason for this is that the third or higher order

of Wt could only deliver marginal information, which is completely offset by the additional

noise being introduced due to the increased model complexity.

Second, in terms of the median value, we see that M2 works reasonably well in case

of D = 10, where its median MSE achieves a value nearly as low as the median MSE of

M1,K=2. However, in case of a higher dimension (D = 20), the performance of M2 looks

worse. Furthermore, M2 also shows a much wider quantile range, which can be linked to

the extreme complexity of particle filters in high dimensions.

Besides similarity, it is also important to examine other properties of the estimated weight

matrices, such as the scaling of the matrix, and see how they evolve over time. Figure 3

displays the average value of the Frobenius norm and the maximum row sum ρt of the

weight matrices. The curves show that, in all cases, the M1,K=1 estimates (the green line)

deviate the most from the generated data (the grey line); in contrast, the estimation from the

representations involving the higher order of weight matrix, i.e. M1,K=2 andM2, are much

closer to the true values. Thereby, this evidence suggests another advantage of including

the second order of Wt for M1, which is that it gives better control over the scale of the

estimated matrices.
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Figure 2: (a) and (b): the average of MSEs (B = 100 simulations) at each step. (c) and
(d): Boxplots of MSEs. Each box summarises the quantiles of 30000 MSEs (100 simulations
and 300 MSEs in each simulation). The measures in the warm-up period (i.e. 200 steps) are
omitted.

3.2 Scenario 2: The stochastic Wt

In Scenario 2, the initial weight matrix W0 is also generated by (8), but, in contrast to

Scenario 1, Wt then evolves stochastically. The data generating process is described in

Algorithm 2, where T = 500, σ2
ε = 1 and σ2

η = 1× 10−6. Note that, to guarantee that Wt

evolves in a meaningful range, we set some constraints: at the beginning of each step, Wt−1

is maximum-row normalised, and the coefficient 0.9 is applied for generating xt. Thus, the

applied ρt, which is the maximum row sum of Wt, is always around 0.9, and the resulting
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Figure 3: (a) and (b), the average Frobenius norm; (c) and (d), the average ρt.

W̃t matrices are persistent, coherently with the empirical evidence based on the data used

in Section 5, and not leading to singularities in I − ρtW̃t.

Algorithm 2 : The data-generating process for Scenario 2

Generate initial weight matrix W0 with (8) and (9).
for t = 1, ..., T do

W̃t−1 = Wt−1/ρt−1
xt = 0.9 ∗ x̃t−1 + ηt, ηt ∼ N (0, σ2

ηIDx)
yt = (I −Wt)

−1εt, εt ∼ N (0, σ2
ε ID)

end for
Output: {xt, yt}, t = 1, ..., T
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To evaluate the performance ofM1 andM2, we follow the same procedure as that used

in Scenario 1. As the results are consistent with the evidence shown in the previous section,

we report the results in B for interested readers, while, here, we evaluate whether the filters

perform differently in the two scenarios.

In Table 1, we summarise the statistics of MSEs for both scenarios. By comparing them,

we could see that the average MSEs in Scenario 2 are slightly higher than those in Scenario

1. This is reasonable, as the hidden state Wt in Scenario 2 keeps evolving, which means that

the filter has to catch up with the varying hidden state constantly, whereas, in Scenario 1,

the filter’s effort is concentrated in the warm-up period. Furthermore, we also report the

average CPU times (in seconds) in Table 1, which show that the running time grows with

the state dimension. In particular, when the state dimension increases by a factor of four,

from 90 to 380, the CPU time consumed by M1,K=2 and M2 grows by a factor of three.

Scenario 1 Scenario 2

model avg std CPU time(s) avg std CPU time(s)

D = 10

M1,K=1 0.00477 0.00055 39 0.00497 0.00069 35
M1,K=2 0.00336 0.00055 77 0.00371 0.00069 78
M1,K=3 0.00360 0.00061 93 0.00397 0.00072 92
M1,K=4 0.00358 0.00058 119 0.00398 0.00071 112
M1,K=5 0.00365 0.00061 152 0.00405 0.00075 142
M2 0.00373 0.00125 499 0.00425 0.00154 473

D = 20

M1,K=1 0.00182 0.00015 169 0.00184 0.00021 176
M1,K=2 0.00143 0.00014 199 0.00150 0.00023 224
M1,K=3 0.00146 0.00015 242 0.00153 0.00025 235
M1,K=4 0.00149 0.00015 274 0.00154 0.00025 288
M1,K=5 0.00149 0.00015 315 0.00156 0.00027 325
M2 0.00202 0.00029 1562 0.00208 0.00038 1665

Table 1: The mean and the standard deviation of the MSEs (B = 100 simulations); Columns
5 and 8 reports the average computing time on an Intel Core i5-7200U Processor.
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4 Sensitivity analysis

The performance of the filters employed to recover the latent Wt might be influenced by

the various settings that we adopt in the simulation exercise. To check robustness of the

proposed methods as well to provide some guidelines on how to specify these settings in

real-world analyses, we provide a set of additional results that focus on the sensitivity of the

filter performances to the different parameter values.

4.1 Parameter settings for M1

In the previous section, we assumed R = σ2
ε ID for both simulations designs. In fact, we as-

sume that Wt, together with its higher orders, represents the only source of contemporaneous

interdependence, i.e. the spatial effects driven by the weight matrix in the SAR process (1).

We now expand the representation (5) by assuming εt ∼ N (0, R), i.e.


yt =

K∑
k=1

W k
t yt + εt, εt ∼ N (0, R)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (10)

where the off-diagonal entries of R can be non-zero. The aim of this simulation is to examine

whether the performance of M1 is impacted by introducing correlated observation innova-

tions, i.e. to verify if Wt still captures the spatial dependence or is distorted by the presence

of correlation; in the latter case, we expect that Wt would also proxy for R. We mainly focus

on the representations M1,K=1 and M1,K=2.

The data-generating process is reported in Algorithm 3. Different from Algorithm 1,

Algorithm 3 generates εt with covariance matrix R, which is assumed to have unit diagonal

entries and equal off-diagonal elements, i.e., ρi,j = c̃, i 6= j. We consider two settings for c̃:

c̃ = 0 and c̃ = 0.05. When c̃ = 0, the data is essentially generated from a pure SAR model.

When c̃ = 0.05, the disturbances are mildly correlated. The latter case is more challenging,
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as the contemporaneous correlation is jointly determined by both W and R. Furthermore,

we assume that the underlying W is populated with a constant value 0.05 outside the main

diagonal, i.e.  Wij = 0.05, i 6= j

Wij = 0, i = j
. (11)

Finally, for completeness, we set ση = 0.01, and T = 5000. We note that the simulation

settings are particularly challenging when c̃ > 0 as Wt and R do have exactly the same

structure.

Algorithm 3 : The data-generating process for sensitivity analysis

Generate initial weight matrix W0 with (11).
for t = 1, ..., T do

xt = x0 + ηt, ηt ∼ N (0, σ2
ηIDx)

yt = (I −Wt)
−1εt, εt ∼ N (0, R)

end for
Output: {xt, yt}, t = 1, ..., T

4.1.1 The observation and state variance

To obtain a better understanding of the behaviour of the state-space representations, we

examine their performance across the different parameter values. The full parameter set for

the model is θ = {µ0, σ0 ση, c}; µ0 and σ0 are the starting values for the state mean and

standard deviation, respectively. We assume that µ0 = 0.2, which is far from the true state

value (Wi,j = 0.05). In addition, the different combinations of σ0 and ση are reported in the

first column of Table 2. As for the observation covariance matrix, we assume the structure of

R is known, i.e. with the diagonal entries being equal to 1 and the off-diagonal entries being

equal to c. Further, c varies from 0 to 0.3. All the results are based on B = 100 simulations.

In each simulation, the data is generated according to Algorithm 3, and the two filters,

M1,K=1 andM1,K=2, are employed to estimate the latent weight matrix Wt. The mean and
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the standard deviation of the MSEs for the last 1000 steps for each setting are reported in

Table 2 for the case where c̃ = 0. We remind that the MSEs monitors the distance between

the estimated Wt sequence and the corresponding true sequence.

As discussed before, when c̃ = 0, the data is generated from a spatial model. We see from

Table 2 that M1,K=1 performs best, in terms of MSE, when c = 0.1/0.15, while M1,K=2

achieves the lowest MSE when c = 0/0.05. Further, both representations achieve similar

MSEs at the optimal ĉ. The evidence shows that M1,K=1 is able to capture the spatial

effects, but it has to leverage both Wt and R, with some mild distortions (expectations were

in favor of the case c = 0 given the absence of correlation among residuals). Meanwhile,

M1,K=2, with c = 0, which is equivalent to its original specification (5), can capture all the

spatial effects generated from a pure SAR process.

In the case of c̃ = 0.05, the MSEs for the last 1000 steps are reported in Table 3. We see

that, compared to the case where c̃ = 0, the optimal ĉ, in the case where c̃ = 0.05, increases

for both M1,K=1 and M1,K=2. In particular, the optimal ĉ for all variance settings shifts

approximately by 0.05. For example, given the first variance setting, the optimal ĉ shifts

from 0.1 to 0.15 for M1,K=1 and shifts from 0/0.05 to 0.1 for M1,K=2. Notice that, both

of them are able to deliver the same level of accuracy as they do in the case where c̃ = 0,

which indicates that, by adopting the specification in (10), the correlations in the innovations

introduced in the data-generating process can be well captured, but they will be mixed-up

with the true dynamic in the Wt matrices. Summing up, the results from Tables 2 and 3

suggest that, when the correlations in the innovations are introduced in the data-generating

process, they will be captured together with the spatial effect, thus leading to distortions

associated with the impossibility of properly disentangling the presence of dynamic spatial

dependence and correlations among the observation equation innovations.

Next, we examine how the filter performs with different state variance levels. For the

case where c̃ = 0, we plot the average MSE at each step in Figure 4. Panels (a) and (b)
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Figure 4: The average of the MSEs (B = 100 simulations) at each step. Two parameters
were examined: the initial state variance σ2

0 and the state variance σ2
η.

show the results for K = 1 and K = 2, respectively. The four curves correspond to different

combinations of σ0 and ση; for each combination, an optimal ĉ is chosen. In all settings,

the initial state mean µ0 is far from the true value. Note that, a large µ0 is only used to

demonstrate the convergence of the filter. We could see that, although the initial guess is

far from being reasonable, the filter is still able to converge. LEAVE OUT: σ2
0, the variance

of the initial condition x0 of x, is a measure of how we are confident about the initial value

x0 itself. Here µ0, the mean of x0, is set to 0.2 which, as previously mentioned, is a large

value compared to the true state value Wij = 0.05 used for simulations. This might explains

why in this particular simulation study the algorithm converges faster if we increase the

uncertainty σ2
0 in having proposed µ0 = 0.2 as the average value of x0. Notice also that the

convergence slows down as the initial state variance σ2
0 decreases. For example, in Figure

4 (a), when σ0 = 0.1, the curve stabilises within 2000 steps. However, as we reduce the

variance to σ0 = 0.01, the converging speed slows down significantly, and it takes more than
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2000 steps to arrive at a stable value. ση seems to have similar effects, and the results are

more obvious in the case where σ0 = 0.01: in both Panels (a) and (b) in Figure 4, the

yellow curve (ση = 0.0005) moves downward at a slightly slower pace than the blue curve

(ση = 0.001). Moreover, the advantage of a small ση is also significant, as, from Tables 2

and 3, we see that, after convergence, the filter with the smaller ση leads to a much lower

error. For example, in Table 2, given that σ0 = 0.1, when ση is reduced from 0.001 to 0.0005,

the average MSE of M1,K=2 is reduced from 0.00065 to 0.00045. We may conclude that,

if the state variance decreases, the converging process slows down, but the estimation error

also declines. In practice, when choosing a proper ση, one may need to evaluate the balance

between the converging speed and the expected error level.

4.1.2 The ensemble size

The ensemble size N plays a crucial role from a computational point of view, but it could

also have an impact on accuracy. Its appropriate selection is thus of paramount importance.

There are several rules that may help make this decision. First, the SEKF can only converge

when the ensemble size N is larger than the rank of the observation covariance matrix, and,

in our case, N > D (Anderson, 2009). Second, as discussed in Gillijns et al. (2006), usually

50 to 100 samples can be enough for a state dimension up to thousands, and the error can

be reduced as N increases. Third, the necessary ensemble size has a linear relationship with

the state dimension (Katzfuss et al., 2020).

To obtain a concrete idea about the necessary amount of samples, we measure the perfor-

mance ofM1,K=1 andM1,K=2 by varying N from 100 to 1000. The data-generating process

follows Algorithm (3), where c̃ = 0. The parameters for the state-space representation are

fixed with µ0 = 0.1, σ0 = 0.1 and ση = 0.001. The optimal ĉ is chosen, i.e. c = 0.1 for

M1,K=1, and c = 0 for M1,K=2. We run B = 100 simulations. Figure 5 (a) reports the av-

erage MSEs with different ensemble sizes. The curves show that both M1,K=1 and M1,K=2
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Figure 5: (a) The average of MSEs (B = 100 simulations) with increasing ensemble size N .
(b) The average computing time refers to an Intel Core i5-7200U Processor.

need 400-500 samples to achieve reasonable accuracy and the level of errors could hardly be

further reduced as N continues increasing. In our case, the ensemble size is larger than the

values of 50-100 reported in Gillijns et al. (2006). A possible reason for this might be the

large dimensional gap between the state and the observation; given the same state dimen-

sion, it is more challenging for the filter to retrieve the information if the observation is in

a much lower dimensional space. Finally, we also report the average CPU times in Figure 5

(b), which shows a linear relationship between the running time and the ensemble size.

4.2 Parameter settings for M2

We follow the same procedure to study the parameters in M2. In particular, Algorithm

3 is employed for generating the data when the correlations among the innovations are

considered, i.e. εt ∼ N (0, R). To capture the possible contemporaneous correlation, we also
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adopt a relaxed specification for M2, i.e.

 yt = (ID −Wt)
−1εt, εt ∼ N (0, R)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (12)

where R is assumed to have unit diagonal entries and an equal off-diagonal value c. Accord-

ingly, the log-likelihood function changes from (7) to

l(Wt|yt) = −D
2

log(2π)− 1

2
log |R|+ log |At| −

1

2
(Atyt)

TR−1(Atyt), (13)

where At = ID −Wt. It is easy to see that the correlated innovations only impact the last

part of the log-likelihood function, i.e. −1
2
(Atyt)

TR−1(Atyt).

In the following subsections, we first investigate two parameters, ση and c, for specification

(12). The initial settings µ0 and σ0 are not examined here, as it is the proposal parameter

αt=0 that traces the initial state. They are set with fixed values: µ0 = 0.1 and σ0 = 0.1.

Further, we examine two hyper-parameters, the number of particles N and the time span

T . As discussed before, VSMC typically optimises the model on the whole dataset. The

performance of M2 may be compromised if T is too small or too large. Thus, T is also

included in the sensitivity analysis for M2. With respect to the optimisation process for

VSMC, two parameters can be relevant: the number of optimisation steps M and the step

size sm. Considering these are usual parameters in many optimization algorithms, here we

only report the values adopted: αm is optimised with 200 steps, i.e. M = 200; for the first

100 steps, the step size is fixed to 0.001; for the second 100 steps, the step size is fixed to

0.0001.
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4.2.1 The observation and state variance

The data is generated using Algorithm 3 with two scenarios: c̃ = 0 and c̃ = 0.05. All

the parameters used in the data-generating process are the same as their M1 counterparts

except for a shorter time span, which is T = 500. For the state-space representation, we let

c vary from 0 to 0.2 and ση vary from 0.001 and 0.0005.

We run B = 100 simulations. The averages and standard deviations of the MSEs esti-

mated with different combinations of the parameter settings are summarised in Table 4. The

lowest average MSE (in bold) in each row corresponds to the optimal ĉ. Table 4 shows that,

when the data is generated from a pure SAR process, i.e. c̃ = 0, the optimal ĉ is 0 or 0.05.

Further, when the extra correlations are introduced for the disturbance terms, i.e. c̃ = 0.05,

the optimal ĉ also increases accordingly. However, with the optimal ĉ, M2 achieves similar

accuracy in both cases. The evidence implies that M2, in its relaxed form (12), is capable

of capturing both the spatial effects driven by the weight matrix and the correlations in the

innovations, but again they are going to be mixed-up, due to identification issue.

In terms of the state variance, Table 4 shows that, in both cases, as ση decreases, the

average MSE also decreases. This has also been observed for M1 (Tables 2 and 3). In

general, smaller ση provides higher precision for the filter, but it also limits the converging

speed. Thus, to set a proper ση in practice, one also needs to consider the possible changing

speed of the true state.

4.2.2 The number of particles N and the time span T

In this section, we study the role of the two hyper-parameters N and T . In VSMC, the

particle filter is applied in each optimisation step, so a proper setting for N can benefit both

the computational cost and the performance in general. On the other hand, if T is too large,

the performance of M2 may also be deteriorated, as a larger T implies a larger parameter

space for VSMC. To obtain a better understanding on how the two parameters might impact
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Mean Squared Errors, c̃ = 0

c = 0 c = 0.05 c = 0.1 c = 0.15 c = 0.2

ση = 0.001
0.00064
(0.00008)

0.00064
(0.00008)

0.00072
(0.00013)

0.00079
(0.00019)

0.00090
(0.00027)

ση = 0.0005
0.00045
(0.00008)

0.00045
(0.00008)

0.00053
(0.00011)

0.00059
(0.00017)

0.00066
(0.00022)

Mean Squared Errors, c̃ = 0.05

c = 0 c = 0.05 c = 0.1 c = 0.15 c = 0.2

ση = 0.001
0.00078

(0.00010)
0.00065

(0.00008)
0.00063
(0.00008)

0.00067
(0.00010)

0.00073
(0.00014)

ση = 0.0005
0.00063

(0.00011)
0.00047

(0.00010)
0.00045
(0.00008)

0.00048
(0.00012)

0.00052
(0.00013)

Table 4: The mean and the standard deviation (in brackets) of MSEs (B = 100 simulations).
For each setting for ση, the filter with the optimal ĉ achieves the lowest MSE (in bold). In
the case of two equal lowest average MSEs (up to 10−5), both have been marked in bold.

the empirical results, different settings are tested, i.e. N = {10, 100} and T = {100, 500,

1000}.

Mean Squared Errors

T = 100 T = 500 T = 1000

N = 10
0.00073

(0.00018)
0.00066
(0.00010)

0.00086
(0.00011)

N = 100
0.00075

(0.00016)
0.00065
(0.00009)

0.00089
(0.00011)

CPU Time (seconds)

T = 100 T = 500 T = 1000

N = 10 101 841 2559

N = 100 162 1160 3170

Table 5: The upper part of the table reports the mean and the standard deviation (in
brackets) of MSEs (B = 100 simulations). The filter achieves the lowest MSE (in bold)
when T = 500. The lower part of the table reports the average computing time on a 4-core
Intel Xeon processor.

We run B = 100 simulations. The data is generated using Algorithm 3, where c̃ = 0.
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The parameters for M2 are fixed, i.e., µ0 = 0.1, σ0 = 0.1, ση = 0.001 and c = 0. The

means and standard deviations of MSEs are summarised in Table 5. We can see that the

filter performs similarly in cases where N = 10 and N = 100. In fact, as discussed in Le

et al. (2017), a larger N can even be harmful for proposal learning, as a larger number

of particles can reduce the magnitude of the gradient. In addition, a small N should be

preferred from a computational-cost perspective (Naesseth et al., 2018). As for the time

span, Table 5 shows that M2 performs the best when T = 500. When T = 100, despite

the small number of observations, the performance of M2 is quite reasonable. It is worth

noticing that, in this case, T is only slightly larger than the state dimension D(D− 1) = 90.

When estimating an invariant weight matrix in a SAR model, T > D(D − 1) is required

for providing enough degrees of freedom. In our case, for the state-space representation,

T > D(D − 1) also provides a good starting point for determining a minimum T . When

T = 1000, the increasing number of parameters starts to deteriorate the performance ofM2.

Naesseth et al. (2018) suggested that the accuracy of VSMC can be kept the same by setting

N ∝ T . In practice, if the full dataset is longer than the optimal T , an efficient way of

estimation would be to split the dataset in such a way that each set of data is of optimal

length T . Further, the need of sufficiently long time series might represent a limit for the

application of our methodology to fields were data availability is not a great concern as, for

instance, in the case of data recovered from financial markets.

The average computing times for this simulation are reported in the lower part of Table 5.

We can see that the CPU time has an approximately linear relationship with the time span

T . However, as N increases exponentially, the elapsed time only increases slightly. This is

reasonable, as N is only related to the efficiency of the particle filter, rather than the whole

optimisation process.
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5 Real-world analysis

As the last step, we test M1 and M2 on real-world data and examine whether the features

of the estimated weight matrix provide some economic information as well as if they align

with our expectations. To that end, we apply two models, M1,K=2 and M2, to a weekly

CDS dataset for 16 large banks from four selected European countries. The bank names are

reported in C. The time horizon is ten years (i.e., 521 weekly observations), covering the

period from 4th Jan 2009 to 30th Dec 2018. The input for the modelling is the logarithm

change of CDS levels, which is normalised such that the standard deviations of the observa-

tions are all equal to one. The expected output is a series of 16× 16 weight matrices, which

represents the dynamic spillover effects among banks. As banks from different countries

may have exposure to different types of risks, country-driven communities are expected to

be identified from the estimated weight matrices (see Torri et al. (2018)).

To take into consideration the presence of limited serial dependence, typical of financial

times series, we also add a time lag, an autoregressive component, into the state-space

models. Specifically, the lagged observation yt−1 is introduced as a factor into the observation

equations, and the applied state-space models are as follows:

 yt = Atyt−1 + (Wt +W 2
t )yt + εt, εt ∼ N (0, σ2

ε ID)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (14)

 yt = Atyt−1 + (I −Wt)
−1εt, εt ∼ N (0, σ2

ε ID)

xt = xt−1 + ηt, ηt ∼ N (0, σ2
ηIDx)

, (15)

where yt denotes the CDS observations for 16 countries at week t. At is the 16 × 16

diagonal matrix of the autoregressive coefficient, i.e. At = diag(a1, ..., a16). The state xt is

composed of the diagonal entries of At and the off-diagonal entries of Wt. The variance of

the observations and the states are assumed to be known: σ2
ε = 1 and σ2

η = 1× 10−6. Note
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that the representation (15) is just a variant of M2. The only difference is that, now, the

weight matrix measures the spillover effects among the residual yt − Atyt−1, i.e. once the

serial dependence is filtered out from the data.

Figure 6 shows the estimated weight matrices at certain cut-offs, t = 100, 200, 300, 400

and 500. For each matrix, the observable community blocks are outlined using dashed red

lines. The first row illustrates the matrices estimated with representation (14). We could

see that, when t = 100, the community blocks are still at the state of emerging (the warm-

up period); but as t increases, the partitions become clearer. As for the estimation using

representation (15) (the second row), the communities are well identified across all periods.

Further, we compute the partitions based on each estimated weight matrix using the

Louvain algorithm (Blondel et al., 2008). The results are plotted in Figures 7 and 8, where

the underlying weight matrices are estimated using (14) and (15), respectively. The graph

can be understood as a table with 16 columns, which represent the banks, and 521 rows,

which correspond to the 521 weeks. In each row, banks belonging to the same group are

displayed by the same color. For example, the Italian banks, Intesa Sanpaolo and Monte

Paschi, are coloured green each time, which indicates that they belong to the same group

over the entire study period. We see from Figure 7 that the partitions are not quite clear-cut

in the first few years, which is in line with the evidence from Figure 6. However, afterwards,

banks belonging to the same countries are all classified into their respective groups: green for

Italy, black for France and yellow for the UK. Figure 8 is almost coherent with the content of

Figure 7. There are, in fact, two exceptions: first, after 2011, the two German banks belong

to an independent group in Figure 7, but they merge with Italian banks in Figure 8; second,

related to the features of different filters, in contrast to Figure 7, Figure 8 exhibits country-

based partitions from the very beginning and maintains consistency afterwards. This could

be considered as an advantage for offline methods, especially when the estimates for the

early steps are important.
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Figure 7: Community detection. The underlying weight matrix is estimated with repre-

sentation (14). Green for Group 1; black for Group 2; yellow for Group 3; blue for Group

4.
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Figure 8: Community detection. The underlying weight matrix is estimated with represen-

tation (15). Green for Group 1; black for Group 2; yellow for Group 3.

In the end, we investigate the performance of representations (14) and (15) from a fore-

casting perspective. A VAR model is used as the benchmark. To perform the dynamic

estimation, we adopt a moving-window approach for VAR, where three window sizes are

applied: 52 weeks, 104 weeks and 156 weeks. The in-sample errors are measured for each

moving window, and the out-of-sample errors are calculated using one-step forecasting. As

for the two state-space representations, at each step, the estimated At and Wt are applied

for calculating in-sample errors at t and out-of-sample errors at t + 1. Table 6 summarises
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the MSEs for all five models and shows that, in terms of both the in-sample and the out-of-

sample measures, the state-space model could outperform the moving-window VAR model.

To complement this point value comparison with a statistical test, we report in the last

column the p-value of the Model Confidence Set (Hansen et al., 2011). We perform the test

using the MSE loss function and R test statistic, with 1000 block-bootstrap replications and

an average block length of four observations (we refer the reader to Hansen et al. (2011) for

details on the test implementation); the test confirms that the preferred specification is the

first state-space representation (small p-values identify the exclusion of the model from the

set of preferred specifications). The result is promising, as it suggests that, in some cases,

the dynamic weight matrix may also be useful for model fitting and forecasting.

Model MSE (in sample) MSE (out of sample) MCS

M1,K=2 (eq. (14)) 0.00270 0.01305 1.000

M2 (eq. (15)) 0.00279 0.01458 0.014

VAR (52 weeks) 0.00614 0.03760 0.014

VAR (104 weeks) 0.00738 0.03557 0.014

VAR (156 weeks) 0.00786 0.02545 0.014

Table 6: The average MSE of model fitting and forecasting (Column 2 and 3) and the Model

Confidence Set p-values (Column 4).

6 Conclusion

In this paper, we propose two types of state-space representations for estimating dynamic

networks. For M1, we introduce the higher order of Wt such that both direct and indirect

spillover effects can be addressed, while, for M2, Wt is updated with a conventional spatial
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model. The simulation results show that when the indirect spillover effect is taken into

account, i.e. K > 1, the performance of M1 improves significantly. Compared to M2,

the advantage of M1 is that can be identified efficiently and it can better deal with the

higher-dimensional cases, as the representation is estimated with SEKF, which requires only

a linear relationship between the sample size and the state dimension (Katzfuss et al., 2020).

Meanwhile, the evidence shows that the performance of M2 cannot reach the performances

ofM1,K=2 as D increases to 20, i.e. the state dimension increases to 380. Essentially, this is

because M2 could only be identified by a particle filter, which is known to suffer from the

curse of dimensionality problem. However, M2 provides an authentic way to identify the

weight matrix, as it directly utilises the log-likelihood function of the SAR model. Further,

by employing VSMC, we show that Wt can be estimated with a small T , which can be quite

useful in practice when the length of the dataset is limited. In the real-world application,

we test two representations on the CDS levels for banks from four countries and show the

effectiveness of the representations in identifying country-driven partitions.

The method we proposed can be further studied along several directions. First, in

this work, we only apply the state-space representations for estimating small networks, i.e.

D = 10 and D = 20, and with relatively long time series. Further research is needed for

identifying larger networks, and also for covering cases where the ratio between the temporal

dimension and the cross-sectional dimension decreases, a situation that would create relevant

computational challenges. Essentially, we want to associate the state-space representations

with filtering algorithms that are efficient in high-dimensional space, also controlling for the

sample size over time. Second, if any underlying dependency structure is known, Wt can be

estimated under certain constraints, such as a symmetric Wt, or estimated based on some

known matrices, such as Wt = Gt(W1,W2, ...), where Gt is the function of some known ma-

trices W1 and W2 at step t. In either case, the state dimension is expected to be reduced

significantly. Third, the method may be further generalised, in the sense that the spatial
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model can be replaced by other models where the dependency structure is of interest. One

such example is the BEKK model (Engle and Kroner, 1995), where the parameter matrix

measures the intertemporal spillover effects among volatilities and co-volatilities. Finally, as

our contribution is purely empirical and simulation-based, theoretical properties of the esti-

mators and a deeper understanding of the identification issue could also represent interesting

lines of research.
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A Filter algorithms

We provide pseudo-algorithms for the three filters used in this paper, i.e., KF, SEKF and

VSMC. The general form of the state-space model is defined as follows:

 yt = H(xt) + σt, σt ∼ N (0, R)

xt = F(xt−1) + ηt, ηt ∼ N (0, Q)
.

In case of linear SSM,H(xt) = Hxt and F(xt−1) = Fxt−1, where H and F are the observation

and transition matrices, respectively.

Notations:

N− the sample/particle size

xt− the estimated state mean at time t

x
(i)
t − the i-th sample state in the analysis step, i = {1, ..., N}

x̃t− the predicted state mean in the forecast step, at time t

x̃
(i)
t − the i-th sample state in the forecast step, i = {1, ..., N}

yt− the observation at time t

ỹt− the predicted observation at time t

Pt− the estimated state variance at time t

P̃t− the predicted state variance in the forecast step, at time t

Kt− the Kalman gain at step t

R− the observation covariance matrix

Q− the state covariance matrix
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A.1 Kalman Filter (KF)

Algorithm 4 : Kalman Filter

Initial guess for x0, P0

for t = 1, ..., T do

x̃t = Fxt−1 . Forecast step

P̃t = FPt−1F
T +Q

Kt = P̃tH
T (HP̃tH

T +R)−1 . Analysis step

xt = x̃t +K(yt −Hx̃t)

Pt = (I −KH)P̃t

end for

A.2 Stochastic Ensemble Kalman Filter (SEKF)

Algorithm 5 : Stochastic Ensemble Kalman Filter

Generate samples x
(i)
0 (i = 1, ..., N) randomly.

for t = 1, ..., T do

for i = 1, ..., N do

x̃
(i)
t = F(x

(i)
t−1) + ηt . Propagate samples

ỹ
(i)
t = H(x̃

(i)
t )

end for

Kt = Cov(x̃t, ỹt)(V ar(ỹt) +R)−1 . Calculate Kalman gain

for i = 1, ..., N do

x
(i)
t = x̃

(i)
t +K(yt − ỹ(i)t + εt)

end for

xt = 1
N

∑N
i=1(x

(i)
t ) . Sample mean as state estimation

end for

45



Cov(x̃t, ỹt) denotes the covariance of x̃t and ỹt; V ar(ỹt) is the variance of ỹt.

A.3 Variational Sequential Monte Carlo (VSMC)

VSMC is proposed in Naesseth et al. (2018). An important fact used in the paper is that the

ELBO is equivalent to the average of importance weights, which converges to the marginal

likelihood as the sample size increases (Le et al., 2017), i.e.

ELBO =
T∑
t=1

log

(
1

N

N∑
i=1

w
(j)
t

)
N→∞−−−−−→ log p(y1:T ), (16)

where N is the total number of particles, and w
(j)
t denotes the weight of the j-th particle

at step t. Thus, in each optimisation step, the particle filter (Algorithm 7) can be used for

calculating the empirical ELBO.

Algorithm 6 : Variational Sequential Monte Carlo

Initial guess for proposal parameter α1

for m = 1, ...,M do

Run Algorithm 7 with proposal distribution q(xt|xt−1, αm)

Calculate surrogate ELBO: L̃ ≈
∑T

t=1 log
(

1
N

∑N
i=1w

(j)
t

)
. Maximise L̃

Estimate the gradient ∇(L̃)

Compute step size sm

αm+1 = αm + sm∇(L̃) . Update proposal parameter

end for
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Algorithm 7 : Particle filter at step m for optimisation

for t = 1, ..., T do

for j = 1, ..., N do

Sample x
(j)
t from qt(xt|xt−1, αm) . Propose particles

w
(j)
t ∝

p(yt|x(j)t )p(x
(j)
t |x

(j)
t−1)

qt(x
(j)
t |x

(j)
t−1)

. Calculate weights

end for

w̃
(j)
t =

w
(j)
t∑N

i=1 w
(j)
t

Resampling {x(j)t } according to {w̃(j)
t }

end for
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B Results for the second scenario from Section 3

We report the detailed simulation results for the second scenario, in which the hidden Wt

evolves stochastically. Similar to the steps taken in Scenario 1, we first generate 100 sets of

data according to the introduced process; then, we apply the state-space models M1 and

M2 to each set of data and collect different measures. In this scenario, we set the same

observation variance and state variance for all filters: σ2
ε = 1 and σ2

η = 1× 10−6.

Figure 9 compares the MSEs for different representations and shows thatM1,K=2 delivers

the lowest MSEs on average. Figure 10 reports the average Frobenius norm and ρt of the

estimated matrices, and we could see that the estimates fromM1,K=1 diverge the most from

the true value (the grey lines).
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Figure 9: (a) and (b): the average of the MSEs (B = 100 simulations) at each step. (c) and

(d): Boxplots of MSEs. Each box summarises the quantiles of 30000 MSEs (100 simulations

and 300 MSEs in each simulation). Results referring to the warm-up period (i.e., 200 steps)

are omitted.
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Figure 10: (a) and (b) the average Frobenius norm; (c) and (d) the average ρt.

50



C Real-world Dataset Constituents

Number Bank Name Abbreviation Country

1 Intesa Sanpaolo I. Sanpaolo Italy

2 Monte Paschi M. Paschi Italy

3 Unicredit Unicredit Italy

4 Mediobanca Mediobanca Italy

5 BNP PARIBAS BNP France

6 Credit Agricole C. Agricole France

7 SOCIETE GENERALE S. Generale France

8 Credit Lyonnais C. Lyonnais France

9 HSBC HSBC UK

10 Bank of Scotland B. Scotland UK

11 Natwest Batwest UK

12 RBS RBS UK

13 Barclays Barclays UK

14 Lloyds LLoyds UK

15 Deutsche Bank Deutsche B. Germany

16 Commerzbank Commerz B. Germany
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