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Abstract

Two state-space representations, also known as state-space models (SSMs), are pro-
posed to estimate dynamic spatial relationships from time series data. At each time
step, the weight matrix, which captures the latent state, is updated in the context of
a spatial autoregressive process. Specifically, two types of SSMs are considered: the
first one identifies the spatial effects in the form of multivariate regression, where the
higher orders of the spatial matrix are introduced to the regression coefficient, while
the second one updates the spatial matrix taking advantage of the likelihood function
of a spatial autoregressive (SAR) model. Different filtering algorithms are proposed to
estimate the latent state. The simulation results show that the first state-space rep-
resentation performs better in both lower-dimensional and higher-dimensional cases,
while the performance of the second representation is sensitive to the state dimension.

In a real-world case study, the time-varying weight matrices are estimated with weekly
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credit default swap (CDS) data for 16 banks, and the results show that the methods
can identify communities that are consistent with the country-driven partition.
Keywords: state-space model, dynamic network, spatial dependence, sequential fil-

ters.

JEL Codes: C32, C33 and C51.

1 Introduction

Panel spatial econometrics has seen increasing popularity and has been applied in a wide
range of fields, from regional science to social science (Anselin, 2010). By specifying and
estimating the latent connections among the observations collected from different subjects
or regions, one could gain a more in-depth understanding of the underlying relationships or
network structures. However, there are two main problems that arise when applying spatial
econometric models in practice. First, the weight matrix has to be prespecified based on
certain prior knowledge, and an inappropriate spatial weight matrix can introduce extra
model uncertainties (LeSage and Pace, [2014; LeSage and Fischer, [2008; Getis and Aldstadt],
2004)). Second, conventionally, in spatial models, the weight matrix is always assumed to be
time invariant. This might be true for the cases where the geographical/physical distance
between subjects is fixed and known a priori; but when it comes to other fields, such as social
sciences, the relationship between subjects could be time varying. For instance, in the field
of finance, the network effects across financial institutions, which are strongly connected to
systemic risk, could evolve in a dynamic fashion over time (Billio et al. 2016; Alter and
Beyer, 2014; Elliott et al., 2014; Diebold and Yilmaz, 2014; Billio et al., [2012)) in response to
a variety of causes, such as changing debt relationships between banks, or newly listed risky
assets in the balance sheet of a bank.

The estimation of spatial model is well discussed in the literature, but, as mentioned



above, the weight matrix is assumed to be known or could be parametrised. Some commonly
used estimation methods include maximum likelihood (Ord} |1975; LeSage and Pace, 2007
and, generalised method of moments (Kelejian and Pruchal,[1999). There are also approaches
for estimating the weight matrix on a bivariate basis, i.e. estimating the presence of each
edge. As for estimating the full weight matrix, one of the early proposals is reported in
Meen| (1996]), where the ordinary least squares (OLS) method is applied for the matrix
estimation. Bhattacharjee and Jensen-Butler| (2013) estimate the full weight matrix based on
the assumption that the matrix is symmetric. In recent years, several papers have proposed
estimating the full weight matrix by two-stage least squares estimation; see, among others,
Ahrens and Bhattacharjee| (2015) and |Lam and Souza) (2019). When it comes to estimating
the time-varying full weight matrix, to our knowledge, there have been few such attempts.
One of the related methods is the time-varying Vector Auto Regression (VAR) (Kimura et al.,
2003; [Haslbeck et al., |2020), which can also estimate the network matrices dynamically, but,
rather than the simultaneity that is assumed in spatial models, it assumes a cross-lagged
dependency.

To tackle these problems, we propose innovative methods for estimating the time-varying
spatial dependencies across subjects. Specifically, we integrate a spatial model into a state-
space model such that the weight matrix, as the hidden state, can be updated at each step.
There are different specifications for spatial models, such as the SAR model, the spatial error
model (SEM) and the spatial Durbin model (SDM) (LeSage and Pacel 2009). Without losing
generality, we illustrate our method with a simple spatial autoregression, which includes only
a spatial lag term. One could easily extend the methods by integrating them into spatial
models characterised by different levels of complexity.

In particular, we propose two state-space representations for updating simultaneous de-
pendencies. In the first specification, the hidden weight matrix is updated as a coefficient

matrix, while, in the second one, the spatial autoregression is fully applied, and the matrix



is updated by building on the model likelihood. Simulations show that, although the first
specification interprets the simultaneous effects differently from a spatial model, by intro-
ducing higher order of the weight matrix it could efficiently deliver a reasonable and robust
model estimation. By contrast, the second model works well in low-dimensional cases, but
does not perform as well in higher dimensions. Moreover, the simulations show that the
filter performances require relative long time series for appropriate identification of the la-
tent network dynamic. After comparing the two representations using simulated data, we
consider a real-case study. Specifically, we apply the models on a credit default swaps (CDS)
dataset and show that the country-driven communities can be successfully identified from
the estimated matrices.

The paper is organised as follows. In Section 2] we introduce the two state-space repre-
sentations and the corresponding filtering algorithms for state estimation. The simulation
results are then reported in Section [3] while the sensitivity analyses are presented in Section
[ In Section [f] we present the empirical results for weekly CDS data. Section [6] concludes

the paper.

2 The model and the state-space representations

We start with a SAR process,
Yo = Wy + e, € ~N(0,021p), (1)

where y; is a D x 1 column vector representing D subjects observed at time ¢, ¢ is a vector
of independent and homoscedastic errors with variance o and Ip denotes a D x D identity
matrix. Moreover, W is a D x D matrix that captures the static dependencies between

each pair of time series. The diagonal entries of W are zeros, and the matrix is usually row



normalised. In addition, Wy, is usually called spatial lag, echoing the term “time lag”used
in the autoregressive model (AR). Typically, p is a scalar coefficient with |p| < 1, which
measures the average strength of the spatial relationships. The constraint on p together
with the row-normalization of W ensure the invertibility of 7 — pWW. As discussed in [Caporin
and Paruolo| (2015)), p could be generalised to a diagonal matrix; in this case, model
becomes more flexible, as it allows for defining distinct diagonal entries instead of an unique
p, such that the strength of the spatial effects can be specified or estimated for each subject.

To estimate a sequence of time-varying weight matrices, i.e. W;, we propose setting up
a model with a proper state-space representation whose observation equation has a form
similar to model . The difference is that, in model , W is a constant; but in our model,
W, is regarded as the state and, thus, has a dynamic evolution. Specifically, we propose the

following model (in state-space form),

ye = Wiyr + €, €~ N(07031D> 2)

Ty = Ty—1 + Nty N ™~ N(07 Ungz)

where pW from is replaced with W;, denoting the scaled full weight matrix that is to be
updated at each step. In the second equation (the transition equation), the state x; is the
vectorisation of the off-diagonal elements of W;, and D, denotes the dimension of the state
D, = D x (D —1). Finally, ¢ and 7, are the vectors of independent and homoscedastic
noises, with a constant variance o7 and o, respectively.

Notice that p; is not estimated directly in but by further specification, and both W,
and p; can be recovered from W;. In this paper, we define the scalar p; as the maximum row

sum of Wy, i.e.

D
pr = mZaX E Wi it
j=1

such that the normalised weight matrix Wt can be obtained by V~Vt = W,;/p;. The maximum



row sum of W, is always equal to 1. The constraint |ps| < 1 is still required to achieve the
invertibility of 7 —p,1V,. However, we find that it is not necessary to implement this constraint
specifically for model identification. As shown in the simulation analysis, p; always converges
with W, thus excluding the possibility of exploding patterns, associated with singularities
in the I — p,W, sequence.

The structure of out model does not exclude residuals correlation. Applied works often
suggest that spatial dependence could be also present among residuals, and this might be
captured by adopting a SEM, where the spatial dependence matrix is usually known. In
our setting, we are forced to introduce a hypothesis of orthogonality among the innovations
for identification reasons. In fact, it would be, in general, impossible to disentangle a latent
time varying spatial dependence typical of a SAR-type model from the correlation among
innovations; the latter would be at least partly captured by the dynamic evolution of W;
that would thus proxy for the possible presence of correlation among the ¢;.

Searching for the optimal parameters for model is not straightforward. On the one
hand, one could simplify the model and regard the observation equation as a regression.
This option might lead to biased estimates, as we will see below, but the model, in its
simplest form, could easily be solved using a Kalman filter (KF). On the other hand, one
could update W; strictly according to the spatial model. The challenge along this direction
is that the state is high-dimensional and only interacts with the covariance matrix of the
observations. In the following subsections, both options are investigated by designing two

alternative state-space representations, named M; and M.

2.1 The state-space representation M;

The first attempt to estimate the time-invariant weight matrix within a spatial error model
by an OLS estimator was made by |Meen| (1996). Although OLS estimation for SAR is biased

and inconsistent (Anselin) [2013; Kelejian and Pruchal 2002; Lee, 2002), the method provides



a simple solution for the state-space model in the sense that the observation equation
can be regarded as a normal multivariate regression and W, can be updated dynamically as
the coefficient matrix.

To better understand the relationship between the coefficient matrix in the context of
least squares and the weight matrix in the spatial model, we resort to a linear model repre-
sentation. In fact, the spatial model can be more properly represented in the form of a
linear model, i.e.,

yr = Wy + €, €~ N<0> R)a (3)

where R is a general covariance matrix that measures the correlations among the disturbance
term. Thus, the spatial effects, which are driven solely by the weight matrix in a spatial
model, might be captured by two matrices here, i.e. W and R in (3). To estimate time-
varying spatial effects with an SSM while allowing for the presence of correlation among
innovations at each time step ¢, one possible solution is to regard both matrices W; and
R; as the state (thus allowing for possible time variation in R), such that they can be
estimated dynamically. However, this would double the number of parameters without
giving a clear solution to the possible joint effect between the two sources of contemporaneous
interdependence. In fact, we might expect W, to also capture the spatial effects that would be
represented by Ry, as we commented in the previous section when touching the identification
185uUe.

To tackle the problem, we first consider the following series expansion of the SAR model

(Debreu and Herstein, 1953; |Horn and Johnson, [2012)

Y= -W)leg=T+W+ W2+ W3 e, (4)

Here the spatial effect is decomposed into elements with different orders of W, which repre-

sent the different orders of the spillover effect. For example, W2 measures the indirect effect



of second-order neighbours (LeSage, 2008). Thus, the simultaneous effect can be interpreted
as a combination of the direct effects, addressed by W, and the indirect effects, addressed
by the power of W (i.e., W¥, with k > 1).

Inspired by the expansion form in , we propose augmenting the state-space model
(2) with higher orders of W,. This modification allows us to take into account the indirect
effects and has benefits with regard to the estimation of W;. The proposed state-space

representation, denoted M, becomes then as follows

K
Y=, VVtkyt +e, € ~N(0,0%1p)
, )

Ty = Ty—1 + N, N ~ N(()?U?Q]IDz)

where k is the order of W, and £ = 1,2,..., K. We note that R in is not introduced
in this state-space representation, as we expect that W; and its higher orders in ({5 can
capture also the interdependence among disturbances. Thus, ¢, is assumed to be independent
and identically distributed. We stress that such a model might be misspecified; this holds
when data combine a time varying W, with correlations in the residuals, i.e. R is not
diagonal. Nevertheless, the introduction of powers of W, would be of help in capturing the
interdependence among observations when this is governed by two different forces.

The state-space representation cannot be solved by the Kalman filter (KF) when
K > 1, as the state-space is non-linear. We suggest using the Stochastic Ensemble Kalman
Filter (SEKF) (Burgers et al., 1998 Houtekamer and Mitchell, 1998), which is a Monte Carlo
method based on the framework of the Kalman filter.

and include pseudo-algorithms for KF and SEKF, respectively. Here, we briefly
describe the filtering process specifically adopted for the state-space representation under
SEKF. First, we generate N initial samples from a multivariate normal distribution, i.e.

xg) ~ N(po,081p,) (i=1,...,N), where pg and o3 are the initial guesses for the state mean



and variance, respectively. We assume the same initial state mean, i.e. pg = 1pg, with 1
being a vector of ones, and o being a scalar. The initial state variance is a diagonal matrix,
as the states are assumed to be independent. Thus, each sample :E(()i) is a vector of dimension
D(D — 1) x 1, which is then transformed into a sample weight matrix Wéi). Similar to KF,
each iteration of SEKF includes a forecast step and an update step. In the forecast step,
we forecast the i-th state fgi) and the i-th observation gj,fi) by propagating the sample mgi_)l,
which is obtained from the previous step through the state equation and the observation
equation given in , respectively. In the update step, the Kalman gain is estimated from
sample forecasts, as both the covariance matrix Cov(Z,7:) and the variance Var(g;) can
be calculated from :E,Si’ and gf). Then, the sample forecasts a?ﬁ”') are updated to xf) with
the Kalman gain, and the state mean x; is equal to the sample mean, i.e. % %xy) Note
that, as SEKF propagates the samples through the state space and estimates tlhe first two
moments of the state at each iteration, it is capable of dealing both with linear and non-linear
state-space representations, with the only requirement being that the sample state should
be properly propagated. Like KF, SEKF also assumes that the distribution of the states is
Gaussian.

In the following, we also label the representation adopting the maximum order of W,

such as M gy for model M; with K =1, M; g—5 for model M; with K = 2, etc.

2.2 The state-space representation M,

The second approach we propose relies on the likelihood function of SAR.
Ord| (1975) was the first to propose the use of maximum likelihood for the estimation of a
spatial model; maximum likelihood asymptotic properties are summarised in |Anselin (2013]).

In our case, we use the model likelihood within a filtering algorithm. We first rewrite the



state-space model in a reduced form,

Y = (]D — Wt)_1€t7 € ~ N(O, O'?ID) (6)

Ty = Ty—1 + N, N ~ N(OaU%IDI)

and denote it as representation M.

To solve the filtering problems associated with My, we consider Sequential Monte Carlo
(SMC), which estimates the posterior distribution by importance sampling. The simplest
form of SMC is the Standard Particle Filter (SPF), which assumes that the proposal distri-
bution is identical to the prior distribution, i.e. ¢ (z|z;—1) = p(a|zi_1), where g (x|z_1)
denotes the proposal density at step t, and p(x¢|r;—1) and p(y;|x;) denote the prior den-
sity and the likelihood, respectively. Thus, the importance weights are proportional to the

likelihoods, i.e., | -
o pydle?)p(a?|z?)
v GG
(e |z 2y)

= p(yt’xgj))>

where wt(j ) denotes the importance weight of particle j at step ¢. In the case of My, applying

the SPF is straightforward as its log-likelihood function is well-studied, i.e.

D D 1
l(Wt|yt) = ) 10g(27r) Y 10?5(‘752) + log |At| - @(Atyt)T(Atyt)a (7)

€

where A; = Ip — W,, and |A;| denotes the determinant of A,.

The SPF has, however, some shortcomings. In fact, the particle filter suffers from the
so-called curse of dimensionality (Snyder et al., [2008)). Even for a small network matrix,
such as D = 10 or D = 20, the state dimension can be in the order of hundreds, which
is a daunting task for the SPF. In the literature, different methods have been proposed to
improve the performance of the particle filter in high-dimensional cases; see Khan et al.| (2005))

and |Andrieu et al| (2010)), among many others. Here, we choose to apply the variational

10



sequential Monte Carlo (VSMC), which has been recently introduced by Naesseth et al.
(2018). VSMC estimates the state with a variational method, where the Kullback-Leibler
(KL) distance monitors the divergence between the posterior distribution of the state and
the proposed distribution. Different from KF and SEKF, which are online methods, VSMC
is often defined as an offline method, as it optimises the filter over the whole dataset.

In this paper, we use a proposal distribution g (z¢|z,—1) = N(oy + 24-1,021p,), where

ag, a D, x 1 vector, is the only parameter to be optimised, while the variance 03 in the

2

, in the prior distribution.

proposal distribution is set to be equal to the state variance o
The optimisation process for the state-space representation @ works as follows; to avoid
confusion, from now on, we use the notation a,,;, where m =1,..., M and t =1, ..., T, which
indicate the optimisation step and the filtering step, respectively. First, we generate a series
of initial proposal parameters {a,;,—o =1, 7}. Each element of vector ag, is generated from a
normal distribution N (0,0.01). Then, we start the optimisation process, which includes M
iterations. In each optimisation step, the sequence {a, +—1..r} is optimised to {am+14=1,. 7}
by calculating the gradients of the surrogate evidence lower bound (ELBO), which can be
obtained empirically by averaging the sample weights in SMC, i.e. Zthl log <% Zjvzl wﬁj )>.

In particular, the weight of the j-th particle at step ¢ is measured by

o pla?pa?|zP)
w XX .

t . .
(P2, )

In the end, the final state mean is estimated by running a SPF with optimal parameter

{m=nr1=1..1}. We refer to for details of the VSMC algorithm.
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3 Simulations

To study the performance of the two state-space representations and of the associated filter-
ing algorithms, we first generate the series {y;, W;} and then examine whether the hidden
matrices can be correctly estimated from the observation {y,;}. Specifically, two scenarios
for the data generation are considered (see Algorithms [1| and [2[ below). In the first sce-
nario, W, is designed to have some given patterns such that we could visualise the similarity
between the generated and estimated weight matrices. In the second scenario, to mimic
real-world instances, we let W, evolve stochastically. In each scenario, two different matrix
sizes are tested, i.e. D = 10 and D = 20. Note that, in both data generating processes,
the observations are generated according to a SAR model. In theory, this would give My
some advantage, as it integrates the same SAR process, while M implies a different way
for estimating W.

As discussed in the previous section, M; is estimated by SEKF, and M, is estimated
by VSMC. The performance of the filter can be influenced by its sample/particle size. After
a preliminary testing (available upon request, see Section [4] for a sensitivity analysis), we
decided to use the following parameter values, which lead to an optimal balance between the
performance of the filters and their computational cost.

For SEKF, we apply N = 10000 samples. As for VSMC, we set the number of optimisa-
tion iterations as M = 100 (Algorithm @ and the number of particles N = 10 (Algorithm
. After obtaining the optimised proposal parameter «,;, the state is estimated by running
the particle filter once with optimal a;,. For the final state estimation, we use N = 10000

particles.
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3.1 Scenario 1: The patterned W,

In the first scenario, we assume that W, is sparse and the non-zero entries only exist in the
blocks along the diagonal of the matrix. This is a baseline model that can allow to point
out also visually the performance of the proposed methods. To that end, the initial weight

matrix Wy is generated in a specific block form

Wsys 0 0 W5 0 0
Wioxio = | . Waoxao = g : (8)
0 W5><5 0 O W5><5 0

0 0 0 Wsxs

where Wp p denotes the D x D weight matrix, and the entries for each diagonal block Wiy, 5

are generated randomly by

Wiy~ U(0,03), i#j o)
W, =0, i=j

where U(a, b) denotes the uniform distribution between a and b. As there are four non-zero

entries on each row of Wy and the row sum must be less than one, we choose b = 0.3 such

that the average row sum is expected to be 0.6.

The series of observations {y;} and the latent states {z;} are generated according to
Algorithm , where T = 500, 0 = 1 and 0727 =1x 1072, x; and =, are the vectorisation of
the off-diagonal entries of W, and W), respectively. In this scenario, W, is, in fact, a series
of perturbed W, such that the pattern is kept invariant.

We consider B = 100 runs for D = 10 and D = 20, separately. In fact, the evaluation
for even a single run is based on a large set of data (500 observations and a big tensor

containing the series of the hidden matrices, such as 20 x 20 x 500 when D = 20). We apply
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Algorithm 1 : The data-generating process for Scenario 1
Generate initial weight matrix Wy with (8) and (9)).
fort=1,...,T do

xy = 2o + 1, e ~ N0, U,Qiwa)

yr = (I — Wy) ey, 6o ~ N(0,0%1p)
end for
Output: {z,y},t=1,...,T

the state-space representation M; and M, on each set of data and compare the estimated
weight matrices, denoted as Wt, with the generated matrices W;. As input for the filters, we
set the initial parameter as follows: o = 1/D, 09 = 1/D, 0? =1 and 07 = 1 x 107°. Notice
that a very small value is chosen for the state variance, which is different from the value
applied in the data generating process, as, with smaller variance, the estimation is expected
to be rather smooth and stable.

First, we evaluate the outcome by visualising the recovered pattern from a single run in
case of D = 10. Figure|l| presents the generated matrix W; and the estimated matrices W, at
the final step (¢ = 500). As described before, we generate the sparse weight matrix Wigx1o
with two communities, which could be easily identified in Panel (a). Similar patterns could
also be observed in the other three panels (b, ¢ and d); this implies that both models are
effective, at least, in terms of extracting some key features of the hidden matrix.

Second, to compare the performance, we compute the mean squared errors (MSE), which
represents the distance between the generated and the estimated weight matrices, defined as
follows:

. 1 K& .
MSEW, W) = 553> (Wije = Wig)®

=1 j=1
Panels (a) and (b) in Figure [2[report the average MSE at each step for D = 10 and D = 20,
respectively. As the filter SEKF for M; is an online method, we notice it requires around
100 steps to converge when D = 10 and around 200 steps when D = 20. The curves for M;

with a larger K (i.e., K > 3), which are available upon request, exhibit similar properties.
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(a) Wsqo (true) (b) Wsgo (M1, k=1)

g o
o O

(C) Wsoo (M1, k=2) (d) Wsoo (Ms)

|:::I -"
A A

Figure 1: (a) the 500th generated weight matrix; (b) the 500th weight matrix estimated
using My g—1; (c) the 500th weight matrix estimated using M g—o; (d) the 500th weight
matrix estimated using M.

In contrast, as My is solved by an offline method, the estimates (the blue line) are more
stable over time.
Further, we summarise the quantiles of MSEs for each state-space model in Panels (c)

and (d) in Figure [2l The MSEs obtained during the warm-up period (i.e., 200 steps) are
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omitted, so there are 100 x 300 = 30000 MSEs available for each model. The representation
M is evaluated for value of K up to five. Similar evidence is observed for D = 10 (Panels
(a) and (c)) and D = 20 (Panels (b) and (d)).

First, Panels (c¢) and (d) indicate that K = 2 is an optimal truncating point for M.
Compared to M k-1, the performance of M; x—, improves significantly. But as K further
increases, the performance stops improving; in contrast, the median MSE begins mildly
targeting the opposite direction. The possible reason for this is that the third or higher order
of W; could only deliver marginal information, which is completely offset by the additional
noise being introduced due to the increased model complexity.

Second, in terms of the median value, we see that My, works reasonably well in case
of D = 10, where its median MSE achieves a value nearly as low as the median MSE of
M —o. However, in case of a higher dimension (D = 20), the performance of My looks
worse. Furthermore, My also shows a much wider quantile range, which can be linked to
the extreme complexity of particle filters in high dimensions.

Besides similarity, it is also important to examine other properties of the estimated weight
matrices, such as the scaling of the matrix, and see how they evolve over time. Figure
displays the average value of the Frobenius norm and the maximum row sum p; of the
weight matrices. The curves show that, in all cases, the M —; estimates (the green line)
deviate the most from the generated data (the grey line); in contrast, the estimation from the
representations involving the higher order of weight matrix, i.e. M; x—o and My, are much
closer to the true values. Thereby, this evidence suggests another advantage of including
the second order of W; for M, which is that it gives better control over the scale of the

estimated matrices.
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(a) D=10 (b) D=20

— Miyk=1
o009 Mak=2 0.0051
— M .
0.008]
¢ 0.007 1 & 0.004+
= =
(] ()
o [*)]
S 0.006 | ©
g <°>(J 0.003
0.005 ]
0.004 0.0021
0.0031__ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
t t
(c) D=10 (d) D=20
0.007 -
0.002751
0.006 ] 0.00250
T 0.002251

0.005 -
4 0.00200
(%]
0.004 1 =
B 0.00175

MSEs

0.003{ — 0.001501
0.00125 1
0.002 1
- - o 0.00100
N M2 % ™ hel 3z ~ Vv » 3 hel 2
O I R ¥ O N S R "

Figure 2: (a) and (b): the average of MSEs (B = 100 simulations) at each step. (c) and
(d): Boxplots of MSEs. Each box summarises the quantiles of 30000 MSEs (100 simulations
and 300 MSEs in each simulation). The measures in the warm-up period (i.e. 200 steps) are
omitted.

3.2 Scenario 2: The stochastic W,

In Scenario 2, the initial weight matrix W, is also generated by , but, in contrast to
Scenario 1, W; then evolves stochastically. The data generating process is described in
Algorithm , where T' = 500, 02 = 1 and a% =1 x 107% Note that, to guarantee that W,
evolves in a meaningful range, we set some constraints: at the beginning of each step, W;_;
is maximum-row normalised, and the coefficient 0.9 is applied for generating ;. Thus, the

applied p;, which is the maximum row sum of W,, is always around 0.9, and the resulting
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Figure 3: (a) and (b), the average Frobenius norm; (c) and (d), the average p;.

W, matrices are persistent, coherently with the empirical evidence based on the data used

in Section 5, and not leading to singularities in I — p,W,.

Algorithm 2 : The data-generating process for Scenario 2
Generate initial weight matrix W, with and @
fori=1,..,T do

Wi = Wtfl/ptfl
2 =09%Z 1 +n,n ~N(0,071p,)
v = (I — Wy) ey, e ~ N(0,0%1p)
end for
Output: {zy,y},t=1,...,T
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To evaluate the performance of M; and Ms, we follow the same procedure as that used
in Scenario 1. As the results are consistent with the evidence shown in the previous section,
we report the results in [B] for interested readers, while, here, we evaluate whether the filters
perform differently in the two scenarios.

In Table [T we summarise the statistics of MSEs for both scenarios. By comparing them,
we could see that the average MSEs in Scenario 2 are slightly higher than those in Scenario
1. This is reasonable, as the hidden state W, in Scenario 2 keeps evolving, which means that
the filter has to catch up with the varying hidden state constantly, whereas, in Scenario 1,
the filter’s effort is concentrated in the warm-up period. Furthermore, we also report the
average CPU times (in seconds) in Table [l which show that the running time grows with
the state dimension. In particular, when the state dimension increases by a factor of four,

from 90 to 380, the CPU time consumed by M; x—, and Mj grows by a factor of three.

Scenario 1 Scenario 2
model avg std CPU time(s) avg std CPU time(s)
M g=1 0.00477 0.00055 39 0.00497  0.00069 35
M k=2 0.00336 0.00055 7 0.00371 0.00069 78
D =10 M k=3 0.00360 0.00061 93 0.00397  0.00072 92
M g=q4 0.00358 0.00058 119 0.00398  0.00071 112
M k=5 0.00365 0.00061 152 0.00405  0.00075 142
Mo 0.00373  0.00125 499 0.00425 0.00154 473
M g=1 0.00182 0.00015 169 0.00184  0.00021 176
M k=2 0.00143 0.00014 199 0.00150 0.00023 224
D =920 M k=3 0.00146 0.00015 242 0.00153  0.00025 235
M k=4 0.00149 0.00015 274 0.00154 0.00025 288
M k=5 0.00149 0.00015 315 0.00156  0.00027 325
My 0.00202  0.00029 1562 0.00208  0.00038 1665

Table 1: The mean and the standard deviation of the MSEs (B = 100 simulations); Columns
5 and 8 reports the average computing time on an Intel Core i5-7200U Processor.
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4 Sensitivity analysis

The performance of the filters employed to recover the latent W; might be influenced by
the various settings that we adopt in the simulation exercise. To check robustness of the
proposed methods as well to provide some guidelines on how to specify these settings in
real-world analyses, we provide a set of additional results that focus on the sensitivity of the

filter performances to the different parameter values.

4.1 Parameter settings for M;

In the previous section, we assumed R = o*Ip for both simulations designs. In fact, we as-
sume that W;, together with its higher orders, represents the only source of contemporaneous
interdependence, i.e. the spatial effects driven by the weight matrix in the SAR process .

We now expand the representation by assuming ¢, ~ N (0, R), i.e.

K
Y= Wtkyt +e€, ¢~N(0,R)
k=1 , (10)

Tt = Ty—1 + N, e~ N(070-1%]Dx)

where the off-diagonal entries of R can be non-zero. The aim of this simulation is to examine
whether the performance of M is impacted by introducing correlated observation innova-
tions, i.e. to verify if W, still captures the spatial dependence or is distorted by the presence
of correlation; in the latter case, we expect that W; would also proxy for R. We mainly focus
on the representations M x—; and M g—o.

The data-generating process is reported in Algorithm Different from Algorithm [T}
Algorithm [3] generates ¢; with covariance matrix R, which is assumed to have unit diagonal
entries and equal off-diagonal elements, i.e., p;; = ¢, i # j. We consider two settings for ¢:
¢ =0 and ¢ = 0.05. When ¢ = 0, the data is essentially generated from a pure SAR model.

When ¢ = 0.05, the disturbances are mildly correlated. The latter case is more challenging,
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as the contemporaneous correlation is jointly determined by both W and R. Furthermore,
we assume that the underlying W is populated with a constant value 0.05 outside the main

diagonal, i.e.

Wi; = 0.05, i+#j )

Finally, for completeness, we set o, = 0.01, and 7" = 5000. We note that the simulation
settings are particularly challenging when ¢ > 0 as W; and R do have exactly the same

structure.

Algorithm 3 : The data-generating process for sensitivity analysis
Generate initial weight matrix Wy with (11)).
fort=1,...,T do
xp = 20 + e, ~ N(0,071p,)
ye = (I —Wy) e, es ~ N(0, R)
end for
Output: {zy,y},t=1,...,T

4.1.1 The observation and state variance

To obtain a better understanding of the behaviour of the state-space representations, we
examine their performance across the different parameter values. The full parameter set for
the model is 0 = {0,000y, c}; po and oy are the starting values for the state mean and
standard deviation, respectively. We assume that o = 0.2, which is far from the true state
value (W; ; = 0.05). In addition, the different combinations of oy and o, are reported in the
first column of Table[2] As for the observation covariance matrix, we assume the structure of
R is known, i.e. with the diagonal entries being equal to 1 and the off-diagonal entries being
equal to c¢. Further, ¢ varies from 0 to 0.3. All the results are based on B = 100 simulations.

In each simulation, the data is generated according to Algorithm [3| and the two filters,

M k=1 and M, g—o, are employed to estimate the latent weight matrix W;. The mean and
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the standard deviation of the MSEs for the last 1000 steps for each setting are reported in
Table 2] for the case where ¢ = 0. We remind that the MSEs monitors the distance between
the estimated W; sequence and the corresponding true sequence.

As discussed before, when ¢ = 0, the data is generated from a spatial model. We see from
Table [2| that M x—1 performs best, in terms of MSE, when ¢ = 0.1/0.15, while M g
achieves the lowest MSE when ¢ = 0/0.05. Further, both representations achieve similar
MSEs at the optimal ¢. The evidence shows that M; x—; is able to capture the spatial
effects, but it has to leverage both W; and R, with some mild distortions (expectations were
in favor of the case ¢ = 0 given the absence of correlation among residuals). Meanwhile,
M k=2, with ¢ = 0, which is equivalent to its original specification , can capture all the
spatial effects generated from a pure SAR process.

In the case of ¢ = 0.05, the MSEs for the last 1000 steps are reported in Table [3] We see
that, compared to the case where ¢ = 0, the optimal ¢, in the case where ¢ = 0.05, increases
for both M g—1 and M g—s. In particular, the optimal ¢ for all variance settings shifts
approximately by 0.05. For example, given the first variance setting, the optimal ¢ shifts
from 0.1 to 0.15 for M x—; and shifts from 0/0.05 to 0.1 for My x—5. Notice that, both
of them are able to deliver the same level of accuracy as they do in the case where ¢ = 0,
which indicates that, by adopting the specification in , the correlations in the innovations
introduced in the data-generating process can be well captured, but they will be mixed-up
with the true dynamic in the W, matrices. Summing up, the results from Tables [2] and
suggest that, when the correlations in the innovations are introduced in the data-generating
process, they will be captured together with the spatial effect, thus leading to distortions
associated with the impossibility of properly disentangling the presence of dynamic spatial
dependence and correlations among the observation equation innovations.

Next, we examine how the filter performs with different state variance levels. For the

case where ¢ = 0, we plot the average MSE at each step in Figure . Panels (a) and (b)
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Figure 4: The average of the MSEs (B = 100 simulations) at each step. Two parameters

were examined: the initial state variance g and the state variance o7.

show the results for K =1 and K = 2, respectively. The four curves correspond to different
combinations of oy and o,; for each combination, an optimal ¢ is chosen. In all settings,
the initial state mean pg is far from the true value. Note that, a large g is only used to
demonstrate the convergence of the filter. We could see that, although the initial guess is
far from being reasonable, the filter is still able to converge. LEAVE OUT: o7, the variance
of the initial condition x( of x, is a measure of how we are confident about the initial value
xg itself. Here pg, the mean of xg, is set to 0.2 which, as previously mentioned, is a large
value compared to the true state value IW;; = 0.05 used for simulations. This might explains
why in this particular simulation study the algorithm converges faster if we increase the
uncertainty o2 in having proposed 1y = 0.2 as the average value of z. Notice also that the
convergence slows down as the initial state variance o2 decreases. For example, in Figure
(a), when oy = 0.1, the curve stabilises within 2000 steps. However, as we reduce the

variance to oy = 0.01, the converging speed slows down significantly, and it takes more than
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2000 steps to arrive at a stable value. o, seems to have similar effects, and the results are
more obvious in the case where oo = 0.01: in both Panels (a) and (b) in Figure [4] the
yellow curve (o, = 0.0005) moves downward at a slightly slower pace than the blue curve
(0, = 0.001). Moreover, the advantage of a small o, is also significant, as, from Tables
and , we see that, after convergence, the filter with the smaller o, leads to a much lower
error. For example, in Table 2] given that oy = 0.1, when o, is reduced from 0.001 to 0.0005,
the average MSE of M x—o is reduced from 0.00065 to 0.00045. We may conclude that,
if the state variance decreases, the converging process slows down, but the estimation error
also declines. In practice, when choosing a proper o,,, one may need to evaluate the balance

between the converging speed and the expected error level.

4.1.2 The ensemble size

The ensemble size N plays a crucial role from a computational point of view, but it could
also have an impact on accuracy. Its appropriate selection is thus of paramount importance.
There are several rules that may help make this decision. First, the SEKF can only converge
when the ensemble size N is larger than the rank of the observation covariance matrix, and,
in our case, N > D (Anderson, [2009)). Second, as discussed in |Gillijns et al.| (2006), usually
50 to 100 samples can be enough for a state dimension up to thousands, and the error can
be reduced as N increases. Third, the necessary ensemble size has a linear relationship with
the state dimension (Katzfuss et al., 2020).

To obtain a concrete idea about the necessary amount of samples, we measure the perfor-
mance of My g—1 and M, g—o by varying N from 100 to 1000. The data-generating process
follows Algorithm ({3]), where ¢ = 0. The parameters for the state-space representation are
fixed with g = 0.1, 09 = 0.1 and o,, = 0.001. The optimal ¢ is chosen, i.e. ¢ = 0.1 for
M k=1, and ¢ = 0 for My g—5. We run B = 100 simulations. Figure [5| (a) reports the av-

erage MSEs with different ensemble sizes. The curves show that both M; x—; and M g
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Figure 5: (a) The average of MSEs (B = 100 simulations) with increasing ensemble size V.
(b) The average computing time refers to an Intel Core i5-7200U Processor.

need 400-500 samples to achieve reasonable accuracy and the level of errors could hardly be
further reduced as N continues increasing. In our case, the ensemble size is larger than the
values of 50-100 reported in |Gillijns et al.| (2006). A possible reason for this might be the
large dimensional gap between the state and the observation; given the same state dimen-
sion, it is more challenging for the filter to retrieve the information if the observation is in
a much lower dimensional space. Finally, we also report the average CPU times in Figure

(b), which shows a linear relationship between the running time and the ensemble size.

4.2 Parameter settings for M,

We follow the same procedure to study the parameters in M. In particular, Algorithm
is employed for generating the data when the correlations among the innovations are

considered, i.e. ¢, ~ N(0, R). To capture the possible contemporaneous correlation, we also
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adopt a relaxed specification for My, i.e.

vy = (Ip — Wt)iletﬂ ¢ ~ N(0, R) ’ (12)

Ty = Ty—1 + Nty M ~ N(OJ%IDZ)

where R is assumed to have unit diagonal entries and an equal off-diagonal value ¢. Accord-

ingly, the log-likelihood function changes from @ to
D 1 1 S
L(Wilye) = Y log(2m) — B log |R| + log [ 4| — §<Atyt) R (Aw), (13)

where A, = Ip — W,. It is easy to see that the correlated innovations only impact the last
part of the log-likelihood function, i.e. —3(Aw)" R~ (Awy).

In the following subsections, we first investigate two parameters, o, and ¢, for specification
(12). The initial settings po and o are not examined here, as it is the proposal parameter
ay—g that traces the initial state. They are set with fixed values: o = 0.1 and oy = 0.1.
Further, we examine two hyper-parameters, the number of particles N and the time span
T. As discussed before, VSMC typically optimises the model on the whole dataset. The
performance of My may be compromised if T is too small or too large. Thus, T is also
included in the sensitivity analysis for Ms. With respect to the optimisation process for
VSMC, two parameters can be relevant: the number of optimisation steps M and the step
size s,,. Considering these are usual parameters in many optimization algorithms, here we
only report the values adopted: «,, is optimised with 200 steps, i.e. M = 200; for the first
100 steps, the step size is fixed to 0.001; for the second 100 steps, the step size is fixed to
0.0001.
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4.2.1 The observation and state variance

The data is generated using Algorithm [3| with two scenarios: ¢ = 0 and ¢ = 0.05. All
the parameters used in the data-generating process are the same as their M; counterparts
except for a shorter time span, which is 7" = 500. For the state-space representation, we let
c vary from 0 to 0.2 and o,, vary from 0.001 and 0.0005.

We run B = 100 simulations. The averages and standard deviations of the MSEs esti-
mated with different combinations of the parameter settings are summarised in Table[dl The
lowest average MSE (in bold) in each row corresponds to the optimal ¢. Table [4] shows that,
when the data is generated from a pure SAR process, i.e. ¢ = 0, the optimal ¢ is 0 or 0.05.
Further, when the extra correlations are introduced for the disturbance terms, i.e. ¢ = 0.05,
the optimal ¢ also increases accordingly. However, with the optimal ¢, My achieves similar
accuracy in both cases. The evidence implies that M, in its relaxed form , is capable
of capturing both the spatial effects driven by the weight matrix and the correlations in the
innovations, but again they are going to be mixed-up, due to identification issue.

In terms of the state variance, Table {4f shows that, in both cases, as o, decreases, the
average MSE also decreases. This has also been observed for M; (Tables [2] and [§). In
general, smaller o, provides higher precision for the filter, but it also limits the converging
speed. Thus, to set a proper o, in practice, one also needs to consider the possible changing

speed of the true state.

4.2.2 The number of particles N and the time span T

In this section, we study the role of the two hyper-parameters N and 7. In VSMC, the
particle filter is applied in each optimisation step, so a proper setting for /N can benefit both
the computational cost and the performance in general. On the other hand, if T" is too large,
the performance of My may also be deteriorated, as a larger T implies a larger parameter

space for VSMC. To obtain a better understanding on how the two parameters might impact
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Mean Squared Errors, ¢ =0
c=0 c=0.05 c=0.1 c=0.15 c=0.2
0.00064 0.00064 0.00072  0.00079  0.00090

o,y = 0.001 (0.00008)  (0.00008) (0.00013) (0.00019) (0.00027)
0.00045 0.00045 0.00053  0.00059  0.00066
o,y = 0.0005 (0.00008)  (0.00008) (0.00011) (0.00017) (0.00022)

Mean Squared Errors, ¢ = 0.05
c=0 c=0.05 c=0.1 c=0.15 c=0.2
0.00078  0.00065  0.00063  0.00067  0.00073

o,y = 0.001 (0.00010)  (0.00008) (0.00008) (0.00010) (0.00014)
0.00063  0.00047 0.00045 0.00048  0.00052
o,y = 0.0005 (0.00011) (0.00010) (0.00008) (0.00012) (0.00013)

Table 4: The mean and the standard deviation (in brackets) of MSEs (B = 100 simulations).
For each setting for o,, the filter with the optimal ¢ achieves the lowest MSE (in bold). In
the case of two equal lowest average MSEs (up to 107°), both have been marked in bold.

the empirical results, different settings are tested, i.e. N = {10, 100} and 7" = {100, 500,

1000}.

Mean Squared Errors

T =100 T =500 1T = 1000
0.00073  0.00066  0.00086

N =10 (0.00018)  (0.00010) (0.00011)
0.00075  0.00065  0.00089
N = 100 (0.00016)  (0.00009) (0.00011)

CPU Time (seconds)
T =100 T =500 1T = 1000
N =10 101 841 2559
N =100 162 1160 3170

Table 5: The upper part of the table reports the mean and the standard deviation (in
brackets) of MSEs (B = 100 simulations). The filter achieves the lowest MSE (in bold)
when 7" = 500. The lower part of the table reports the average computing time on a 4-core
Intel Xeon processor.

We run B = 100 simulations. The data is generated using Algorithm [3| where ¢ = 0.
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The parameters for My are fixed, i.e., o = 0.1, 09 = 0.1, 0, = 0.001 and ¢ = 0. The
means and standard deviations of MSEs are summarised in Table Bl We can see that the
filter performs similarly in cases where N = 10 and N = 100. In fact, as discussed in |Le
et al| (2017)), a larger N can even be harmful for proposal learning, as a larger number
of particles can reduce the magnitude of the gradient. In addition, a small N should be
preferred from a computational-cost perspective (Naesseth et al. 2018). As for the time
span, Table [5| shows that My performs the best when T' = 500. When T = 100, despite
the small number of observations, the performance of M, is quite reasonable. It is worth
noticing that, in this case, T' is only slightly larger than the state dimension D(D — 1) = 90.
When estimating an invariant weight matrix in a SAR model, 7' > D(D — 1) is required
for providing enough degrees of freedom. In our case, for the state-space representation,
T > D(D — 1) also provides a good starting point for determining a minimum 7. When
T = 1000, the increasing number of parameters starts to deteriorate the performance of Mo.
Naesseth et al.| (2018) suggested that the accuracy of VSMC can be kept the same by setting
N o T. In practice, if the full dataset is longer than the optimal 7', an efficient way of
estimation would be to split the dataset in such a way that each set of data is of optimal
length T'. Further, the need of sufficiently long time series might represent a limit for the
application of our methodology to fields were data availability is not a great concern as, for
instance, in the case of data recovered from financial markets.

The average computing times for this simulation are reported in the lower part of Table[5
We can see that the CPU time has an approximately linear relationship with the time span
T. However, as N increases exponentially, the elapsed time only increases slightly. This is
reasonable, as IV is only related to the efficiency of the particle filter, rather than the whole

optimisation process.

31



5 Real-world analysis

As the last step, we test M; and M on real-world data and examine whether the features
of the estimated weight matrix provide some economic information as well as if they align
with our expectations. To that end, we apply two models, M x—o and My, to a weekly
CDS dataset for 16 large banks from four selected European countries. The bank names are
reported in . The time horizon is ten years (i.e., 521 weekly observations), covering the
period from 4th Jan 2009 to 30th Dec 2018. The input for the modelling is the logarithm
change of CDS levels, which is normalised such that the standard deviations of the observa-
tions are all equal to one. The expected output is a series of 16 x 16 weight matrices, which
represents the dynamic spillover effects among banks. As banks from different countries

may have exposure to different types of risks, country-driven communities are expected to

be identified from the estimated weight matrices (see [Torri et al.| (2018))).

To take into consideration the presence of limited serial dependence, typical of financial
times series, we also add a time lag, an autoregressive component, into the state-space
models. Specifically, the lagged observation y;_; is introduced as a factor into the observation

equations, and the applied state-space models are as follows:

(

Yo = Ay + (W + W2y + €, e ~ N(0,021p) (14)
\ Ty = Tp—1 + N, e ~ N<07072,1Dz>

Ye = Ay + (1 = W) ey, e ~ N(0,02Ip) (15)

Ty = Tp—1 + N, ne ~ N(0> UEIIDI)

\

where y; denotes the CDS observations for 16 countries at week ¢t. A, is the 16 x 16
diagonal matrix of the autoregressive coefficient, i.e. A; = diag(ay, ..., a15). The state z; is
composed of the diagonal entries of A; and the off-diagonal entries of W;. The variance of

the observations and the states are assumed to be known: 0? = 1 and 07 =1 x 107°. Note
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that the representation is just a variant of My. The only difference is that, now, the
weight matrix measures the spillover effects among the residual y, — Ay;_1, i.e. once the
serial dependence is filtered out from the data.

Figure [6] shows the estimated weight matrices at certain cut-offs, ¢ = 100,200, 300, 400
and 500. For each matrix, the observable community blocks are outlined using dashed red
lines. The first row illustrates the matrices estimated with representation ([14). We could
see that, when ¢t = 100, the community blocks are still at the state of emerging (the warm-
up period); but as t increases, the partitions become clearer. As for the estimation using
representation (the second row), the communities are well identified across all periods.

Further, we compute the partitions based on each estimated weight matrix using the
Louvain algorithm (Blondel et al.| 2008)). The results are plotted in Figures [7| and |8, where
the underlying weight matrices are estimated using and , respectively. The graph
can be understood as a table with 16 columns, which represent the banks, and 521 rows,
which correspond to the 521 weeks. In each row, banks belonging to the same group are
displayed by the same color. For example, the Italian banks, Intesa Sanpaolo and Monte
Paschi, are coloured green each time, which indicates that they belong to the same group
over the entire study period. We see from Figure[7] that the partitions are not quite clear-cut
in the first few years, which is in line with the evidence from Figure [f], However, afterwards,
banks belonging to the same countries are all classified into their respective groups: green for
Italy, black for France and yellow for the UK. Figure|§|is almost coherent with the content of
Figure[7] There are, in fact, two exceptions: first, after 2011, the two German banks belong
to an independent group in Figure[7] but they merge with Italian banks in Figure [8} second,
related to the features of different filters, in contrast to Figure [7] Figure [§] exhibits country-
based partitions from the very beginning and maintains consistency afterwards. This could
be considered as an advantage for offline methods, especially when the estimates for the

early steps are important.
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Figure 7: Community detection. The underlying weight matrix is estimated with repre-
sentation . Green for Group 1; black for Group 2; yellow for Group 3; blue for Group
4.
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Figure 8: Community detection. The underlying weight matrix is estimated with represen-

tation (15]). Green for Group 1; black for Group 2; yellow for Group 3.

In the end, we investigate the performance of representations and from a fore-
casting perspective. A VAR model is used as the benchmark. To perform the dynamic
estimation, we adopt a moving-window approach for VAR, where three window sizes are
applied: 52 weeks, 104 weeks and 156 weeks. The in-sample errors are measured for each
moving window, and the out-of-sample errors are calculated using one-step forecasting. As
for the two state-space representations, at each step, the estimated A; and W; are applied

for calculating in-sample errors at ¢ and out-of-sample errors at ¢ + 1. Table [ summarises
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the MSEs for all five models and shows that, in terms of both the in-sample and the out-of-
sample measures, the state-space model could outperform the moving-window VAR model.
To complement this point value comparison with a statistical test, we report in the last
column the p-value of the Model Confidence Set (Hansen et al., 2011)). We perform the test
using the MSE loss function and R test statistic, with 1000 block-bootstrap replications and
an average block length of four observations (we refer the reader to Hansen et al.|(2011) for
details on the test implementation); the test confirms that the preferred specification is the
first state-space representation (small p-values identify the exclusion of the model from the
set of preferred specifications). The result is promising, as it suggests that, in some cases,

the dynamic weight matrix may also be useful for model fitting and forecasting.

Model MSE (in sample) MSE (out of sample) MCS
0.00270 0.01305 1.000

0.00279 0.01458 0.014

VAR (52 weeks) 0.00614 0.03760 0.014
VAR (104 weeks) 0.00738 0.03557 0.014
VAR (156 weeks) 0.00786 0.02545 0.014

Table 6: The average MSE of model fitting and forecasting (Column 2 and 3) and the Model

Confidence Set p-values (Column 4).

6 Conclusion

In this paper, we propose two types of state-space representations for estimating dynamic
networks. For M, we introduce the higher order of W; such that both direct and indirect

spillover effects can be addressed, while, for My, W, is updated with a conventional spatial
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model. The simulation results show that when the indirect spillover effect is taken into
account, i.e. K > 1, the performance of M; improves significantly. Compared to Ma,
the advantage of M, is that can be identified efficiently and it can better deal with the
higher-dimensional cases, as the representation is estimated with SEKF, which requires only
a linear relationship between the sample size and the state dimension (Katzfuss et al., 2020)).
Meanwhile, the evidence shows that the performance of My cannot reach the performances
of My k-5 as D increases to 20, i.e. the state dimension increases to 380. Essentially, this is
because My could only be identified by a particle filter, which is known to suffer from the
curse of dimensionality problem. However, M, provides an authentic way to identify the
weight matrix, as it directly utilises the log-likelihood function of the SAR model. Further,
by employing VSMC, we show that W, can be estimated with a small 7', which can be quite
useful in practice when the length of the dataset is limited. In the real-world application,
we test two representations on the CDS levels for banks from four countries and show the
effectiveness of the representations in identifying country-driven partitions.

The method we proposed can be further studied along several directions. First, in
this work, we only apply the state-space representations for estimating small networks, i.e.
D = 10 and D = 20, and with relatively long time series. Further research is needed for
identifying larger networks, and also for covering cases where the ratio between the temporal
dimension and the cross-sectional dimension decreases, a situation that would create relevant
computational challenges. Essentially, we want to associate the state-space representations
with filtering algorithms that are efficient in high-dimensional space, also controlling for the
sample size over time. Second, if any underlying dependency structure is known, W; can be
estimated under certain constraints, such as a symmetric W;, or estimated based on some
known matrices, such as W, = G,(W,, Wh, ...), where G, is the function of some known ma-
trices W; and W, at step t. In either case, the state dimension is expected to be reduced

significantly. Third, the method may be further generalised, in the sense that the spatial
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model can be replaced by other models where the dependency structure is of interest. One
such example is the BEKK model (Engle and Kroner] |1995]), where the parameter matrix
measures the intertemporal spillover effects among volatilities and co-volatilities. Finally, as
our contribution is purely empirical and simulation-based, theoretical properties of the esti-
mators and a deeper understanding of the identification issue could also represent interesting

lines of research.
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A Filter algorithms

We provide pseudo-algorithms for the three filters used in this paper, i.e., KF, SEKF and

VSMC. The general form of the state-space model is defined as follows:

Y = H(CEt) + O¢, gy ~ N(O, R)
xp = F(@ea) +me e~ N(0,Q)

In case of linear SSM, H(z;) = Hxy and F(x;—1) = Fay_q, where H and F are the observation
and transition matrices, respectively.
Notations:
N — the sample/particle size
r;— the estimated state mean at time ¢
a:l(ti)— the i-th sample state in the analysis step, i = {1,..., N}
Z;— the predicted state mean in the forecast step, at time ¢
igi)— the i-th sample state in the forecast step, i = {1, ..., N}
y;— the observation at time t
y;— the predicted observation at time ¢
P,— the estimated state variance at time ¢
P,— the predicted state variance in the forecast step, at time ¢
K,;— the Kalman gain at step ¢

R— the observation covariance matrix

(Q— the state covariance matrix
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A.1 Kalman Filter (KF)

Algorithm 4 : Kalman Filter

Initial guess for zq, Py
fort=1,...,T do
Ty = Foy_q
P,=FP_ F" +Q
K,= PH"(HP,H" + R)™!
xy =1+ Ky, — HTy)

P=(I-KH)F

end for

> Forecast step

> Analysis step

A.2 Stochastic Ensemble Kalman Filter (SEKF)

Algorithm 5 : Stochastic Ensemble Kalman Filter

Generate samples xéi)(i =1,..., N) randomly.
fort=1,...,T do
fori=1,...,N do

fgi) }—(JUEZ) +
9 = H(@")

end for
K; = Cov(zy, ) Var(g) + R)™*
fori=1,...,N do

v =3 + Ky -9 +e)
end for
=5 Xl (@)

end for

> Propagate samples

> Calculate Kalman gain

> Sample mean as state estimation
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Cov(Z4,7;) denotes the covariance of Z; and g;; Var(g,) is the variance of g;.

A.3 Variational Sequential Monte Carlo (VSMC)

VSMC is proposed in Naesseth et al.| (2018). An important fact used in the paper is that the
ELBO is equivalent to the average of importance weights, which converges to the marginal

likelihood as the sample size increases (Le et al., [2017)), i.e.

T N
1 - ”
ELBO = "log <N > wf”) 2% 5 Yog plyir), (16)
t=1

i=1

where N is the total number of particles, and wlgj ) denotes the weight of the j-th particle

at step t. Thus, in each optimisation step, the particle filter (Algorithm [7)) can be used for

calculating the empirical ELBO.

Algorithm 6 : Variational Sequential Monte Carlo
Initial guess for proposal parameter oy

form=1,.... M do
Run Algorithm |7| with proposal distribution q(z|z;_1, @)
Calculate surrogate ELBO: £ ~ Z;‘le log (% Zi\il wt(j)> > Maximise £
Estimate the gradient V(L)
Compute step size s,

Uyt = O + 5, V(L) > Update proposal parameter

end for
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Algorithm 7 : Particle filter at step m for optimisation

fort=1,...,T do
for j=1,...,N do

Sample x§j) from q;(x¢|zi—1, )

G) _ e p@?|z))
Wy EDIED
qt(zy o)

end for
t Zf\;l wij)

Resampling {xgj )} according to {u?g] )}

w

end for

> Propose particles

> Calculate weights
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B Results for the second scenario from Section [3

We report the detailed simulation results for the second scenario, in which the hidden W,
evolves stochastically. Similar to the steps taken in Scenario 1, we first generate 100 sets of
data according to the introduced process; then, we apply the state-space models M; and
M to each set of data and collect different measures. In this scenario, we set the same
observation variance and state variance for all filters: 02 = 1 and o7 =1 x 107°.

Figure[J] compares the MSEs for different representations and shows that M x—, delivers
the lowest MSEs on average. Figure [10| reports the average Frobenius norm and p; of the

estimated matrices, and we could see that the estimates from M, x—; diverge the most from

the true value (the grey lines).
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Figure 9: (a) and (b): the average of the MSEs (B = 100 simulations) at each step. (c¢) and
(d): Boxplots of MSEs. Each box summarises the quantiles of 30000 MSEs (100 simulations
and 300 MSEs in each simulation). Results referring to the warm-up period (i.e., 200 steps)

are omitted.
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C Real-world Dataset Constituents

Number Bank Name Abbreviation Country
1 Intesa Sanpaolo [. Sanpaolo Italy

2 Monte Paschi M. Paschi Italy

3 Unicredit Unicredit Italy

4 Mediobanca Mediobanca  Italy

5 BNP PARIBAS BNP France

6 Credit Agricole C. Agricole  France

7 SOCIETE GENERALE S. Generale  France

8 Credit Lyonnais C. Lyonnais  France

9 HSBC HSBC UK

10 Bank of Scotland B. Scotland UK

11 Natwest Batwest UK

12 RBS RBS UK

13 Barclays Barclays UK

14 Lloyds LLoyds UK

15 Deutsche Bank Deutsche B.  Germany
16 Commerzbank Commerz B.  Germany
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