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Abstract

The reversed-field pinch (RFP) is a toroidal device for the magnetic con-
finement of a fusion plasma, similar to the tokamak but with a relatively
stronger induced plasma current. RFP plasmas are subject to various re-
laxation processes, the most macroscopic of which, the kink and the tearing
modes, are suitably described in a fluid-dynamics framework called magneto-
hydrodynamics (MHD).
In the past two decades a new enhanced-confinement scenario has been ex-
perimentally demonstrated for the RFP. This is known as “Quasi Single
Helicity” (QSH) state and consists in the intermittent dominance of a single
Fourier mode over the rest of the magnetic spectrum, generating a signifi-
cant part of the magnetic field through a self-organised electrostatic dynamo
effect. QSH states can be stimulated by resonant edge magnetic perturba-
tions or they can emerge as a spontaneous self-organisation when the plasma
current exceeds a device-specific threshold (1 MA for RFX-mod).
Advanced numerical modelling has traditionally played a key role in the
study of this process, and indeed the spontaneous helical states in the RFP
were found to form in nonlinear MHD simulations even before their experi-
mental observation. However, some features of the experimentally observed
spontaneous and systematic emergence of QSH states with a certain pref-
erential toroidal periodicity still lack of a fully self-consistent quantitative
predictability. Past studies performed with the 3D nonlinear MHD simula-
tions code SpeCyl suggest that a key role is played by the interplay between
the plasma and its magnetic boundary.
For this reason the past decade marked a consistent endeavour towards the
implementation of more realistic boundary conditions (BCs) in SpeCyl. First
qualitative experimental-like QSH states could be reproduced by implement-
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ing a fixed magnetic perturbation at plasma boundary, on the top of the
traditional formulation, featuring an ideal wall in direct contact with the
plasma. At the beginning of my PhD, an effort to model the boundary as
a thin resistive shell had already started and was awaiting to be completed
and carefully validated.
The main goal of my PhD research was the formulation, implementation in
SpeCyl, and verification of a realistic set of BCs, representing a resistive shell
in contact with the plasma, and surrounded by a vacuum region and an ideal
wall placed at finite tuneable distance, along with a realistic description of
the edge flow. This is a very general set-up, of interest for various magnetic
configurations, that allows to reproduce a full range of experimental condi-
tions, from the previous ideal-wall limit to a free plasma-vacuum interface.
My work was articulated in several steps: 1) in-depth study of the linear the-
ory of current-driven MHD instabilities, along with the implementation of a
linear-stability numeric tool to provide a reliable benchmark for SpeCyl; 2)
careful analysis of the SpeCyl code and of its existing BCs (the ideal-wall and
the resistive-shell formulations) and characterisation against the linear MHD
theory. This made possible to reveal critical inconsistencies in the thin-shell
BCs, motivating a major reframe in the modelling of the velocity boundary;
3) formulation and implementation of the new BCs (thin-shell, surround-
ing vacuum and outer ideal wall, realistic 3D edge flow). This required the
implementation of an original deconvolution technique, to deal with the 3D
velocity BCs in the spectral code SpeCyl; 4) nonlinear verification of the
new BCs module against the independent 3D nonlinear MHD code Pixie3D,
and verification benchmark against the linear MHD theory of external kink
instabilities.
The excellent results obtained in both verification studies clearly demonstrate
the correctness of the implementation of the new SpeCyl’s BCs and motivate
future validation studies against real experimental data from the RFX-mod
device and its next upgrade RFX-mod2.



Abstract in Dutch

De reversed-field pinch (RFP) is een toröıdale configuratie voor de mag-
netische opsluiting van een fusieplasma, vergelijkbaar met de tokamak maar
met een relatief sterkere gëınduceerde plasmastroom. RFP-plasma’s zijn
onderhevig aan verschillende relaxatieprocessen, waarvan de meest macro-
scopische, de kink- en tearing-modes, adequaat worden beschreven in een
vloeistofdynamisch kader dat magnetohydrodynamica (MHD) wordt genoemd.
In de afgelopen twee decennia is voor de RFP experimenteel een nieuw sce-
nario van verbeterde opsluiting aangetoond. Dit staat bekend als de “Quasi
Single Helicity”- toestand (QSH) en bestaat uit de intermitterende domi-
nantie van een enkele Fourier-mode over de rest van het magnetische spec-
trum, waarbij een aanzienlijk deel van het magnetisch veld wordt opgewekt
door een zelfgeorganiseerd elektrostatisch dynamo-effect. QSH-toestanden
kunnen worden gestimuleerd door resonante magnetische randstoringen, of
ze kunnen ontstaan als spontane zelforganisatie wanneer de plasmastroom
een apparaatspecifieke drempel overschrijdt (1 MA voor RFX-mod).
Geavanceerde numerieke modellering heeft traditioneel een sleutelrol gespeeld
in de studie van dit proces, en de spontane helische toestanden in de RFP
bleken zich inderdaad te vormen in niet-lineaire MHD-simulaties, zelfs vóór
hun experimentele waarneming. Sommige kenmerken van het experimenteel
waargenomen spontane en systematische ontstaan van QSH-toestanden met
een bepaalde preferentiële toröıdale periodiciteit zijn echter nog steeds niet
volledig zelfconsistent kwantitatief te voorspellen. Eerdere studies met de
3D niet-lineaire MHD simulatiecode SpeCyl suggereren dat de wisselwerking
tussen het plasma en zijn magnetische rand een sleutelrol speelt.
Daarom is het afgelopen decennium consequent gewerkt aan de implemen-
tatie van meer realistische randvoorwaarden in SpeCyl. Eerst konden kwali-
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tatieve experimentele QSH-toestanden worden gereproduceerd door een vaste
magnetische perturbatie aan de plasmagrens te implementeren, bovenop de
traditionele formulering met een ideale wand in direct contact met het plasma.
Aan het begin van mijn doctoraatsonderzoek was al begonnen met het mod-
elleren van de rand als een dunne resistieve mantel, die nog moest worden
voltooid en zorgvuldig gevalideerd.
Het hoofddoel van mijn doctoraatsonderzoek was de formulering, implemen-
tatie in SpeCyl, en verificatie van een realistische reeks randvoorwaarden,
die een resistieve mantel in contact met het plasma voorstellen, omgeven
door een vacuümgebied en een ideale wand op een eindig instelbare afstand,
samen met een realistische beschrijving van de randstroming. Dit is een zeer
algemene opstelling, van belang voor verschillende magnetische configuraties,
die het mogelijk maakt een volledig scala van experimentele omstandighe-
den te reproduceren, van de eerdere ideale-wand tot een vrij plasma-vacuüm
grensvlak.
Mijn werk bestond uit verschillende stappen: 1) grondige studie van de lin-
eaire theorie van stroom-gedreven MHD instabiliteiten, samen met de imple-
mentatie van een numerieke tool voor lineaire stabiliteit, om een betrouw-
bare benchmark te bieden voor SpeCyl; 2) zorgvuldige analyse van de SpeCyl
code en van de bestaande randvoorwaarden (de formulering met ideale-wand
en resistieve schil) en karakterisering in het licht van lineaire MHD-theorie.
Dit maakte het mogelijk kritieke inconsistenties in de randvoorwaarden van
de dunne schil aan het licht te brengen, hetgeen een belangrijke herzien-
ing rechtvaardigde van de modellering van de snelheidsgrens; 3) formulering
en implementatie van de nieuwe randvoorwaarden (dunne schil, omringend
vacuüm en buitenste ideale wand, realistische 3D-randstroming). Dit vereiste
de implementatie van een originele deconvolutietechniek, om de randvoor-
waarden voor de snelheid in 3D te kunnen behandelen in de spectrale code
SpeCyl; 4) niet-lineaire verificatie van de nieuwe module voor randvoorwaar-
den ten opzichte van de onafhankelijke 3D-niet-lineaire MHD-code Pixie3D,
en verificatiebenchmark tegen de lineaire MHD-theorie van externe kinkin-
stabiliteiten.
De uitstekende resultaten verkregen in beide verificatiestudies tonen duidelijk
de correctheid aan van de implementatie van de nieuwe randvoorwaarden in
SpeCyl en motiveren toekomstige validatiestudies tegen echte experimentele
gegevens van RFX-mod en zijn volgende upgrade RFX-mod2.



Summary

The increasing World energy demand compellingly requires new and clean
energy sources to sustain the human population growth and provide decent
life standards to everyone. Nuclear fusion comes as a promising solution to
face this indispensable challenge.
One of the most advanced lines of research for nuclear fusion relies on the
magnetic confinement of a hot hydrogen plasma in toroidal devices: such
as the tokamak, the stellarator, and the reversed-field pinch (RFP). The
confined plasma equilibrium is yet subject to relaxation processes of diverse
nature and scale: some of the most macroscopic are suitably described with
a fluid-dynamics approach, called magneto-hydrodynamics (MHD).

My thesis was conducted in Padova, where the world largest reversed-field
pinch experiment (RFX-mod) is located. Among the above-mentioned relax-
ation processes, a central relevance for this class of devices has the nonlinear
saturation of a current-driven instability, which produces the intermittent
dominance of a single MHD mode over the rest of the magnetic spectrum.
This is called a quasi-single helicity state (QSH) and yields a significant en-
hancement of confinement properties.
Advanced numerical modelling has traditionally played a key role in the
study of this process, and indeed RFP spontaneous helical states were found
to form in nonlinear 3D MHD modelling even before their experimental dis-
covery. However, some features of the experimentally observed spontaneous
and systematic emergence of QSH states with a certain preferential toroidal
periodicity still lack of a fully self-consistent quantitative predictability. Past
studies performed with the 3D nonlinear MHD simulations code SpeCyl sug-
gest that a key role is played by the interplay between the plasma and its
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magnetic boundary.
For this reason, the past decade marked a consistent endeavour towards the
implementation of more realistic boundary conditions (BCs) in SpeCyl. A
first important step in this direction was made with the implementation
at the plasma boundary of fixed applied magnetic perturbations, replac-
ing the original assumption of a perfectly conducting wall, in direct contact
with the plasma. This led to the first simulations qualitatively reproduc-
ing experimental-like QSH states, although the toroidal periodicity of such
states was enforced by the applied magnetic perturbations, mimicking the
experimental observations. In the quest for a self-consistent model for the
emergence of QSH states, the second step was to focus on the implementa-
tion of resistive shell boundary conditions replacing the conventional ideal
wall approximation. At the beginning of my PhD, an effort to model the
boundary as a thin resistive shell had already started and was awaiting to
be completed and carefully validated.

The main goal of this PhD thesis is the formulation, implementation
in SpeCyl, and verification of a realistic set of BCs, representing a resistive
shell in contact with the plasma, and surrounded by a vacuum region and an
ideal wall placed at finite tunable distance. This is a very general set-up, of
interest for various magnetic configurations, that allows to reproduce a full
range of experimental conditions, from the previous ideal-wall limit to a free
plasma-vacuum interface (by raising the thin shell resistivity to a large value
and displacing the external ideal wall far from the plasma).
To achieve such a goal, my PhD had to face several stages: I list here after
the major milestones

� Detailed analytical study of current-driven instabilities, such as the
ideal external kink and the tearing mode.

� Development and extended testing of a linear-stability numeric tool,
dubbed LENS (i.e., Linear Euler-Newcomb Solver, from the names of
the main differential problems it solves), providing reliable benchmark
for SpeCyl.

� Comprehensive reorganisation of diverse documentary material about
the work-flow of the SpeCyl code (early publications, unpublished or
cumulated hand-written notes, the source-code...).

� Nonlinear benchmark of the main pre-existing sets of boundary con-
ditions against the linearised theory of ideal kink modes and tearing
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modes.

� Progressive formulation and implementation of an upgraded set of bound-
ary conditions (thin shell, vacuum, external ideal wall, realistic mod-
elling of edge flow). Table 1 illustrates for every Chapter of this Thesis
the nickname and the main features of the set of BCs used therein. The
pre-existing sets of BCs are marked in green, the ones that I developed
are in red. A general scheme of the evolution of SpeCyl’s boundary
conditions can be found in Fig. 1.

� Nonlinear verification against the independent advanced 3D MHD non-
linear code Pixie3D (massively parallel, fully implicit, finite-elements,
arbitrary curvilinear geometry). The two codes had already been suc-
cessfully verified with ideal wall boundary conditions, in [Bonfiglio10].

Table 1: Scheme of the BCs used in different chapters of this thesis. Green
marks the pre-existing sets of BCs, in red are the ones that I implemented.

plasma + ideal wall plasma + resistive wall
+ vacuum + ideal wall

axisymmetric “SpeCyl.1” “SpeCyl.2.V00”
edge flow Chap. 5 Chap. 6
full-spectrum “SpeCyl.1.Vmn” “SpeCyl.2”
edge flow Chap. 7 Chaps. 8-10

The work presented in my thesis concerns both the tokamak and the RFP
geometry, although the preliminary analytical studies are mostly restrained
to the large aspect ratio tokamak (“straight tokamak”) that presents minor
analytical complexity.
The above stages are presented in the following Chapters.

Preliminary analytical studies (in the straight tokamak, with cir-
cular cross section) (Chaps. 3-4). With the purpose of testing the new
set of BCs against some well established results of the linear theory of MHD
instabilities, I started my PhD with an in-depth study of analytical models,
concerning in particular two peculiar MHD instabilities of fusion plasmas:
the ideal external kink mode and the resistive tearing mode.
For the ideal kink instability, the linearisation of the MHD equations can
be reduced to a variational principle, the “Energy principle”, that can be
treated as an eigenvalue-eigenvector differential problem. The stability analy-
sis against the tearing modes of an initially small perturbation of the toroidal
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Figure 1: General scheme of the evolution of SpeCyl’s BCs. SpeCyl.1 fea-
tures an ideal wall in contact with the plasma and axisymmetric radial flow.
SpeCyl.1.Vmn introduces a thin resistive wall (RW) at plasma edge, sur-
rounded by vacuum and by an outer conductor, but keeps the flow boundary
unchanged. SpeCyl.1.Vmn is obtained from SpeCyl.1 by adding a 3D velocity
boundary formulation. SpeCyl.2 combines the thin shell magnetic boundary
to the 3D edge flow into a more realistic and comprehensive set of boundary
conditions.
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magnetic flux, instead, relies on a geometric property of the flux perturba-
tion itself, and it is still amenable of an eigenvalue-eigenvector differential
approach.
I implemented and numerically tested a numeric tool dubbed LENS, solv-
ing the involved ordinary-differential equations, to produce reliable figures of
merit for the benchmark verification of SpeCyl.

Nonlinear benchmark of the existing BCs modules (SpeCyl.1 and
SpeCyl.2.V00) (Chaps. 5-6). Thanks to the pseudo-analytical figures of
merit provided by LENS, the first benchmark studies revealed some major in-
consistencies in the growth rates and radial profiles. Indeed, the assumption
of a null radial plasma velocity at the boundary (except from the axisymmet-
ric pinch velocity component) has been speculated (and finally proved to be)
as a possible source of such unsatisfactory benchmaking, especially against
free-boundary instabilities as the external kinks, hence motivating a major
reformulation.

Formulation of a new set of BCs (Chaps. 7-8). The above observation
led to the main challenge of my PhD thesis: the generalisation of the new
BCs to the case of non-axisymmetric, radial or three-dimensional velocity
boundary. This is a highly non-trivial task, in particular because SpeCyl is
a spectral code (i.e., its model equations are written in Fourier space with
respect to the two periodic - axial and azimuthal - coordinates). This implies
that every product in the physical space is mapped into a nonlinear convolu-
tion of modes by the Fourier transform. This problem was totally avoided by
the previous radial-axisymmetric implementation for the edge flow velocity.
A deconvolution approximated technique was developed and new, more com-
prehensive magneto-fluid boundary conditions were obtained. A preliminary
implementation of non-axisymmetric flow components was tested in the ideal
wall BCs (“SpeCyl.1.Vmn”, in Tab. 1), to cut complexity down and test the
deconvolution method in a simpler environment. Very promising results were
found in a nonlinear verification against the independent 3D MHD simula-
tions code Pixie3D, in the same limit of ideal wall boundary conditions.
As a result of this development, the same deconvolution technique was also
applied to produce the final full set of thin resistive shell magneto-fluid
boundary conditions: “SpeCyl.2”.
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Verification and nonlinear benchmark (Chaps. 9-10) To perform a
careful verification of the new implementation of resistive shell boundary
conditions in both SpeCyl and Pixie3D codes, I started to collaborate with
Dr. Chacón, thanks to a one month stay at Los Alamos NL (partially funded
by LANL). The scope of this collaboration was a nonlinear cross-verification
benchmark, aimed at ensuring mathematical and numerical correctness of
both codes.
This challenging endeavour eventually produced the final version of our new
boundary conditions, which constitutes the greatest achievement presented in
this dissertation. Excellent linear and nonlinear agreement has been found
against Pixie3D simulations on several case studies, both in tokamak and
RFP geometries.
Complementary to mathematical correctness is physical faithfulness, which
was consequently ensured by a finally successful benchmark against linear
theory predictions.
The code is now ready to investigate the physics of fusion plasmas with a
more realistic set of boundary conditions.

Outline for this thesis This dissertation is organised in six parts: Part I
consists in a general introduction to nuclear fusion and magnetic confinement.
MHD equations are presented, along with an introduction to the QSHs in
the RFP. Part II deals with the analytical theory of the linear MHD instabil-
ities driven by plasma current. Along with the analytical derivations and the
details on the implementation of my linear-instabilities numeric solver, great
attention is paid to the physical understanding of such phenomena. Part III
offers a detailed overview of the state of art of SpeCyl’s implementation at the
beginning of my PhD programme: this is the valuable and structured synthe-
sis of early documentary works, sparse unpublished material and thorough
reading of the source code. Chapter 5 presents the work flow of the code’s
main loop and the ideal wall boundary conditions. Chapter 6 illustrates the
thin resistive shell theory and its preliminary implementation as a plasma
interface. At the end of each of these chapters, I present the outcomes of
a linear benchmark study against MHD instabilities, performed with either
set of BCs. Part IV presents the formulation, and implementation of our
new set of boundary conditions, starting from the deconvolution technique
in Chap. 7 and concluding with a detailed description of the final set-up
in Chap. 8. Part V presents the verification and linear-benchmark studies.
Finally, Part VI presents my conclusions and final remarks.
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1
General introduction to fusion energy and

confinement concepts

1.1 Global energy demand

No form of life can exist without energy. Human life is no exception.
During the Neolithic age, our ancestors would get 15 to 40 calories per mus-
cular calory spent in harvesting or hunting and a few hectares were needed
to sustain a single human being [Smil94]. Today, the supply of much larger
energy flows (fertilisers, agricultural machinery, electricity, fossil fuels...) has
decoupled the yield from the human labour energy investment: only 0.2
hectares in average suffice nowadays to feed a human life [Alimonti17].
A similar portrait can be drawn for every human activity [IEA98]: from trav-
elling to working we strongly depend on external energy sources, be them of
fossil origin, geothermal, solar-, wind-, or hydro-power, biomass, or nuclear.
Such a convenient condition, along with the progress of scientific research,
has certainly contributed to the World population growth by five billions in
the last sixty years, as reported in Fig. 1.1. We can also see that the current
estimates indicate all but an inverted trend for the rest of this century. Not
only a larger worldwide population requires a greater deal of energy to feed
and survive, but there is a precise link between the quality of life and the ac-
cess to a minimum amount of primary energy supply per person. Any explicit
quantifier of human life “quality” is of course subject to some arbitrariness:
we refer here to the one adopted by the United Nations. In [Rezaee21] we
read: “The Human Development Index (HDI) is an indicator of social stan-
dards that consists of three areas: life expectancy, access to education and
literacy, and living conditions and income. The index depends on a number
of factors based on development, including the ability to perform tasks, such

3
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Figure 1.1: World population growth from 1950 and prospective growth by
the end of the century

as access to proper nutrition, health, occupation, education, and community
participation.”
Figure 1.2 shows quite incontestably that the life standards that we con-
sider as a prerequisite for decent fulfilment of the human rights is very
tightly bound to a minimum energy consumption per capita. This utterly
poses the stress on a mandatory reconsideration of the available resources
on our planet, to put also in the context of the Climate Change and the
compelling opposite requirement of nullifying within the century the anthro-
pogenic greenhouse-gas emissions [Lee23].
As much as the renewable energy sources offer a promising alternative to the
fossil fuels, to present date they also suffer from unpredictability and require
a very flexible energy distribution grid. On the other hand, the nuclear fis-
sion technologies often pay the price of poor social acceptance and pose the
problem of the nuclear wastes.

Nuclear fusion stands as a possible future alternative emission-free en-
ergy source, characterised by the same predictability as the nuclear fission,
but with reduced production of radioactive waste and - extrapolating from
present impressions - a much larger social acceptance.
Several energetic scenarios have been realised (see, e.g., [Han09] for a study on
the European scale, [Bustreo19] for the specific Italian market, and [Griffiths22]
for a review), suggesting also a comparable economic palatability of fusion
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Figure 1.2: Human Development Index compared with the energy supply
per person. Image taken from [Hagens20].
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Figure 1.3: Four alternative scenarios for the European energy mix by the
end of this century. All but the “base” one constraint the carbon dioxide
concentration in the atmosphere below 550 ppm. The “base” scenario is
almost the present one and does not consider fusion, the others present three
different estimates for the costs of a future fusion power plant. Image taken
from [Han09].

technologies with respect to the renewable energies, in the second half of
this century when the technology could be mature for a first generation of
reactors.
Concerning the European contest, [Han09] presents four alternative predic-
tions for a future energy mix by the end of this century, here presented in
Fig. 1.3: the first one is very close to the present one and foresees no contribu-
tion from fusion technologies, in the other three, the assumption is made that
the CO2 concentration in the atmosphere is constrained to stay below 550
ppm and rely on three different estimates for the economic cost of a fusion
power plant. It is seen that in the intermediate and in the “low cost” sce-
narios the role assigned to fusion results at least as important as wind power
generation. Apart from electric energy generation, [Griffiths22] remarks that
very interesting employments for this technology could be found in heat-
generation related applications: mostly water desalination, but also district
heating, fossil fuel reformation, production of cements and wider industrial
applications.
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1.2 Nuclear fusion

Atomic nuclei are made of two components: positively charged protons
and particle without electric charge called neutrons. The number of protons
determines the way in which atoms combine together and thus the macro-
scopic properties of matter, while the neutrons act as a glue, that keeps
mutually repelling ions from disintegrating the nucleus. All along, protons
and neutrons are sometimes synthetically referred to as “nucleons”.
Some nuclear configurations are however more energetically convenient than
other, in the sense that the transition to a more convenient configuration
is exothermic. This is what is represented by the Aston curve, in Fig. 1.4:
the aforementioned “convenience” is measure in terms of a higher position
along this curve, representing the binding energy per nucleon, as a function
of number of mass (i.e., number of nucleons composing various nuclei).
It is apparent that Aston curve breaks the periodic table of the elements in
two regions: all the elements whose nuclei are heavier than approximately
A = 56 (which is iron) will exothermically transition towards lighter con-
figurations, whereas all elements with A ≲ 56 will exothermically evolve to
heavier configurations. The first kind of reaction, from heavier to lighter, is
what we call nuclear fission. The second reaction is called nuclear fusion.
We can also observe that the average energy released per single nucleon in
a fusion reaction, jumping up from, e.g., a D (Deuterium) configuration to
aI4He (α particle), than what is released per single nucleon in a nuclear
fission reaction. This accounts for a much higher energy density, which is an-
other important prospected advantage of a future energetic employment of
such a process. Luckily for us, there are strong barriers that prevent nuclear
fusion of light nuclei to happen spontaneously on Earth (which would be
quite hostile to life otherwise). In particular, the aforementioned Coulomb
repulsion between neutrons make it extremely unlikely in normal conditions
that two light nuclei bounce on each other with the right energy to start a
reaction. In particular the likelihood of a nuclear reaction is measured by
the cross section.
Figure 1.5 presents the cross sections for nuclear fusion reactions between
various couples of light nuclei against their initial kinetic temperature. It
is evident that the first non-negligible cross section met coming from lower
temperatures is the one characterising the reaction between Deuterium and
Tritium. This peaks around T ≈ 60 keV, corresponding to a thermodynamic
temperature over 109K, which is hardly feasible in a reactor. Anyway, ac-
ceptable values are already obtained around 10 keV, which approximately
corresponding to 1.5 · 106K, which is challenging but compatible with mod-
ern technological means, especially because we only need the high-energy tail
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Figure 1.4: Aston curve, representing the binding energy per nucleon as a
function of the mass number. For A < 56 the nuclear fusion is exothermic.
Image taken from [Fil15].

of the distribution function to reach ignition temperature.
The Deuterium-Tritium reaction is represented schematically in Figure 1.6:
the two nuclei re-arrange their components in forming a heavier α particle
and a spare neutron. The interaction does not conserve the mass of the re-
actants, part of which is turned into kinetic energy, which is distributed into
the two reaction products, according to their mass ratio. The total (binding)
energy release is 17.6MeV, of which ∼ 4/5 are taken by the neutron and the
rest goes to the α.
In nature, Deuterium is abundantly present and can be extracted from water
through electrolysis. Tritium is instead a mildly radioactive substance, whose
short half-time (∼ 12 y) makes it difficult to stock. In future reactors it will
be mainly produced from lithium, leveraging the escaping neutrons produced
by the fusion reactions, according to either of the following processes:

I6Li + nI → I4He + T + 4.8MeV ,

I7Li + n+ 2.5MeVI → I4He + T .

1.3 Magnetic and inertial confinement

As we said in the previous section, despite the D − T reaction has com-
paratively higher cross section for comparatively lower kinetic temperatures,
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Figure 1.5: Cross section of nuclear fusion reaction between various couples
of light nuclei. The D − T cross section is the highest for relatively lower
energies.
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Figure 1.6: Visual representation of a D−T fusion reaction: the net energy
yield is 17.6MeV, divided between the reaction products according to their
mass-ratio.

nuclear fusion still requires extremely challenging conditions to be produced
on Earth.
The research focuses on two alternative approaches to produce these energies:
the inertial confinement and the magnetic confinement. In the first, a very
small amount of solid pellet is charged with an immense isotropic pressure,
that materially pushes the nuclei against each other. The latter consists in
heating a large amount of gaseous fuel and rely on random collisions to pro-
duce a statistically relevant number of reactions.
In this section, we give a brief presentation of such two approaches, also
focusing on the presentation of the three main classes of devices aimed at
the magnetic confinement: namely, the tokamak, the stellarator, and the
reversed-field pinch.

1.3.1 Inertial confinement

The inertial confinement constitutes an attempt to convert to energy pro-
duction the same general mechanism of the H-bomb.
The working scheme can be found for instance here: [Betti16]. A very intense
beam of lasers is made converge onto a tiny sphere of metal (called “ablator”,
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Figure 1.7: Working scheme of the inertial confinement: 1) an isotropic beam
of lasers hits the ablator, containing D− T fuel, 2) this causes the explosion
of the exterior part of the ablator, producing an inward shock-wave, 3) the
fuel sphere contracts by approximately a factor 5, igniting the core, 4) the
hot α particles produced in the central hotspot produce an outwards heating
of the rest of the fuel.

about 1 mm in diameter) containing gaseousD−T fuel. The strong radiation
- preliminarily converted in intense X-rays by hitting on a hohlraum - heats
up the exterior part of the ablator, which turns into a plasma and blows off,
producing an inwards shockwave that compresses the remaining part of the
ablator and the gas inside it, shrinking the sphere by a factor 5 and thus
igniting the core. The α particles produced in the “hotspot” progressively
warm up the rest of the fuel, producing an outwards chain reaction.
The passages just described are schematically represented in Figure 1.7. The
largest facility of this kind is the National Ignition Facility (Livermore, USA),
and the second largest is Laser Mégajoule (Bordeaux, France), which is how-
ever mostly devoted to military research.
2022 has been an important year for inertial confinement [NIF22], since for
the first time the condition of ignition was achieved, extracting more energy
from the target than the energy impinging on it. In December 2022, during
a shot, 2.05MJ laser energy was used to compress the capsule, with a return
of 3.15MJ. Despite this still does not count in the energy cost of charging
the lasers (which is still much larger than the final energetic outcome), this
experiment is considered as a crucial milestone and a proof of concept.

1.3.2 Magnetic confinement

The magnetic confinement concept pursues the alternative strategy of
employing large volumes of warm fuel, in whose hot core fusion reactions
may happen. At the required temperatures of the reaction ignition, the
fuel is in the state of a plasma (i.e., an ionised gas), which responds very
effectively to magnetic fields.
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Figure 1.8: Toroidal coordinates (r, θ, ϕ) in a circular-cross section torus of
minor radium a and major radius R.

This concept is most profitably employed in a class of toroidal devices, where
a magnetic “cage” confines the plasma so that it does not directly interact
with the vessel walls, which would both cool it down and get damaged.
The main three toroidal devices devices are the tokamak, the stellarator, and
the reversed-field pinch (RFP). In the next three sections we will give a brief
presentation to each of them.
Despite being quite different among themselves, the three of these devices are
toroidally shaped pinches. From now and for the rest of this Part I we will
only focus on toroidal geometry. The toroidal coordinates are schematically
represented in Fig. 1.8: in a torus of major radius R, and minor radius a,
a point P is identified by the distance r from the toroidal axis, the poloidal
angle θ around the toroidal axis, and the toroidal angle φ around the vertical
axis. There are some important figures of merit to be considered when dealing
with toroidal devices. The first one serves to describe the confining magnetic
field and it is called the “safety factor”. The reasons for this name will
be mostly clear throughout Part. II, where we will see how entangled this
quantity is with the stability of the confined plasma. Its definition for a
circular cross-section configuration is the following:

q ≡
Bϕr

BθR
safety factor, (1.1)

where Bϕ and Bθ are the toroidal and poloidal projections of the magnetic
field, and R and r are defined as in Fig. 1.8. When q is a rational number,
it represents the ratio between the number of poloidal windings to toroidal
windings of a magnetic field line before it closes back on itself.
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A second important figure of reference is the magnetic field shear, that gives
the progressive screwing of the magnetic field lines at different radii:

s ≡ −r
q

dq

dr
magnetic shear. (1.2)

Looking now at the inertial response of the plasma to the confining field, a
very important figure of merit is the normalised pressure β, i.e., thermody-
namic plasma pressure normalised to the confining magnetic pressure:

β ≡ 2µ0 ⟨p⟩〈
|B|2

〉 normalised pressure, (1.3)

where ⟨⟩ indicates volume averaging.
Finally, for the reversed field pinch specifically, great importance have the
pinch parameter Θ and the reversal parameter F :

Θ ≡
Bθ,a〈
Bϕ

〉 pinch parameter, (1.4)

F ≡
Bϕ,a〈
Bϕ

〉 reversal parameter, (1.5)

where this time ⟨⟩ indicates poloidal cross-section averaging, and the sub-
script a means evaluation at the minor radius r = a.

1.3.3 Tokamak

Tokamaks are the most advanced and promising class of devices for the
magnetic confinement of a plasma. It was originally invented in 1950 by
Andrej Sacharov and Igor Tamm in Russia: its name is an acronym meaning
“toroidal chamber with magnetic field windings”.
The main idea behind it is to produce the poloidal part of the confining
magnetic field by inductively driving a current inside the plasma. The more
intense toroidal field is instead produced by a set of poloidally arranged coils,
that embrace the plasma, as in Fig. 1.9. Some other sets of coils are also
present, to provide stabilisation of the plasma position. The configuration
stability has been demonstrated when the safety factor at the toroidal axis
is higher than 1. This allows to prevent dangerous relaxation processes that
will be described more in detail in Chap. 4.
Since the plasma current is inductively driven (leveraging the inner poloidal
magnetic field coil as the primary circuit, as in Fig. 1.9), the tokamak presents
the strong limitation of requiring pulsed discharges. This limit can only be
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Figure 1.9: Simplified model of a tokamak (taken from [Proll14]).

overcome by driving additional currents inside the plasma. Hence, great in-
terest has the study of pressure-gradients induced “bootstrap currents”, that
spontaneously arise under specific conditions [Wilson, Peeters00]. Other ways
to drive additional currents from outside the plasma are through the addi-
tional heating systems, as in [Hu22, Zhang14] for large-scale currents, and
[Ono22] for local current drives.
The largest operating tokamak in the World is JET (Abingdon, UK), while
the largest project for the years to come is ITER (Cadarache, France),
which aims to achieve a full proof of concept, with long-lasting pulses (above
300 sec) and a fusion energy gain (i.e., the ratio of the energy outcome to the
total energy input) larger than 10.
The year 2022 has been a very interesting one for the tokamak, since in the
Deuterium-Tritium campaign in the JET tokamak a new important record in
energy production was achieved, yielding 59MJ of output energy over 5 sec
of flat-top discharge duration, with an ITER-like wall configuration [JET22].
This is considered as a crucial milestone, on the way to ITER.

1.3.4 Stellarator

The stellarator is a toroidal device for the magnetic confinement of a
plasma, where, unlike the tokamak, no net macroscopic current is present in
the plasma. Instead, the request for a poloidal field component is dealt with
either through two independent sets of coils or through a single and complex
system of three-dimensional coils, that are optimised to produce an already
helical magnetic field. A conceptual representation of this class of devices is
reported in Fig. 1.10. The strength of this concept is that since it does not
rely on inductive plasma currents, its pulses do not present time limits, in
line of principle. Furthermore, the great deal of current-driven instabilities
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Figure 1.10: Simplified model of a stellarator.
(image taken from the web page of UMD stellarator goup:
https://terpconnect.umd.edu/∼mattland/projects/1 stellarators/).

(some of which are described in this thesis), which are concerning for the
tokamak equilibrium, is instead absent in this configuration.
Its main limitation lays in the high complexity of its geometry, which exhibits
typically a discrete periodicity in the toroidal angle and is largely responsible
for longer times both in design and in modelling phase.
The concept was initially introduced in 1950 by Lyman Spitzer, in what
would have become the Princeton Plasma Physics Laboratory. The largest
stellarator in the world is Wendelstein 7-X (Greifswald, Germany), while
other projects of this kind are HSX (Madison, USA), and LHD (Toki, Japan).

1.3.5 Reversed-Field Pinch

The reversed-field pinch [Escande13, Marrelli21] is a toroidally symmetric
device, similar to the tokamak, where however the poloidal and toroidal com-
ponents of the magnetic field have comparable amplitudes, and the plasma
current is one order of magnitude larger for comparable values of resistivity.
As a result of comparable magnetic field components, the safety factor on
the toroidal axis is typically smaller than 1 (in the range of q0 = a/(2R)),
and decreases radially towards the edge. This feature makes the RFP par-
ticularly prone to intense instabilities activity and is ultimately responsible
for the “dynamo effect”. The latter is the self-consistent sustainment of a
toroidal magnetic field produced by one or more non-axisymmetric compo-
nents of the flow of charged particles. Such a field is opposite at the edge
with respect to the much less intense one produced by the toroidal-field coils,
so that Bϕ has a reversal at the edge of the plasma, motivating the name of
the configuration. The radial profile of the magnetic field components and
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Figure 1.11: (a) Magnetic fields and (b) safety factor radial profiles in the
RFP. For this case, the reference values of R = 2m, a = 0.459m, and
q0 = a/(2R) ≈ 1/7 are taken from the RFX-mod device. Images taken from
[Escande13].

the safety factor of a typical RFP discharge are reported in Fig. 1.11 A great
advantage of this configuration is that it does not require additional heating:
in fact, since the plasma current is one order of magnitude larger than in
the tokamak, for the same plasma resistivity, the resulting ohmic heating is
two orders of magnitude larger. In addition, unlike the tokamak, the RFP is
disruption-free, since the strong self-organisation of the plasma already con-
stitutes a relaxed state. In this sense, the three magnetic confinement devices
described in this section can be seen in a spectrum of increasing plasma self-
organisation, with one extreme taken by the stellarator, where few degrees
of freedom are left to the plasma, and the other take by the RFP, with the
tokamak in the middle [Escande13].
The main disadvantages of this configuration are connected with the much
shorter pulse duration with respect to both the tokamak and the stellarator
(RFX-mod plasma shots last approximately 0.5 sec), and to the requirement
of either a thick ideal wall near the plasma or a very sophisticated feedback
control system [Marchiori09] to deal with the intense magneto-fluid instabil-
ities of the confined plasma.
The largest RFP experiment in the world is RFX-mod (Padua, Italy), while
the second largest is MST (Madison, USA) [Sarff15].



2
The reversed-field pinch configuration: main

experimental observations and modelling
results

In the previous Chapter we have defined the main concepts for the con-
finement of a fusion plasma. In this chapter we deal more directly with the
reversed-field pinch (RFP) configuration, which is the main focus of the re-
search at Consorzio RFX.
The Chapter is divided in two parts: in the first one, we start in Sec. 2.1 by
describing the physics of this configuration more in deep than what already
done, and in Sec. 2.2 by describing the main RFP device, RFX-mod, and its
ongoing upgrade to a new configuration dubbed RFX-mod2 [Marrelli19].
The second part is dedicated to theory and modelling. In Sec. 2.3 we intro-
duce the general equations of MHD and some other useful theoretical tools
such as the adimensional numbers of Lundquist, Reynolds (also called “vis-
cous Lundquist”), Prandtl and Hartmann. Sec. 2.4 is devoted to the role of
advanced modelling in the physics of the RFP, with particular regard for the
SpeCyl code.
Finally, Sec. 2.5 presents a final summary and the outline of this thesis.

2.1 The physics of the RFP

For several years, the operational scenario of the reversed-field pinch has
been considered inherently chaotic and turbulent, bound to remain in a Mul-
tiple Helicity (MH) state, with a wide spectrum of magnetic modes of com-
parable amplitude, each in the form of Bm,n ∝ eimθ+inϕ. The magnetic topol-
ogy of MH states presents no conserved flux surfaces, apart from a chain of
m = 0 “islands” at the reversal of the toroidal field, hence allowing intense

17
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particles and heat transport towards the edge of the plasma. Another inter-
esting experimental observation are the so-called “slinky modes”, consisting
in toroidally localised bulging of the plasma shape, usually related to the
locking of some modes onto the wall [Fitzpatrick99].
Later on, some modelling works [Cappello92, Cappello96, Finn92] anticipated
the possibility of a completely new operational scenario, based on the domi-
nance of one saturated mode over the rest of the spectrum. We will comment
on this later in this Chapter, but eventually the experiments confirmed this
speculation and proposed to the scientific community in a milestone publi-
cation on Nature Physics [Lorenzini09], made possible by the exploration of
new high-current regimes above 1MA in RFX-mod and by the sophisticated
feedback control system adopted on this same device.
These states are called Quasi-Single Helicity (QSH) states and correspond
to a system bifurcation from the MH initial equilibrium [Cappello08]. As
Fig. 2.1 reports, the current flat-top - Fig. 2.1.(a) - is populated by their
intermittent emergence and subsequent crash, back to a MH state, as shown
in Fig. 2.1.(b). During the QSH states the transport is strongly reduced and
there is the formation of conserved flux surfaces.
Indeed, the global electron energy confinement time τE, defined as the char-
acteristic time on which the electrons plasma energy damps, gets enhanced
by approximately a factor 2 as the plasma transitions from the MH state into
a QSH state, up to τE ∼ 1.3ms in RFX-mod [Marrelli21].
A further improvement is achieved when the dominant mode exceeds some
threshold-amplitude (around 3 − 4% of the equilibrium magnetic field am-
plitude at plasma edge): a topological change brings to the expulsion of the
initial toroidal axis, in favour of the centre of the island corresponding to the
helical mode. Such a situation is called Single-Helical Axis (SHAx) state and
is shown in Fig. 2.1.(c). Here, in black are marked the helical flux surfaces
for the dominant mode, that separate regions of increasing temperature, as
we move inwards, indicating the formation of strong barriers against trans-
port. Accordingly, the electron energy confinement time is further increased,
up to τE ∼ 1.8ms in RFX-mod, while the maximum achieved particle con-
finement time in RFX-mod is τP = 12ms, in a SHAx QSH state at 1.5MA
[Marrelli21].
However, Fig. 2.1.(c) may result a bit deceiving, since a full Poincaré plot of
the magnetic field reveals that most of the plasma volume is still ergodic. Fig-
ure 2.2.(a) reports the full Poincaré plot for a standard QSH shot, where the
conserved flux surfaces are marked in red: we can indeed observe that they
occupy a small fraction of the poloidal cross section, in the direct proximity
of the helical axis. However, Fig. 2.2.(b) illustrates for the same shot the
outcome of the tomographic reconstruction of SXR emission measurement
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Figure 2.1: QSH states in RFX-mod. During the current flat-top (a), and
above the threshold of 1MA, a bifurcation happens from the initial MH equi-
librium, into a QSH state (b). This is however intermittent: the amplitude
of the dominant mode (black) intermittently crashes down to meet the am-
plitude of the secondary modes (red). (c) represents a SHAx state, where the
magnetic flux surfaces of the dominant mode (black) seem to divide regions
of different temperatures, increasing towards the island core. Images taken
from [Lorenzini09].

of the plasma temperature, highlighting the presence of internal transport
barriers that are not directly visible from the Poincaré plot aside. These in-
ternal transport barriers have been interpreted by the theoretical modelling
as Cantori (i.e., traces left by the dissolution of KAM tori) [Veranda20].
The same concept already expressed is confirmed also by Fig. 2.3, show-

ing the electron temperature measurement for a typical QSH with a single
helical axis, produced in a high plasma current regime. The temperature
profile along a diametrical cut - Fig. 2.3.(a), in red and blue - is visibly
asymmetric. This is also highlighted by the shaded regions that mark the
sharper gradients. Such an asymmetry is removed when plotting against the
effective radius ρ, as in Fig. 2.3.(b), proving that the iso-flux surfaces of the
helical flux function of the dominant mode are also isothermal surfaces (as
already suggested in Fig. 2.1.(c)). The electron temperature profile for a typ-
ical MH state is also reported in Fig. 2.3.(a), demonstrating the important
implications that QSH states have on the plasma confinement.

The QSH has represented a change of paradigm in the RFP baseline
scenario. A first convenient way to induce them was studied at MST, and
consisted in varying the toroidal field at plasma edge, so to induce a plasma-
current profile transient modification that concentrates the magnetic flux in
its core [Sarff94]. This technique, dubbed “Pulsed Poloidal Current Drive”
(PPCD), is effective in reducing temporarily the amplitude of the m = 0
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(a) Poincaré plot. (b) SXR tomographic reconstruction.

Figure 2.2: Experimental observations for a typical QSH shot in RFX-mod:
(a) Poincaré plot of the magnetic field, highlighting a small region of con-
served magnetic flux surfaces (red), and (b) tomographic reconstruction of
SXR emissivity highlighting the presence of internal transport barriers even
in the magnetic-chaos region. Images taken from [Marrelli21].

Figure 2.3: Temperature measurement in a typical SHAx QSH state for cur-
rents above 1.5MA: (a) radial profile of the temperature (blue and red
for the two sides of the island). The regions of large temperature gradients
are shaded and the two smooth curves show the temperature radial gradi-
ent, revealing a substantial asymmetry along the diametrical cut. An electron
temperature profile is shown for reference (green); (b) the same temperature
profile plotted against the effective radial coordinate ρ, showing that iso-flux
surfaces for the flux function of the dominant mode are isothermal: in the ef-
fective radius the profile is now symmetric. Images taken from [Lorenzini09].
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secondary modes.
An improved method [Terranova07] was subsequently developed in RFX-
mod, consisting in the repetition of the same principle in time, through an
“Oscillating Poloidal Current Drive” (OPCD) at a given frequency. This way
the pulsed nature of the PPCD could be overcome.
The OPCD works because the oscillating current drive matches for one half
of its period the same direction of the current produced by the spontaneous
turbulent dynamo, thus reducing the need of it. This condition is called “co-
dynamo”, and is alternated with a “counter-dynamo” phase (the other half
of the OPCD cycle) during which the plasma often falls back into an MH
state [Bolzonella01].

Another experimental way to trigger a QSH state in RFX-mod is to pro-
vide a non-axisymmetric magnetic perturbation (MP) [Piovesan11, Piovesan13]
through the 192 feedback-control coils. It is empirically observed that the
plasma reacts to the MP by reproducing a QSH where the dominant mode
has the same periodicity of the seed perturbation at its edge.

In any case, the most profitable way to access the QSH regime is through
its spontaneous and consistent emergence, experimentally obtained at high
plasma currents. Importantly, the dominating mode in RFX-mod has a fixed
periodicity m = 1, n = −7, corresponding to the first internally resonating
mode, meaning that the safety factor on axis is just larger than 1/7. As we
will see in Part II, this condition is extremely relevant in the classification of
instabilities.

2.1.1 Analogy between RFP QSH states and tokamak
“snakes”

Long-lived helical structures (so-called “snakes”) in the tokamak plasma
core have been widely documented in a number of devices (see, e.g., [Weller87,
Gill92, Delgado13, Chapman10, Petty16]). They are usually linked to the
accumulation of impurities within the magnetic-flux surface with periodicity
1/1 and present locally positive density and temperature fluctuations. They
are generally described as saturated resistive kink modes, and their dynamics
is intermittent however very robust: remarkably, they are observed to survive
from tens to hundreds of sawtooth cycles [Delgado13].
Tokamak snakes are strongly associated with the hybrid scenario [Petty16] for
the tokamak, which has also been proposed among ITER’s advanced modes
of operation [Gormezano04, Chapman14]. A large non-inductive current is
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Table 2.1: Main features of the RFX-mod device: major radius R, minor
radius a, maximum nominal plasma current, maximum nominal magnetic
field

R [m] a [m] Imax
p [MA] Bmax [T]

2 0.459 2 2

driven in the plasma via additional heating systems, producing a relatively
flat safety factor profile in the plasma core, just above unity, sustained by a
mechanism known as flux-pumping, through the formation of a 1/1 core heli-
cal structure. Such an equilibrium allows remarkable values of the normalised
pressure β.

There is a strong analogy between the tokamak snakes and the SHAx
QSH states in the RFP, since they both consist in the long-lived and inter-
mittent dominance of an internal m = 1 mode over the rest of the magnetic
spectrum, in high-current operation of toroidally symmetric devices. There
is indeed some very interesting space for connections in the modelling of
these two processes: a promising example is reported in Sec. 2.4.2, where the
attempt of explaining the flux-pumping mechanism in the tokamak hybrid
scenario in terms of the MHD dynamo is reported.
As a matter of fact, from an experimental point of view, the same tech-
nique of equilibrium reconstructions implemented for the SHAx QSH states in
RFX-mod [Terranova13] and MST [Koliner16] has also been leveraged for the
tokamak snakes in DIII-D [Cianciosa17], using the VMEC code [Hirshman83,
Hirshman85] combined with the data-fitting tool V3FIT [Cianciosa17, Terranova13].

2.2 RFX-mod and its upgrade to RFX-mod2

RFX-mod is the largest reversed-field pinch device in the world, and it is
located in Padua (Italy), operated by the Consorzio RFX.
Its main features are reported in Table 2.1, whereas a picture of the device
is reported in Fig. 2.4.(a). Figure 2.4.(b) reports instead the sophisticate
feedback control system for the plasma instabilities. This is a set of 192
individually-fed saddle-shaped coils, entirely surrounding the plasma in 4
toroidal arrays by 48 coils each. Initially installed to simulate an ideally
conducting shell, for the stabilization of m = 1 modes, the system can also
be used to produce magnetic seed perturbations at the edge of the plasma,
to induce QSH states of various periodicities.
An overview of the experimental activity of this device can be found here:
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(a) (b)

Figure 2.4: RFX-mod: (a) picture of the device, (b) 192 active coils
for the feedback control of the plasma. Taken from (a) [Fellin95] and (b)
[Piovesan13].

[Zuin17].

RFX-mod is currently in shut-sown since 2016, due to a major upgrade to
a new configuration, dubbed RFX-mod2 [Marrelli19, Peruzzo18, Bettini17].
The main aim of this upgrade is to complete the study of the physics of RFP
devices in the current regime up to 2MA, with a particular stress on the QSH
states. This upgrade is made possible also by the rich funding provided by the
Italian Government through the NEFERTARI1 project (part of the PNRR
funding campaign for high-priority national infrastructures), and RFX-mod2
should be operable by 2024.
Figure 2.5 synthesises the major modifications to the structure of the device:
the vacuum vessel is removed, transforming the stainless steel mechanical
support structure into a vacuum-tight shell. This has the effect of bringing
the plasma edge (r = a) closer to the stabilising copper shell, at radius b:
this way, the conductive shell proximity to the plasma edge changes from
b/a = 1.11 into b/a = 1.04. This is expected to have a strong damping effect
on the secondary modes, thus enhancing the QSH state, since the m = 1
modes are predicted to be linearly stable for b/a ≤ 1.03 [Marrelli19]. This of
course poses several engineering challenges, mostly related to the fact that
extending the vacuum to regions that used to be in air, there is an increased
risk of arching and effective insulation must be performed.
Great interest has also the problem of the so-called magnetic field errors

1“New Equipment For the Experimental Research and Technological Advancement for
the Rfx Infrastructure”.
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Figure 2.5: Modifications to the structure of RFX-mod, in the upgrade
towards RFX-mod2. The plasma results closer to the stabilising copper shell.
Image taken from [Marrelli19].

[Bettini17], that are small imperfections in the conducting wall response,
resulting from the necessity of having holes in the copper shell, to let, e.g.,
the confining magnetic field reach the plasma from the coils.
In addition, several new diagnostic tools will be added in the new device,
along with a neutral beam injector [Peruzzo18]. The presence of an additional
heating system may result confusing, as we said that the RFP can reliably
warm up just by means of Ohmic heating. The rationale is that, as already
RFX-mod, RFX-mod2 is designed to operate also as a tokamak.

2.3 Magneto-Hydro Dynamics

Before switching our focus onto the modelling and its fundamental role in
the advance of research for the RFP, let us introduce some useful definitions.

Magneto hydrodynamics, or MHD for short, is the particular regime in
which the ions and electrons composing the quasi-neutral plasma have higher
energies than the thermal energy [Fitzpartick22]. In most applications, the
plasma can be treated as a single fluid, governed by the usual hydrodynamic
equations, along with Maxwell’s equations.
The first two fluid equations are dubbed continuity and momentum balance
equations, respectively, and read:

df

dt
= −f∇ · υ , (2.1)
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ρ
dυ

dt
= J×B−∇p+ ρν∇2υ , (2.2)

being f the number-density of the plasma, υ the flow velocity, J and B the
current density and the externally applied magnetic field, respectively, ρ =
mproton f the mass density, p the internal pressure, ν the dynamic viscosity
and d/dt the Lagrangian or convective derivative, defined as:

d

dt
≡
[
∂

∂t
+ υ · ∇

]
.

Equations 2.1 and 2.2 enforce mass conservation and momentum balance,
respectively.
Maxwell’s equations are used to close the previous set:

∇ · E = 0 Gauss’ law,

∇× E = −∂B
∂t

Faraday’s law,

∇ ·B = 0 solenoidal property,

∇×B = µ0J Ampère’s law,

where the Gauss’ law is generally specialised for the quasi-neutral plasma
and in Faraday’s law the displacement field term is generally set to zero, due
to the high conductivity of the medium.
Finally, the plasma response to the imposed electromagnetic fields is ex-
pressed in the fluid Ohm’s law:

E+ υ ×B = ηJ , (2.3)

being η the plasma resistivity.
There is a distinction which is going to be important in the following between
resistive (dissipative) MHD, where ν and η are finite, and ideal MHD, where
ν = η = 0 and plasma energy is conserved. Also, as we will discuss, ideal
MHD magnetic flux is said to be frozen inside the plasma flow, yielding
proportionality between small perturbations to these two quantities.

2.3.1 Characteristic time-scales

The momentum balance equation Eq. 2.2 as well as the Faraday’s law
contain an explicit time derivative, that can be used to set an argument
by general terms, in order to highlight the characteristic time-scales of the
system.
Let us start from the Faraday’s law:

∇× E = −∂B
∂t
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and write the electric field in terms of the Ohm’s law, assuming static con-
ditions (υ = 0): E = ηJ. Using Ampère’s law, the current can be written in
terms of the curl of the magnetic field, so that, assuming also for simplicity
that η is uniform:

∂B

∂t
= − η

µ0

∇×∇×B =
η

µ0

∇2B .

Switching now to general arguments, the Laplacian operator can be written
as ∇2 ∼ 1/ℓ2, where ℓ is a characteristic length of the system, and ∂t ∼ 1/τR,
where τR is the typical time-scale of resistive processes in the plasma. It
results then that

τR ≡
µ0ℓ

2

η
, (2.4)

where ℓ is a characteristic diffusion length.

A similar argument applies for the momentum balance equation and vis-
cosity. In fact, if we isolate in Eq. 2.2 the left member and the term propor-
tional to ν we can find

dυ

dt
= ν∇2υ ,

and thus, by similar considerations,

τν ≡
ℓ2

ν
, (2.5)

where τν is the viscous diffusion time-scale in the plasma and ℓ is a typical
length-scale of the system.

Finally, it is important to consider the typical time-scal of convective
processes in the plasma, that relies on the characteristic velocity within the
MHD regime: this is the Alfvèn velocity, defined as [Fitzpartick22]

υA ≡

√
|B|2

µ0ρ
, (2.6)

where ρ0 is the plasma density evaluated at the axis position. This leads to
the definition of the typical dynamic time-scale of MHD processes, defined
as

τA ≡
ℓ

υA
Alfvèn time, (2.7)

where, again, ℓ is the characteristic length of the given system.
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2.3.2 Dimensionless numbers

The characteristic time-scales of resistivity and diffusion define two impor-
tant dimensionless numbers, such as the Lundquist number and the Viscous
Lundquist number (also called Reynolds number):

L ≡ τR
τA

Lundquist number, (2.8)

M ≡ τν
τA

Viscous Lundquist number. (2.9)

As obvious, the two dimensionless numbers just defined measure the relative
weight of resistive and viscous phenomena as compared to the typical scales
of the MHD dynamics.

It is useful to define two additional dimensionless numbers, namely the
magnetic Prandtl number and the Hartmann nuber:

P ≡ L

M
=
ν

η
Magnetic Prandtl number, (2.10)

H ≡ 1
√
ην

Hartmann number, (2.11)

where we normalised µ0 = 1, in order to agree with the notation used in
literature.
The relevance of Eqs. 2.10-2.11 is that if we write again the momentum
balance equation and the Faraday-Ohm equation in normalised units (ρ = 1,

η̂ = η/η(0), ν̂ = ν/ν(0), t̂ =
√

η(0)
ν(0)

t, and υ̂ =
√

ν(0)
η(0)

υ) we get [Cappello04]:

∂B

∂t̂
= ∇× (υ̂ ×B)−∇×

(
η̂J

H

)
,

1

P

dυ̂

dt̂
= J×B+∇2

(
ν̂υ̂

H

)
,

so that, if the inertial term at first member of the second equation becomes
negligible (or if P ≫ 1), the whole dynamics is ruled by the sole Hartmann
number.
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2.4 The important role of modelling in RFP

research

2.4.1 The role of numerical tools

Nonlinear MHD modelling has played and increasing role in the under-
standing of key relaxation processes in magnetic-confinement fusion devices
such as the RFP.
Indeed, starting in the 1980s, with the advent of the first supercomputers, nu-
merical simulations could produce some very useful understanding. Despite
the simplicity of the MHD models being enforced, qualitatively good agree-
ment could be achieved between early simulations and experimental data,
both in standard ohmic discharges and in presence of externally driven edge
magnetic perturbations through pulsed or oscillating parallel current drive
(PPCD/OPCD) [Bolzonella01, Puiatti03, Ebrahimi03]. In all these cases,
numerical tools reliably reproduced dynamics and composition of dynamo-
current sustained magnetic spectra, from the linear onset of modes growth
to their nonlinear saturation, and their interaction with external drives.
In the past two decades, numerical modelling of the RFP has intensively re-
lied on numerical codes such as NIMROD [Kruger04], DEBS [Paccagnella07],
SpeCyl [Cappello96, Veranda17], and Pixie3D [Chacón04, Chacón06, Chacón08].

2.4.2 Some of the results obtained with SpeCyl in the
past decades

The content of this section does not aim at producing a complete review
of the results obtained with the SpeCyl code in the past two decades, but
only to define the frame in which this thesis is set. In doing so, we will
select only those lines of research that are in direct continuity with the work
presented in the next Chapters.

First fundamental studies on the QSH states. The SpeCyl code has
played an important role in the discovery of QSH states, since its simulations
already anticipated this feature [Cappello92, Cappello96], several years before
their successful observation in RFX-mod discharges.
We already discussed in Sec. 2.3 the importance of the Prandtl and Hartmann
numbers (Eqs. 2.10-2.11) in regulating the MHD dynamics. As we said, in
the common case in which plasma inertia can be neglected (or P ≫ 1),
the Hatmann number is the sole variable that weights the visco-resistive
contribution in the MHD equations. This result was presented for the first
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Figure 2.6: Results of visco-resistive nonlinear simulations with SpeCyl:
the transition from a MH state, to a QSH state, to a further laminar SH,
is regulated by H = (νη)−0.5. Em=0 is the averaged energy of secondary
modes m = 0, whose amplitude is high in turbulent MH states, and lower
for increasingly laminar states. Images taken from [Cappello04].

time in [Cappello00, Cappello04]. In the same works, a numerical study
performed with SpeCyl is presented, proving for different values of the pinch
parameter (Eq. 1.4) that the transition from the turbulent MH state, to a
QSH state, to an even further laminar “Single Helicity” (SH) state, is indeed
ruled by different regimes of Hartmann number, as reported in Fig. 2.6.
This result, apart from confirming a very interesting dynamical property,
suggests the existence of a second bifurcation point, to a further laminar
Single Helicity (SH) state, whose confinement and stability properties would
be even further increased. However, to present days, this still remains a
theoretical speculation never achieved in experiments.

QSH studies with an OPCD. Some effort was dedicated in the early
2000’s to the modelling of OPCD experimental conditions, not only in SpeCyl
[Cappello03, Puiatti03, Bonfiglio07, Veranda13], but also in other codes as in
DEBS [Ebrahimi03]. Concerning SpeCyl’s simulations, several experimental
aspects could be faithfully reproduced: first of all, the transition to QSH
states in the presence of a time-dependent toroidal magnetic field boundary,
used to model the OPCD in SpeCyl.
Figure 2.7 represents the secondary modes suppression in SpeCyl’s simula-
tions as the OPCD is turned on. Figure 2.7.(a) represents the radial profile
of some plasma quantities before the OPCD is turned on: in particular, vrBz

is the laminar dynamo (due to the dominant QSH mode) while ⟨δV × δB⟩
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Figure 2.7: Modelling of an OPCD in SpeCyl’s simulations: (a) without
the OPCD, the turbulent dynamo ⟨δV × δB⟩ and the laminar dynamo vrBz

present comparable contributions. (b) When the OPCD is turned on, the
laminar dynamo grows in importance, at the expences of the turbulent dy-
namo. Images taken from [Puiatti03].

is the turbulent dynamo, produced by the secondary modes. It is seen from
Figure 2.7.(b) that the introduction of an OPCD almost nullifies this latter
contribution, while reshaping all the quantities, and, in particular, the lami-
nar flow contribution whose amplitude visibly raises. Also the experimentally
observed variable reactivity of the plasma to different OPCD frequencies was
successfully reproduced [Bonfiglio07].
Some aspects of the modelling yet remain in conflict with the experimental
observations, possibly related to the simplified assumptions, especially in the
formulation of the plasma boundary. The major are a different reactivity of
various modes to the OPCD stimulation (as mode (1,−8) seems to respond
better than mode (1,−7) in SpeCyl, in contrast with the experimental obser-
vations), and the tendency of forming the QSH during the counter-dynamo
phase, unlike the real plasma behaviour.

QSH studies with a seed MP at plasma edge. Some very success-
ful studies [Bonfiglio13, Veranda17] were performed in the modelling of seed
MP at plasma edge. These were produced in SpeCyl by artificially assigning
a finite edge radial component to a single mode of the magnetic spectrum,
while keeping all the other edge-Bm,n

r null, in compliance with the ideal-wall
implementation of SpeCyl’s boundary conditions.
For the first time in [Bonfiglio13] a consistent repetition of a QSH state with
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Figure 2.8: Experimental-like repetition of QSH states with the same dom-
inant mode, as a result of the application of a seed MP at the plasma edge.
(a) Above, the normalised radial magnetic field component of various modes
at r = 0.9 ·a, a being the ideal shell radius. (b) Below, shot #30932 in RFX-
mod. Both panels are divided in three parts, where different modes are ex-
cited as a consequence of different seed MPs. Images taken from [Veranda17].

the same dominant mode was observed in a 3D nonlinear MHD simulation
of a RFP. These results were further developed in [Veranda17], where excel-
lent qualitative agreement with the experimental findings were reported (see
Fig. 2.8).

Electrostatic dynamo and flux pumping in the hybrid tokamak sce-
nario. Some very interesting works [Bonfiglio05, Cappello06] are dedicated
to the dynamo effect in the reversed field pinch, with some later application
also to the tokamak physics [Piovesan17].
In [Bonfiglio05, Cappello06] a fundamental study is presented about the elec-
trostatic nature of the dynamo effect in the RFP. Figures 2.9.(a-b) show the
nonlinear simulation of a SH state in RFP configuration, consisting in an
almost purely helical plasma self-organised state - in grey in Fig. 2.9.(a) -
as a result of the saturation of a kink or tearing instability. The helical flux
projection on the poloidal cross-section is visible (in black) on the top of
Fig. 2.9.(a).
We have then a helical modulation in the current density, that requires a
corresponding helical modulation in the electric field. The electric field is
thus the sum of two contributions: the purely axial inductive loop field Eloop
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and a helically modulated electrostatic potential:

E = Eloop −∇φ .

The potential φ is represented in Fig. 2.9.(a) with the two colors, orange and
blue, that mark its maxima and minima, respectively. The helical plasma
thus behaves as a helical capacitor, enclosed between two helical “plates” at
opposite electrostatic potential. Ultimately, Fig. 2.9.(a) represents also the
electrostatic field −∇φ as (almost axial) red lines, between the plates of the
helical capacitor.
Figure 2.9.(b) is a representation of the same concept, as a Poincaré plot on
the toroidal cross-section.
The helically modulated electric field produces a helical drift flow, which is
almost exactly the one responsible for the dynamo. To prove this, Fig. 2.9.(c)
reports the helical deformation of the (initially axisymmetric) plasma flow: in
the upper part (in blue) the whole velocity field projection onto the poloidal
plane is represented, while in the bottom part (in red) there is just its com-
ponent perpendicular to the magnetic field, which is the one responsible for
the dynamo.
The E×B drift velocity (see [Fitzpartick22]) produced by the helically mod-
ulated electric field can be computed directly (from the resistive Ohms law):

υ⊥ =
(Eloop −∇φ− ηJ)×B

|B|2
= υE×B + υ∇φ×B + υηJ×B ,

where the last term is usually negligible as we usually work in a force-free
assumption. The other two terms are represented in Fig. 2.9.(d): the fist one
(upper half, in blue) is a uniformly axisymmetric “pinch” velocity υE×B that
is not influenced by the helical modulation, unlike the second one (lower half,
in red) υ∇φ×B that is in fact visibly similar to the bottom part of Fig. 2.9.(c).
This proves that the electrostatic drift υ∇φ×B is in fact the main actor in the
dynamo process. The aforementioned observation can be easily extended to
QSH and MH states with analogous results: in the latter case, the potential
and the resulting flow will not be laminar.
The conclusion that the RFP dynamo is a mostly electrostatic process is
extremely interesting from a theoretical point of view. In recent years, the
same concept has found an application in the attempt of explaining the flux-
pumping mechanism for the tokamak in analogy with the RFP dynamics
[Piovesan17].
Flux pumping is an important mechanism in the hybrid scenario of tokamak
operation explored for instance in DIII-D [Petty16], where a quite promising
energy confinement is achieved with a low safety factor on axis (qmin ≥ 1)
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Figure 2.9: Predominantly electrostatic nature of the dynamo effect in the
RFP: (a) presents a SH state, with a helical modulation of the current density
(grey), sustained by a helical electric potential φ (orange and blue mark
its maximum and minimum iso-surfaces). A helical electric field −∇φ is
represented in red, between the “plates” of the “winding capacitor”. (b)
Representation of the same concept as a Poincaré plot in the toroidal plane.
(c) Helical flow velocity (blue) and its component responsible for the dynamo
(orthogonal to the magnetic field, in red). (d) Axisymmetric component of
the E ×B drift velocity (blue), and −∇φ×E drift velocity (red), evidently
very similar to the dynamo flow in (c). Images taken from [Cappello06].
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and a strong non-inductive current is driven in the core by means of exter-
nal actuators (e.g., NBI or ECCD). This configuration is sometimes subject
to a sawtooth instability, which is triggered whenever qmin crosses 1. How-
ever, the nonlinear saturation of an internal mode, resonating in the core,
can redistribute the current density in the centre of the plasma, producing
a locally flat q-profile just above 1: this is dubbed poloidal flux pumping
and is highly beneficial for the scenario stability, allowing to reach higher β
and avoiding the sawtoothing. The flux pumping mechanism still lacks of a
validated model, which would be needed to extrapolate towards larger scale
devices. Of great theoretical interest is also whether or not the flux pumping
mechanism can be reproduced in an ELM-free steady state operation, as it is
mostly observed in conjunction with edge localised modes (ELMs) [Zohm96].
In [Piovesan17] a model is proposed, in analogy to the dynamo process typ-
ically observed in the RFP. Given the electrostatic nature of the process,
this explanation would suggest that the flux pumping can in fact work in
stationary conditions, with no need for transient phenomena.
Figure 2.10 reports the key results in [Piovesan17] for one of the consid-
ered case studies, corresponding to the saturation of a tearing mode (1, 1).
We start from qmin < 1, so that the examined tearing mode is immediately
triggered: as already discussed in [Bonfiglio05], a helically modulated elec-
trostatic potential φ is expected to build up and saturate with the mode.
Its saturated final shape should be alike what we described before as a heli-
cal capacitor, as in Fig. 2.10.(a). The modulated electric field produces an
E × B drift whose non-axisymmetric part is the dynamo flow, represented
in Fig. 2.10.(b). Figure 2.10.(c) shows that an intense electric field in the
parallel direction to the magnetic field is expected to develop, whose strongly
negative value on axis should fight against the current peaking in the plasma
core. The time evolution from the initial state (black) to the final one is
in good qualitative agreement with the experimental observations, both con-
cerning the current density profile in Fig. 2.10.(d) and the safety factor profile
in Fig. 2.10.(e). Finally, Fig. 2.10.(f) reports the terms in the resistive Ohm’s
law, for completeness of information.

Preliminary studies with more realistic boundary conditions. There
remains yet one key aspect that SpeCyl’s simulations have never been able
to reproduce, which is the recurring spontaneous formation of a QSH state
with dominant mode (1,−7), routinely observed in high current shots in
RFX-mod, without any applied external triggering.
It is possible that this discrepancy can be motivated with the oversimpli-
fied assumption of ideal wall boundary conditions at plasma edge. Indeed, a
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Figure 2.10: Proposed description of the flux pumping mechanism in terms
of the electrostatic dynamo. (a) Helical electrostatic potential and Poincaré
plot of the flux; (b) perpendicular υ∇φ×B flow producing the dynamo; (c)
parallel component of the helical electric field, negative in the core, with a
limiting effect on the current-peaking on axis; (d) evolution of the parallel
current profile; (e) evolution of the safety factor; (f) terms in the Ohm’s law
at the final helical equilibrium. Images taken from [Piovesan17].
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first major reformulation of the magnetic boundary was operated by Daniele
Bonfiglio in 2017 [Bonfiglio19], introducing a thin resistive shell at plasma
boundary, surrounded by a vacuum region and by an outer ideal wall. The
two main formulations of SpeCyl’s boundary conditions (the ideal wall, and
the resistive wall) are presented in the detail throughout Part III.
With this new resistive-shell formulation of the plasma boundary, some pre-
liminary but promising results have been found. Several simulations in RFP
geometry have been performed, all presenting an ubiquitous experimental-
like sawtoothing mechanism: the safety factor at the edge of the plasma
follows quasi-periodic cycles of saturating growth, followed by a rapid crash,
corresponding to a major reconnection event. In particular, a mild but con-
sistent emergence of mode (1,−7) is observed when the resistive diffusion
time of the magnetic field through the thin resistive shell is comparable with
the time-scale of these reconnection events, as shown if Fig. 2.11.(a). This
preliminary result, if confirmed, suggests that behind the spontaneous emer-
gence of the observed mode in RFX there might be a self-consistent interplay
between the internal plasma MHD and the resistive shell at boundary. The
idea is that each cycle of the sawtooting sees in the wall the “footprint” left
behind by the previous cycle, which has not yet disappeared because the
resistive time of the wall is comparable with the sawtooth period.
The same implementation was also employed in producing a predictive scan
on the energy of secondary modes in dependence of the ideal wall proximity
to the edge of the plasma, so as to anticipate the new device configuration
RFX-mod2. This is reported in Fig. 2.11.(b), and largely confirms the pre-
diction that a more closely-fitting copper shell should indeed stabilise the
MH background and favour the emergence of QSH states in the new device.

2.5 Conclusive summary and outline of the

present work

In this chapter we have presented more in detail the reversed-field pinch
configuration and the dedicated modelling.
In Sec. 2.2 we have given an overview of the main physical aspects, with par-
ticular emphasis on the recent radical change in its baseline scenario, from
the inherently chaotic MH states, to a self-organised QSH state where con-
served flux surfaces are present, along with transport barriers. QSH states
result from the nonlinear saturation of a single MHD mode over the rest of
the magnetic spectrum.
Section 2.2 presented RFX-mod, the largest RFP device in the world, and
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(a) When the resistive diffusion time of the wall (τW ) matches the average period
of the sawtoothing in the q profile, there is a mild but consistent spontaneous
emergence of mode (1,−7).

(b) Scan on secondary modes energy for various ideal wall proximimities.

Figure 2.11: First simulations with the thin shell formulation of SpeCyl’s
boundary conditions. Images taken from [Bonfiglio19].
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its upgrade RFX-mod2, which will be operative next year. RFX-mod is en-
dowed with a versatile set of 192 individually fed saddle-coils for the feedback
control of MHD modes: they can be either used so as to simulate the pres-
ence of an ideally conducting wall at the plasma edge, or to introduce new
degrees of freedom in the shaping of the edge radial magnetic field. Such a
system, along with the toroidal magnetic field coils can be used to trigger
the otherwise spontaneous QSH states through PPCDs, OPCDs, or MPs.
The upgrade to the new device will bring the stabilising wall closer to the
plasma, reducing the amplitude of secondary modes and thus fostering the
QSH performance and stability.
Section 2.3 has quickly presented the MHD equations and the relevant dimen-
sionless parameters, which will be used through all this Thesis. In particular,
we have motivated the crucial relevance of the Hartmann number in defining
the visco-resistive dynamics of MHD plasmas.
The central role of modelling in the RFP research line has been explored
in Sec. 2.4, with particular emphasis on some important results found with
the code SpeCyl in the past twenty years. 3D nonlinear self-consistent MHD
simulations predicted the viability of high-current QSH states before their
consistent experimental observation, and could qualitatively reproduce most
of their physical aspects. However, the spontaneous emergence of a QSH
state dominated by mode (1,−7) in the RFX-mod device has never been
faithfully reproduced in a self-consistent way.
A first major reformulation of the magnetic boundary conditions has been
proposed by Daniele Bonfiglio, finding preliminary but extremely promising
results, that could lead to a deeper understanding of the underlying physical
mechanisms behind this phenomenon.
It would be of outstanding theoretical interest to faithfully reproduce the
spontaneous and consistent emergence of a QSH state in a 3D, nonlinear and
self-consistent tool as SpeCyl.
Despite some qualitative testing of this new set of boundary conditions has
already been performed (see [Bonfiglio19]), a more quantitative benchmark
verification is mandatory to assess its mathematical correctness and its faith-
fulness to physics.
A very challenging test, to this extent, can be provided by a nonlinear ver-
ification benchmark against the linear theory of free-boundary instabilities,
e.g., the external kink modes. Another, less challenging, case-study could be
provided by fixed-boundary instabilities as the tearing modes.
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2.5.1 Outline of my Thesis

The next chapters are organised in four main parts, each composed by
two chapters, and the final conclusions:

� Part II contains a detailed description of the linear MHD theory of
current-driven instabilities. We also describe the implementation and
testing of a linear-stability numeric tool, instrumental for establishing
quantitative benchmark verifications of SpeCyl’s implementations.

� Part III presents the SpeCyl code and its two existing sets of boundary
conditions: the ideal wall formulation and the resistive wall formula-
tion. We present in particular a verification benchmark of the latter
against the numerical predictions of our linear-stability tool, that leads
us to conclude that a major reformulation of the fluid part of SpeCyl’s
boundary conditions need to be found.

� Part IV illustrates the formulation and implementation of the new and
comprehensive magneto-fluid set of boundary conditions for SpeCyl,
which self-consistently combines the already present resistive shell for-
mulation with a 3D velocity boundary.

� Part V contains the rigorous verification benchmark that we performed
against the independent 3D nonlinear MHD self-consistent code Pixie3D,
where similar resistive-shell boundary conditions have been recently
implemented, in parallel with SpeCyl. In addition, a final verification
benchmark study is reported also against the numeric predictions of
our linear-stability code, this time achieving excellent results.

� Part VI presents the final conclusions and remarks.





Part II

Linear stability of
current-driven MHD modes
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3
Linear stability theory and numerical tools

Part II illustrates some elements of the linear theory of small perturba-
tions in the larger frame of MHD. The precise knowledge of some aspects
of typical plasma relaxation processes, namely the ideal kink modes and the
tearing modes, is instrumental to the verification of our new set of boundary
conditions. However, a precise effort has been put in enlarging the scope to
curiosities and particular cases, fruit of personal theoretical exercises, that
we hope will render this Chapter more interesting and instructive.
Almost none of the results presented in this part is original, since very large
literature is already present on this topic. Such literature has been con-
densed in the next two Chapters, paired with the incremental report of the
implementation of a linear-instability numeric tool, dubbed LENS (Linear
Euler-Newcomb Solver), implemented using the IDL coding language.
The aim of this (rather technical) Chapter is to provide the reader with the
basic tool-kit to face the rest of Part II. In particular, after a general intro-
duction to current-driven instabilities, we present two alternative ways to re-
write in more convenient variables the momentum balance equation of MHD:
namely, the Newcomb’s and Euler’s equations. We derive such equations al-
most from first principles and in general toroidal geometry, still assuming
circular poloidal cross section, then we specialize them to the large aspect-
ratio limit of a periodic-cylinder geometry, later used as a linear benchmark
for SpeCyl. In doing so we also wish to highlight important physical aspects
contained in the equations, especially relying on the insight provided by the
LENS code.
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3.1 Static one-dimensional equilibrium

The perturbative theory treats instabilities as small perturbations to a
given initial equilibrium. The first natural step is thus to define this equilib-
rium.
It is general to assume that at the onset of an experimental plasma discharge
can be approximated to a static equilibrium, governed by the following set
of equations:

υ0 = 0 static condition,

∇ ·B0 = 0 solenoidal property,

∇×B0 = µ0J0 Faraday’s law,

J0 ×B0 = ∇p0 static momentum equation,

where the subscript “0” marks equilibrium quantities.
One important consequence of the static momentum balance equation is that
we may write the equilibrium current density as the sum of two parts

J0 =
σ

µ0

B0 + J0,⊥ , (3.1)

where

σ ≡ µ0

J0 ·B0

|B0|2
, (3.2)

and µ0 is added for future convenience. The first term in Eq. 3.1 is usually
called force-free since it gives no contribution to momentum balance equation,
while the second term is dubbed diamagnetic current, and is obtained by
taking the vector product of B0 with the static momentum equation:

(J0 ×B0)×B0 = −|B0|2J0,⊥ = ∇p0 ×B0 ,

thus

J0,⊥ = −∇p0 ×B0

|B0|2
. (3.3)

Throughout this work, we will always assume that our equilibrium is axi-
symmetric. This brings to some further simplification since for all quantities

∇ ≡ d

dr
.

Thus, from the solenoidal property we get that B0,r = 0. This combined with
Faraday’s law yields for the current density:

J0,r = 0 , J0,θ = −
d

dr
B0,z , J0,z =

1

r

d

dr
B0,θ .
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Our one-dimensional static momentum equation reads:

J0,θB0,z − J0,zB0,θ =
dp0
dr

,

and the diamagnetic current density (Eq. 3.3) becomes:

J0,⊥ =
B0,zθ̂ −B0,θẑ

|B0|2
dp0
dr

. (3.4)

3.2 Physical overview of current-driven in-

stabilities

To a general overview, current driven instabilities in a magnetised plasma
present some important similarities: due to some small initial perturbation
in the current profile or intensity, the magnetic geometry is deformed and
may, in some cases, undergo some topological change.
As geometry plays such an important role in these phenomena, one should
start by considering the overall symmetries of the system. Since we will adopt
a cylindrical symmetry, hence it is generally convenient to Fourier analyse
the perturbation, in such a way that every quantity Q can be expressed as

Q(r, θ, φ, t) =
∑
m,n

Qm,n(r, t) · eimθ−inφ , φ =
z

R
(3.5)

being r the radial coordinate, pointing out from the toroidal axis, θ the
poloidal angle, φ the toroidal angle, z the cylinder axis, R the major radius
of the device and t the time.
Furthermore, we will always imply that small perturbations may be assumed
to depend trivially upon time, so that

Qm,n(r, t) = Qm,n(r) · e−iωt , ∀m,n (3.6)

being in general ω ∈ C, so that Re(ω) is a mode frequency, while Im(ω) ≡ γ
is the mode growth/damping rate.
Fourier decomposition has the advantage that one can work on single pertur-
bation modes, having well-defined periodicity. As the equilibrium presents a
set of nested flux surfaces, characterised by a smoothly varying toroidal pitch
of magnetic field-lines, it may well happen that a mode has the same period-
icity as the equilibrium field at some given radius: this condition is dubbed
a resonance and is a fundamental trait in defining the type of the instability.
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Indeed, MHD instabilities are classified into internal or external modes, de-
pending on whether the resonant surface lays inside or outside the plasma.
Internal modes are usually fixed-boundary instabilities, as their development
does not affect significantly the plasma edge. In opposition, external modes
are mostly free-boundary instabilities, since they may only become unstable
if the boundary is free to deform.

Another important distinction is between resistive and ideal modes. Ideal
modes can be either internal or external and are dubbed kinks as they only
deform the magnetic geometry without affecting topology, whereas the resis-
tive ones are only internal and are dubbed tearing modes as they tear and
rejoin field lines.
Dealing with the ideal modes, the magnetic field is frozen into the plasma and
timescales are faster, in the order of the Alfvènic timescale, already defined
as

τA ≡
√
µ0ρ0
B0,z

L

where µ0 is the vacuum permeability, ρ0 is the mass-density on the toroidal
axis, B0,z is the toroidal field on axis and L is a typical length of the system,
which is usually identified either with the poloidal radius a or the toroidal
radius R of the device. In the following we will deal with phenomena evolving
on both length-scales, so we define by now

τA ≡
√
µ0ρ0
B0,z

a (3.7)

while the toroidal Alfvènic time will be referred as τAR/a. Assuming stan-
dard values from RFX-mod with a Deuterium-Tritium plasma: B0,z ≈ 1T,

ρ0 ≈ 2.5×mproton × 1019m−3, a = 0.46m yields τA = O(µs).
Finite resistivity allows field detachment from the flow and thus magnetic
topological changes, but acting on slower resistive magnetic-diffusion timescales
(Eq. 2.4):

τR ≡
µ0

η
L2

being η the plasma resistivity and L a characteristic spacial scale, which is
usually identified with the minor radius a of the plasma. As stated before,
it is always assumed that τR ≫ τA.

3.2.1 Physical drive

This Section reports a quite useful toy model, presented by Wesson in
[Wesson78] to explain the how not uniform currents may affect plasma equi-
librium stability. Albeit pertaining more directly to the next Chapter, where



Physical overview of current-driven instabilities 47

current-driven instabilities are introduced and studied, we think this can of-
fer a very good lead into the rest of part II. We think so because it introduces
and explains from a deeply physics-centred viewpoint the linearised momen-
tum balance equation, which is going to bear a leading part in this Chapter.
Also, it motivates the central relevance of the radial component of small per-
turbations to a given equilibrium, which will be implied through this whole
Chapter.
Let us take into account the curl of the momentum equation, which gives us
the torque balance equation (let us assume for now an inviscid plasma):

∇×
(
ρ
D

Dt
υ

)
= ∇× (J×B) ≡ T. (3.8)

Note that the pressure gradient does not apply any torque, being in first
approximation an axi-symmetrical force1.
At equilibrium, both terms in Eq. 3.8 are null. However, let us assume
that the initially axi-symmetric equilibrium is slightly deformed, e.g. into
an ellipse, as in Figure 3.1. As symmetry gets broken, the magnetic field
acquires a radial component, br.
Let us make the assumption of a linear perturbation so that we can write
perturbed quantities as the sum of the equilibrium plus a first order term:
B = B0 + b and J = J0 + j. Making use of vector identities and linearising
we can write Eq. 3.8 as:

T = b · ∇J0 − j · ∇B0 +B0 · ∇j− J0 · ∇b . (3.9)

We will discuss more extensively this equation in the next Section. For the
moment, let us just focus on the first term, neglecting all components of the
perturbation but the radial one. For it to contribute to the torque, we require
that J0 depend on the radius.

Figure 3.1 focuses on the torque produced by the br∇rJz term: in an
initially axi-symmetric plasma, as in panel (a), we consider a cylindrical slab
of plasma, enclosed between two magnetic flux tubes (in green and red the
inner and outer, respectively). Suppose that some oscillation of any kind
produces an initial ripple on this slab, like the dashed contour in panel (a),
thus breaking cylindrical symmetry.
Panels (b) and (c) show the detail of a perturbed slab: the point is that the
two magnetic surfaces (green and red) are composed by magnetic field lines,
that acquire a radial component throughout the bending (see panel (c) for

1Moreover, the curl of the gradient of a scalar field is always null. To prove it, think of
∇p as a conservative field, whose potential is of course −p: being conservative, the work
done on a closed path must always be null, whence the thesis, via the Stokes theorem
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(a) Poloidal cross section
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(c) Detail of slab deformation

Figure 3.1: Physical drive at the onset of a kink: the initially circular mag-
netic surfaces are perturbed into an ellipse. The slab between the green
and the red surfaces is analysed in detail: field bending produces a radial
component that combines with toroidal current in a J × B force, which is
unbalanced if there is a finite ∇J0,z, providing net destabilising torque onto
the slab.
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better understanding of this). This initial br combines with the equilibrium
current density, in such a way that Jzbr couples of forces develop on both
faces of the slab, oriented so as to compress each face azimuthally. Panel (b)
shows just two of them for each magnetic surface, but indeed every point of
the (dashed) deformed magnetic surface is subject to such forces, mirroring
each other on the two sides of each ripple.
The contribution of the field lines on the internal (green) face exerts a desta-
bilising torque onto the central slit of the deformed slab (dotted in panel (b)),
whereas the external (red) face opposes the instability. Take into account the
forces on the right-hand side of both surfaces: albeit pointing in the same
direction, their torques onto the central slit of our slab must be in contrast,
since the moment arms are opposite in sign. The same of course holds for
the left-hand side of the ripple.
In principle, opposite effects could end up cancelling each other. However, if
there exists some finite radial gradient of J0,z the two effects do not balance,
yielding instability if J0,z decreases towards the edge of the plasma.
As we will see in next Sections, the presence of magnetic shear can influence
and help stabilise the process. This can be understood by looking at panel
(c), that shows how varying the equilibrium pitch across each slab, different
values of br can be found, so that the reduction in the J0,z intensity can be
either amplified or compensated in the J× b term.

3.3 Newcomb’s equation

We introduce in this Section a powerful tool to determine up to some pre-
cision the shape of the linearly perturbed magnetic field and current density,
under the hypothesis of marginal stability. The content of this Section is the
yield of a theoretical exercise, but an analogous derivation can be found also
in [Fitzpatrick99, Calabrese13].
Newcomb’s equation is usually derived for a case in which the role of pressure
is neglected. In this case, force balance at equilibrium would require:

J0 ×B0 = 0

and thus we can define a function σ(r) such that µ0J0 = σB0, or

σ ≡ µ0

J0 ·B0

|B0|2

as in Eq. 3.2. This is the same as retaining only the force-free term out of
Eq. 3.1.
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What we want to derive here is a slightly more general equation and from
that we will extract the pressureless case as a particular limit. We have
already seen that pressure cannot contribute to the current-driven torque
and thus one may think that it should automatically slip away from our
equations. Nonetheless, the complete picture is quite different and may be
worth a look. Perhaps the most instructive piece of information that we will
derive from specifically tracking all terms depending on finite pressure is that
they can be neglected in the relevant limit case of a large aspect ratio: since
SpeCyl operates in a pressure-less assumption, this lesson will be crucial in
setting our future benchmarks.

Let us start by taking into account the linearised torque equation, as we
found it in Eq. 3.9:

T = b · ∇J0 − j · ∇B0 +B0 · ∇j− J0 · ∇b .

Marginal stability requires T = 0. Let us approximate our toroidal geometry
to a cylinder and analyse individually every Fourier mode of our perturbation.
Combining the above constraint with Faraday’s equation and magnetic field
incompressibility we get:

Tr =

(
imB0,θ

r
−
inB0,z

R

)
jr −

(
imJ0,θ
r
−
inJ0,z
R

)
br ≡ 0

Tθ =

(
imB0,θ

r
−
inB0,z

R

)
jθ −

(
imJ0,θ
r
−
inJ0,z
R

)
bθ+

(
br
dJ0,θ
dr
− jr

dB0,θ

dr

)
+
B0,θjr − J0,θbr

r
≡ 0

Tz =

(
imB0,θ

r
−
inB0,z

R

)
jz−

(
imJ0,θ
r
−
inJ0,z
R

)
bz+

(
br
dJ0,z
dr
− jr

dB0,z

dr

)
≡ 0

(∇× b)r =
imbz
r

+
inbθ
R
≡ µ0jr

(∇× b)θ = −
inbr
R

+
dbθ
dr
≡ µ0jθ

(∇× b)z =
1

r

d

dr
(rbθ)−

imbr
r
≡ µ0jz

∇ · b =
1

r

d

dr
(rbr) +

imbθ
r
− inbz

R
≡ 0

where b = (br, bθ, bz) and j = (jr, jθ, jz) are the Fourier components of the
perturbation, having m-fold periodicity in θ and n-fold in φ = z/R, as in
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Eq. 3.5.
From the first equation we can derive that µ0jr = Σbr, having defined Σ as:

Σ ≡ µ0

mJ0,θ − nJ0,zε
mB0,θ − nB0,zε

; ε =
r

R
. (3.10)

Making use of Eqs. 3.1 and 3.4 we may write

Σ = σ +
µ0

|B0|2
mB0,z + nB0,θε

mB0,θ − nB0,zε

dp0
dr

.

This way we made apparent the force-free and the diamagnetic contributions
in this scalar function.
It is convenient to introduce the magnetic flux perturbation, ψ(r) = −irbr,
as a parameter in terms of which we can find all the other quantities. In fact,
after quite a long manipulation we can find that:

br =
iψ

r
(3.11)

bθ =
nεΣψ

H
− m

H

dψ

dr
(3.12)

bz =
mΣψ

H
+
nε

H

dψ

dr
(3.13)

being H = m2 + n2ε2. Current density components are then:

µ0jr =
iΣψ

r
(3.14)

µ0jθ =
nεΣ2ψ

H
− mΣ

H

dψ

dr
+
ψ

F

[(
Σ
dB0,θ

dr
− µ0

dJ0,θ
dr

)
−

ΣB0,θ − µ0J0,θ
r

]
(3.15)

µ0jz =
mΣ2ψ

H
+
nεΣ

H

dψ

dr
+
ψ

F

(
Σ
dB0,z

dr
− µ0

dJ0,z
dr

)
(3.16)

having also defined F as:

F ≡ mB0,θ − nεB0,z . (3.17)

Finally, either of the remaining two constraints yields a second order ODE
for ψ:

d

dr

(
r

H

dψ

dr

)
=

[
1

r
+

2mnεΣ

H2 − rΣ2

H
+
nεr

mH

dΣ

dr
+

r

mF

(
µ0

dJ0,z
dr
− Σ

dB0,z

dr

)]
ψ .

(3.18)
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Equation 3.18 is the generalisation of Newcomb’s equation to the case in
which no assumption is made on pressure. To recover the standard New-
comb’s equation, we must only retain the force-free contribution to current
density: each component of J is proportional via σ(r)/µ0 to the correspond-
ing component of B, and there is a full identity between Σ and σ. Hence,
the last two terms in the square bracket of Eq. 3.18 condense in one and we
get the actual Newcomb’s equation:

d

dr

(
r

H

dψ

dr

)
=

[
1

r
+

2mnεσ

H2 − rσ2

H
+
r(nεB0,θ +mB0,z)

FH

dσ

dr

]
ψ . (3.19)

Regarding equations 3.11-3.16, the components of b and jr keep almost un-
changed, if not for the specification that Σ = σ, whereas in jθ and jz become

jθ = σbθ −B0,θ

dσ

dr

ψ

F

jz = σbz −B0,z

dσ

dr

ψ

F
. (3.20)

Hence, we see that the equilibrium pressure gradient mostly affects the cur-
rent profile, being them both related to the plasma flow and mass distribu-
tion, while it produces a minor effect on the (externally applied) magnetic
field.

3.3.1 The vacuum equation

Another interesting aspect to point at is that we can use Newcomb’s equa-
tion to find vacuum profiles for the magnetic field. This aspect will become
handy when we will discuss the improvements to the magnetic boundary in
SpeCyl.
Vacuum field is easily recovered by setting Σ = 0 in Eq. 3.18 (or σ = 0 in
Eq. 3.19) and assuming there is no current flowing: J0 = 0. This way, our
ODE reads

d

dr

(
r

H

dψ

dr

)
=
ψ

r
(3.21)

and the field components result as

br =
iψ

r
, (3.22)

bθ = −
m

H

dψ

dr
, (3.23)

bz =
nε

H

dψ

dr
, (3.24)
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while of course jr = jθ = jz = 0.
It should be noted that in this context there is no difference between vacuum
and a highly resistive plasma. This comes from the fact that our analysis
completely missed the left hand side of momentum balance equation and
thus only focuses on the electromagnetic part of dynamics.
In the next Section, we will see a different approach, that allows us to make
a more complete picture. It will be seen also through simulations that there
is indeed some difference between a pseudo-vacuum, consisting in a cold and
resistive plasma, and the actual vacuum.
It is also important to say that in the case of vacuum, there is a simple
solution for Newcomb’s equation. If we integrate Eq. 3.21 with respect to
x = |n| ε we get:

x

m2 + x2
dψ

dx
=

∫
ψ

x
dx ,

so that, for the new variable Ψ =
∫
ψ/x dx, such that

ψ(x) =
d

dx
(xΨ(x))−Ψ(x)

we have

x2
d2Ψ

dx2
+ x

dΨ

dx
=
(
m2 + x2

)
Ψ(x) , (3.25)

which is known as modified Bessel’s equation and has solution:

Ψ(x) =AIm(x) + BKm(x) (3.26)

=⇒ ψ(|n|ε) = A |n| ε I ′m(|n|ε) + B |n| εK ′
m(|n|ε) , (3.27)

A,B ∈ R being two constants and Im and Km the modified Bessel functions
of order m. The primes represent the first-order derivative in the function
argument.
Finally, making use of Eq. 3.21 once more, we find

dψ

dr
=
H

r

∫
ψ

x
dx =

m2 + n2ε2

r
·Ψ(|n|x) . (3.28)

For the specific case of vacuum, Eqs. 3.22-3.24 are sometimes derived in
terms of a potential function ϕ [Jackson99]. In fact, in vacuum J = ∇×B =
0, hence there must exist a scalar potential such that ∇ϕ = (B0 + b). The
solenoidal property of the magnetic field becomes, in cylindrical coordinates
and for each Fourier mode individually, a modified Bessel’s equation:

∇ ·B0 = ∇2ϕ0,0 =
1

r

d

dr

(
r
dϕ0,0

dr

)
= 0 , (3.29)

∇ · bm,n = ∇2ϕm,n =
1

r2

[
r
d

dr

(
r
dϕm,n

dr

)
−
(
m2 + n2ε2

)
ϕm,n

]
= 0 . (3.30)
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From here the derivation is almost identical to the above. Flux and potential
relate to each other through

ψm,n = −irdϕ
m,n

dr
for (m,n) ̸= (0, 0) .

Finally, it should be added that the axi-symmetric component of the scalar
potential must contain some multiple-valued terms in order to reproduce
the equilibrium magnetic field produced in vacuum by a cylindrical current-
carrying plasma surrounded by a solenoid:

ϕ0,0(r, θ, z) = Φ0,0(r) +B0,0
θ (a) · aθ +B0,0

z (a) · z , (3.31)

where Φ0,0 is determined through Eq. 3.29. This way,

{B0,0
z }vac = B0,0

z (a) , {B0,0
θ }

vac =
a

r
B0,0

θ (a) .

3.3.2 The straight tokamak limit

A second and very instructive limit case is when we assume the major
radius R → ∞, i.e. we work in large aspect ratio approximation. This
comes with a typical ordering which is known as straight tokamak ordering
and basically corresponds to setting ε → 0 while keeping the MHD safety
factor q = B0,zε/B0,θ = O(1). This, of course, involves:

B0,θ ∼ ε ·B0,z .

Also, since in tokamaks B0,z ∝ 1/R, we get dB0,z/dr ∼ εB0,z.

In this ordering, by letting ε vanish and approximating H = m2+n2ε2 ≈ m2,
our “generalised” Newcomb’s equation 3.18 now reads:

d

dr

(
r
dψ

dr

)
=

[
m2

r
− rΣ2

ε→0 +
mr

F

(
µ0

dJ0,z
dr
− Σ

dB0,z

dr

)
ε→0

]
ψ . (3.32)

By making use of Faraday’s law on the equilibrium fields we get:

µ0J0,θ = −
dB0,z

dr
; µ0J0,z =

1

r

d

dr
(rB0,θ) ,

whence

Σ = µ0

mJ0,θ − nεJ0,z
F

= − 1

F

[
m
dB0,z

dr
+ nε

dB0,θ

dr
+ n

B0,θ

R

]
.
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In the previous equation, the last addend should then be dropped2, while
the first one is of the same order of B0,z, since F ∼ εB0,z. The middle term
should also be dropped, since

dB0,θ

dr
≈ 1

m

(
dF

dr
− nεB0,z

)
must be the same order as εB0,z. This way, rΣ

2 cancels out with the last term
of Eq. 3.32, yielding our final Newcomb’s equation for the tokamak limit:

d

dr

(
r
dψ

dr

)
=

[
m2

r
+
mr

F
µ0

dJ0,z
dr

]
ψ . (3.33)

This equation brings us to two very important considerations:

a. Our final equation does not contain any term relating to pressure and
in fact coincides with the large aspect ratio limit of pressureless New-
comb’s equation (3.19). Such a result will be confirmed numerically by
the end of this Chapter.

b. This is the same result obtained by Wesson in [Wesson78] by consider-
ing only the b ·∇J0 contribution to the overall torque, showing that in
the straight tokamak the kink/tearing instability is solely determined
by the current gradient.

3.3.3 Plasma displacement

In ideal MHD the magnetic flux is said to be frozen into the plasma, so we
expect to find a trivial relation that correlates the flux function ψ to the flow
υ or its time integral ξ, dubbed Lagrangian displacement and representing
the small spacial offset of the fluid element related to the instability:

dξ

dt
≈ ∂ξ

∂t
= υ .

The flux freezing condition is enclosed in the ideal Ohm’s equation:

E+ υ ×B = 0 .

By taking its curl and getting rid of the electric field E throughout the
Faraday’s law, we get to an equation that does only depend on the magnetic
field and the flow. Let us assume a static equilibrium (υ0 = 0) and cylindrical

2B0,θ/R ∼ O(ε
2), since B0,θ ∼ εB0,z and of course 1/R ∼ ε.
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geometry and introduce a linear perturbation to the magnetic field B =
B0 + b:

∂

∂t
(B0 + b) = ∇×

(
∂ξ

∂t
× (B0 + b)

)
=⇒ b = ∇× (ξ ×B0) . (3.34)

In the last step, a linearisation has been made, since ∂tξ× b is second order
in the perturbation.
Let us now take the radial projection of the above equation and work onto
a single Fourier mode: the same vector identities already employed in the
torque equation yields

br = B0 · ∇ξr =
(
imB0,θ

r
−
inB0,z

R

)
ξr .

The LHS of the above equation is formally identical to Tr = 0, provided that
one substitutes jr with ξr.
Recall now that ψ = −irbr, whence the required relation:

ψ = F ξr (3.35)

where F =
(
mB0,θ − nεB0,z

)
as in Eq. 3.17.

3.4 Numerical solution of Newcomb’s equa-

tion

Let us now briefly discuss about LENS, the numerical solver we devel-
oped to produce the linear magnetic flux perturbation to a given arbitrary
equilibrium, defined by the choice of a current density profile J0(r).
This consists of an explicit fourth-order Runge-Kutta method (see [Süli14]
and [Fitzpatrick13]). The integration is performed with IDL built-in RK4

function.
Our ultimate goal is to produce reliable numerical solutions to be bench-
marked with results from the SpeCyl code. Since SpeCyl neglects pressure
gradients in its model equations, we seek to solve the pressure-less Newcomb
Eq. 3.19, reported below for ease:

d

dr

(
r

H

dψ

dr

)
=

[
1

r
+

2mnεσ

H2 − rσ2

H
+
r(nεB0,θ +mB0,z)

FH

dσ

dr

]
ψ .
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This second-order ODE is then broken by LENS into the following first order
ODEs to be solved iteratively:

d

dr
Y0(r) =

Y1(r)

f(r)

d

dr
Y1(r) = g(r)Y0(r)

where Y0(r) = ψ(r) , Y1(r) = f(r)ψ′(r) , f = r
H
, and g(r) is the long term

in square brackets in the initial second-order equation. The prime represents
a first-order derivative in the function main argument.
Since the g(r) is singular on axis, the solver substitutes a linear approximant
to the solution for the first few radial integration steps ∆r. This can be
built in the following manner: since very close to axis r = Nsteps ×∆r ≪ a,
with Nsteps small, for any geometry of interest R ≥ a implies ∆r/R ≪ 1,
we may use the large aspect ratio limit of Newcomb’s equation (Eq. 3.33).
Furthermore in a small interval around axis, we can assume J ′

0,z ≈ 0, so that
we have:

d

dr

(
r
dψ

dr

)
≈ m2

r
ψ ,

whose solution is indeed ψ = A rm + B r−m, with free coefficients A and B.
Hence, regularity conditions on axis impose (up to a scaling factor):

ψ ≈ rm ,
dψ

dr
≈ mrm−1

for any 0 ≤ r ≤ Nsteps × ∆r. Convergence studies on limit cases and man-
ufactured solutions [DiGiannatale19, Salari02] have identified the optimal
domain for this linear approximation in 0 ≤ r/a ≤ 3 · 10−3: wider linear
domain may limit solver precision regardless of the integration step, while
thinner could slow or prevent algorithm convergence when using relatively
large ∆r.
The LENS solver has been tested to prove its correctness and robustness
against analytical solutions. We report here two tests, the first of which is
the limit case of the vacuum solution. Albeit its physical relevance, any limit
case does not retain the full complexity of the original equation and thus
is not suitable for a full verification of the solver. A more complete picture
can be acquired through the convergence study on a manufactured solution:
these are the exact solutions of the original set of equations, after having
added an ad hoc forcing term, corresponding to a known analytical solution.
This will be better introduced and motivated in Sec. 3.4.2.
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3.4.1 Limit case study: the vacuum equation

The convergence study on limit cases is relevant since it allows to maintain
physical relevance of the sought solution. Moreover, the vacuum solution will
play an important role in the next Chapter, in the study of both kink and
tearing modes.
The numerical set-up is achieved by feeding LENS with a uniform current
density profile J0 = 0, which coincides to setting σ = σ′ = 0 in our pressure-
less Newcomb equation, without changing any other variable.
Let us consider the case of a infinitely thin current-ring at a given radius r =
1, enclosed in a perfectly conducting coaxial shell, that a 2D representation
crosses the plane of the page in r = 0 and r = 2. The analytical vacuum
solution for ψ in the two resulting regions, L = {0 ≤ r ≤ 1} and R = {1 ≤
r ≤ 2}, comes from enforcing regularity conditions on the ideal conductor
and flux continuity in r = 1, along with Eq. 3.27 and 3.28:

ψL(0) = ψR(2) = 0,

ψL(1) = ψR(1) = 1 .

In particular, for the left-hand side vacuum region we get

ψL(r) =
r I ′m(|n|ε)
I ′m(|n|ε1)

=⇒ dψL

dr
(r) =

H

r

Im(|n|ε)
|n|
R
I ′m(|n|ε1)

,

where of course BL = 0. For the other branch of the solution, a quick
manipulation yields:

ψR(r) =
K ′

m(|n|ε2)I ′m(|n|ε)− I ′m(|n|ε2)K ′
m(|n|ε)

K ′
m(|n|ε2)I ′m(|n|ε1)− I ′m(|n|ε2)K ′

m(|n|ε1)
r

=⇒ dψR

dr
(r) =

H

|n|ε
K ′

m(|n|ε2)Im(|n|ε)− I ′m(|n|ε2)Km(|n|ε)
K ′

m(|n|ε2)I ′m(|n|ε1)− I ′m(|n|ε2)K ′
m(|n|ε1)

For the numerical integration, we fed LENS with an infinitely thin current
ring, as described by J0,z = j0δ(r − 1) and solved within the two domains,
starting from the external edges (where the conductor is) and matching the
solutions so that they are equal at r = 1. For the right-had side branch solu-
tion, since there is no singlularity of the governing equation in r = 2, no linear
approximant was deployed and instead we just enforced initial conditions:

(ψR)ext. conductor = 0

(
dψR

dr

)
ext. conductor

= −1 . (3.36)
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Figure 3.2: Magnetic flux around an infinitely thin current-channel ring,
jz = j0δ(r−1), enclosed in a coaxial conductor. LENS’s results for integration
step ∆r = 10−4 (black) are compared to analytical predictions, for various
values of m and n.

Figure 3.2 presents LENS’s outcomes compared to the analytical vacuum so-
lutions, for all the combinations of m = 1, 2, 3 and n = 1, 2, 3 and for R = 1.
LENS’s precision is set to an integration step ∆r = 10−4 and the analytical
predictions are quite indistinguishable from the numeric solution. Indeed,
Fig. 3.3 reports the relative error as an exponentially decreasing function of
∆r. Note that, albeit monotonically decreasing, the rate is only little more
than linear in ∆r, instead of being proportional to (∆r)4 as the fourth-order
Runge-Kutta method should guarantee. This is motivated by the wide num-
ber of parameters and subroutines that need to be computed or called at
each step, including e.g. a second-order precision derivative-method to com-
pute σ′ from a generic user input current-density, and the linear interpolation
performed by IDL in the discretisation of the radial profiles.

3.4.2 Convergence study using manufactured solutions

Despite retaining more physical meaning, limit cases are inherently poor
tests of the overall performances of a numeric tool, because they unavoidably
project the system in some particular subset of parameters space. One would
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Figure 3.3: Scan on the errors for a specific solution (m = 2, n = 1, R = 1)
of the thin current-ring problem, against increasing solver precision. The
error is evaluated as the maximum absolute discrepancy over each domain
between LENS’s solution and analytical prediction, normalised in such a way
that ψL(1) = ψR(1) = 1. A dashed line marks the slope (∆r)−1.

Figure 3.4: Convergence study of the LENS solver using a manufactored
solution in the form of η(r) = emr − 1. Numerical set-up: 1 ≤ m ≤ 3, n =
1, R = 4, ν = 1, and resonance position rs = a. A dashed line marks the
slope (∆r)−1.
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Figure 3.5: Convergence study of the LENS solver using a manufactored
solution in the form of ζ(r) = n ·

√
1 + rm. Numerical set-up: 1 ≤ m ≤

3, n = 1, R = 4, ν = 1, and resonance position rs = a. A dashed line marks
the slope (∆r)−1.

much rather test the solutions produced by one numeric tool in the most
general case against some suitable figure of merit.
Of course, the problem is that very seldom there is such a thing like a fully
general known (analytical) expectation for the outcome. Nonetheless, it is
always possible to study the solver’s convergence against the exact analytical
solution of the original governing equation plus a wisely chosen forcing term.
This is dubbed a manufactured solution [Salari02] and can be constructed in
the way that follows:

� we start from a linear ODE we want to solve: A [ψ] = 0, being A a
differential operator and ψ the unknown eigenfunction

� we make a guess ζ for the eigenfunction, which almost surely is not a
solution for our problem, so that we will find A [ζ] = S ̸= 0 (if S = 0
we would have found by chance an exact solution of our ODE)

� nonetheless, we now have an inhomogeneous ODE whose analytical
solution is known by construction and that presents the same grade as
numerical complexity of the initial one.

Manufactured functions are then simple dummy solutions for an alternative
problem that still retains at least the same complexity as the original one.
For this reason, it is not important that they have any physical consistency
and can be chosen freely.
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For the sake of this study, we focused on two very different manufactured
solutions: the first one is null on axis and presents very rapid growth, that
tends to magnify quickly any deviance of LENS from the right solution:

η(r) := emr − 1 .

The second was chosen in antithesis as finite on axis and with slower (poly-
nomial) growth:

ζ(r) := n ·
√

1 + rm .

The linear approximant for such functions (in a small domain around the
axis) are then:

η(r) ∼ mr, ζ(r) ∼ n

(
1 +

xm

2

)
.

The full differential problem passed to LENS is now:

d

dr
Y0(r) =

Y1(r)

f(r)

d

dr
Y1(r) = g(r)Y0(r) + S[µ(r)] ,

where

S[µ(r)] := df

dr
µ(r) + f(r)

dµ

dr
− g(r) ,

f and g being defined as above, and µ standing alternatively for the explicit
expression of η or ζ.
The equilibrium chosen for this test implements a current-density profile like
that in [Wesson78] and uniform axial magnetic field:

B0,z = 1 , J0,z = j0

[
1−

(r
a

)2]ν
=⇒ σ = j0

[
1−

(r
a

)2]ν
with ν ∈ R as free current-peaking parameter.
As Fig. 3.4 and 3.5 show for a specific set of parameters, convergence study
on both manufactured functions achieved overall very similar results: here
the error is defined as the relative discrepancy at r = 1. However, almost
identical convergence plots were obtained on a wide range of parameters,
spacing

0 ≤ m ≤ 3 , −5 ≤ n ≤ 5 , 0.5 ≤ R ≤ 5000 ,

a ≤ rs ≤ 2a , 0 ≤ ν ≤ 5,
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where rs is the resonance position and the other variables have their usual
meaning.
Once more, as expected, the convergence rate is little more than linear in ∆r
and LENS is consistently more precise in evaluating η and ζ than η′ and ζ ′.
The effect of the linear approximant is well visible on both η and ζ: as long
as ∆r > 3 · 10−3 there are too few mesh points for one of them to fall in the
linear approximation domain. For these cases (left part of each plot) we see
comparatively slower convergence of η (and ζ) and almost stalled convergence
of η′ (and ζ ′).
Finally (and unsurprisingly) the convergence error on the spiky η function
is generally higher than the one on the flatter ζ and the linear approximant
seems to have a more beneficial effect for the first one.

3.5 The Energy formulation

The aim of this Section is to give a brief introduction to the Energy Prin-
ciple. This is an alternative way to treat linear fluid instabilities in the frame
of ideal MHD: the main difference is that we rather describe the perturbation
in terms of the fluid displacement ξ instead of ψ and rely on flux freezing
condition contained in Eq. 3.35 to recover the magnetic counterpart.
Albeit this may sound a little reductive, the energy formulation somehow
completes the information enclosed in the Newcomb’s approach, also envis-
aging the contribution of the plasma inertia. In addition, the theory involved
is very elegant and instructive.
Unfortunately, a rigorous introduction would take too long: a thorough pre-
sentation can be found in [Freidberg14], whereas a shorter but still precise
version is to be found in [White06]. In the next few pages we just want to
present some of the key results.

3.5.1 Force density operator

We start from the usual static equilibrium:

J0 ×B0 = ∇p0

υ0 = 0 .

Let us now introduce a small perturbation in the form of a mass displacement
field ξ(r, θ, z, t), which is the Lagrangian displacement already defined at the
end of the previous Sec. 3.3. Our aim is now to determine the force-density
F(ξ) representing the plasma response. This will allow us to study the
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equilibrium stability in terms of virtual work principle, which is applicable
for ideal MHD, enforcing energy conservation.
Linearised force density reads as

F(ξ) = j(ξ)×B0 + J0 × b(ξ)−∇p1(ξ) ,

where j, b and p1 are linear perturbations of current-density, magnetic field
and pressure, respectively, representing the plasma response.
We have already discussed the b(ξ) relation in Eq. 3.34 and j(ξ) is just
∇ × b(ξ)/µ0. First order pressure term can be found combining continuity
and entropy-conservation equations and linearising:

p1(ξ) = −ξ · ∇p0 − γad p0∇ · ξ . (3.37)

being γad the adiabatic constant of the plasma, given by the ratio of its
specific heats.
Our perturbation will be Fourier-developed in an analogous way to what we
did for ψ in the previous Section, so that, assuming also a dependence on
time like that in Eq. 3.6:

ξ(r, t, θ, z) =
∑
m,n

ξmn(r) · eimθ−inz/R−iωt .

In the following, we will always refer to the single mode ξmn = [ξmn
r , ξmn

θ , ξmn
z ],

so we will drop the apex without loss of clarity. Let us now write the second
principle of dynamics for our small perturbation:

ρ0
∂2ξ

∂t2
≡ −ρ0 ω2ξ = F(ξ)

and the potential energy perturbation produced on the plasma against the
force density F :

δW (ξ, ξ∗) = −1

2

∫
V

F(ξ) · ξ∗ dτ ≡ 1

2

∫
V

ρ0 ω
2 |ξ|2 dτ (3.38)

where the asterisk indicates complex conjugation, V is the volume of the
system we consider, and the inessential factor 1/2 has been added to render
the RHS formally identical to a kinetic term.

3.5.2 δW (ξ, ξ∗) and its self-adjointness

Equation 3.38 is an actual energy balance equation. For this to be, it is
essential that the force field F is conservative, meaning that the work done
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does not depend on the choice of the path, so that F(ξ1) · ξ
∗
2 ≡ F(ξ2) · ξ

∗
1,

for any two displacements ξ1, ξ2. This property of the force operator (and
consequently of the energy variation δW ) is called self-adjointness.
We give in this Section the most general form of the δW operator. Following
[Freidberg14] we can write the energy variation in the region occupied by the
plasma as:

δWp(ξ, ξ
∗) =

∫
Vp

dτ

{
|b⊥|2

2µ0

dummy2

dummyba

}
(3.39)

+

{
B2

0

2µ0

|∇ · ξ⊥ + 2ξ⊥ · k|
2 d

2

dba

}
(3.40)

+

{
γad p0
2
|∇ · ξ|2d

2

dba

}
(3.41)

−
{
(ξ⊥ · ∇p0) (ξ

∗
⊥ · k)

d2

dba

}
(3.42)

−
{ |J0,∥|

2

(
ξ⊥ ×

B0

|B0|

)
· b⊥

}
(3.43)

were the different terms in the integral are respectively related to:

� the shear Alfvèn wave, which is perpendicular to the equilibrium;

� the compressional Alfvèn wave, which is enhanced by fluid compress-
ibility;

� the pressure sound wave, proportional to the adiabatic constant γad
and to the squared compression |∇ · ξ|2;

� pressure-driven instabilities, that vanish with pressure gradients and
contain the field-curvature unit vector k = (B0/|B0|) · ∇(B0/|B0|);

� current-driven instabilities, where the υ×B0 term is still recognisable.

It should be noted that the three terms concerning wave dissipation of ac-
cumulated energy have positive sign, meaning that they raise the plasma
energy and are thus stabilising, while the other two have negative sign and
thus tend to lower the plasma energy, leading to instability.
Along with this plasma contribution, in case we have a vacuum region be-
tween the plasma and the conducting shell, there are also a surface and a
vacuum term to take into account to evaluate the whole potential energy
change:

δW = δWp + δWs + δWv . (3.44)
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The vacuum term can be easily obtained from δWp by eliminating all the
terms that involve fluid properties, such as the displacement ξ and pres-
sure, and currents (and recovering the b∥ component, which was implicit in
Eqs. 3.40-3.43):

δWv =

∫
Vvac

|b|2

2µ0

dτ .

Finally, the surface term includes the jump condition of the hydromagnetic
energy density across the fluid interface:

δWs =

∫
∂Vpl

(n · ξ) ξ ·
[
∇
(
B0 · b
2µ0

+ p1

)]vac
pl

dσ ,

where n is the unit vector perpendicular to the interface and the term in
square brackets is intended as a difference between the evaluation of its ar-
gument in vacuum and in the plasma, very close to the interface. The physical
meaning of this term is to balance the energy fluxes across the fluid interface
and is formulated by enforcing pressure balance and the request that the
perturbed plasma surface is a constant-flux surface for the perturbed field.

Two important corollaries of self-adjointness

There are two immediate properties of self-adjoint operators that play a
crucial role for the study of ideal MHD instabilities. We report them without
proof, which the reader can find in Appendix A.1.

Property 1. Discrete modes are a basis
Whenever only a discrete set of (ω, ξ) couples is a solution to the eigenvalue
problem in Eq. 3.38, this is a basis for all possible initial displacements.

In other words, we can study the stability against whatever initial per-
turbation by looking at normal modes stability. In fact, only the projection
of a given perturbation on this base has a chance to grow.
It should be also said that there are also regions in the space of allowable
displacements in which the spectrum of solutions is a continuum. Nonethe-
less, it seems like it is the case that all continua lie in the stability region
[Freidberg14].

Property 2. Ideal modes either rotate or grow
All discrete eigenvalues ω2 must be real.
This implies that ideal modes can either grow with purely imaginary rate
ω ≡ −iγ or rotate with purely real frequency.
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3.5.3 The variational form of MHD equations

The last step we need towards the Energy Principle is to re-formulate the
MHD equations in a variational form.
First of all, referring to Eq. 3.38, we can isolate our eigenvalue so that we
find

ω2(ξ) =
δW (ξ, ξ∗)

(1/2)
∫
V
ρ0|ξ|2 dτ

. (3.45)

In this case, we are basically considering the eigenvalue ω2 as a functional of
its eigenfunction ξ. To this point, it is convenient to define K(ξ, ξ∗), so that

ω2(ξ) =
δW (ξ, ξ∗)

K(ξ, ξ∗)
; K(ξ, ξ∗) =

∫
V

ρ0
2
ξ · ξ∗ dτ .

It turns out that the solutions of our eigenvalue problem (which is completely
equivalent to MHD equations) corresponds to the stationary condition for the
functional ω2(ξ). The full proof is available in Appendix A.2.

In other words, the whole batch of information contained in the MHD
equations is also contained in the request that:

ω2(ξ + δξ)− ω2(ξ) = 0 , for an arbitrary δξ → 0 . (3.46)

3.5.4 The Energy Principle

The variational principle just discussed allows us to identify system sta-
bility with the sign of the eigenvalue ω: Eq. 3.45 shows us that it depends
on the sign of the potential energy variation.
In other words we are left with two possible cases:

� ω2 ∝ δW ≥ 0 : the mode oscillates with purely real frequency;

� ω2 ∝ δW < 0 : the mode amplitude changes at a purely real growth-
rate γ = − Im(ω).

This is just a consequence of energy conservation: any initial perturbation
producing a favourable jump in potential energy is bound to increase its
kinetic energy.
In fact, the most general formulation of the Energy Principle states that a
system is stable if and only if there is no such a perturbation ξ that produces a
negative δW (ξ, ξ∗) < 0 and its proof is almost straightforward in the relevant
case in which discrete normal modes are a basis for all possible displacements.
More pragmatically, we can draw from these consideration an approximated
version of the exact (to linear order) variational problem described in the
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previous Section.
The approximation consists in assuming that the stationary condition of
ω2(ξ) can be transposed into stationary potential variation δW (ξ, ξ∗). This
is the same as assuming that K does not take part in the variation δ[ω2(ξ)].
Of course this is completely accurate only in the case of marginal stability,
hence this procedure yields exact stability boundaries. Nonetheless, energy
conservation implies that a minimum in potential energy variation gives us
the displacement that makes the whole system transition to the most possibly
favourable energetic state, which can rightfully be assumed to be a very close
approximation to the actual solution of the exact problem.
On the other hand, by doing so we can solve for our eigenfunction with an
equation that does not contain ω, which is a huge simplification.

Energy minimisation

So, we are left with a new variational principle in order to find ξ:

δ [δW (ξ, ξ∗)] = [ δW (ξ + δξ, ξ∗ + δξ∗)− δW (ξ, ξ∗) ] ≡ 0 . (3.47)

Referring to the general form of the potential energy, given in Sec. 3.5.2, the
main contribution of Equation 3.44 that needs minimisation is the plasma
potential δWp. Leaving out for the moment the vacuum and interface con-
tributions, minimisation of Eqs. 3.39-3.43 leads to the requirement for an
incompressible perturbation3, in order to rid off positive terms [White06].
The potential energy becomes a functional of the sole radial component of ξ
and assumes the shape below:

δWp(ξr) = 4π2R

a∫
0

[
f(r)

(
dξr
dr

)2

+ g(r) (ξr)
2

]
dr + ETa (3.48)

f(r) =
n2r3B2

0,z

R2
(
m2 + n2ε2

) (1− m

nq

)
g(r) =

r (n+m/q)2B2
0,z

R2
(
m2 + n2ε2

) +
1

R
B2

0,zε

(
n− m

q

)2

−
2B0,z

R2q

d

dr

(
r2

q

)
− d

dr

[
ε2

m2 + n2ε2

(
n2 − m2

q2

)]
B2

0,z

ETa =4π2R

[(
n2ε2B2

0,z −m2B2
0,θ

)
(ξr)

2

m2 + n2ε2

]
r=a

3This is true in most cases: see pp. 363-366, chap. 8 [Freidberg14]
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B0,z being the equilibrium toroidal field, ε = r/R, a the plasma radius and
q = B0,zr/(B0,θR) the safety factor. The plasma edge term ETa (resulting as
a boundary term from an integration by parts [Freidberg14]) will be discussed
in a second moment, along with the surface term δWs.
In the reference books, it is common to change names to variables and to
drop the subscript from ξr: this is done for ease of notation, but introduces
some ambiguity, since K is still a functional of the whole vector ξ. Hence, we
will keep variables’ names unchanged, at the cost of some formal discrepancy
with respect to all the rest of dedicated literature.
The minimisation of this functional is straightforward once one notices that
the term in square brackets in Eq. 3.48 is formally a Lagrangian, so that,
assuming δξr(0) = δξr(a) = 0:

δ [δW ] = δ

{∫ a

0

L
(
ξr, ξ

′
r; r
)
dr

}
=

∫ a

0

{
∂L
∂ξr
− d

dr

∂L
∂ξ′r

}
· δξr dr ≡ 0 ,

with
∂L
∂ξr

= 2g(r)ξr ;
d

dr

∂L
∂ξ′r

= 2
d

dr

[
f(r)

dξr
dr

]
.

Thus, we are left with the following Euler’s equation for the plasma radial
displacement ξr:

d

dr

[
f(r)

dξr
dr

]
− g(r)ξr = 0 . (3.49)

We can now compute the minimal potential energy variation, using the fact
that g(r) ξ2r = [ f(r) ξ′r ]

′ ξr, so that

δWmin
p =

∫ a

0

d

dr

[
f(r) · dξr

dr
· ξr
]

dr = f(a) · dξr
dr

(a) · ξr(a) , (3.50)

where the eigenfunction is obtained via the Euler’s equation.
The surface term is generally null, if no surface currents are present, so we
are left with the plasma edge term ETa, which needs no minimisation and is
just to be considered the way it is, to compute the eigenvalue.
Finally, the vacuum contribution can be found in a formally identical (La-
grangian) way as the one followed for the plasma contribution. This is thor-
oughly done in Appendix A.3, yielding:

δWmin
v =

2π2R

µ0

m2B2
0,zξ

2
anεaλ (3.51)

λ = −K
′
m(nεb)Im(nεa)− I ′m(nεb)Km(nεa)

K ′
m(nεb)I

′
m(nεa)− I ′m(nεb)K ′

m(nεa)
. (3.52)



70 Linear stability theory and numerical tools

3.5.5 Large aspect ratio tokamak approximation

We have already discussed the large aspect-ratio limit for the Newcomb’s
equation. The main two assumptions are that R → ∞ while still q =
B0,z ε/B0,θ ∼ 1. This brings the typical tokamak ordering:

B0,θ ∼ εB0,z ;
dB0,z

dr
∼
B0,z

R
∼ εB0,z .

The incompressibility condition now reads:

∇ · ξ =
1

r

d

dr
(r ξr) +

im

r
ξθ −

inε

r
ξz = 0 , (3.53)

yielding

ξr ∼ ξθ =
i

m

d

dr
(r ξr) ; ξz = 0 .

All equations are drastically simplified: starting with the plasma contribu-
tion, the Euler’s equation now reads

d

dr

[
r3
(
1

q
− n

m

)2
dξr
dr

]
= (m2 − 1)

(
1

q
− n

m

)2

rξr , (3.54)

yielding

δWp =
2π2B2

0,z

µ0R

a∫
0

(
1

q
− n

m

)2
[
r3
(
dξr
dr

)2

+ (m2 − 1)ξ2r

]
dr (3.55)

=
2π2B2

0,z

µ0R

(
1

qa
− n

m

)2

a3ξaξ
′
a , (3.56)

the second being the minimised form.
The edge ETa and vacuum term δWv greatly simplify, so that, by taking the
leading order in Bessel’s polynomial development: Im(x) ≈ xm and Km(x) ≈
x−m,

δW =
2π2B2

0,z

µ0R

{∫ a

0

(
1

q
− n

m

)2
[
r3
(
dξr
dr

)2

+ (m2 − 1)ξ2r

]
dr

}
{
+

(
n

m
− 1

qa

)[(
n

m
+

1

qa

)
+mλ

(
n

m
− 1

qa

)]
a2ξ2a

}
,

where

λ =
1 + (a/b)2m

1− (a/b)2m
.
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3.6 Numerical solution of Euler’s equation

As previously done for Newcomb’s equation, we implemented a solver also
for the Euler’s equation in the LENS code. However, this time we simply
focused on the large aspect-ratio limit equation, to avoid more cumbersome
manipulations.
Analogously to the other case, we made use of the IDL built-in fourth-order
explicit Runge-Kutta RK4 function. The initial ODE is thus broken into the
following simpler ODEs to be solved iteratively:

d

dr
Y0(r) =

Y1(r)

f(r)

d

dr
Y1(r) = g(r)Y0(r)

where Y0(r) = ξr(r) , Y1(r) = f(r)ξ′r(r) , f = r3
(

1
q
− n

m

)2
, and g(r) =

(m2 − 1)
(

1
q
− n

m

)2
r.

The first of these equations presents a third-order singularity on axis. Hence
the problem is much less amenable to numerical solution than Newcomb’s
equation and must be treated with some care. This is especially true since
we must integrate from axis outwards, to isolate among the two solutions of
the second-order ODE the particular one that is regular on axis.
Also in this case, convergence can be enhanced by adopting a linear approx-
imant in a narrow interval around the axis. Convergence studies confirmed
the same optimal interval-width as for the Newcomb’s equation: Ilin := {0 ≤
r/a ≤ 3 · 10−3}.
Concerning the approximant itself, since most equilibria of interest have
J ′
0,z(r = 0) = 0, we can regard q(r) ≈ q0 as a constant. Equation 3.54

greatly simplifies:
d

dr

[
r3
dξr
dr

]
= (m2 − 1)rξr ,

and its analytical solution is

ξr(r) = A rm−1 + B r−m−1.

Enforcing regularity on axis we can thus write (up to a constant factor):

ξr(r → 0) ∼ rm−1 , ξ′r(r → 0) ∼ (m− 1) rm−2 .

Also in this case LENS underwent thorough verification, to assess its nu-
merical accuracy. We present in the following some convergence studies,
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conducted with the aid of manufactured solutions, as in Sec. 3.4.2. Conver-
gence to the analytical solution of a flat current profile was also positively
conducted, but is not presented here, since the sought ODE solution coin-
cides with its linear approximant: this makes the test much less of interest,
since there are far trivial ways of forcing outstandingly good convergence by
extending the linear domain little beyond 3 · 10−3.

3.6.1 Convergence study using manufactored solutions

For this verification we adopted the same equilibrium already used in
Sec. 3.4.2:

J0,z(r) =

[
1−

(r
a

)2]ν
, B0,z = 1 .

Since Euler’s equation presents a third-order singularity on axis, LENS has
been extensively tested against three different manufatured solutions, that
are reported for convenience with their linear approximant aside (x = r/a
and ν is the usual current-peaking parameter):

peaked: λ(x) = (1 + xm)10ν − 1, λ(x→ 0) ∼ 10 ν rm,

flat: ζ(r) =
√
1 + xm, ζ(x→ 0) ∼ 1 +

xm

2
,

The solver works now iteratively on two ODEs in the form of

d

dr
Y0(r) =

Y1(r)

f(r)

d

dr
Y1(r) = g(r)Y0(r) + S[µ(r)] ,

where

S[µ(r)] := df

dr
µ(r) + f(r)

dµ

dr
− g(r) ,

f and g being defined as above, and µ standing alternatively for λ or ζ.
Figure 3.6 and 3.7 present the convergence study against the “peaked” λ
and the “flat” ζ manufactured solutions, for ν = 1 and m = 1, 2, 3. The
safety factor must be chosen differently for the three cases, so that the solver
domain contains no resonances (where the governing Euler’s equation gets
singular): we have thus used qa = m

n
− α, where α > 0 is a free parameter.

For the case of Fig. 3.6, α = 0.6. The relative error on the y-axis is defined as
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Figure 3.6: Convergence study against the “peaked” manufactured solution
λ(x) = (1 + xm)10ν − 1, for m = 1, 2, 3, ν = 1, qa = m

n
− 0.6. A dashed line

marks the slope (∆r)−1.

the absolute discrepancy between the solver solution and the manufactured
solution at x = 1, divided by their average:

err[µ] :=

∣∣∣∣∣∣ (µ)LENS − (µ)manuf.

0.5
[
(µ)LENS + (µ)manuf.

]
∣∣∣∣∣∣
x=1

,

and the same holds for err
[
dµ
dr

]
, where µ = λ, ζ. The same first-order expo-

nential convergence rate of the Newcomb’s solver is retrieved in both cases,
despite formally using a fourth-order method. This suggests that the prob-
lem is more intrinsic in the structure of the governing equation, and it does
not depend on the presence of first-order precise subroutines, such as to com-
pute derivative. In fact, even doing analytically all the numerical passages
that could apparently lower the convergence rate, no improvement is found.
On the other hand, very minor changes in the arrangement of terms within
solver’s parameters may visibly alter the numerical accuracy. For instance,
it was found quite beneficial to rewrite the model parameter f in such a way
that

f =

(
n

m
− 1

q

)2

r3 →
(nq
m
− 1
)2 r3
q2
,

suggesting that the ODE is particularly prone to numerical instabilities.
However, the first-order convergence rate visible in Fig. 3.6 and 3.7, being
the final result of some parameters optimization, appears to be very robust
for both profiles, on a wide range of modes and equilibria, spanning

1 ≤ m ≤ 4 , 0 ≤ ν ≤ 10 , 0.001 ≤ m

n
− qa ≤ 0.999 .



74 Linear stability theory and numerical tools

Figure 3.7: Convergence study against the “flat” manufactured solution
ζ(x) =

√
1 + xm, for m = 1, 2, 3, ν = 1, qa = m

n
− 0.6. A dashed line marks

the slope (∆r)−1.

3.7 Relation between Newcomb’s and Euler’s

equations

Before discussing instabilities, there is still an interesting point to high-
light. Up to now we have derived two differential equations describing linear
instabilities from two complementary points of view: Euler’s equation aims
at the flow, whereas Newcomb’s equation focuses on the magnetic flux.
We may be tempted to see whether these two equations are actually the
same, up to a change of variables.
The proof is very simple and comes from a personal analytical exercise: this
is why I am not able to give any reference book or article on this.
We start from leveraging the flux-freezing relation Eq. 3.34 into the straight
tokamak limit of Newcomb’s equation (Eq. 3.33):

d

dr

(
r
d

dr
(Fξr)

)
=

[
m2

r
+
mr

F
µ0

dJ0,z
dr

]
Fξr .

The LHS can be written as [( r F 2 ξ′r )
′ + (F ′ r )′F ξr ]/F , while, via tokamak

ordering

µ0

dJ0,z
dr

=
d

dr

[
1

r

d

dr

(
rB0,θ

)]
≈ 1

m

d2F

dr2
+

1

mr

dF

dr
− F

mr2

and thus, after short algebra and making explicit the dependence of F in
terms of q we finally recover the Euler’s equation.
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This is interesting, as it shows on the one hand that Newcomb’s solution -
at least in the straight tokamak case - is the most energetically favourable
whenever a potential can be defined. On the other hand, since we proved that
for ε → 0 both generalized and pressure-less Newcomb’s equation converge
to a same limit, which is also equivalent to Euler’s equation, we can learn
that the plasma instabilities in the large aspect ratio limit will only be driven
by current density.

What is also interesting is that we may use this identity as a final test on
the convergence of the two independent solvers composing the LENS code, by
solving for the same current profiles, the same values ofm and n, and for very
large aspect-ratio in the Newcomb’s solver. Figure 3.8 shows the outcome of
such endeavour, for a current profile like the one used in [Wesson78] (with
current-peaking parameter ν = 1)

J0,z(r) = j0

[
1−

(r
a

)2]ν
and assuming uniform and constant B0,z = 1. We can see from upper panels
the shape of the profiles of Newcomb’s eigenfunction divided by F converging
the Euler’s eigenfunctions as ε approaches 0.
The second line of panels reports the mutual-convergence study of the two
solvers for various aspect ratios. The solver error is in the form of

err := max
∣∣∣(ξr)Euler − (ψ/F )Newcomb

∣∣∣ ,
having normalized the two eigenfunction in such a way that they are both
unitary at plasma edge.
We can see that mutual-convergence error generally comes in the shape of an
exponential convergence, up to a final saturation that comes lower and lower
for decreasing ε and for increasing m. This brings us to some very interesting
conclusions.
First off, since initial convergence slope goes with the same rate we saw
in the convergence studies of both Newcomb’s and Euler’s equation, we are
reassured that they are both converging to the same solution and at the same
rate.
Then, having ruled out numerical issues, the convergence-saturation level can
be read as a metric of convergence of Newcomb’s equation to the straight-
tokamak limit, as an explicit function of ε. This may serve us as a frame
of reference for future simulations with SpeCyl, when we will attempt linear
benchmark in the large aspect ratio limit.
From the evident dependence of this convergence saturation onm (in addition
to ε, of course), we can see that higher-m modes can already be treated in a
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Figure 3.8: Mutual convergence of pressure-less Newcomb’s equation solver
and large aspect ratio Euler’s equation solver. The first row presents eigen-
functions convergence for m = 1, 2, 3 and various aspect ratios. The second
row reports the convergence studies for each of the above panels.

large aspect ratio approximation for comparatively larger values of ε. This
is possibly linked to their eigenfunction being more localized at the edge of
the plasma, so that the major radius is even larger when compared to their
length-scale, with respect to the typical length of global m = 1 modes.



4
Linear stability of current-driven MHD modes

This Chapter contains an introduction on two current driven MHD insta-
bilities, namely the ideal kink mode and the tearing mode. In the previous
Chapter we presented two ways to rewrite the linearised momentum balance
equation and discussed of the convergence of numerical solvers. Finally, we
introduced the Energy principle. In this Chapter, we will put all these tools
to use.
In Sec. 4.1 we present the ideal kink instability in the straight tokamak
limit, for various equilibrium-current profiles. We briefly present the internal
kink mode m = 1, and immediately switch our focus onto the external kink
mode, which is more interesting for the sake of the verification benchmark of
SpeCyl’s boundary.
In Sec. 4.2.1 we discuss about the resistive internal instability called tearing
mode, again in the large aspect-ratio limit. Two dispersion relations are de-
rived for the tearing mode, corresponding to the two relevant physical cases
in which resistive effects dominate over viscous ones, and the opposite regime
of predominant viscosity.
At the end of this Chapter, some partial conclusions relative to Part II are
reported.

4.1 Ideal kinks

Kinks are ideal instabilities that bend and wind the plasma into a helix.
They act to relax the magnetic field stress, thus releasing energy. Reference
material for this part will be, once more the books by Freidberg and White
[Freidberg14, White06], along with works by Wesson [Wesson04, Wesson78]
and Shafranov [Shafranov70].

77
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For simplicity, we will limit our scope to the straight tokamak approximation.
Recall that

δW =
2π2B2

0,z

µ0R

{∫ a

0

(
1

q
− n

m

)2
[
r3
(
dξr
dr

)2

+ (m2 − 1)ξ2r

]
dr

}
{
+

(
n

m
− 1

qa

)[(
n

m
+

1

qa

)
+mλ

(
n

m
− 1

qa

)]
a2ξ2a

}
,

being λ = [1 + (a/b)2m]/[1− (a/b)2m]. We can now make some relevant
observations:

1. For instability, we require δW < 0. However, the only term that can

possibly be negative is the product
(

n
m
− 1

qa

)(
n
m
+ 1

qa

)
, and only if

|qa| < n
m
. In other terms, a mode can be unstable only if it resonates

with the equilibrium field at a given radius outside the plasma.

2. The boundary term in the second line of the equation above is propor-
tional to the radial displacement at edge ξa. Hence, we can distinguish
between internal and external kinks, which have null and finite ξa value,
respectively. Note that, according to point 1, the absence of the bound-
ary term in the internal modes case implies that δW > 0 , ∀ξ to this
order in ε.

3. The integral part of δW is the same for either internal and external
kinks and can be greatly simplified in the case of m = 1 modes.

4.1.1 Internal kinks (m = 1)

Internal kinks stability cannot be dealt with at this order in the aspect
ratio development, as the boundary term is absent and thus δW ≥ 0 intrin-
sically.
Energy minimisation thus requires finding the eigenfunction that makes the
potential δW = 0 and this is only possible if m = 1 and ξ′r = 0. Since the
radial displacement at the plasma edge is fixed (ξa = 0), the only allowed
non-trivial radial eigenfunction is a step function, which keeps constant ev-
erywhere if not on a tiny resonant layer where it rapidly shrinks to zero.
As a matter of fact, internal modes present internal resonant surfaces, un-
like external ones. Figure 4.1 reports the 2D shape of a possible step-like
radial eigenfunction on the poloidal plane z = 0. The poloidal component
is obtained through 3.53 and gives rise to a convective cell, that pushes the
plasma core outwards, while keeping the edge constrained. Progressing along
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Figure 4.1: Shape of the eigenfunction on the z = 0 plane. A convective cell
results from incompressibility, pushing outwards the plasma core, inside the
resonant surface. Progressing along z, the figure rotates, with phase-shift
given by nz/R.

the cylinder axis, we see a rotation of the pattern in the figure, with a phase-
shift given by nz/R.
As stated, we need further expansion in the ε development of δW , leaving us
with a fairly complicated expression that involves both current and pressure
drives (see [Wesson04] for a simplified overview).
Nonetheless, since our ultimate goal is to validate SpeCyl’s boundary condi-
tions, such internal modes are outside of the scope of this Thesis and they
will not be discussed any further.

4.1.2 External kinks

Let us now move back to the energy variation equation: as previously
observed, the case of m = 1 is particularly easy to solve. In fact, the integral
contribution is once more intrinsically non-negative and is thus minimized by
a constant eigenfunction ξr = const. We are then left with just the boundary
term. In other terms, in the case of m = 1 mode, the stability analysis does
not depend on current profiles but only on its total value (via qa).
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Stability boundaries are easily found for the case without wall (λ = 1):

δW =
2π2B2

0,z

µ0R

(
aξa
qa

)2

2nqa(nqa − 1)

so that the mode is unstable only if 0 ≤ nqa ≤ 1.
Being the radial eigenvalue ξr = ξa, the poloidal component is found via the
incompressibility condition as ξθ = iξa, so that the effect is a rigid shift of
the plasma column to a side, producing a helix around the cylinder axis,
having phase ϕ(z) = nz/R. The shape of plasma displacement and magnetic
field perturbation are reported in Fig. 4.2.(a-b). It is worth noticing that
the phase of the magnetic perturbation is shifted by π/2 with respect to
the displacement: this is motivated by the presence of the imaginary unit
in the flux-freezing law, −irbr = Fξr, and should be understood in terms
of Wesson’s toy model, as given in Fig. 3.1. In fact, given the direction of
the current J0,z > 0 pointing out from the plane of the page, we can easily
obtain the local directions of J0 × b forces from the magnetic perturbation
plots. We can see that where J0 × b forces point towards each other, the
displacement points outwards (ξr > 0), defining the peaks of the unstable
ripple on the perturbed magnetic surfaces. Instead, where they point away
from each others, we find the ripple troughs (ξr < 0).
The kinetic term is easily obtained for a flat density profile as:

K = 2π2R

∫ a

0

ρ0(ξa)
2|1 + i|2r dr = 4π2Rρ0(aξa)

2

so that the growth rate for λ = 1 is:

γ2
(
τA
εa

)2

=
2

q2a
nqa(1− nqa) (4.1)

with τA =
√
µ0ρ0a/B0,z, as in Eq. 3.7, and τA/εa is the toroidal Alfvén time.

From eq. 4.1 we see that ideal growth rates are of the same order as the
inverse Alfvén time, as is also evident from fig. 4.3. This figure, though, will
be better commented once we have introduced the other m > 1 modes.

For the case of m ≥ 2, the variational energy problem (i.e. the Euler’s
equation) is completely fixed, up to the choice of a current density profile.
The simplest choice one can make is to assume the plasma to be a current-
channel, bearing constant homogeneous density J = J0,zz. This profile was
initially studied and proposed by Shafranov in [Shafranov70] and turns out
to be the maximally unstable current profile for external kinks, leaving no
range of current values to modes stability. Yet, it is very present in literature,
as for instance on [Liu08, Finn95].
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Flat-current model: to complete our model, let us assume a homogeneous
plasma and a uniform axial magnetic field B0,z ẑ, so that the profiles of the
main equilibrium quantities are:

Jz(r) = J0,z Θ(a− r) (4.2)

ρ0(r) = ρ0Θ(a− r) (4.3)

q(r) =

{
qa if r ≤ a

qa
(
r
a

)2
if r > a

(4.4)

being Θ(r − a) the Heavyside step-distribution, a the plasma radius and
qa = 2B0,zR/(µ0J0,z).
Euler’s equation greatly simplifies to

d

dr

[
r3
dξr
dr

]
= (m2 − 1) r ξr

having physical solution:

ξr = ξa

(r
a

)m−1

(4.5)

whence, via incompressibility,

ξθ = iξa

(r
a

)m−1

.

Figure 4.2.(c-e) show the corresponding plasma displacement and magnetic
field perturbations for modes m = 2 and m = 3. What we see is that mode
m = 2 deforms the plasma cross section into an ellipse, as we anticipated
in figure 3.1.(a), whereas m = 3 shapes it into a triangle. Once more, the
poloidal cross-section at z = 0 is rotated into a screw as we proceed along the
axis, with phase shift given by ϕ = nz/R. Both displacement and magnetic
field plots show that the higher is m, the more edge-localised the eigenfunc-
tion gets.
While the plasma displacement on the first column is obtained by solving nu-
merically the Euler’s equation for the given equilibrium, the magnetic field
perturbation in the second column comes from the large aspect ratio limit of
Newcomb’s solver1. Two separate branches of solution have been produced
and matched at plasma boundary, just as we did for the case study of the thin
current-ring in Sec. 3.4.1: the magnetic flux inside the plasma is obtained by
integrating from axis to the plasma edge (grey circle in the plot), while the

1Using the same solver for both ξ and ψ and relying on the linearised frozen-flux
relation would lead to the results, as already seen in Fig. 3.8.
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external solution is achieved by integrating backwards from a far-displaced
ideal wall, past resonance radius (green circle in the plot) up to the edge of
the plasma. The two branch-solutions are then matched at plasma edge, to
guarantee the solenoidal property of the magnetic field.

The stability analysis yields

δWmin =
2π2B2

0,z

µ0R

(
aξa
qa

)2
2

m
(m− nqa)

[
m− nqa

1− (a/b)2m
− 1

]
having used Eq. 3.55 and the identities: aξ′a/ξa = m − 1 and (λ + 1)/2 =
1/
[
1− (a/b)2m

]
. The kinetic term reads

K = 4π2ρ0R
(aξa)

2

m

so that

γ2 (τA/εa)
2 =

2

q2a
(m− nqa)

[
1− m− nqa

1− (a/b)2m

]
, (4.6)

where εa = a/R and τA/εa is the toroidal Alfvén time. Such a time-scale
naturally emerges from equations since it matches with the typical space-
length (R) of the toroidal current.
In the case without ideal wall, 1 − (a/b)2m → 1 and it is evident that for
each possible nqa there exists a value of m − 1 ≤ nqa ≤ m that makes the
growth-rate real and thus the corresponding mode unstable. We see that the
instability regions of various modes cover the whole parameter space without
overlapping: this property is however lost when the poloidal cross-section of
the plasma is not circular and the instability domains of different modes
gradually blur into one another [Wesson78].
In Fig. 4.3.(a) we see the growth-rate of various modes for different positions
of the conductive shell, increasingly close to the plasma. The stabilising
effect is dramatic especially for low m modes, which, otherwise, are the most
unstable (especially mode m = 1): both growth-rates and stability regions
change rapidly as b→ a.
Recalling what we said about m = 1 external mode, that solely depends on
the total current qa rather than its profile, since this model cannot display
any effect relating to current profiling, we could expect it to replicate the
m = 1 stability behaviour also for higher m modes. This is in fact what
happens and it is visible in panel (b) of Fig. 4.3, where γτA/εa is further
normalised over the total current value (1/J0,z) ∝ qa.

Figure 4.4 reports the normalised eigenfunctions of the Shafranov’s flat-
current model for n = 1 and three different values of m.
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(a) displacement for m=1 (b) magnetic perturbation for m=1

(c) displacement for m=2 (d) magnetic perturbation for m=2

(e) displacement for m=3 (f) magnetic perturbation for m=3

Figure 4.2: Poloidal cross section at z = 0. Both the flow and the magnetic
field perturbation are represented for the linear phase of some external kink
modes, using a flat profile for both mass and current densities. A black
contour marks the plasma edge and a green one shows the resonance radius.
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(a)

(b)

Figure 4.3: Flat current density and mass density profiles: growth rate
achieved by different modes plotted against the total current nqa. Subfig-
ure (a) shows the actual growth-rates, normalised to the Alfvénic time and
for various ideal-wall proximities; (b) shows for the case of b ≫ a that all
modes behave the same way, up to a factor qa.
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Figure 4.4: Normalised eigenfunctions of the flat-current model for n = 1
and three values of m.

Step-current profile: when we introduced the energy principle, we made
the claim that its description of ideal modes stability is more complete than
the amount of information contained in Newcomb’s equation. Albeit Euler’s
equation has been proven to contain the same batch of information as the
Newcomb’s counterpart (describing the magnetic drive and neglecting plasma
inertia), we may ask what happens if we take our current-channel of Eq. 4.2
a bit thinner than the actual plasma radius.
This leaves us with a step-profile for the current density inside our still ho-
mogeneous plasma:

Jz(r) = J0,z Θ(r0 − r) (4.7)

ρ0(r) = ρ0Θ(a− r) (4.8)

q(r) =

q0 if r ≤ r0

q0

(
r
r0

)2
if r > r0

(4.9)

being r0 < a. Despite being very similar to the previous case (q0 is still the
same quantity we used to call qa in Eq. 4.4 and everything is identical up
to r ≤ r0), there is one striking difference: the plasma extends to a region
of so-called pseudo-vacuum, where the electromagnetic part of our equations
sees nothing but perfect vacuum but we still have mass and flow.
This means that the term qa in the energy variation is now qa = q0(a/r0)

2,
and, more importantly, that ξa and the kinetic term are now completely



86 Linear stability of current-driven MHD modes

different. From [Shafranov70] we can get:

ξr(r) =


ξr(r0)

(
r

r0

)m−1

if r ≤ r0

a = a

ξr(r0)

m− nq0 (r/r0)
2

[(r0
r

)m−1

+

(
r

r0

)m+1

(m− 1− nq0)

]
if r0 < r ≤ a

.

(4.10)
The new value of γ is represented in Fig. 4.5 for different values of the ratio of
the plasma radius to the current-channel width. It is seen that the introduc-
tion of finite shear in the magnetic field configuration has a strongly stabiliz-
ing effect, as instability regions get narrower and the instability growth-rate
is reduced. External m = 1 mode is once more unaffected, since it does not
depend on the current profile.

Figure 4.5: Shafranov’s step-current model for different values of r0/a.

Wesson’s current model: A more realistic current profile was proposed
by Wesson [Wesson78]:

Jz(r) =

J0,z
[
1−

(r
a

)2]ν
if r ≤ a

0 if r > a

(4.11)
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q(r) =


qa

(r/a)2

1−
[
1− (r/a)2

]ν+1 if r ≤ a

qa

(r
a

)2
if r > a

(4.12)

with constant axial field B0,z. One relevant property of this model is that:

qa
q0

= ν + 1 , q0 ≡ q(0) =
2B0,z

J0,zR
.

For this model there is no analytical solution to the Euler’s equation. Nonethe-
less, it is easy to prove that for any value of ν and J0,z ̸= 0, in the proximity
of the cylinder axis (r ≈ 0) we recover the flat-current model, since Jz ≈ J0,z
and q ≈ q0.
Hence, we can solve numerically with LENS the Euler’s equation with our
usual initial conditions:

ξr(r → 0) ∼ rm−1 ; ξ′r(r → 0) ∼ (m− 1) rm−2 .

The eigenfunctions for modesm = 1, 2, 3 were already presented for a specific
set of parameters in fig. 3.8.
Concerning the growth rates, they are obtained by substituting the eigen-
function found by the solver into the energy balance equation. If on the one
hand we can avoid computing the integral in the definition of the potential
energy variation by making use of the minimised form in Eq. 3.50, we must
deal with the integral in the kinetic term. This is dealt with in LENS using a
fourth-order precision Cavalieri-Simpson algorithm, that has been positively
verified on several trial functions, yielding the expected rate of convergence.
Figure 4.6.(a) reports the normalised growth-rates predicted for some values
of the model parameter ν. Direct comparison with Fig. 4.3 and 4.5 shows
that the Shafranov’s flat-current model coincides with the ν = 0 limit case for
Wesson’s model. We see that the effect of finite shear on stability closely re-
sembles what we already saw in Fig. 4.5, with higher-m modes being strongly
damped and stability regions broadening, starting from the left-hand side of
instability ”bells”: this means that the mode can be destabilised only if the
resonance happens just outside the plasma edge (nqa ≈ m), while we recover
stability as soon as it enters the plasma (as nqa grows larger than m).
Panel (b) shows a more general picture including stability of all modes against
every possible profile corresponding to Eqs. 4.11 and 4.12. Despite the in-
complete picture in Panel (a), we see that below ν = 1 there is no stability
region, when also higher-m modes are considered, while above ν = 3 only
the profile-insensitive m = 1 mode is still unstable.
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(a) Normalized growth-rates for several values of model parameter

(b) Stability diagram for all possible modes and profiles (taken
from [Wesson78]).

Figure 4.6: Stability of the Wesson’s current model, for different modes and
values of ν.
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Figure 4.7: Normalised eigenfunctions of the Wesson’s current model for
ν = 1, n = 1 and three values of m.

Figure 4.7 reports the normalised eigenfunctions of the Shafranov’s flat-
current model for n = 1 and three different values of m, obtained using
LENS. The case for m = 1 still yields the same eigenvalue, in compliance
with the requirement that this case is insensitive to the current profile.

4.2 Tearing modes

When a resonant layer falls inside the plasma region, it may separate two
plasma domains with different (discontinuous) magnetic field components
along the azimuthal and axial directions, sustained by intense currents in a
narrow channel enclosing the layer, known as current sheet.
In presence of finite resistivity, magnetic diffusion may arise to compensate
the imbalance. Assuming a layer width of λ≪ a, the local Lundquist value
S = τA/τR ∝ 1/λ is expected to be relatively high. The plasma is then
broken in two large domains where ideality conditions apply and a narrow,
resistive layer.
Resistive diffusion of B yields non-linearly to tearing and reconnection of
magnetic field lines into the formation of a chain of islands along the resonant
layer, with the same periodicity of the resonant mode (m,n). Nonetheless,
our focus here is only on the linear tearing mode instability, in the simplified
case of the straight tokamak geometry.

4.2.1 Linear tearing mode stability in the straight toka-
mak

As we said, the plasma region is effectively split into three domains: one
narrow and resistive band enclosing the resonant layer and two outer ideal
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plasmas where Newcomb equation applies. The drive for diffusion is in the
imbalance of bθ and bz across the resonance, while br should be regarded as
continuous, as we assume a vanishing layer width λ. From before, we know
that the large aspect-ratio dynamics is mainly set in the r − θ plane, and
from Eq. 3.11-3.13 we get:

bm,n
θ ∝ dψ

dr
, bm,n

r ∝ ψ .

Hence, one very representative quantity will be

∆′ =
1

ψs

[
dψ

dr

]rs+λ/2

rs−λ/2

(4.13)

where rs is the resonance radius and ψs ≡ ψ(rs). From the matching of this
quantity between outer ideal and inner resistive regions we can indeed derive
the mode stability analysis.
In this, we will mainly follow [Wesson04] (but alternative derivations can
be found on [FRS73, Militello04]). The main assumptions in the following
derivation descend from the narrowness of the layer (λ ≪ a): ψ ≈ ψs and
r ≈ rs within the layer. Also, we assume our usual ordering of a perturbed
axi-symmetric and stationary equilibrium.

External domain

In the ideally conductive region outside can be treated according to the
large aspect-ratio Newcomb’s equation (Eq. 3.33), since diffusion processes
are slow enough to neglect the inertial term in momentum balance equation
[Wesson04].
To compute the transverse-field jump across the resistive layer, one must
independently integrate two Newcomb solutions, with suitable initial condi-
tions, such that they match with ψs in rs: ψ− from axis to rs − λ/2 and ψ+

from outside to rs + λ/2, so that

∆′ =
1

ψs

[
dψ+

dr
(rs + λ/2)− dψ−

dr
(rs − λ/2)

]
(4.14)

Resistive layer

In the resistive domain enclosing the resonance, plasma dynamics is de-
scribed by the resistive Ohm’s law, along with the linearised momentum
balance equation without viscosity:

−∂B
∂t

+∇× (υ ×B) =
η

µ0

∇×∇×B ,
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ρ
∂υ

∂t
= J×B−∇p .

A thorough derivation of a dispersion relation for the tearing modes in this
relevant case with negligible viscosity is reported in Appendix A.4. In the
following, we just wish to list the main assumptions implied in the derivation,
along with the final results.
The main assumptions enforced through the derivation are

1) large aspect ratio limit (ε→ 0) and circular poloidal cross-section,

2) incompressible flow (∇ · υ = 0),

3) resistive layer much thinner than macroscopic length-scales (λ≪ a),

4) resistive layer much larger than the characteristic space-variation scale
h, which is defined below (λ≫ h).

In particular, the third assumption implies has two implications: the first
one concerns the gradient and the Laplacian operator and implies that

∇ ≈ ∂

∂r
, ∇2 ≈ ∂2

∂r2
;

the second is the so-called “constant-ψ” approximation, which consists in
assuming that ψ does not vary across the layer. Along with ψ, we also
assume the constancy of ρ.
Concerning the fourth assumption, the space-variation scale is found to be

h =

( ρηγr2q2

B0,θm
2q′2

)1/4


r=rs

≪ λ , (4.15)

as reported in Eq. A.6.
After the long manipulation reported in Appendix A.4 we finally get to

∆′
in = 2.12

µ0γ h

ηs
(4.16)

and making h explicit and matching Eq. 4.16 with 4.14 we get

γ = 0.5474

[(
η

µ0

)3/5(mB0,θ q
′

√
µ0ρ rq

)2/5
]
r=rs

·
(
∆′)4/5 . (4.17)

Instability requires γ ≥ 0, so that
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� ∆′ < 0 yields mode stability

� ∆′ = 0 yields marginal mode stability

� ∆′ > 0 yields mode instability

Figure 4.8 illustrates the geometrical interpretation of such a condition.
Panel (a) reports the radial profile of the two branches of the magnetic flux,
obtained by solving Newcomb’s equation with a very large aspect ratio and
for the specific case of mode (2, 1). The equilibrium fed to LENS is once
more given by a Wesson’s current profile with ν = 1. Solver’s solutions are
matched at the given resonance radius, which is different for every plotted
eigenfunction and for each is marked by a grey dotted line. By looking at
the graph, we can immediately tell which are the unstable cases: since we
require for instability that

1

ψ(rs)

dψ

dr

(
r+s
)
>

1

ψ(rs)

dψ

dr

(
r−s
)
,

we can guess that all the reported eigenfunctions are relative to unstable
tearing modes, apart from the one in red.
Panels (b) and (c) illustrate the magnetic perturbation projected onto the
poloidal cross-section of the plasma and correspond to the eigenfunctions in
blue and red, respectively, of panel (a). Also in this case, there is a precise
graphical meaning of the instability condition. Since, as we know,

dψ

dr
= −imbθ ,

instability in the large aspect ratio limit coincides with the geometrical prop-
erty that bθ

(
r+s
)
< bθ

(
r−s
)
. Again, since the resonance is indicated on the

polodal plots as a green circle, we can safely guess that the tearing mode in
panel (b) is going to be unstable, while panel (c) shows a stable case. Note in
panels (b-c) that already in the linear onset of the instability there is atready
present the initial seed of a magnetic island across the resonance radius.

4.2.2 Numerical solution for ∆′

In the previous Subsection we derived a geometrical condition that binds
the magnetic flux derivative across the resonance to the stability of the as-
sociated tearing mode. This resulted by solving the resistive momentum
balance equation in a vanishingly narrow layer across the resonance radius
and the ideal Newcomb’s equation outside it, assuming a very large aspect
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(a) Magnetic flux eigenfunction for m = 2: several alternative cases, relative to
various resonance radii (grey dotted lines).

(b) Unstable (2, 1) mode: rs/a = 0.5.
Blue eigenfunction in the upper plot.

(c) Stable (2, 1) mode: rs/a = 1. Red
eigenfunction in the upper plot.

Figure 4.8: Graphical interpretation of ∆′ < 0 condition for stability: mode
(2, 1), ideal wall at r = a, large aspect-ratio limit.
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ratio.
Let us start again from the large aspect ratio form of Newcomb’s equation:

1

r

d

dr

(
r
dψ

dr

)
=

[
m2

r2
+
m

F
µ0

dJ0,z
dr

]
ψ .

Since we need to define very precisely the derivative of its solution in the
immediate proximity of the resonant layer, it is convenient to study its ex-
pected behaviour in such a critical domain.
Recalling the definition of F , its first order approximation around resonance
radius rs is

F (r) = mB0,θ(rs)

(
1− nq(r)

m

)
≈ −mB0,θ(rs)

n

m
q′(rs) · (r − rs) =

[
−
mB0,θ q

′

q

]
rs

(r − rs) ,

since q(rs) = m/n by definition. Taking an interval small enough such that
|r − rs| ≪ rs, we isolate the leading order terms and find

d2ψ

dr2
=

[
− µ0q

B0,θ q
′
dJ0,z
dr

]
rs

ψ

r − rs
, (4.18)

or
d2ψ

ds2
=
κ

s
ψ , (4.19)

where s = r−rs and κ is the term in square brackets in Eq. 4.18. The general
solution to this equation is thus

ψ− = 1 + κ s ln |s|+ A− s+O
(
s2
)
, if s < 0 ,

ψ+ = 1 + κ s ln |s|+ A+ s+O
(
s2
)
, if s > 0 .

(4.20)

so that
ψ′
− = κ (ln |s|+ 1) + A− +O (s) , if s < 0 ,

ψ′
+ = κ (ln |s|+ 1) + A+ +O

(
s2
)
, if s > 0 .

(4.21)

The resulting expression for ∆′ is

∆′ = A+ − A− ,

which is very palatable for a numerical solution. In fact, in the LENS code,
after producing and matching the two branches of the solution, integrating
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Table 4.1: Validation of the numeric tool for the computation of ∆′ against
reference values of xs ∆

′, in the limit of xs → 0 (p. 326 of [Wesson04]).
Numeric results obtained with an equally spaced mesh of 107 points in plasma
region 0 ≤ x ≤ 1.

m {xs ∆′}ref {xs∆′}tool
2 11.22 11.219
3 2.46 2.457
4 −2.01 −2.015

from axis and from an ideal wall at arbitrary distance from the plasma edge,
we leverage the local problem solutions in Eqs. 4.20-4.21 to get a more precise
estimate of the coefficients A+ and A−. This is done by taking a space average
over the last 20 radial mesh points of each solution branch:

(A±)
LENS :=

〈(
ψ′
±
)LENS − κ (ln |s|+ 1)

〉
|s| ∈ [ 0 , 20·∆r ]

.

Nonetheless, the choice of this procedure over e.g. a linear fit based on
Eq. 4.20 (or really many other chances) is arbitrary and must thus be tested
to verify its accuracy.
Fortunately, Wesson provides a very accurate test in [Wesson04] (p. 325-
326): fig. 4.9 reports a study on the stability of modes m = 2, 3, 4, n = 1, as
a function of both resonance position and ideal wall displacement from the
edge of the plasma. This completes Fig. 6.9.1 of [Wesson04], which is only
relative to m = 2, and presents no visible difference with the red curve in
our one. A similar study on the ideal shell proximity effect on tearing modes
stability can also be found in [FRS73].
We see that the presence of an ideal wall has an important impact on modes
stability only if the resonance is close to the plasma edge, whereas core-
resonant modes are almost completely unaffected. Also, we see that m = 2, 3
(along with the far more unstable m = 1, which is out of scale for the plot)
are pretty much unavoidably present in the straight tokamak, whereas m = 4
can be simply avoided even with a loosely fitting ideal wall.
Table 4.1 reports the asymptotic values on axis for the three curves of Fig. 4.9.
The Table shows very good agreement between the reference values obtained
by Wesson and by our numerical tool. It should however be highlighted that
this is just meant as an exercise, since real fusion plasmas generally have way
too high conductivity in their hot core for a tearing mode to develop there.
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Figure 4.9: Study on the stability of m = 2, 3, 4, n = 1 linear tearing modes
in the straight-tokamak limit, also in relation to the ideal-wall proximity,
with the Wesson’s current model. Tearing instability (∆′ > 0) can be greatly
reduced or eliminated with a close-fitting ideal wall, but only if the resonance
radius xs = rs/a is close to the plasma edge: internally resonating modes are
not influenced by external walls. Modes m = 2, 3 (and, not framed, m = 1)
are mostly unstable, whereas m ≥ 4 can be easily prevented through adding
an ideal wall. [Solver information: equally-spaced radial mesh (δx = 2·10−7)].
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4.2.3 Bondeson-Sobel’s visco-resistive dispersion rela-
tion

In view of our simulations, it will sometimes be convenient to introduce
some viscosity to damp unwanted oscillations and bring SpeCyl to a more
sound convergence. Luckily, there is an easy generalization of the resistive
tearing mode dispersion relation in Eq. 4.17 [Bondeson84, Porcelli87].
We saw how tearing modes can develop in a conductive plasma relying on
the fact that within a very narrow layer around the resonance small spa-
cial scales may reduce locally the resistive diffusion time-scales. However,
the same mechanism does also enhance viscous processes within the resistive
layer.
For this case, a slightly more general (visco-resistive) derivation is needed
than what we did for Eq. 4.17, later specialised to the opposite case of domi-
nant viscosity rather than resistivity (see Appendix A.5). The final dispersion
relation for dominant viscosity inside the resonant layer is

γ = 0.4754

[(
η

µ0

)5/6

ν−1/6

(
mB0,θ q

′

√
µ0ρ rq

)1/3
]
rs

∆′ . (4.22)

The control parameter that defines which regime we are in is the critical
viscosity (found by equating the two dispersion relations)

νcrit = 0.4291

[
η7/5

( √
ρ rq

mB0,θ q
′

)2/5
]
rs

(
∆′)6/5 . (4.23)

When ν(rs) > νcrit we are in a viscosity dominated regime, vice versa we
should stick to the old dispersion relation.
Bondeson’s dispersion relation has been implemented along with the resistive
one LENS. νcrit is computed as well as both growth rates, so as to provide
the user with freedom of choice.

4.2.4 Bertin-Militello correction to the resistive dis-
persion relation

In [Bertin82] a first attempt to extend the resistive tearing mode disper-
sion relation beyond the constant-ψ approximation is presented, studying the
effect of current gradients inside the resistive layer. Later work [Militello04]
has extended the analysis to include also the local current curvature inside
the layer. Here we present just the final result.
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The dispersion relation is found to be:

2.12
µ0γh

ηs
= ∆′ + 2.12h

[
a
A+ + A−

2
+ a2 (log h+ 1.304)− b

]
, (4.24)

where h is still the length-scale of spatial variation across the resistive layer
(see Eq. 4.15), and A± are defined as in Eq. 4.20 (even if now many more
terms in the development of ψ± must be considered). The other coefficients
are defined as follows:

a ≡
[(

m

rs

dJ0,z
dr

)/(
n

R

q′

q

)]
r=rs

local current gradient,

b ≡
[(
a
q′′n

2qR
− d

dr

(
m

r

dJ0,z
dr

))/(
n

R

q′

q

)]
r=rs

local current curvature.

Numerical studies reported in [Militello04] prove Eq. 4.24 to provide an im-
portant correction when the resonant layer has relatively high resistivity,
and to fall reliably into analogous predictions with respect to Eq. 4.17 when
S(rs) ≳ O(107). A milder dependence is also observed on ∆′: the “standard”
dispersion relation Eq. 4.17 resents less of the correction when ∆′ is larger.

The complete resistive dispersion relation Eq. 4.24 has not been included
in our LENS’s analysis. Therefore in the next Chapters we will limit our
benchmark studies to relatively large values of Lundquist number, where the
“standard” resistive relation can still be trusted.



Conclusive summary of Part II

Linear MHD perturbative theory has been the object of this part of our
dissertation. We started from a very elegant linearised toy model introducing
in the large aspect ratio limit the physical meaning of the curl of the momen-
tum balance equation. An effective geometrical interpretation has been given
of how a non-uniform current density can provide the drive for a relaxation
of the axi-symmetric initial magnetic equilibrium.
Consequently, we derived two alternative ways to write the linearised mo-
mentum balance equation in convenient variables, namely the Newcomb’s
equation for the magnetic flux and the Euler’s variational equation for plasma
displacement. Both have been analytically derived and specialised to some
of the most relevant limit cases, namely the straight tokamak limit and the
vacuum limit for the Newcomb’s equation, yielding Poisson’s problem.
Their analytical derivation has been paired with the progressive report of the
implementation of a linear-instability solver, dubbed LENS (Linear Euler-
Newcomb Solver). This numeric tool will be instrumental to the linear bench-
mark of the new boundary conditions of the 3D nonlinear simulations code
SpeCyl. Convergence studies on both limit cases and manufactured solutions
successfully verified solver robustness and sufficient accuracy.
The Euler’s equation has been derived in the frame of the Energy Principle,
that grants a powerful tool to investigate those instabilities for which the in-
ertial term in momentum balance equation should not be neglected (e.g. the
ideal kink modes). Despite the drive to the instabilities has an electromag-
netic nature, the inclusion of the inertial term (and thus of fluid effects) is a
fundamental complement to the magnetic-flux description. This is however
not visible from Euler’s equation alone, which is derived from the Energy
Principle in the assumption that the inertial term K(ξ, ξ∗) brings negligible
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contribution to the overall variational principle.
In fact, in the simplified limit of the straight tokamak we proved both ana-
lytically and numerically that Newcomb’s and Euler’s equations do actually
coincide upon suitable change of variables.
Wide literature on the theory of the ideal external kink in the straight toka-
mak has been condensed in Sec. 4.1, dealing with three alternative current
density profiles: the flat current, the step-function and a more realistic class
of profiles studied in [Wesson04]. The step-function profile has been instru-
mental in highlighting and quantifying the important role of the inertial
effects:

� Either Newcomb’s or Euler’s equation cannot distinguish between a
plasma and a current channel.

� Their purely electro-magnetic description should suffice to draw gross
stability analysis (δW (ξ, ξ∗) ≷ 0), provided that the edge of the plasma
is identified with the current-channel width r0 < a.

� Without a correct inclusion of the inertial term, no meaningful quan-
titative estimate can be given of the eigenvalue ω.

Finally, the tearing modes have been presented. We have derived their dis-
persion relation almost from first principles in the simplified large aspect
ratio limit. This has been done in two operative regimes: one characterised
by resistivity dominated dynamics inside the resonant layer, and one con-
sidering dominant viscosity. A stability condition has been identified and
numerically implemented: its straightforward geometrical meaning has been
investigated, also with the aid of our numeric tool.



Part III

Nonlinear MHD simulations
with preparatory magnetic
boundary formulations
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This part of my thesis aims at presenting the state of art of the three-
dimensional (3D) MHD nonlinear simulations code SpeCyl [Cappello08].
In Chap. 5 we start with an overview of the work-flow of this code. In par-
ticular, Fig. 5.2 presents a very useful flow-chart representing the main loop
of SpeCyl’s.
Subsequently, we introduce the traditional set of boundary conditions, fea-
turing an ideally conducting wall in direct contact with the plasma edge. The
rest of the Chapter presents a benchmark against the linear theory of MHD
instabilities, as it was derived in Part II: this is not intended as a validation
of an already well established set of BCs, but rather as a first application
of the concept we explored throughout Part II in some sort of a “friendly
environment”.

Chapter 6 presents the first step towards a more realistic formulation of
SpeCyl’s BCs. This was implemented by Daniele Bonfiglio in 2017 and fea-
tures a thin resistive shell in direct contact with the plasma. The outer ideal
wall is still present, even if displaced at finite distance from the shell: the
region between the two shells is treated analytically as vacuum.
We begin this Chapter with a derivation of the well established matching
conditions across a thin resistive shell, and by deriving a solution for the
magnetic field in the vacuum, complementary to the one we drew from New-
comb’s equation in Part II.
Consequently, we present the model equations of this new set of BCs. In
doing so, we try to highlight its originality with respect to most of the anal-
ogous implementations reported in dedicated literature.
The rest of the Chapter is devoted to a benchmark verification against the
linear MHD theory presented in Part II. Unfortunately, we argument that the
agreement is quite unsatisfactory and will motivate a major reformulation of
the fluid part of the BCs, as is going to be described in Part IV.





5
The SpeCyl code and simulations with a
pseudo-vacuum enclosed by an ideal wall

5.1 Main features of the SpeCyl code

SpeCyl is a 3D nonlinear self-consistent MHD simulations tool [Cappello08].
It relies on momentum balance equation and Faraday’s and Ohm’s laws to
progress the flow and the magnetic field in time, according to a visco-resistive
scheme. In its main version, it assumes no pressure gradients, so that

ρ
∂υ

∂t
+ ρυ · ∇υ = J×B+ ρν∇2υ (5.1)

∂B

∂t
= ∇× (υ ×B− ηJ) , (5.2)

where ρ is the (generally uniform and constant) mass density, J is self-
consistently obtained as the curl of B, and ∇ · B = 0. All quantities are
normalised and appear in adimensional units. In particular, lengths are
normalised to the plasma minor radius a, the plasma density to the initial
ion density on axis f0mi (f0 being the initial number density), the mag-
netic field to its initial value on axis B0, the velocity to the Alfvèn veloc-
ity υA = B0/(µ0f0mi)

1/2, and time to the Alfvèn time τA = a/υA, respec-
tively. In these units, resistivity η corresponds to the inverse Lundquist
number S−1 = τA/τR (τR = µ0a

2/η being the resistive time-scale) as much
as kinematic viscosity corresponds to the inverse viscous Lundquist number
M−1 = τA/τν (τν = a2/ν being the viscous time-scale).
SpeCyl operates in cylindrical geometry, neglecting thus any curvature ef-
fect.
Furthermore it presents a spectral formulation in the periodic coordinates

105
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θ ∈ [0, 2π] and z ∈ [0, 2πR], meaning that it treats the dependence of physi-
cal quantities on poloidal and axial directions in a Fourier space.

During my PhD I had the need to go through the code implementation
much more than what would be required for this first Chapter. However,
for the sake of avoiding future repetitions, we start with an overview of
SpeCyl’s work-flow. This is mandatory for the understanding of the next
Chapters, that will present the the steps in the implementation of the new set
of magneto-fluid boundary conditions (BCs), extending the already present
ones.
Moreover, such a long lived code was initially thoroughly documented [Merlin89,
Cappello96, Cappello04, Viterbo99], but cumulated many further additions
that still lack of a single comprehensive and up to date manual. Far from
completing such endeavour, this Chapter and the ones that will follow aim
at a first structured reorganization.

5.2 Work-flow of the SpeCyl code

In this section we present the main technical aspects of the implemen-
tation of the SpeCyl code. We start from the initial equilibrium, descried
in Sec. 5.2.1, then we illustrate the work-flow of the code’s main loop in
Sec. 5.2.2, and we conclude with the presentation of the ideal-wall formula-
tion of the boundary conditions in Sec. 5.2.3.

5.2.1 Paramagnetic pinch equilibrium

Before starting the main loop, the initial equilibrium is computed from the
simulations inputs. The equilibrium assumed is that of a zero-β paramagnetic
pinch [Delzanno08], where the following relations hold:

J0 ×B0 = 0 static equilibrium,

E0 + υ0 ×B0 = ηJ0 Ohm’s law,

E0 = E0 ẑ axisymmetric loop tension,

being E0 the loop field, accounting for the presence of toroidal current. As-
suming axial symmetry, we recover a one dimensional dependence on the
radial coordinate r.
As we saw for Newcomb’s equation, excluding pressure from equations im-
plies that there exists some λ = λ(r), such that J0(r) = λ(r)B0(r).
Applying the scalar product with B0 onto the Ohm’s law and using Faraday’s
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(a) RFP equilibrium (b) tokamak equilibrium

Figure 5.1: Paramagnetic pinch equilibrium main quantities, for α0 =
E0/η0 = 4 (panel (a)), and α0 = 0.125 (panel (b)). Pinch velocity in panel
(a) is rescaled by −0.1 for graphical purposes.

law yields

B0 · E0 = B0,zE0 ≡ η

[
−B0,θ

dB0,z

dr
+B0,zJ0,z

]
so that:

dB0,z

dr
=
B0,z

B0,θ

[
−E0

η
+ λB0,z

]
.

We can find λ from λ|B0|2 = J0 ·B0 = E0 ·B0, thus

λ =
E0

η

B0,z

B2
0,z +B2

0,θ

,

whence
dB0,z

dr
= −E0

η

B0,θB0,z

B2
0,θ +B2

0,z

, (5.3)

which is a defining condition for the equilibrium toroidal field.
The poloidal magnetic field instead can found from the radial projection of
the static equilibrium condition J0 ×B0 · r̂ = 0, and thus

B2
0,θ = −B2

0,z +
2

r2

∫ r

0

r′B2
0,z(r

′) dr′ . (5.4)

By integrating iteratively equations 5.3 and 5.4, for a given value of parameter
α0 = E0/η the equilibrium field is constructed.
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Finally, the pinch flow velocity is determined via Ohm’s law to be:

υ0 = −
ηJ0,θ
B0,z

r̂ . (5.5)

Figure 5.1 shows the three main pinch quantities, achieved through numeri-
cal integration of eqs. 5.3-5.5 with appropriate initial conditions, derived in
[Delzanno08]:

B0,z ∼ 1−
(
E0

2η

)2

r2 ,

B0,θ ∼
E0

2η
r

υ0,r ∼
(
E0

η

)2
ηr

2
.

This equilibrium is also suitable to reproduce the straight tokamak case,
since, if we make the usual assumptions that ε → 0 while q ∼ 1, since q0
ends up being

q0 =
2

R · α0

,

the larger R, the smaller α0 must be. Fig. 5.1.(b) shows a straight tokamak
equilibrium in the case of α0 = 0.125: we recover uniform axial magnetic
field and vanishing poloidal field and radial velocity.
In simulations, the equilibrium represents the mode (m,n) = (0, 0) since it
has no angular modulation.
Before entering the main loop, the initial equilibrium is perturbed with an
ad hoc small initial perturbation on some modes of radial velocity, according
to user’s choice. The perturbation is typically in the shape of

δυ =
∑
m,n

ε

r
sin (πr)m+2 cos (mθ + nz/R) r̂ , (5.6)

where the initial perturbation amplitude ε is given in input.

5.2.2 SpeCyl’s main loop

A general working-flow of the SpeCyl’s main loop is now presented, also
relying on [Merlin89, Viterbo99, Cappello04] and on unpublished notes by
Susanna Cappello and Daniele Bonfiglio. A synthetic flow chart is reported
in Fig. 5.2. To keep this section as general as possible, we will not discuss
here any detail concerning the boundary conditions, which will be the object
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Figure 5.2: Flow chart of SpeCyl working scheme. Numbered circles highlight
where boundary conditions are enforced: purple relates to magnetic BCs,
whereas blue relates to the flow. The steps in SpeCyl’s main loop that are
solve explicitly are marked with a yellow band a the tag “explicit”, conversely,
the steps that are solved implicitly are marked with dark-grey band and the
tag “Thomas algorithm”.
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of Sec. 5.2.3.
The code advances velocity υ and magnetic B fields in time according to
a predictor-corrector scheme. The explicit predictor semi-step advances the
fields from the preceding time-step tn to a given fraction of the simulation
time resolution ∆t (usually, t∗ = tn + α · ∆t, with 0.4 ≤ α ≤ 0.6). At
this level, resistivity is neglected and the predictor tangential (to the wall)
magnetic field B∗

t = B∗
θ θ̂ + B∗

z ẑ for each Fourier mode is obtained via the
ideal Ohm’s law, coupled with the Faraday’s law:

∂Bt

∂t
= −∇× E

E = −υ ×B
=⇒ B∗

t −Bn
t

t∗ − tn
= ∇× (υn ×Bn) ,

while the B∗
r is explicitly set so as to fulfil the solenoidal property of the

magnetic field:

∂(rB∗
r )

∂r
= −r∇ ·B∗

t ,

where the radial derivative is written as an incremental ratio and an explicit
integration of B∗

r |r is performed using the values of B∗
r |r−∆r andB∗

t . Predictor
current is also computed for later use, as

J∗ = ∇×B∗ .

Regularity conditions are imposed on axis on both B∗ and J∗ (see [Merlin89])
and the first call of magnetic boundary conditions is made for B∗. It is worth
noting that the predictor radial profiles are computed from axis to edge, so
that the boundary conditions play no role at this step, if not by setting the
outermost value of B∗ and J∗.
Predictor fields are then employed for the implicit computation of the ad-
vanced velocity field υn+1, enforcing the momentum balance equation:

υn+1 − υn

∆t
− ν∇2υn+1 = −υn · ∇υn +

1

ρ
J∗ ×B∗ + β∆t∇2υ

n+1 − υn

∆t

where ν is intended as the kinematic viscosity and ρ is time-constant mass
density. The last term at second member, known as “semi-implicit term”, is
meant for numerical stability and acts as some kind of an artificial viscosity,
affecting acceleration rather than flow: this way, stationary equilibria are un-
changed, allowing more freedom in the choice of the time-step [Schnack86].
Unless the previous cases, this equation is quite tougher to write in such a
way to highlight the unknown υn+1 at one side of the equality: in particular,
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the presence of a second order derivative in space, enclosed in the lapla-
cian, introduces a mixed dependence on υn+1(r) evaluated at three different
radial positions, separated by the radial mesh resolution of the simulation:
r −∆r, r, r +∆r.
The implicit resolution of this step is thus linked to the inversion of a three-
diagonal matrix of coefficients for each of the three dimentions of cylindrical
space. Furthermore, due to the peculiar shape of the cylindrical laplacian,
only the axial problem is actually independent from the others, while the
radial and the poloidal ones have to be solved together.
Three-diagonal problems can be efficiently solved in terms of the Thomas al-
gorithm. Let us suppose having a simple three-diagonal system of equations:

b1 a1 0 0
c2 b2 a2 0
0 c3 b3 a3
0 0 c4 b4

 ·

u1
u2
u3
u4

 =


d1
d2
d3
d4


where vector u in the decoupled case of the axial direction coincides sequen-
tially with each mode of υz, evaluated at time tn+1: various components
{ui}i=1,2... identify with progressive radial evaluation, from axis position to
plasma edge. The coupled radial-poloidal problem is formally similar, if not
that each component of u is a two dimensional array, whose components re-
late to υr and υθ, and ai, bi, ci and di are also array quantities.
The Thomas approach consists of two steps: the forward and the backward
steps. Within forward one, a formal inversion of all equations is performed,
from axis to edge, so to highlight u1(u2) from the first one, u2(u3) from the
second one and so on. Inverted matrix coefficients are computed.
By the end of the forward step, the system is such that knowing the last
component of vector u, all the others can be readily computed: this is what
happens in the backward step. The edge value of the velocity field compo-
nents is enforced here and backward propagation ensures that it influences
the whole radial profile.

After the predictor and the velocity field computation, the implicit cor-
rector step kicks in, producing a magnetic field time advancement of a whole
step ∆t from previous time tn to subsequent time tn+1. This is done via the
resistive Ohm’s law, again coupled with the Faraday’s law:

Bn+1 −Bn

∆t
= ∇×

[(
υn+1 + υn

2

)
×B∗

]
−∇×

(
η∇×Bn+1

)
where η stands for plasma resistivity.
Practically, this relation is broken into two parts, relying onto an intermediate
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magnetic field B∗∗ which is still evaluated at time tn+1 but only considers
the first addend of the above formula:

B∗∗
t −Bn

t

∆t
= ∇×

[(
υn+1 + υn

2

)
×B∗

]
,

while the solenoidal property is ensured again by computing B∗∗
r from ∇ ·B∗∗ = 0 .

As before, on-axis regularity conditions and boundary conditions at edge are
enforced for B∗∗. This first corrector intermediate step is solved explicitly,
again from axis to boundary.
Then, the corrector step is completed by involving also the second addend of
the resistive Ohm’s law:

Bn+1 −B∗∗

∆t
= − (∇η)×

(
∇×Bn+1

)
+ η∇2Bn+1

As we can see from the presence of the Laplacian operator, also this step
will involve a three-diagonal system and thus the Thomas algorithm again.
Hence, in view of the next chapters, it is worth noting that this is the step
at which the magnetic boundary conditions can really penetrate into the
plasma, throughout the backward solution.
Along with the magnetic field, the corrected value of the current density is
computed by means of Ampère’s law:

Jn+1 = ∇×Bn+1 .

This value is not really used in the loop, but is available for possible use.
Finally, the edge value of the radial velocity field is computed, as an E × B
drift, as we are about to discuss as soon as we present the boundary condi-
tions, and made ready for the next iteration.

Despite this section presents the equations in the physical space, as men-
tioned before SpeCyl is indeed a spectral code. This means that each block
of the flow-chart in Fig. 5.2 is solved serially for each Fourier mode. The
Fourier transform is defined in line with the general notation of the RFP
community, which differs from the tokamak community notation (used up to
this point in this Thesis, Eq. 3.5) in the sign of n:

Q(r, θ, z, t) =
∑
m,n

Qm,n(r, t) · eimθ+inz/R . (5.7)

From now on we will have to switch to this new convention, for consistency
with the code notation.
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variable mesh

Br X1

Bθ X2

Bz X2

υr X1

υθ X2

υ X2

Jr X2

Jθ X1

Jz X1

Er X2 (not explicitly computed in SpeCyl)

Eθ X1 (not explicitly computed in SpeCyl)

Ez X1 (not explicitly computed in SpeCyl)

Table 5.1: Variables relevant to the BCs and associated radial mesh

One last anticipation needs to be done before we can discuss the actual
BCs implementation and it regards the radial mesh: in SpeCyl, along with
the main mesh X1, there is an auxiliary mesh X2 which is staggered with re-
spect to the first one. In other words, whileX1 runs from the axis (X1(0) = 0)
to the plasma edge (X1(LX) = 1) in LX equally spaced points (∆r = 1/LX),
X2 is made of LX + 1 equally spaced points from X2(−1) = −∆r/2 to
X2(LX) = 1 + ∆r/2.
This is convenient for the computation of radial derivatives, since the incre-
mental ratio between X1 = r̄ and X1 = r+∆r is twice as a good an estimate
of the derivative in X2 = r̄ + ∆r/2 than it is in X1 = r̄, and vice versa.
However, this means that some quantities will be defined on X1 and some
others on X2: tab. 5.1 reports a short list of the main physical quantities.
The electric fields that are not computed in SpeCyl implementation are yet
listed, along with the radial mesh they would correspond to.
To confront quantities living on different meshes, they must of course be
reported to a same grid. The solution adopted is the linear interpolation:
hence, to evaluate e.g. Bz(0), we will take it as the average betweenBz(−∆r/2)
and Bz(∆r/2).

5.2.3 Ideal wall boundary conditions

The traditional formulation of boundary conditions (BCs) pictured the
plasma as in direct contact with an ideal conductor, as reported in Fig. 5.3.
In this Thesis we will always refer to them as to “SpeCyl.1” BCs, due to the
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Figure 5.3: SpeCyl.1 Boundary conditions: plasma in direct contact with an
ideally conducting wall.

presence of one single (ideal) wall, directly facing the plasma surface. This
version of the code was the subject of a nonlinear verification benchmark
reported in [Bonfiglio10].
Regarding the flow, the stiffness of the wall along with the no-slip assumption
should prevent any edge flow. Anyway, there is the exception of the pinch
velocity (Eq. 5.5) which is set to a finite value:

υ0,0r (a) r̂ =

[
E0ẑ×B0,0

θ

]
r=a

|B(a)|2
, (5.8)

being

|B(a)|2 =
∑
m,n

{
(Bm,n

θ )2 + (Bm,n
z )2

}
r=a

,

where the sum is intended over all the simulation’s modes. Eq. 5.8 generalises
Eq. 5.5 to the case where non-axisymmetric modes of the B field are finite
and in presence of an ideal wall at a.
Equation 5.8 is computed at the end of the main loop and is fed to the
Thomas algorithm for the flow at the beginning of its backwards step. Note
that this term is generally negative throughout the simulation, so as to
”pinch” axisymmetrically the flow away from the wall.
For the electro-magnetic fields, the BCs are diversified between the equilib-
rium and the generic mode (m,n) ̸= (0, 0). In fact, ideal wall conductivity



Work-flow of the SpeCyl code 115

implies:

(m,n) = (0, 0)←→


E0,0

θ (a) = 0

E0,0
z (a) = E0

B0,0
r (a) = 0

(5.9)

(m,n) ̸= (0, 0)←→


Em,n

θ (a) = 0

Em,n
z (a) = 0

Bm,n
r (a) = (bm,n

r )ext
(5.10)

where (bm,n
r )ext accounts for any possible externally applied seed magnetic

perturbation (MP), aimed at triggering a specific mode. For what concerns
the simulations reported in this chapter, this magnetic perturbation is always
set to null.
For what concerns the axisymmetric constraints in Eqs. 5.9, the condition
on E0,0

θ (a) = 0 implies the conservation of the toroidal magnetic flux (the
ideal wall is hence an effective flux-preserver). Furthermore, it should be
highlighted that the condition on the axial electric field is the yield of a recent
reformulation, in substitution of the previous condition of ∂rB

0,0
θ (a) = 0 (and

thus: J0,0
z (a) = J0, with J0 assigned and constant throughout the simulation).

Apart from the radial edge magnetic field, explicitly assigned in Eqs. 5.9-
5.10, all the other components of the magnetic field and of current density
are obtained indirectly from the equations above, by matching the electric
field components of the plasma to the ones on the wall:

0 = Em,n
θ (a) = ηJm,n

θ (a)− υ0,0r (a)Bm,n
z (a) ,

E0 = Em,n
z (a) = ηJm,n

z (a) + υ0,0r (a)Bm,n
θ (a) .

Expressing the current densities in terms of magnetic field components, via
the Ampère’s law, we can in fact obtain suitable conditions for the outermost
values of each mode of Bθ and Bz.
We report below the example of how the first of this two equations may be
rendered in SpeCyl. Writing derivatives as finite differences and interpolating
all quantities on the main mesh X1 we get

η(a)
Bm,n

z (a+ ∆r
2
)−Bm,n

z (a− ∆r
2
)

∆r
= −v0,0r (a)

Bm,n
z (a+ ∆r

2
) +Bm,n

z (a− ∆r
2
)

2
,

from which, rearranging terms so as to isolate Bm,n
z (a + ∆r

2
), we obtain the

desired relation, in the shape of

{Bm,n
z }a+∆r

2
= Az {Bm,n

z }a−∆r
2
+ Bz
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for suitable linear coefficients Az and Bz. A similar procedure applies for the
other equation, with analogous outcome.
These are enforced twice to fix the outermost value of the magnetic field (at
predictor step and corrector intermediate step) and once in a much less trivial
way, when interfacing with Thomas algorithm. In that case, the inversion of
the three-diagonal matrix, performed during forwards step, produces some
other linear relations in the form of{

Bm,n
r

Bm,n
θ

}
a−∆r

2

= E
r,θ
·
{
Bm,n

r

Bm,n
θ

}
a+∆r

2

+ Fr,θ

{
Bm,n

z

}
a−∆r

2

= Ez ·
{
Bm,n

z

}
a+∆r

2

+ Fz

for suitable matrices and arrays of constants. By combining in a system these
relations with our BCs for magnetic field components (including the radial
one), we can obtain magnetic field evaluation at both a + ∆r

2
and a − ∆r

2
,

for all modes and all field components. These values are then fed to the
backwards Thomas algorithm.

5.3 Benchmark of SpeCyl simulations against

linear theory

For the rest of this Chapter, we will present a benchmark study of SpeCyl
simulations against linear theory predictions produced through LENS. This
is intended as a preliminary study to test on a familiar ground the numeri-
cal methods that we must use to approximate the assumptions of the ideal
analytical theory. Among them, the absolute lack of viscosity and resistivity
cannot be reproduced in the code for numerical stability reasons and needs
of course some approximation. Moreover, as seen, SpeCyl model does not
explicitly contain the continuity equation, so that the general assumption we
made in part II of incompressibility is not to be given for granted, even if
∂tρ = 0.
Finally, this will be useful to define a starting point, before developing new
boundary conditions. We will see in this Chapter what the traditional set of
boundary conditions SpeCyl.1 can achieve, also to define its limitations that
we wish to overcome with the new set of BCs that we will present starting
from the next Chapter.



Benchmark of SpeCyl simulations against linear theory 117

5.3.1 Numerical set-up for the linear benchmark

Since mass density plays a crucial role in kink stability analysis, we
took advantage from the possibility of SpeCyl.1 to be operated with non-
homogeneous - yet fixed in time - density profile ρ(r). To render the step-
profile in mass density, we imposed a smooth-step radial dependence of the
kind:

ρ(r) =
[
1− αρ

]
·
{
1

2
− 1

π
arctan

[
βρ · (r − a)

]}
+ αρ , (5.11)

being a the plasma radius and αρ, βρ profile parameters expressing how tall
and how sharp the step is, respectively. Resulting density on axis is ρ(0) = 1,
while edge density yields ρ(a) = αρ. Usual values in simulations are αρ = 0.1

and 102 ≤ βρ ≤ 103.
Hence, edge density is not null, in contrast with model hypotheses: this re-
sults from a trade-off between the requirement of an ideal-MHD (inviscid)
plasma and the finite surface tension required to prevent fluid diffusion across
the step-like interface. Also, numerical stability prevents density from being
exactly zero, since the momentum balance equation contains a term propor-
tional to 1/ρ.
Step-current profiles instead have been approximated by tailoring the SpeCyl
resistivity profile parameters in such a way to produce a central channel of
low η, surrounded by a high-resistivity domain, where almost no current
flows:

η(r) = η0 ·
[
1 + (ALET− 1) rBEET

]GAET
. (5.12)

Profile parameters η(0) ≡ η0, ALET, BEET and GAET have been adjusted to
recreate a current profile like that of [FRS73]:

ηFRS(r) = η0

[
1 +

(
r

r0

)2λ
]1+ 1

λ

(5.13)

that produces a step-profile across r = r0 ≡ (ALET − 1)2λ that is sharper
for larger λ ≡ BEET/2, being GAET ≡ 1 + 2/BEET. In the simulations we
present hereafter, we have used λ = 40, thus ALET = r−80

0 + 1, BEET = 80,
and GAET = 1.025. Different values of r0 and a have been used to scan on a
range of plasma-wall proximities. For numerical requirements, the resulting
resistivity profile is cut when it reaches a maximum value, defined arbitrarily
as ηmax = 100× η0, as represented in the upper half of Fig. 5.4.
Figure 5.4 illustrates for the specific case of r0/b = a/b = 0.6 and q0 = 1.3
the initial equilibrium in SpeCyl.1, as compared to the Shafranov flat-current
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Figure 5.4: Radial profiles of the main equilibrium quantities in SpeCyl and
in the flat-current model, according to the chosen numerical set-up: in the
upper plot the SpeCyl’s resistivity profile is reported. In the lower plot, we
report the equilibrium axial current density, the safety factor and the mass
density. The shaded region indicates the pseudo-vacuum.

model. There is overall excellent agreement between them, with the exception
of a thin transition layer around r = a. There, both mass density and (more
visibly) current density have a smoother step than what the model prescribes:
on the bright side, the relatively smoother current density profile does not
spoil the safety factor transition across the plasma edge.

For the study of the external kink, we focused on a single mode, to speed
up simulations. This has been chosen as the mode (m,n) = (2, 1), which is
the most unstable that also depends on the choice of current profiles. More-
over, the (2, 1) external kink mode has been widely studied experimentally
in RFX-mod, operated as a tokamak: its high potential disruptiveness could
indeed be suppressed by means of the active magnetic control in this de-
vice [Baruzzo11, Marchiori12, Baruzzo12, Zanca12]. Simulations have been
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Figure 5.5: Incompressibility of (m,n) = (2, 1) external kink mode for the flat
current model: the full superposition of the two curves proves that ∇·υ2,1 ≈
0. For reference, the value of∇·υ ∼ O(10−10) obtained by SpeCyl is reported
in orange, magnified by a factor 103 to make it visible. Simulation profile
parameters are: λ = 40, r0/b = a/b = 0.6, αρ = 0.1, βρ = 102, η0 = ν = 10−6.
Velocities are expressed in units of the Alfvénic velocity υA.

performed with a superposition of the (m,n) = (0, 0) equilibrium state and
at least the first two harmonics of the desired mode: (m,n) = (2, 1) and
(m,n) = (4, 2), so that at a certain point a non-linear interaction between
resonant modes could kick-in, giving some realistic flavour to the outcome.

5.3.2 Preliminary test of incompressibility

The first test we show is in Fig. 5.5, where the incompressibility of the
flow is proved by confronting the real parts of the radial and the angular
components of the divergence of the flow. Incompressibility involves the
equality:

∇ · υ2,1 = 1

r

d

dr
(rυ2,1r ) +

i

r

(
2υθ − ευ2,1z

)
= 0 ,

whence, taking only real parts of both addends (since {υr, iυθ, iυz} ∈ R3),

d

dr
(rυ2,1r ) =

[
2 · υ2,1θ − 1 · ε · υ2,1z

]
.

In fact, by individually plotting each side of the above equation, for the par-
ticular case of the flat current profile, as in Fig. 5.5, it can be seen that they
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fully overlap, proving that the theoretical assumption of incompressibility is
respected by SpeCyl’s simulations. This should not be given for granted,
since this condition is not imposed a priori in the code’s equations.
In fact, the divergence of υ is not exactly null in SpeCyl, as seen from the
orange curve on the same plot (which is magnified by a factor 103 to make
it visible), and is in fact a very small term ∼ O(10−10). The discontinuity in
the orange profile is motivated by the crossing of the resonance radius, where
υr has a vertical asymptote (to linear order).
The driving numerical mechanism that forces SpeCyl’s flow to be mostly
incompressible in this case-study is unclear for us and should be sought for
in an attentive analysis of the model equations in the linear approximation.
Anyway, this property seems always verified through the rest of our Bench-
mark studies against the external kinks and tearing modes, for the rest of
this Thesis. This is of course a very convenient result for us, since it moti-
vates the theoretical assumption made, e.g., in the formulation of the Energy
Principle, that the flow can be considered as incompressible.

5.3.3 Benchmark of SpeCyl.1 against the external kink
(2,1)

Next, we focus on eigenvectors profiles. To do so, we will compare the
flow velocity υ2,1 produced by SpeCyl’s simulations with the displacement
ξ2,1 predicted by theory, as they are in fact expected to be proportional, up
to a factor γ.
Figure 5.6 shows the radial eigenfunction ξr compared to three radial velocity
profiles obtained with SpeCyl, for different values of the Lundquist number
S and for large aspect ratio: R/a = 20. All quantities are normalised to
their values at plasma edge: ξa ≡ ξr(a) and υa ≡ υr(a).
The expected profile is a straight line, which is null at axis and maximum
at edge (as given by Eq. 4.5). By confronting the four simulations, we see
that the higher the value of Lundquist number S (having fixed P = 1), the
better the matching to the theoretical expectation inside the plasma region:
0 ≤ r ≤ a. This is motivated by the increasing ideal conditions of SpeCyl
MHD, as η0 = ν → 0.
We are not able to make perfect vacuum in SpeCyl.1 simulations, but rather
a very low-density, high-resistivity plasma. This is why simulations retain
a finite velocity also in the shaded region beyond a, where the theoretical
eigenvalue ξr would be ill-defined.
It should be noticed that:
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Figure 5.6: Radial eigenfunction for the (m,n) = (2, 1) external mode for the
flat-current model, against three different radial velocity profiles produced
by SpeCyl with different S = 1/η0 and P = ν/η0 values. In all simulations:
R/a = 20, qa = 1.5, λ = 40, r0/b = a/b = 0.6, αρ = 0.01, βρ = 102.

a) The sudden drop of current density J at plasma edge bends the radial
flow profile upwards. This is poorly visible for S = 107, P = 1 (yet
present) and stronger in all other cases. It is probably due to the
unavoidable smoothness of ρ(r), allowing finite magnetic shear inside
a thin layer where density is still present.

b) However, there is a substantial difference between the first two curves,
where profile bending spoils the accuracy inside the plasma region, and
the latter, where the bending happens outside r = a.

c) As stated, SpeCyl vacuum is not perfect, so that the flow retains phys-
ical meaning also in this region. It is seen that we pay a price as we
enhance core-conductivity: also vacuum conductivity raises. Hence,
the two best-fitting solutions for the plasma region come at the cost of
a partial flux-freezing in the vacuum region. In fig. 4.2.(d) we saw that
mode (2, 1) has finite br at resonance, so that flux-freezing condition
would imply ξr = −irbr/F → ∞ as F vanishes at resonance. We see
that the higher conductivity profiles (S = 107 and S = 108) progres-
sively bend towards a vertical asymptote at resonant radius rs/b ≈ 0.7.

The consequence of point (c) is that - despite providing a better fit to the
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Figure 5.7: Time evolution of mode (m,n) = (2, 1) of various radial velocity
profiles produced by SpeCyl with different S = 1/η0 and P = ν/η0 values.
In all simulations: R/a = 20, qa = 1.5, λ = 40, r0/b = a/b = 0.6, αρ = 0.01,

βρ = 102. Velocities are expressed in units of the Alfvénic velocity υA.
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theoretical eigenvalue inside the plasma - the last two cases are not suitable
for a benchmark against growth-rates, as the dynamics at resonance radius
does now happen on an intermediate time-scale between Alfvèn time and the
plasma resistive scale.
In fact, Fig. 5.7 displays clearly that our best shot for a study on growth-
rates is the case S = 106, P = 1. The figure shows the exponential growth
of υr ∼ eγt for the same values of S and P as in the previous case. We may
recognise for each curve the same dynamical pattern in time: the initial per-
turbation triggers some transient oscillations that are damped on the viscous
time-scale. Then, the rapid linear growth brings the mode up to a saturation
level (here around |υr| ≈ 10−7), where its magnitude matches the same order
as the equilibrium velocity (not shown) and that of secondary modes (also
not plotted), whose growth has been dragged by the main one through weak
non-linear couplings.
For the study of exponential growth-rates of mode (m,n) = (2, 1), we per-
formed a scan over the value of qa in various SpeCyl.1 simulations. For each
of them a fit of |υr| over the linear-growth time window was performed. It
should be highlighted that this procedure involves some freedom, as the fit-
ting domain should be chosen large enough to neglect small noise, but still
small enough to cut out nonlinear phases. Nonetheless, good robustness upon
small time-domain choice variations was generally achieved, for all unstable
cases.
For those values of qa that are deep in the stable region, many small-amplitude
oscillations make the system very sensitive to both fitting-domain span and
position in time. Such oscillations are probably related to the purely imag-
inary eigenvalue ω of simulation modes1, along with some numerical noise:
only in these cases, we arbitrarily decided to put the growth-rate to null,
which is what we would reasonably see if we could rid off all observed dis-
turbances.
Figure 5.8 illustrates the result of three sets of SpeCyl.1’s simulations, for

various ideal wall displacements from the edge of the plasma: the black curve
sees almost no wall, so that theory predicts γ · τA/εa · qa to closely resem-
ble the second black curve in Fig. 4.5.(b), while the red and green ones see
a much stronger stabilizing effect. On the bright side, we can observe that
stability boundaries of our simulations perfectly match the theoretical predic-
tions: this is particularly good news, since energy principle has exact validity
only in constraining linear stability. On the dark side, SpeCyl growth rates
significantly underestimate the theoretical value, due to the reasons already

1Reminiscent of one corollary of self-adjointness of δW , yielding that the problem
eigenvalue must be either purely real or purely imaginary
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Figure 5.8: Exponential growth-rate of mode (m,n) = (2, 1) predicted by
theory (full line) and resulting from single SpeCyl.1 simulations (each marked
with an “x”). Colours mark three wall positions b, with respect to density-
step radius a. In all simulations: R/a = 20, S = 106, P = 1, λ = 40,
αρ = 0.01, βρ = 102.

discussed. It can also be seen that growth rates as a function of q(a) obtained
from SpeCyl draw slightly asymmetrical curves, much resembling the effect
displayed in Figure 4.5 in presence of finite magnetic shear inside the plasma
region: due to density and current profiles Eq. 5.11-5.13 not being perfectly
step-function like, there is some unavoidable transition layer in which both
quantities shrink but are still finite. In Fig. 4.5 we highlighted how a very
small discrepancy between current-channel width and plasma radius may
produce relevant effects on the growth-rate predictions.
A final remark should go on the case of a/b = 0.9, which shows comparatively
larger discrepancy between SpeCyl.1 and theory. This is probably due to the
current and mass-density steps being too close the the edge of the integration
domain, preventing the required space for an actual vacuum region between
plasma-edge and wall.

5.3.4 Benchmark of SpeCyl.1 against tearing modes

Mass density does not play any important role in tearing modes dynam-
ics, hence for the linear benchmark against these instabilities we assumed
uniform ρ = 1. Also, unlike the external kink, tearing modes cannot be
observed with a flat current profile, since no resonance can be intercepted
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within plasma region by a flat safety factor profile. Unfortunately, Wesson’s
profile results particularly cumbersome in this set of boundary conditions,
since the relatively flatter decrease of the current profile it prescribes could
blur the plasma edge definition if we must keep a small (but finite) current
also in the pseudo-vacuum region beyond it.
For this reason, we used another class of current profiles, as in [FRS73]:

Jz(r) =
2r0B0,z

µ0

1(
1 + x2λ

)1+ 1
λ

, (5.14)

q(r) =
m

n

(
1 + x2λ

1 + x2λs

)1/λ

, (5.15)

where r0 is the current-channel width, B0,z = 1, x = r/r0, and xs = rs/r0
(with q(xs) = m/n).
This is the same profile already used to recreate in the limit of very large λ
a step-like current profile in the past section. For the sake of this section, we
used a much smoother profile, for r0 = 0.81 and λ = 1. This roughly coincides
with the “peaked” profile of [FRS73] in the case of ideal wall proximity b/a =
1.2, explicitly studied on that paper. This is quite a closely-fitting ideal-
wall proximity that is expected to produce visible damping on the modes
resonating near edge, with respect to the no-wall case. We have nonetheless
decided to present it on the basis of two considerations: on the one hand,
we know from part II that linear m = 2 tearing stability is widely unaffected
by a closely fitting ideal shell, if not for modes resonating near the plasma
edge; on the other hand, pushing the wall far away from the plasma is quite
onerous and wasteful in SpeCyl.1, since the (pseudo-)vacuum region is still
included in the simulation domain, yielding the requirement of very large
radial meshes, a significant part of which serves to model the uninteresting
vacuum region.

For the case of the tearing modes, no significant improvement in the
benchmark is found for smaller inverse aspect ratio than εa = 0.1. Figure 5.9
shows the good level of achieved compliance to the desired equilibrium.

Figure 5.10.(a) shows the radial profile of the tearing modes eigenfunction
as a function of resonance position inside the plasma region. The quantity
represented is actually B2,1

r , as a proxy for ψ2,1 = −irB2,1
r : the full curves are

SpeCyl’s profiles as taken from the linear growth phase of each simulation
and normalised to the value at resonance; the dashed curves are the New-
comb’s solver outcomes for the same input parameters. The overall matching
we observe is excellent.
In this case, unlike what seen for the external kinks, monotonic improve-
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Figure 5.9: Good compliance between SpeCyl initial equilibrium and the
“flat profile” of [FRS73]: λ = 1, current-channel width r0 = 0.81.

ment of both profiles and growth rates was found with decreasing plasma
resistivity and viscosity. This would seemingly confirm that the limit we had
in that case was related to the presence of vacuum: in the case of an internal
mode, instead, the vacuum region finite conductivity is not so important.
Unfortunately, we still cannot dare pushing the plasma resistivity too low to
faithfully model the resistive layer around resonance (since SpeCyl’s resistiv-
ity is not self-consistent through the simulation, but rather a time-invariant
input profile). Also, numerical instabilities produce increasing noise as vis-
cosity is decreased.
The best case study we could achieve is the one reported, with Lundquist
number on axis S = 108 and homogeneous viscous Lundquist number M =
108 (Prandtl number P = 1).
Figure 5.10.(b) reports the growth rates for the same set of simulations as a
function of the safety factor at edge. It is seen that modes resonating close
by the edge (qa ≳ 2) are the least unstable, in agreement to the theoretical
prescription. For comparison, the plot includes also the expected theoretical
growth rates, coming from both the standard (purely resistive) dispersion
relation Eq. 4.17 and the Bondeson-Sobel’s visco-resistive one, Eq. 4.22. The
latter appears to approximate much more reliably the simulations growth
rates: in fact, the critical viscosity defining the range transition between the
purely resistive and the visco-resistive regimes ranges for the considered cases
from 10−11 to 5 · 10−11. Since νSpeCyl = 10−8, we are well inside the domain
of application of Bondeson-Sobel’s formula.

5.4 Conclusive summary

In this Chapter we initially introduced the 3D nonlinear self-consistent
MHD simulations code SpeCyl, which is the main protagonist of this Thesis.
The traditional set of BCs used in the code version, here dubbed SpeCyl.1,
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(a)

(b)

Figure 5.10: Linear benchmark against the predictions of LENS for the
tearing mode: (a) SpeCyl.1’s B2,1

r against the LENS code eigenvalue br =
iψ/r (all quantities are normalised to their value at resonance); (b) SpeCyl.1’s
growth rates for the same case as in panel (a). Bondeson-Sobel’s formula fits
better than the resistive one, reported for comparison. Model parameters:
λ = 1, r0 = 0.81, S0 = 108, and P = 1. νcrit ∼ 10−11 ≪ νSpeCyl = 10−8.

Solver parameters: ∆r = 2 · 10−6.
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features an ideally conducting wall in direct contact with the plasma edge.
Nonetheless, ideal wall displacement can be modelled by tailoring the resistiv-
ity profile along with the density profile, in giving a variable-size low-current
low-density “vacuum” region, whose physical interpretation can be associ-
ated to a cold halo surrounding the plasma core.
It is therefore possible to test this set of BCs against external modes, like the
external kinks, and internal ones, like the tearing modes. The agreement with
theoretical expectations is overall good, even if numerical constraints make
difficult to fully reproduce the analytical assumptions usually made in mod-
els. Among these, the most impactful is probably the inability of producing
an actual vacuum between the plasma edge and the wall. For large “vacuum”
regions, the presence of a uniform cold halo - despite its low density - could
contribute non-negligibly to radially integrated quantities, like total plasma
current or mass, due to its larger radial weight, being more external. For
instance, in the flat-current case, with a/b = 0.3 and ρpl = 100ρvac as in our
simulations. The mass of the plasma is

mpl = 2πR

∫ 0.3·b

0

100ρvacr dr = 2πRb2 · 4.5ρvac .

The halo mass is

mvac = 2πR

∫ b

0.3·b
ρvacr dr = 2πRb2 · 0.45ρvac ,

which is reliably negligible, but not vanishing.
The other side of the coin is also an important numerical cost in perform-

ing distant-wall simulations: since the vacuum region is indeed a cold halo,
its computational cost is the same as the plasma region. Its time evolution is
still dealt with via the code’s equations, yielding a wasteful usage of comput-
ing resources. Also, SpeCyl is only equipped with an equally-spaced radial
mesh, leading to the requirement of very refined meshes to gain the required
resolution in the actual plasma region, while unavoidably refining it also in
the halo region.



6
Simulations with a thin resistive shell but

axisymmetric boundary flow

In this Chapter we present the first step towards a more realistic set of
boundary conditions, consisting in a thin resistive shell in contact with the
plasma and an ideal wall placed at finite distance, separated from the re-
sistive shell by a vacuum region. This layout was implemented by Daniele
Bonfiglio in 2017, before the beginning of my PhD programme, and the cor-
responding version of SpeCyl is here dubbed “SpeCyl.2.V00”, since the BCs
feature two separate walls (the resistive one, facing the plasma, and the ideal
one, at finite and tunable distance). The “V00” in the name of this set of
BCs, as we will see more in detail, signifies that the boundary conditions are
mainly thought in terms of the magnetic field diffusion through the resistive
shell, while keeping the same axisymmetric formulation for the fluid part of
the edge-plasma behaviour (υr(a) = υ0,0r (a)).
The diffusion of the magnetic field through the resistive shell happens on a
time-scale τW which is given as an input. τW → ∞ defines the diffusion-
less case of an ideal wall (thus effectively falling into SpeCyl.1 conditions);
τW ≲ τA gives instant-diffusion and thus a vacuum-wall, transparent to the
magnetic fields; and every finite τW determines the intermediate regime of a
plasma-facing resistive wall.
After presenting SpeCyl.2.V00, we will show the outcome of a linear bench-
mark, which was initially intended as a verification. By setting τW ≲ τA,
the resistive wall (RW) can be employed to mimic a free plasma-vacuum in-
terface: external kinks could provide an extremely challenging test to verify
the reliability of these BCs, while tearing modes could allow a backup test.
In this Chapter we argument how insufficient agreement with the theoretical
expectations proves that SpeCyl.2.V00 description was still incomplete and

129
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Figure 6.1: RW boundary conditions: a thin resistive shell directly faces the
cylindrical plasma in r = a, separating it from a vacuum region and an ideal
wall at finite, tunable distance, in r = b.

motivates a substantial reformulation of the fluid boundary conditions.

6.1 The Resistive-Wall boundary conditions

We present in this section the resistive wall (RW) boundary conditions.
A schematic representation of their layout can be seen in Fig. 6.1: SpeCyl’s
cylindrical plasma is in direct contact with a thin resistive shell at plasma
radius r = a. The outer ideal wall is displaced at finite, tunable distance, in
r = b. The region between the two shells is treated as vacuum, analytically
solving the Poisson’s problem in the domain a < r < b.
The idea is to describe the plasma edge as a thin resistive shell [Hender89,
Gimblett86, Haines13, Nalesso80] allowing resistive penetration of the mag-
netic field, on the time-scale defined by the RW time constant τW . The
magnetic field matching conditions across the resistive shell are presented in
subsection 6.1.1, where also τW is defined.
Next, in subsection 6.1.2 we present the analytical solution to the vacuum
magnetic problem.
In subsection 6.1.3 we present the model equations of SpeCyl.2.V00 BCs.
Indeed, there are many examples in literature of the implementation of sim-
ilar boundary conditions, leveraging the thin resistive shell approximation.
Subsection 6.1.4 gives a quick review of the dedicated literature, also trying
to highlight the originality of the SpeCyl’s formulation.
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6.1.1 Matching conditions across a thin shell

We seek to define a well posed set of boundary conditions for the mag-
netic field across an infinitely thin resistive shell.
It should be clear that the problem is not resistivity, but rather finite con-
ductivity, allowing for surface currents and thus tangential magnetic field
variation across the interface. In contrast, owing to the solenoidal property
of B, the normal component must be conserved across the shell

[Br]
+
− = 0 . (6.1)

Let the dimensions of our cylindrical shell be the shell radius rw (which in
our case would be plasma radius, a), its radial thickness 2δw and its axial
length Lw. The thin shell approximation consists in the ordering:

δw ≪ rw ≪ Lw = 2πR .

Poloidal field matching conditions

The matching condition for the poloidal field component is due to the
presence of finite toroidal current on the shell, so that:

µ0j
m,n
z = (∇×Bm,n)z =

1

r

d

dr
(rBm,n

θ )− im

r
Bm,n

r .

Integration over the poloidal cross section of our thin shell gives the required
condition:∫ 2π

0

dθ

∫ rw+δw

rw−δw

µ0j
m,n
z r dr =

∫ 2π

0

dθ

∫ rw+δw

rw−δw

[
d

dr
(rBm,n

θ )− imBm,n
r

]
dr

whence, assuming for a thin wall that Bm,n
r (rw − δw) ≈ Bm,n

r (rw + δw) ≈
Bm,n

r (rw) (Eq. 6.1):

2πµ0j
m,n
z rw · 2δw = 2π

(
[rBm,n

θ ]rw+δw
rw−δw

− imBm,n
r (rw) · 2δw

)
.

Finally, enforcing thin wall ordering to make the last term vanish and ap-
proximating [rBm,n

θ ]rw+δw
rw−δw

≈ rw [Bm,n
θ ]rw+δw

rw−δw
yields:

ηwj
m,n
z =

rw
τw

[Bm,n
θ ]rw+δw

rw−δw
, (6.2)

with

τw =
µ0 · rw · 2δw

ηw
, (6.3)

being ηw the wall resistivity and τw the wall resistive-diffusion time constant.
In Eq. 6.2, the LHS can be identified with the axial electric field Em,n

z on
wall, via the Ohm’s law.
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Toroidal field matching conditions

For the toroidal field jump, a similar argument holds:

µ0j
m,n
θ = (∇×Bm,n)θ =

in

R
Bm,n

r − d

dr
Bm,n

z ,

yielding

2πRµ0jθ · rw · 2δw =

∫ rw+δw

rw−δw

[Bm,n
r ]2πR0 dr −

∫ 2πR

0

[Bm,n
z ]rw+δw

rw−δw
dz.

Enforcing periodic boundary conditions in the axial direction and rearranging
terms, we get:

ηwj
m,n
θ = −rw

τw
[Bm,n

z ]rw+δw
rw−δw

, (6.4)

where τw is still the same of Eq. 6.3. Again, the LHS can be identified with
Em,n

z via the Ohm’s law.

Together, Eq. 6.2 and 6.4 may be written in a compact form as:

Em,n
t,w = r̂× [Bm,n

t ]+− , (6.5)

where the subscript “t” refers to the tangential components θ and z.

Radial field time evolution

To complete the analysis, there is still one quantity to be evaluated, which
is the time decay of surface currents, on the wall resistive timescale.
Faraday’s law implies:

−∂B
m,n
r

∂t
= r̂ · (∇× Em,n) = ∇ · (Em,n × r̂)

Using now equations 6.2 and 6.4 for Ez and Eθ, respectively, yields

∇ · (Em,n × r̂) = ∇ ·
[(
I − r̂r̂

)
· rw
τw

[Bm,n]rw+δw
rw−δw

]
= −rw

τw

[
1

rw

d

dr
(rBm,n

r )

]rw+δw

rw−δw

Thus, putting all together,

∂Bm,n
r

∂t
=

1

τw

[
d

dr
(rBm,n

r )

]rw+δw

rw−δw

(6.6)
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6.1.2 Magnetic fields in the vacuum region

In Part II we once derived the solutions to the cylindrical Poisson’s equa-
tion for the magneto-static problem in vacuum as a limit case of Newcomb’s
equation (Eq. 3.21).
We also mentioned that there is yet another way to solve the same problem,
using an alternative scalar function. Indeed, the absence of currents in the
vacuum region requires (through the Faraday’s law) that ∇×B = 0, i.e. the
magnetic field admits a scalar potential ϕ such that B = ∇ϕ. In cylindrical
coordinates the Poisson’s problem assumes the form of a modified Bessel’s
equation for each Fourier mode separately (we report below Eqs. 3.29, 3.30):

∇ ·B0 = ∇2ϕ0,0 =
1

r

d

dr

(
r
dϕ0,0

dr

)
= 0 ,

∇ · bm,n = ∇2ϕm,n =
1

r2

[
r
d

dr

(
r
dϕm,n

dr

)
−
(
m2 + k2nr

2
)
ϕm,n

]
= 0 ,

where kn = n/R.
This is a class of differential problem in ϕm,n, ∀m,n, associated to Von Neu-
mann conditions in r = a and r = b (enforcing Br continuity across the shell,
Eq. 6.1):

∂ϕ

∂r
|r=a = Bm,n

r |a at plasma edge, (6.7)

∂ϕ

∂r
|r=a = 0 on the ideal wall. (6.8)

We can now discuss three cases:

General case: (m, kn) ̸= 0

The general solution is a linear combination of the Bessel functions of the
second kind:

ϕm,n = A Im(|kn|r) + BKm(|kn|r) .
Complex coefficients A and B are determined from Eqs. 6.7-6.8:

A |kn|I ′m(|kn|) + B |kn|K ′
m(|kn|) = Bm,n

a ,

A |kn|I ′m(|kn|b) + B |kn|K ′
m(|kn|b) = 0 ,

where Bm,n
a ≡ Bm,n

r |a. Solving for A and B then we find:

ϕm,n =Bm,n
a gm,n(r) , (6.9)

gm,n(r) =
1

|kn|
I ′m(|kn|b)Km(|kn|r)−K ′

m(|kn|b)Im(|kn|r)
I ′m(|kn|b)K ′

m(|kn|a)−K ′
m(|kn|b)I ′m(|kn|a)

.
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Hence, the vacuum magnetic field just outside the RW in this case reads (us-
ing the RFP community sign convention for the Fourier transform, Eq. 5.7):

Bm,n
r |+ = Bm,n

a ,

Bm,n
θ |+ =

1

a

∂ϕm,n

∂θ
|a = Bm,n

a imgm,n(a),

Bm,n
z |+ =

∂ϕm,n

∂z
|a = Bm,n

a ikngm,n(a).

We compute now, for later use, the tangential magnetic field Fourier compo-
nents with respect to the radial ones:

Θm,n ≡
[
Bm,n

θ

iBm,n
r

]
+

= mgm,n(a) , (6.10)

Zm,n ≡
[
Bm,n

z

iBm,n
r

]
+

= kngm,n(a) , (6.11)

and the radial derivative of rBm,n
r |+ just outside the RW:

∆m,n ≡
[
∂(rBm,n

r )

∂r

]
+

= Bm,n
a

(
a|kn|

2g′′m,n(a)− |kn|g′m,n(a)
)
. (6.12)

Large aspect ratio (or n = 0): kn = 0, ∀m ̸= 0

As we already discussed in Part II, in the large aspect ratio limit we
can approximate the Bessel’s functions with the first term in their series
expansion: Im(x) ≈ xm and Km(x) ≈ x−m. In fact, our differential equation
becomes now

r
d

dr

(
r
dϕm,0

dr

)
−m2ϕm,0 = 0 ,

whose solution is of
ϕm,0 = Arm + Br−m .

Solving again Eqs. 6.7-6.8 for the complex amplitudes A and B we get

ϕm,0 = Bm,0
a gm,0(r) , gm,0(r) =

a

m

(b/a)m

1− (b/a)2m

[(r
b

)m
+

(
b

r

)m]
.

(6.13)
Equations 6.10-6.12 specialise to

Θm,0 = mgm,0(a) , (6.14)

Zm,0 = 0 , (6.15)

∆m,0 = Bm,0
a

(
ag′′m,0(a)− g′m,0(a)

)
. (6.16)
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Axi-symmetric (equilibrium) mode: m = kn = 0

Recall from Eq. 3.31 that this case must be treated somewhat more care-
fully:

ϕ0,0(r, θ, z) = Φ0,0(r) +B0,0
θ (a) · aθ +B0,0

z (a) · z ,
so that B0,0 = ∇ϕ0,0 complies for a ≤ r ≤ b with the magnetic equilibrium
produced by a cylindrical current distribution (the plasma), immersed in a
uniform axial magnetic field (produced by the external coils in all magnetic-
confinement devices). On the top of this field, Φ0,0(r) provides the RW
magnetic response for the axi-symmetric mode that we are about to deter-
mine.

The Poisson’s equation simply reduces to

1

r

d

dr

(
r
dϕ0,0

dr

)
≡ 1

r

d

dr

(
r
dΦ0,0

dr

)
= 0 .

Integrating across the vacuum region we get∫ b

a

1

r

d

dr

(
r
dΦ0,0

dr

)
rdr = 0 ⇒ b

dΦ0,0

dr
|b = a

dΦ0,0

dr
|a.

However, since at the perfect conductor B0,0
r (b) = ∂rΦ

0,0|b = 0, this implies
∂rΦ

0,0|a = 0, i.e., no penetration.
This also implies that Φ0,0(r) = 0 in the vacuum region. Therefore:

Θ0,0 and Z0,0 are not well defined, ∆0,0 = 0. (6.17)

We have thus found out that the axi-symmetric case is not influenced by the
resistive shell and will need to be treated separately from the other modes
when RW BCs will be defined.

6.1.3 SpeCyl.2.V00 model equations

We are now ready to introduce the SpeCyl.2.V00 boundary conditions.
The overall work-flow already presented in the previous chapter is mostly
preserved, with some additions.

We start from the fluid BCs since they are the easiest. As for SpeCyl.1
a purely radial, purely axisymmetric “pinch” flow is retained at the edge
of the plasma. This is still unchanged from the ideal wall case of SpeCyl.1
(Eq. 5.8):

υ0,0r (a) r̂ =

[
E0ẑ×B0,0

θ∑
m,n (B

m,n
θ )2 + (Bm,n

z )2

]
r=a

,
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where the sum is intended over all simulation’s modes. This formula involves
some deal of approximation: despite the presence of resistive-wall magnetic
boundary conditions, the flow does not see any wall electric field but the axi-
symmetric loop-field E0, and no radial magnetic field component is considered
(as if the flow did still see an ideal-wall boundary). The general assumption
is that the flow may play a minor role in the evolution of current-driven in-
stabilities.
Referring to the flow-chart of SpeCyl’s main loop (Fig. 5.2), the updated
value of the edge velocity is still computed after the corrector step and as-
signed to the Thomas algorithm for the velocity at the subsequent iteration.

For the electro-magnetic fields, the BCs are still separated between the
equilibrium and the non-axisymmetric modes (m,n) ̸= (0, 0). In fact, making
use of Eqs. 6.1-6.6 for the thin-shell conditions and of Eqs. 6.10-6.17 to relate
the vacuum fields outside the RW to Bm,n

a ≡ Bm,n
r (a), we get

(m,n) = (0, 0)←→


E0,0

θ,w = 0

E0,0
z,w = E0

B0,0
r |a = 0

(6.18)

(m,n) ̸= (0, 0)←→


Em,n

θ,w = − a

τW

[
Θm,niB

m,n
a − (Bm,n

θ )−
]

Em,n
z,w =

a

τW

[
Zm,niB

m,n
a − (Bm,n

z )−
]

∂Bm,n
r

∂t
|a =

1

τW

[
∆m,nB

m,n
a − ∂(rBm,n

r )

∂r

] (6.19)

As a consequence of B0,0
r (a) = 0, the axi-symmetric mode sees no resistive

penetration of the magnetic field, and thus its magnetic BCs are still the
same as before, with the ideal wall facing the plasma.
As it was already in SpeCyl.1, for the tangential magnetic field components
we impose that the tangential plasma electric field at boundary (obtained
through the resistive Ohm’s law) matches the electric field on the wall:

Em,n
θ,w = Em,n

θ (a) = ηJm,n
θ (a)− υ0,0r (a)Bm,n

z (a) ,

Em,n
z,w = Em,n

z (a) = ηJm,n
z (a) + υ0,0r (a)Bm,n

θ (a) .

Expressing the current densities in terms of magnetic field components, via
the Ampère’s law, we can in fact obtain suitable conditions for the outermost
values of each mode of Bθ and Bz, except that this time also Em,n

θ,w and Em,n
z,w

depend on the magnetic field (both tangential and radial).
The adopted scheme leverages the already present predictor-corrector time-
stepping. Recall from Fig. 5.2 that the magnetic BCs are enforced three
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times throughout the main loop: the first time to fix the edge values of
the predictor field; then to fix the edge value of the corrector intermediate
step; finally to set the initial conditions for the backwards integration of the
Thomas algorithm in the corrector step.

1&2) At predictor step and corrector intermediate step, the edge value of the
radial-B is not evolved and its prior-step value is used to determine the
tangential components through

η∇× (Bm,n
r r̂+Bm,n

t )− υ0,0r r̂×Bm,n
t =

a

τW
r̂× [Bm,n

t ]+− ,

where the term at second member is alternatively
[
Θm,niB

m,n
r − (Bm,n

θ )−
]

or
[
Zm,niB

m,n
r − (Bm,n

z )−
]
, Bm,n

r being evaluated a the prior time-step.

3) At corrector step the full magnetic BCs are enforced, starting from
the one for Br. The updated value of this component is then used to
compute the corrector-step values of the tangential components, in the
way just shown.

6.1.4 The originality of SpeCyl’s RW BCs

Similar boundary conditions have already been implemented on several
MHD numeric codes, such as DEBS [Paccagnella07], NIMROD [Becerra16],
XTOR-2F [Marx17], and M3D [Strauss04]. In all these, the resistive shell is
typically intended as a physical wall having finite conductivity: in most cases
the edge radial flow velocity is set to null, since the wall is impenetrable, with
the exception of NIMROD, where a physically informed finite radial “wall
velocity” is also present.
In the coupling of the code JOREK with the linear stability code STARWALL
[Merkel15, McAdams14], in the vacuum region between the plasma surface
(S1) and an outer ideal conductor (S3), a multiply-connected thin resistive
shell (S2) is implemented. STARWALL provides the magnetic response of
resistive/conductive structures outside the plasma, generating a boundary
condition for JOREK at plasma-vacuum interface S1. There, a purely radial
flow velocity is assigned either in the form of a Dirichlet condition or of a
von Neumann condition.
A significantly different approach is pursued in M3D-C1 [Ferraro16], where
the (finite-thickness) resistive wall and external vacuum region are included
in the computational domain, enforcing υ = 0 BCs on the outer ideal con-
ductor.
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In the above mentioned studies, when dealing with free-boundary instabili-
ties, a pseudo-vacuum region is typically enforced at the edge of the plasma,
either to simulate a “cold and sparse plasma” region between the hot core
and an impenetrable wall, or to mitigate possible numerical issues arising
from some mild inconsistencies in the “free interface” boundary conditions.
Despite achieving good performance in linear and nonlinear benchmarks, this
looks like an unsatisfactory solution from both the numerical and the con-
ceptual points of view.

The implementation in SpeCyl, on the other hand aims at reproducing
a fully self-consistent description of a free interface, both penetrable by the
magnetic field and by the flow velocity. The resistive shell in thus not only
intended as a physical wall, but possibly also as the boundary of the plasma
domain. This implementation would bring the twofold advantage of greater
simulations speed and of decoupling some relevant physical quantities, such
as the edge value of mass and current density from numerical requirements
of BCs consistency.
Despite the natural choice of the time constant of such an interface is that
of a instantly penetrable “vacuum-wall” [Hender89] τW ≲ τA, larger values
could also be used to account for a closely-fitting resistive (or even ideal, for
τW →∞) structure.
Finally, it is important to mention that an independent implementation of
analogous boundary conditions is being developed in the 3D nonlinear MHD
code Pixie3D [Chacón04, Bonfiglio10].

6.2 Limit cases for evolution time much longer

and much shorter than τW

A first test for our new set of boundary conditions is presented in this
section. In fact, Eq. 6.6 conceals a geometric property which is much alike to
the tearing mode stability. After all, the quantity ∆′ is indeed very similar
to the second member of Eq. 6.6. This condition says that the magnetic field
across the thin layer will evolve in such a way to minimise its slope imbalance
between the two regions.
The physical reason for this is of course that this slope imbalance in the radial
magnetic field translates into a discontinuity of Bm,n

t ∝ (rBm,n
r )′/r (owing to

the solenoidal property) across the RW, that needs being sustained by the
image currents on the shell. The finite resistivity will then slowly damp these
currents, on the resistive-penetration time-scale τW .
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Figure 6.2: Radial magnetic field B1,−8
r for the marginally resonant kink

mode (1,−8), plotted across the plasma interface: SpeCyl.2.V00 gives the
solution in the plasma region, while the vacuum counterpart is computed
analytically with IDL built-in Bessel’s functions. If the simulation time ∆tsim
is much longer than τW , Br is smooth across the RW. The ideal wall case of
SpeCyl.1 is retrieved for ∆tsim ≪ τW .
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Figure 6.2 illustrates this property: it reports three different simulations
the final saturation of a marginally resonating kink mode in reversed-field
pinch geometry. This case study will be explored in depth in Chap. 9. The
first simulation is obtained with an ideal wall at plasma interface, through
SpeCyl.1; the other two simulations are produced with SpeCyl.2.V00, with
a very far-displaced ideal wall (b/a = 10), and for two different values of τW .
For the first case (blue in the figure) the evolution time of the simulation is
quite smaller than the resistive-shell time-constant: ∆tsim ≪ τW . For the
second case (cyan in the figure), ∆tsim > τW , but still not too much, so that
the final saturated state of the simulation is still quite similar.
The radial profile across the interface is rendered by matching the processed
simulation profile of B1,−8

r with the analytical solution for the radial compo-
nent of the magnetic field (see Sec. 6.1.1).
Indeed we observe that when the simulation is long enough to see several char-
acteristic times (here, ∆tsim = 50 τW ), the radial profile of B1,−8

r across the
interface (dotted vertical line) gets actually smooth, whereas if ∆tsim ≪ τW
we almost retrieve the limit case of an ideal wall at plasma edge.

6.3 Numerical benchmark against the ideal

kink

We present in this section the outcomes of the benchmark of SpeCyl.2.V00
against the ideal MHD external kink (2, 1), in tokamak geometry. As we
will see, this resulted in poor agreement with the analytical theory, mainly
because of the remaining constraint on the velocity boundary response.
However, before presenting our results, we start with the numerical set-up.

6.3.1 Numerical set-up

Since we aim at describing the plasma-vacuum interface with our RW, we
assume here and for the rest of this Chapter a short time constant for the
RW wall (τW = τA), and a uniform profile for the mass density: ρ(r) ≡ ρ0.
A scan was performed on the value of τW , finding no macroscopic difference
between τW ≈ τA and τW ≪ τA. Also, to keep low complexity, the stabilising
ideal wall was set to a very distant radius b = 10, large enough to neglect
completely its action.
We could successfully reproduce both the flat-current profile (Eq. 4.2-4.4) and
the more realistic Wesson’s profile (Eq. 4.11-4.12), as described for SpeCyl.1,
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(a) Shafranov’s flat-current equilibrium.

(b) Wesson’s equilibrium for ν = 1

Figure 6.3: Initial equilibria for the numerical benchmark.
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by shaping the resistivity profile. Recall from Eq. 5.12 that

η(r) = ETA0 ·
[
1 + (ALET− 1) rBEET

]GAET
.

To obtain the flat current profile, we set ALET = 1 and GAET = 0, while, for
the Wesson’s profile:

ηWess(r) = η0

[
1−

(r
a

)2]−ν

, (6.20)

with a = 1, is rendered by setting ALET = 0, BEET = 2, and GAET = −1.
This poses some numerical issues, since such a resistivity profile should be
singular in r = 1. This problem is overcome by setting a maximum value for
edge resistivity ηmax, and redefine η such that:{

η(r) = ηWess(r) if ηWess(r) ≤ ηmax ,

η(r) = ηmax if ηWess(r) > ηmax .

The value of ηmax is empirically set at η0 × 100.

Apart from this, the initial equilibrium and the general set-up is the same
as the one presented in Sec. 5.3.1.
Figure 6.3 reports the initial equilibria for our numerical benchmark and their
relative resistivity profile. The agreement with the equilibria prescribed by
the models is completely satisfying.

6.3.2 Numerical results

The linear benchmark against the external kink mode (2, 1) could not
produce but very unsatisfactory results.

We started from the Shafranov’s flat-current model, which is predicted to
be the most unstable by the linear theory. Yet, SpeCyl’s simulations could
not find it unstable at all, for any initial equilibrium with 1 ≤ qa ≤ 2.
The direct observation of υ2,1r and B2,1

r radial profiles in Fig. 6.4 suggests
that the strong simplification in the fluid boundary conditions has important
drawbacks on the global shape of the eigenfunction. While the magnetic
field linear perturbation follows quite well the theoretical profile (small de-
tachment at the edge is probably motivated by finite resistivity effects), the
radial flow perturbation departs significantly from the expectations in a tran-
sition layer that roughly spans over the outermost 10% of the radial domain.
This is a symptom of a competition between the dynamics in the hot core of
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Figure 6.4: Shafranov’s flat-current eigenfunctions: SpeCyl (solid red) is al-
most indistinguishable from the model prediction (dashed black) concerning
the radial magnetic field perturbation B2,1

r and most of the velocity perturba-
tion υ2,1r profile. Some inconsistency in the fluid boundary conditions reveals
in 0.9 < r/a < 1. Velocity and magnetic field are expressed in SpeCyl’s
units: υA = a/τA and B0 = |B|t=0.

the plasma (that seems to behave in accordance with the linear theory) and
the fluid BCs that seem to inhibit the mode’s growth.

The linear benchmark against Wesson’s current model produced little
more promising results, at first. In fact, stability analysis found a narrow
unstable domain for qa ≲ 2.
Figure 6.5 reports the radial profile of the flow perturbation υ2,1r of one of
such unstable simulations. Once more we can observe the formation of a
transition layer (shaded in the figure) between the hot core of the plasma,
where the theoretical profile visibly emerges, and the BCs that once more
act as a “braking force”.
A full stability analysis is reported in Fig. 6.6.(a). We see that modes keep
being unstable even for qa > 2, suggesting that the unstable mode has in fact
a partially resistive nature (since it can get unstable even with an internal
resonance). Also the growth rate, much lower than theoretically expected,
seems to suggest that the time-scale is not Alfvènic.
It appears that the instability domain is globally shifted to higher values
of qa. Panel (b) shows the safety-factor profile of the first unstable mode
(qa ≈ 1.8): it is interesting to notice that the theoretical value for the lower
instability boundary is intersected by q(r) at the entrance of the transition
layer. Similar considerations apply also to the higher instability boundary.
The transition-layer at boundary seems thus to produce an effect similar
to pseudo-vacuum. Indeed, the deviation of υ2,1r from the ideal MHD pro-
file breaks locally the linearised flux-freezing relation (Eq. 3.35): −irB2,1

r ∝
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Figure 6.5: Benchmark of SpeCyl.2.V00’s radial velocity profile to the the-
oretical eigenvector ξr, for qa = 1.9, R/a = 4, S = 105, P = 1. We find a
“resisitive” boundary region where SpeCyl.2 departs significantly from the
expected eigenfunction.

Fυ2,1r . Thus, it effectively acts as a “resistive-layer” produced by the bound-
ary conditions, as discussed in [Hender89].
As a matter of fact, all the unstable simulations presented here have rela-
tively low plasma conductivity: S = 105, P = 1. The attempt of raising the
conductivity to S = 108 produced no unstable modes for qa ≤ 2.

6.4 Numerical benchmark against tearing modes

For the numerical benchmark against the tearing mode (2, 1) we enforced
the same numerical set-up as for the kink mode (2, 1) with the Wesson’s cur-
rent model.
Figure 6.7 reports our results: it is visible that the magnetic field penetration
through the RW is producing finite Bm,n

r |a in fair agreement with the linear
eigenvalue produced by the Newcomb’s solver. As for the case of SpeCyl.1,
we found increasingly good agreement between SpeCyl.2.V00 and the linear
theory as we increase S and P . For the simulations presented here, S = 108

and P = 104. Smaller values for the Prandtl number were also attempted,
but are not reported as simulations tend to be very noisy for such small vis-
cosities.
Panel (b) presents the growth rates: once more, as for SpeCyl.1, the Bondeson-
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(a) Growth rates of SpeCyl.2.V00 against theoretical prediction. Two vertical
lines mark the empirical instability region, which appears to be shifted with
respect to the expectation. SpeCyl’s growth rates greatly underestimate the
theoretical predictions.

(b) Safety factor profile for the first unstable kink mode (left-side red dashed
line in panel (a)). The shift from SpeCyl’s lower instability boundary and the
theoretical one roughly corresponds to the radial span of the resistive boundary
in Fig. 6.5.

Figure 6.6: Benchmark of SpeCyl.2 against the linear theory of the external
kink 1, 2, with a Wesson’s current distribution (ν = 1) and for R/a = 4,
S = 105, P = 1, and τW = τA.
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Sobel dispersion relation seems to describe more accurately the SpeCyl.2.V00’s
behaviour (in fact νSpeCyl ≈ 10−4 ≫ νcrit ≈ 10−11). However this time the
numerical growth rates are more poorly captured by either dispersion rela-
tion, despite their general trend is correct, plummeting as the resonance sinks
inside the plasma.

6.5 Conclusive summary

We have presented the resistive wall boundary conditions, that are a first
valuable step in the direction of a more realistic description of the plasma
boundary. To do this, we preliminarily reviewed the well known analytical
theory of the thin shell approximation and solved the Poisson’s magneto-
static problem in vacuum.
An overview of the specific implementation of SpeCyl.2.V00 boundary condi-
tion was given, to document for the first time this set of boundary conditions
in a structured way.
We also produced a quick overview of the literature dedicated to similar im-
plementations in other codes. In doing this, we highlighted the original and
ambitious aim set by my supervisors for these new boundary conditions. In
fact, unlike most of the dedicated literature, the resistive shell is not only in-
tended as an impenetrable wall, but also possibly as a free interface between
the plasma and the surrounding vacuum. The main advantages of this ap-
proach, if successful, would be twofold: on the one hand we would not need
enforcing a computationally unfavourable pseudo-vacuum region at plasma
edge; on the other hand, avoiding the pseudo-vacuum region could be more
instructive, in the view of “doing things well”. In fact, the pseudo-vacuum
has the effect of displacing the BCs enforcement to a position where the flow
has no impact. This means that the small inconsistencies in the implemented
model lose relevance, are concealed rather than corrected.
The benchmark against the linear MHD instabilities resulted in insufficient
agreement, and yet produced some promising results: in particular, we have
shown the good agreement between SpeCyl and the two initial classes of
equilibria mainly used throughout this Thesis, and the overall reliability of
SpeCyl.2.V00 in reproducing the magnetic boundary conditions. The latter
was evident from the radial profile of B2,1

r , displayed in Fig. 6.4, and from
the good agreement between SpeCyl and the Newcomb’s eigenfunctions, es-
pecially at plasma edge, for the case of the tearing mode (2, 1).
The mismatch in the growth rates, particularly stressed in the external kink
case study, is the symptom of some major inconsistency in this set of bound-
ary conditions and it seems natural to ascribe it to the strong assumptions
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(a) Benchmark of SpeCyl.2.V00’s B2,1
r against the linear instability code eigenvalue

br = iψ/r. All quantities are normalised to their value at resonance.

(b) Benchmark of SpeCyl.2.V00’s growth rates for the same case as in panel (a).
Bondeson-Sobel’s formula fits better than the resistive one, reported for compari-
son.

Figure 6.7: Linear benchmark against the Newcomb’s solver for the tearing
mode. Model parameters: ν = 1, R/a = 20, τW = τA, b = 10, S0 = 108, and
P = 1. νcrit ∼ 10−11 ≪ νSpeCyl = 10−4. Solver parameters: ∆r = 2 · 10−6.
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that this model makes on the flow velocity. Among these assumptions the
main ones are that the edge flow is purely radial and axi-symmetric, and that
it does not see the finite resistivity of the wall.



Conclusive summary of Part III

Part III has introduced the state of art of the code SpeCyl when I started
my PhD, in 2019. In particular, two alternative sets of boundary conditions
were present: SpeCyl.1, featuring a single ideal wall in direct contact with
the plasma, and SpeCyl.2.V00, where the plasma faces a thin resistive shell
and is surrounded by vacuum and by an outer ideal wall at tunable distance.
In Chap. 5 we gave a rich overview of the work-flow of the SpeCyl code. If
on the one hand this is instrumental to the comprehension of all the next
Chapters, it is also a valuable starting point in the reorganisation of various
sparse notes into a well-structured and updated user guide into this code.
Consequently, SpeCyl.1 BCs have been presented. A nonlinear benchmark
against the linearised theory of MHD current-driven instabilities has been
proposed, to test preliminarily the needed numerical approximations on a
safer ground, before repeating the same verification with the SpeCyl.2.V00
BCs. Indeed, both the external kink mode and the tearing mode case-studies
produced reasonably good agreement with the theoretical models, both con-
cerning the shape of the problem eigenfunctions and concerning the growth
rates.
For the external kink we studied a flat-current profile, enforcing a high-
resistivity, low-density region (dubbed pseudo-vacuum) between the hot core
of the plasma and the wall. By tuning the width of this region, we could also
operate a scan on the ideal wall proximity. However, finite resistivity and
mass-density in the pseudo-vacuum region, due to computational require-
ments, marginally spoiled the agreement in the stability analysis. Further-
more, the pseudo-vacuum approach results particularly cumbersome when
the wall position is far from plasma edge.
Tearing modes were reproduced using a smooth equilibrium current distri-
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bution, as in [FRS73]. Also in this case, a good agreement was achieved,
both concerning eigenvectors and stability analysis, particularly when using
the Bondeson-Sobel dispersion relation.

In Chapter 6, we have introduced the resistive wall formalism, widely
present in literature. All model equations have been derived from first prin-
ciples. A solution of the Poisson’s magneto-static problem has been pre-
sented, complementary to the one already derived from Newcomb’s equation
in Part II.
Consequently, we have presented SpeCyl.2.V00 BCs, the first step towards
a self-consistent and realistic description of the plasma boundary. This is
a flexible set-up that aims at reproducing either a physical resistive wall at
plasma boundary or a free plasma-vacuum interface, leveraging the thin-shell
matching conditions.
The nonlinear benchmark against linear theory of MHD current-driven insta-
bilities has produced unsatisfactory results: in particular, in the modelling
of a free interface we assist to the formation of a resistive boundary domain
in the outermost 10% of the radial coordinate, in which the plasma velocity
fluctuations shrink to zero, to meet the axi-symmetric assumption on the
edge flow, also departing from the theoretically frozen-in magnetic flux.
Such a behaviour is the symptom of an inconsistency in the formulation of
SpeCyl.2.V00 BCs that needs to be addressed. From a review of the main
critical assumptions in the model behind the present formulation, it emerges
that the major ones are related to the purely axi-symmetric condition on the
edge flow and the approximation that the velocity boundary does not depend
on the non-axisymmetric electric field fluctuations that are present on the
thin resistive shell, in direct contact with the plasma.
This motivates a major reformulation of the fluid boundary conditions, which
will be the subject of the next two Chapters.



Part IV

New magneto-fluid BCs:
formulation and
implementation
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Part IV and Part V together present the bulk of my research activity. In
this Part IV we describe the formulation and implementation of the new set
of boundary conditions. In the next Part V a rigorous nonlinear verification
will follow.

In quest for the formulation of a three-dimensional edge flow, inclusive
of non-axisymmetric edge fluctuations, the first difficulty to be faced results
from the spectral implementation of the SpeCyl code in the periodic variables
θ and z. In particular, all the products in the physical space are mapped
by the Fourier transform into highly nonlinear convolutions of modes along
both the azimuthal and the axial coordinate. This is already dealt with in
SpeCyl, where several equations already contain products to be evaluated
explicitly.
The real complication however arises when our model equations contain the
inverse operation of the product, as in the case of the (E×B)/B2 drift
equation that we leverage for the velocity boundary. In the real space, this
is simply sorted as a fraction between real numbers: in the Fourier space, we
need a deconvolution technique to isolate the unknown terms in the equa-
tions and evaluate them implicitly.
This problem was totally absent in the previous axi-symmetric implemen-
tation of the edge flow and is the topic of Chap. 7. In this first Chapter,
an original deconvolution technique, allowing semi-implicit evaluation of the
velocity boundary terms, is presented and tested. In order to reduce the
problem complexity, the implementation in Chap. 7 considers the simplified
ideal-wall boundary conditions for the magnetic part. A final nonlinear veri-
fication benchmark is presented between this formulation of SpeCyl and the
independent (non-spectral) 3D MHD code Pixie3D [Chacón04, Chacón06,
Chacón08], in the common ideal-wall limit of their boundary conditions.

The full implementation, comprehensive of both the realistic thin-shell
magnetic description and of the 3D edge flow is presented in Chap. 8. The
result is a flexible and self-consistent set of boundary conditions that consti-
tutes a synthesis of all the previous implementations (which are retrieved as
limit cases).
The key to the final excellent verification presented through Part. V is the
strong attention paid to ensuring complete self-consistency in its formulation:
this is fostered by a preliminary analytical re-derivation of all the hidden as-
sumptions contained in the model and by some additional numeric devices
that are also presented at the end of Chap. 8.





7
Preliminary study with ideal wall and

non-axisymmetric boundary flow

7.1 The newly implemented deconvolution tech-

nique

The fist step towards the implementation of a full-spectrum magneto-fluid
set of boundary conditions is to understand and face the problem presented
by convolutions of modes in SpeCyl code. This section aims at presenting
this problem, along with the solution we found to it, and the final imple-
mentation of a new and more complete set of boundary conditions for the
ideal-wall case.
As already mentioned, SpeCyl’s fully spectral implementation maps every
product into a nonlinear convolution of modes. This renders highly nontriv-
ial isolating one specific mode of, e.g., the magnetic field from one of the
υ × B products contained in the model of our BCs. On the other hand,
separating the unknowns of an equation is essential for the semi-implicit res-
olution approach described through all Part III.
This problem is completely absent in the case of a purely axi-symmetric edge
velocity since, as we will see, in that case the convolution in υ × B at the
boundary collapses into a trivial single term, which is linear in B.
For the same reasons, also the edge value for the velocity field gets very
intricate when a full-spectrum edge flow is considered.

We start this section with an introduction to the convolutions theorem,
to explain how is it that Fourier transform maps physical-space products into
convolutions. Next, we suggest a matrix-based reformulation of convolutions,
which we think is particularly effective to visualise the problem. This refor-
mulation constituted the key to the implementation of the new deconvolution
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technique.
We conclude illustrating the actual formulation and implementation of the
resulting new set of BCs in the case of the ideal wall directly facing the
plasma.

7.1.1 Convolution theorem

One fundamental property of the Fourier transform is the so-called con-
volution theorem, which states the following:

Theorem 1. Every product in the real space is mapped into a convolution
in the Fourier space.

Proof. We are interested in the case of discrete Fourier transform, mapping
the dependence on a continuously varying angle θ into a discrete wavenumber
m, such that:

A(θ) =
+∞∑

m=−∞

Âm e
imθ , B(θ) =

+∞∑
m=−∞

B̂m e
imθ

Âm =
1

2π

∫ 2π

0

A(θ) e−imθdθ , B̂m =
1

2π

∫ 2π

0

B(θ) e−imθdθ

where the hatted quantities signify the Fourier transform of the unhatted
ones.
It is now easy to show that a convolution in the Fourier space is indeed a
product in the physical one:

+∞∑
ms=−∞

Âm−ms
B̂ms

=
+∞∑

ms=−∞

1

2π

∫ 2π

0

A(θ) e−imθ+imsθ B̂ms
dθ

=
1

2π

∫ 2π

0

A(θ)

[
+∞∑

ms=−∞

B̂ms
eimsθ

]
e−imθ dθ

=
1

2π

∫ 2π

0

A(θ)B(θ) e−imθ dθ

≡ F [A(θ) ·B(θ)]

The generalization to the case where the angles are more than one is quite
straightforward.
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7.1.2 The matrix formulation of discrete convolutions

Let us now pay a closer look to the convolution product in the case of
discrete Fourier transform of a single angle θ. As we said:

F [A(θ) ·B(θ)] =
+∞∑

ms=−∞

Âm−ms
B̂ms

= Ĉm (7.1)

where Ĉm is just a convenient name for result of the convolution product.
A very good way to visualize this product is to settle in the space of wavenum-
bers and consider the above as the usual row-by-column scalar product
between the square matrix A(ms,m) and the column vector B(ms). For
the sake of simplicity, let us fix an upper and lower bound to our space:
−M ≤ m ≤ M , so that, computing the value of m − ms for each (ms,m)
component of A, we get

A ·B = C

with

A =



Â0 Â−1 . . . . . . Â−M+1 Â−M 0 . . . . . . 0 0

Â1 Â0 Â−1 . . . . . . Â−M+1 Â−M 0 . . . . . . 0

Â2 Â1 Â0 Â−1 . . . . . . Â−M+1 Â−M 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ÂM−1 . . . . . . Â1 Â0 Â−1 Â−2 . . . . . . Â−M 0

ÂM ÂM−1 . . . . . . Â1 Â0 Â−1 . . . . . . Â−M+1 Â−M

0 ÂM ÂM−1 . . . . . . Â1 Â0 Â−1 . . . . . . Â−M+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 ÂM ÂM−1 . . . . . . Â1 Â0 Â−1 Â−2

0 . . . . . . 0 ÂM ÂM−1 . . . . . . Â1 Â0 Â−1

0 0 . . . . . . 0 ÂM ÂM−1 . . . . . . Â1 Â0


. (7.2)

and

B =



B̂−M

B̂−M+1

. . .

. . .

B̂−1

B̂0

B̂1

. . .

. . .

B̂M−1

B̂M



, C =



Ĉ−M

Ĉ−M+1

. . .

. . .

Ĉ−1

Ĉ0

Ĉ1

. . .

. . .

ĈM−1

ĈM
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Even if SpeCyl implementation uses the explicit summation formula of Eq. 7.1
to evaluate convolutions, this compact matrix form on modes space will be-
come a very handy formalism in understanding their general properties, in
view of producing the new set of BCs. From the explicit calculation of the
convolution matrix A coefficients reported above, we can draw some funda-
mental considerations:

Property 3 (Band matrix). A is a band matrix, the central diagonal
assuming only the value A0. Also, it presents two “sidebands” of zeros, such
that Ĉm is the sum of 2×M + 1−m finite addends, ∀ allowed m.

Property 4 (Decomposition). The convolution matrix can always be de-
composed in two parts having different roles:

A = Â0 I+ ⟨A⟩

I being the identity matrix on modes space.

a) Â0 I has a non-shuffling effect on Fourier modes, that linearly maps
each m-th mode of B into the corresponding m-th mode of C through
a scaling factor Â0: Ĉm = Â0B̂m.

b) ⟨A⟩ has a shuffling effect on Fourier modes, that maps a linear combi-

nation of all the modes B̂p ̸=m into Ĉm, for all m.

Property 5 (axi-symmetric velocity case). In the limit case in which
only the axi-symmetric part of Â is finite, the convolution matrix reduces to
its “non-shuffling” part and the convolution product becomes:

C = Â0 I ·B = Â0B

I being the identity matrix on modes space.

This is the case of, e.g., the boundary υ×B products in the assumption
of purely axi-symmetric velocity: in this analogy, υ = υ0,0

I and Bm,n = B.

The generalization of this matrix formalism to the case with two contin-
uously varying angles (θ, ϕ = z/R), mapped into two discrete wavenumbers
(m,n) by the Fourier transform (as it is in SpeCyl), is achieved by establish-
ing an ordering rule, such to map the two dimensional set of modes into a
one dimensional variable j. The convolution product would now read

F [A(θ, ϕ) ·B(θ, ϕ)] = lim
M→∞

lim
N→∞

+M∑
ms=−M

+N∑
ns=−N

Â(m−ms),(n−ns)
B̂ms,ns

(7.3)
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and we may thus set such an ordering rule that:{
Â0,0 . . . Â0,N

}
→
{
Âj=0 . . . Âj=N

}
{
Â1,−N . . . Â1,+N

}
→
{
Âj=N+1 . . . Âj=3N+2

}
. . . (7.4){

ÂM,−N . . . ÂM,+N

}
→
{
Âj=N(2M−1)+M . . . Âj=M(2N+1)+N+1

}
with the additional property that the simultaneous change of sign of both m
and n flips the sign of index j:

j(−m,−n) = −j(m,n) (7.5)

As a matter of fact, this same ordering rule is already implemented in SpeCyl
and is dubbed JANZ. The only difference from the notation we use here is that
JANZ(0, n) > 0 when n < 0, and vice versa, for historic reasons. In this sec-
tion we stick to the notation just presented in Eqs. 7.4-7.5.
This way, retaining finite (though arbitrarily large) M and N , the two sum-
mations in Eq. 7.3 collapse into one:

+J∑
js=−J

Âj−js
B̂js

= Ĉj ↔ A ·B = C (7.6)

and the problem can be effectively treated as one-dimensional, with a con-
volution matrix in the form given before.
It must be added that this dimensional reduction is a purely formal trick,
made possible by the fact that we are considering a finite range of modes
m, n and j and by no means can it be considered a substantial change of
problem dimensionality1. The only case in which Eq. 7.6 is formally accu-
rate are the already two-dimensional simulations in helical geometry, where
(m,n) = (m,h×m) for some winding constant h.

7.1.3 Definition of the deconvolution technique

We are finally ready to introduce the deconvolution method. Albeit
Eq. 7.2 suggests that we should be facing a formal inversion problem for

1This is why no practical use is made in SpeCyl of the convolution matrix: to keep
it well-defined in the most general three-dimensional case, it would require many caveats
and cumbersome handling of exceptions. We present it here only as a valid theoretical
tool.
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a multi-diagonal matrix to pursue a fully consistent implicit approach, this
solution appears largely infeasible, owing to SpeCyl’s main loop architecture.
In fact, each step of this code code - the predictor step, the Thomas algo-
rithm for velocity, and the two corrector steps - is implemented serially for
the various modes. In other words, without an extremely undesirable refor-
mulation of the entire main loop structure, each j-th equation of our matrix
problem needs to be inverted individually to isolate the j-th unknown, before
even computing the matrix coefficients of the (j + 1)-th equation.
It is far more convenient to pursue a semi-implicit approach, where some
terms in the convolutions are evaluated explicitly, using their value at prior
time-step as an approximant for their present value. More explicitly, we al-
ways face a set of 2×J+1 equations in 2×J+1 unknowns, which we intend
to solve serially. In each of them, convolutions can be written in the form[

A · x
]
j
= Â0 xj +

[
⟨A⟩ · xold

]
j
, (7.7)

where x is an array of unknowns, the superscript “old” signifies evaluation
at the prior time-step, and the subscript j numerates the MHD modes. In
second member of Eq. 7.7, the first term is treated implicitly, while the second
term gives an explicit contribution through prior step evaluation.
This is the kernel of the approximated deconvolution technique.

7.1.4 Formulation of magneto-fluid boundary condi-
tions

The implementation of our new set or BCs through the application of
Eq. 7.7 needs to face two challenges: the generalisation to non-axi-symmetric
modes of the edge value for the radial flow, and the υ × B products in the
BCs for the magnetic field.

Concerning the fluid boundary, we must generalise to non-axisymmetric
components the pinch velocity υ(a) = υr,a r̂, expressed by Eq. 5.8 that we
report here:

υ0,0r,a =

[
E0ẑ×B0,0

θ

]
r=a

|B(a)|2
· r̂ .

For the time being, we still consider a purely radial flow at plasma edge:
transverse components will be added in a second moment. Equation 5.8 can
be conveniently re-written in the modes space as

B2
a · υr,a = Eθ,a ·Bz,a − Ez,a ·Bθ,a (7.8)
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where all quantities are evaluated at plasma edge. B2
a, Eθ,a and Ez,a are the

usual convolution matrices, formally similar to the one in Eq. 7.2 and the
components of the array υr,a are the unknowns of this equation.

The implementation is SpeCyl features thee subsequent passages to solve this
equation. The first step must be to compute the squared Cartesian amplitude
of the magnetic field as the sum of three convolutions:

B2
a = Br,a ·Br,a +Bθ,a ·Bθ,a +Bz,a ·Bz,a (7.9)

this can be subsequently turned into the corresponding convolution matrix,
according to the definition of the convolution product. For the ideal wall
case, of course Br,a = 0.

It is worth noticing that B2
a is generally a complex vector, being the mag-

netic field components complex numbers themselves: this is due to the fact
that this is not the norm of a physical field but rather its complex Fourier
transform.
The second step is the evaluation of the right-hand side of Eq. 7.8: albeit
Eθ,a = 0 in the ideal wall case, the implementation accounts also for it, to

allow future changes.
Finally, the third step is the inversion of the left-hand side of Eq. 7.8, to
find the components of υr,a. This is done by leveraging the deconvolution

technique just developed:

B2
a · υr,a =

(
B2

a

)0
υr,a +

〈
B2

a

〉
· υoldr,a

where (B2
a)

0 is the axi-symmetric component of B2
a. Finally, we can assign

the boundary value to the modes of velocity (including the axi-symmetric
one) as

υr,a =
1(
B2

a

)0 [Eθ,a ·Bz,a − Ez,a ·Bθ,a −
〈
B2

a

〉
· υoldr,a

]
, (7.10)

where υoldr,a at the RHS is evaluated at the previous time step. Note that in

the purely axi-symmetric case this formula specialises to the previous Eq. 5.8:

υ0,0r,a = −
E0B

0,0
θ,a(

B2
a

)0 .
Referring to SpeCyl’s work-flow, represented in Fig. 5.2, the computation of
the edge value for the radial flow in Eq. 7.10 is still located at the end of the
corrector step. The obtained values are fed to the Thomas algorithm for the
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flow, at the subsequent time-step.

Concerning the magnetic field, the application of our deconvolution tech-
nique is pretty straightforward, and the real complexity lies in the already
present predictor-corrector approach.
The general structure of the transverse magnetic field components is pre-
served, with the only addition of the non-axisymmetric modes in the υ×Bt

product:

ηa∇×
(
Br,a r̂+Bt,a

)
− υ0,0r,a r̂×Bt,a −

〈
υr,a
〉
r̂×Bold

t,a = Et,a , (7.11)

where Et,a = E0,0
z,a ẑ for the ideal wall case. Thus also in this case, as for

the velocity case, for each Fourier mode such that −J ≤ j ≤ J , we serially
isolate the j-th MHD mode of Bθ and Bz from the j-th equation, using an
explicit prior-step evaluation of all the other MHD modes having j′ ̸= j.

Since this new version of our boundary conditions is a generalisation of
SpeCyl.1 to a full-spectrum radial velocity, υm,n

r , in the following we will refer
to it as to “SpeCyl.1.Vmn”.

7.2 Verification against Pixie3D code

A very valuable test for our deconvolution method can be achieved by
comparing its predictions with a non-spectral numeric tool. In this section
we present a verification benchmark between SpeCyl and the independent 3D
nonlinear MHD code Pixie3D, enforcing similar assumptions at plasma edge
(ideal wall and full-spectrum radial flow velocity). The term “verification”
defines a specific endeavour aimed at ensuring the mathematical correctness
of numeric tools.
One such verification had already been performed in 2010 between SpeCyl
and Pixie3D [Bonfiglio10], enforcing ideal wall boundary conditions and
purely radial edge flow. In that case, of course, only Pixie3D could pro-
duce a full spectrum radial flow at plasma edge, since the generalisation of
SpeCyl’s boundary flow was not yet implemented. Nonetheless, the two codes
achieved excellent linear and nonlinear agreement on several case-studies, in
one-, two-, and three-dimensional MHD simulations.
For this reason, we do not expect our modification to produce any macro-
scopic variation in simulations outcomes, at least in the ideal wall case (while
we strongly hope it to make a relevant difference in the resistive wall case,
discussed in the next chapters). Also, as we discussed in Part II, the pres-
ence of an ideal wall directly at plasma edge is expected to stabilise all the
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free-interface modes, allowing thus only small velocity fluctuations at the
boundary.

We start this section with a brief presentation of the Pixie3D code. Then
we present the verification results, comparing SpeCyl.1.Vmn both to Pixie3D
and to the previous version, SpeCyl.1. As we will see, even the small and
unimportant differences between the two codes at the plasma boundary,
present in [Bonfiglio10], are totally removed with this new formulation, con-
firming thus the correctness of its implementations.

7.2.1 Pixie3D

The conservative, fully implicit, finite-difference code Pixie3D [Chacón04,
Chacón06] enforces a self-consistent visco-resistive and compressive MHD
model to propagate in time the magnetic field B, the flow velocity υ, the
plasma temperature T , mass density ρ and pressure p:

∂tρ+∇ · (ρυ) = 0, (7.12)

∂t(ρυ) +∇ ·
[
ρυυ−BB− ρν(T )∇υ + I

(
p+

B2

2µ0

)]
= 0, (7.13)

∂tB = −∇× E, (7.14)

E =η(T )J− υ ×B− di
ρ
(J×B∇p), (7.15)

J = ∇×B, (7.16)

∇ ·B = 0, (7.17)

∂tTe + υ · ∇Te + (γ − 1)

[
Te∇ · υe +

∇ · q−Q

ρ

]
= 0, (7.18)

p = (1 + αT )ρTe ; υe = υ − di
ρ
J, (7.19)

where di = c/ωpi is the ion skin depth, Te is plasma temperature, αT = Ti/Te
is the ratio of ion to electron temperatures, and I is the identity tensor.
The electric field is determined by resistive Ohm’s law [Fitzpartick22] plus
a Hall term, accounting for the interaction between the two plasma species
[Chacón08].
Resistivity and viscosity are in general function of the temperature profile,
which evolves according the the heat equations 7.18, with q and Q heat flux
and heat source, respectively. γ is the polytropic constant (p ∝ ργ).



164 Preliminary study with ideal wall and non-axisymmetric boundary flow

As for SpeCyl, Eqs. 7.12-7.19 are normalised to physical constants: lengths to
the minor radius a, time and velocities to the Alfvén time and Alfvén velocity
υA = a/τA, respectively, the magnetic field and the temperature to their re-
spective initial value on axis, and the same holds for pressure and density. As
already seen for SpeCyl, in this units the resistivity is the inverse-Lundquist
number S = 1/η and the viscosity is the inverse-Reynolds number Re = 1/ν.

Pixie3D adopts a conservative, finite-difference scheme to discretize the
equations [Chacón04]: a Cartesian logical mesh ξ is used, along with a coordi-
nates transformation x[ξ] for the embedding in the physical space geometry.
This ability of treating a generalised curvilinear coordinates allows Pixie3D
to operated in many different geometries relevant to fusion, among which
the toroidal, the cylindrical and the helical. All quantities are thus evaluated
in the physical space, in opposition to the spectral implementation of SpeCyl.

The temporal discretisation is fully implicit, generally relying on a Crank-
Nicholson method. The resulting set of algebraic equations is dealt with a
preconditioned Newton-Krylov solver [Chacón04, Chacón06].

For the verification in [Bonfiglio10], a reduction in the models of both
codes was operated to find a common regime of applicability: constant
and uniform mass density ρ, no artificial viscosity β in the momentum bal-
ance equation of SpeCyl, uniform and constant temperature and pressure in
Pixie3D, uniform and constant kinematic viscosity ν in both codes and no
heat sources neither Hall effect in Pixie3D.

7.2.2 Nonlinear results

In our verification we focused on the single case study of a marginally
resonant (on axis) mode (1,−8) in RFP geometry, among those present in
[Bonfiglio10]. This is a 2D helical case-study, where an initial perturbation
1,−8 is excited on the top of our usual Ohmic pinch equilibrium. The re-
sistivity profile is η = 3.33 · 10−5 [1 + 20 r10], while the uniform viscosity is
ν = 10−2. The safety-factor on axis is q0 = 1/8, with α0 = 4 and R/a = 4
as in Fig. 5.1.(a). This case and the relative set-up will be discussed much
more in deep in Chap. 9.
As foreseen, the overall predictions are mostly unchanged between SpeCyl.1
and SpeCyl.1.Vmn. In fact, the only visible difference is in a narrow layer
close to the plasma edge, in the radial profiles of two physical quantities: the
radial flow velocity (of course), and the current density. Figure 7.1 repre-
sents the detail in the boundary region of three plasma quantities: the axial
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electric field, the radial flow velocity, and the axial current density. For each
quantity, the first three harmonics of mode (1,−8) are represented, along
with the axi-symmetric mode.
In the first panel, the electric field results from enforcing the resistive Ohm’s
law on the processed simulation data: E = ηJ − υ × B. The fact that its
value at plasma edge is the one prescribed by the boundary conditions - fi-
nite axi-symmetric loop-field E0,0

z = E0 and null non-axisymmetric modes
- certifies that the self-consistency of the code has been preserved by our
modification. This is a first and promising hint, suggesting that the imple-
mentation is correct. Analogous considerations hold for Eθ, whose modes all
vanish at plasma boundary, in accordance with the prescription of the ideal
wall BCs.
Paying now a closer look the the radial velocity, we see that the non-axisymmetric
components that SpeCyl.1 profiles plummet rapidly near plasma edge, to
meet the purely axi-symmetric condition in r = a. This is not the case for
SpeCyl.1.Vmn, which rather sticks quite perfectly onto Pixie3D’s solutions.
It is comforting to observe that the last few outermost radial steps seem to
continue the same trajectory suggested by the rest of the radial profile, unlike
SpeCyl.1’s profiles. More important is however the outstanding agreement
with a code that, like Pixie3D, can completely avoid the convolutions com-
plexity by operating in the physical space.
Concerning the axi-symmetric mode, a very small (still visible) difference in
the edge value is also present between SpeCyl.1 and the other two (mutually
agreeing) profiles, that are slightly more negative at plasma edge. This is due
to the last term at second member in Eq. 7.10, accounting for the presence
of other modes in the spectrum of radial velocity at edge. This term is here
quantitatively very small, but it is reasonable to assume that it may become
important for free-edge instabilities where the velocity fluctuations at plasma
edge are expected to grow larger.
Finally, we can see how the axi-symmetric velocity assumption in SpeCyl.1
is mirrored in the presence of little unphysical current spikes at plasma edge.
This owes to the fact that SpeCyl’s BCs simultaneously enforce the resistive
Ohm’s law and assign a fixed edge value to the tangential electric field. This
implies that for all the non- modes

Em,n
z,a = ηaJ

m,n
z,a − υ0,0a Bm,n

θ,a = 0 ,

so that Jm,n
z,a ∝ υm,n

a . This implies that the abrupt change of direction in the
velocity profiles near the plasma edge must be reflected also on the modes
of current density. Also in this case the problem is avoided with the new
implementation, in excellent agreement with Pixie3D.
The remaining small inconsistencies between the two codes in the bulk of



166 Preliminary study with ideal wall and non-axisymmetric boundary flow

Figure 7.1: Detail of the radial profile of three physical quantities, in the
stationary nonlinear saturation of the marginally resonant kink mode (1,−8),
after 5000 τA of evolution. SpeCyl.1.Vmn (in blue), SpeCyl.1 (in gray),
and Pixie3D (in red) are in excellent agreement everywhere but in a narrow
layer at plasma edge, where SpeCyl.1’s υr and Jz exhibit a small unphysical
drop.

the plasma, away from the boundary, were already present in [Bonfiglio10]
and are indeed very small when they are viewed in the full scale of the image
(here we only present a magnified detail of the boundary region). They
may originate from a number of causes, including small intrinsic differences
between the architectures of the two codes, or a slightly insufficient azimuthal
mesh in Pixie3D’s simulation (here: 64 mesh points along θ in Pixie3D,
against 32 helical harmonics in SpeCyl).

7.3 Conclusive summary

This chapter started presenting the main challenge that needed to be
overcome in order to formulate a new set of boundary conditions, compre-
hensive of finite non-axisymmetric edge velocity fluctuations. This originates
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from the fact that a simple product in the physical space is mapped into a
nonlinear convolution of modes, according the the convolutions theorem 1,
in the Fourier base in which SpeCyl operates.
The problem assumes some interesting symmetry in terms of an original and
convenient matrix-array formalism, whose main advantage is to help visualis-
ing the problem. This way, three useful general properties of the convolution
products emerge quite naturally. We defined an ordering rule that leverages
the already present numeration of the modes in SpeCyl, to lower the prob-
lem dimensionality in the case of a finite number of modes, which is the case
relevant to the implementation.
From all this we could finally derive an approximated deconvolution tech-
nique, whose implementation allows to extend SpeCyl’s boundary conditions
to non-axisymmetric edge velocities.

A preliminary study was conducted for the simpler case of an ideal wall
facing the plasma, extending SpeCyl.1 BCs to a new set, featuring full-
spectrum edge flow and dubbed SpeCyl.1.Vmn. This has been tested against
SpeCyl.1 and Pixie3D on the case study of a marginally resonant kink mode
in the RFP.
The results of the verification benchmark suggest that the deconvolution
technique is effective and its implementation is correct. Also, some aspects
in the edge flow and current density suggest a slight enhancement in the
self-consistency of the code.
Altogether the results presented in this chapter allow us to switch to the im-
plementation of the full set of boundary conditions, including both a three-
dimensional edge flow velocity and a thin-shell like magnetic boundary.





8
New magneto-fluid boundary conditions with

3D edge flow

This Chapter is dedicated to the new set of boundary conditions: its
physical hypotheses and implications, its formulation, and its implementa-
tion in SpeCyl.
We start by re-deriving in Sec. 8.1 the model equations, also using the math-
ematical tools already presented in Chap. 6. This step is mandatory to high-
light all the hidden assumptions and finally achieve a fully self-consistent
formulation. Indeed, some previous exploratory attempts to get to a com-
prehensive magneto-fluid set of BCs had been formulated and tested without
going through this formal step. These are documented in [Spinicci22] and
thoroughly presented in Appendix B. In that case - formally very similar to
the final set-up we present in this chapter - the incomplete self-consistency
of the BCs forced us to leverage a narrow pseudo-vacuum region at plasma
edge. The nonlinear benchmark study against the ideal external kink, fea-
turing also a qualitative comparison with the JOREK-STARWALL code,
obtained acceptable but still unsatisfactory agreement with the linear theory
predictions.
In Sec. 8.2 we illustrate the final implementation of our new and compre-
hensive set of boundary conditions, dubbed “SpeCyl.2”. The thin resistive
shell formulation of the magnetic boundary is here self-consistently coupled
with two alternative formulations for a three-dimensional edge flow. This is
a flexible set-up that aims at containing all the other sets of BCs hitherto de-
scribed as a particular case: SpeCyl.2.V00 would be the radial-axisymmetric
limit for the edge velocity, SpeCyl.1.Vmn must be retrieved as the ideal wall
limit (for τW ≫ 1) and SpeCyl.1 by enforcing the two limits simultaneously.
Sec. 8.3 presents the conclusive summary of this chapter.

169
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The work contained in this chapter was partially produced during my
stay at Los Alamos National Laboratory, USA, under the guidance of Dr.
Luis Chacón.

8.1 Re-derivation of the physical model

We seek to define a fully self consistent set of boundary conditions, featur-
ing a thin resistive shell at plasma boundary, surrounded by vacuum and by
an outer ideal wall at finite distance, and a three-dimensional flow at plasma
edge.
The magnetic boundary conditions enforce the continuity of the electric field
components in the direction tangential to the shell surface. This is computed
according to the thin-shell relations Eq. 6.1-6.6 already derived in Chap. 8,
which we report below in a compact form:

[Br]
+
− = 0 , Et,W =

a

τW
[̂r×Bt]

+
− ,

∂Br,a

∂t
=

1

τW

[
d(rBr)

dr

]+
−
,

where τW = (µ0 a∆W )/ηW is the resistive diffusion time through the thin
shell, ∆W ≪ a the shell thickness, and ηW its resistivity. The vacuum
fields just outside the resistive wall and their derivatives have already been
analytically obtained in Chap. 6 by solving analytically the Poisson’s problem
with assigned boundary conditions on the resistive shell (Br = Br,a) and
on the outer conductor (Br = 0). Suitable coefficients (Θm,n, Zm,n, ∆m,n,
Eqs. 6.10-6.17) can be obtained such that, for every mode (m,n),

Bm,n
θ,a |+ = Θm,niB

m,n
r,a , Bm,n

z,a |+ = Zm,niB
m,n
r,a ,

d

dr
(rBm,n

r )|+ = ∆m,nB
m,n
r,a .

The boundary condition for the velocity requires some further assump-
tion, needed to close the set of equations of our model. In this section we
generalise the already presented E×B-like edge flow in two alternative ways.
In the ideal wall case, the last magnetic flux surface was parallel to the sur-
face of the wall: from the properties of the vector product, it was manifest
that the pinch flow, inherently orthogonal to the magnetic field, had to be
purely radial.
Once we allow finite resistive diffusion through our boundary, we can close
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our model equations based on two alternative assumptions. The first is to
retain all the three spatial components (r, θ, z) of the perpendicular flow.
The second is perhaps the most direct and consists in considering again a
purely radial velocity: this means taking only the radial projection of the
perpendicular flow.
As we will see in the following, both these assumptions are totally legitimate,
since they both lead to a self-consistent closure of our magneto-fluid model
equations. As a matter of fact, our implementation allows them both, as we
will discuss more in deep in Sec. 8.2. In particular, the purely radial assump-
tion for the edge flow is preferentially used when the thin-shell is interpreted
as a physical wall, that can brake the mode rotation and fix its angular ve-
locity at boundary. On the other hand, the purely perpendicular constraint
is typically adopted for this Thesis in the vacuum-wall limit.

In the next two subsections we derive the two alternative formulations for
the boundary flow. All the results we will find are summarised in Fig. 8.1.
Before we start with our derivation it is useful to introduce some formalism.
In Fig. 8.1.(a) we see the representation of the “entrance” (i.e., the inner side)
of the thin-shell: the plasma is the region beneath the gray surface, while
the region above it is the RW. The red arrow named Ba is magnetic field at
the surface of the plasma (and not the vacuum field), which is penetrating
the shell. We want to define a set of local coordinates on the plane of the
plasma surface, perpendicular to the radial unit vector r̂. This is defined as
follows:

ŝ1 ≡
Bt,a

|Bt,a|
, ŝ2 ≡ r̂× ŝ1 , (8.1)

where Bt,a = Ba−Br,a r̂, as usual. Along with the radial direction, (r̂, ŝ1, ŝ2)
constitutes a right-handed local system of coordinates at the plasma interface.
Also, we recall here two properties of the vector product, which will have large
application in the next few pages:

(A×B)×C = (A ·C)B− (B ·C)A , (8.2)

A×B ·C = A · (B×C) , (8.3)

for any three vectors A, B, and C.

8.1.1 Self-consistent formulation with υ∥,a = 0

We start from the case of purely perpendicular velocity, since it is the
easiest. In fact, in this case we simply have a scalar constraint on the edge
flow:

υ∥,a = (υa ·Ba) = 0 . (8.4)
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Figure 8.1: Graphical representation of the two formulations of the fluid
boundary. Panel (a) introduces the local coordinates (r̂, ŝ1, ŝ2): Ba is the
plasma magnetic field at boundary, the grey surface is the inner side of the
shell (below it there is the plasma, above it is the shell itself). Panel (b)
presents the υ∥,a = 0 formulation, preferentially used for the vacuum-wall
limit (τW ≲ τA). Panel (c) illustrates the υt,a = 0 formulation, typically used
to model a physical resistive shell. In panels (b-c) the amplitude of ηaJa is
strongly exaggerated to make it visible.
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If we now write the resistive Ohm’s law, we find

Ea + υ⊥,a ×Ba = ηaJa .

Taking the vector product with Ba of both members of the relation above
and making use of Eq. 8.2 produces

|Ba|2υ⊥,a = (Ea − ηaJa)×Ba .

This reveals our first implicit assumption: in order to get an E×B-like
velocity, we need to require that

υ⊥,a =
Ea ×Ba

|Ba|2
=⇒ Ea ×Ba ≫ ηaJa ×Ba , (8.5)

where υ⊥,a = υ⊥r,a r̂+ υ⊥1,a ŝ1 + υ⊥2,a ŝ2, and

|Ba|2 = B2
r,a +B2

1,a .

The assumption contained in Eq. 8.5 is a force-free condition for our plasma
boundary, since it requests that J×B forces are negligible on the scale of
the E×B flow.
The direct substitution of υ⊥,a back into the Ohm’s law gives us is revealing
of the consequences of our assumption:

Ea +
Ea ×Ba

|Ba|2
×Ba = ηaJa

or, making use of Eq. 8.2,

Ea ·
[
I+ b̂b̂− I

]
= ηaJa , with b̂ =

Ba

|Ba|
,

implying that self-consistency needs that

E∥,ab̂ = ηaJa . (8.6)

Equation 8.6 implies that Ja ×Ba = 0, as a natural consequence of Eq. 8.5.
The resulting current density and electric field at plasma edge are then

Ja = Jr,a r̂+ J1,a ŝ1 , (8.7)

Ea = ηaJa + E2,a ŝ2 . (8.8)

There is yet another assumption we need to make, in order to close our set
of equations. In fact, the tangential components of υ⊥,a depend on the radial
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electric field, which we cannot determine from the above analysis (recall that
Et,a =

a
τW

r̂× [Bt]
+
−).

The easiest assumption we can opt for is the following:

Er,a = ηaJr,a = 0 . (8.9)

The rationale for this is to enforce a “continuity” property between the
plasma edge and the resistive wall, whose vanishing radial thickness does
not allow radial currents or electric fields. Concerning the current density,
the physical meaning of Eq. 8.9 is to ensure that the plasma interface with
the shell does not behave as a source/sink of electric charge, thus motivating
a discontinuity from a finite Jr,a, just inside the plasma, to no charge flux
just outside. This would be conceptually problematic since we plan to use
this formulation in the the vacuum-wall limit, when we treat the RW as a
free interface between plasma and vacuum: of course no currents can come
from outside.
As a consequence, Ja × Ba is not any more null, since Br,a ̸= 0, and this
partially contradicts our first assumption Eq. 8.5. The problem is however
only apparent, since both the assumption and the edge-velocity constraint
keep valid, up to O(ηa).

Figure 8.1.(b) shows the geometry of this case, along with the relative
assumptions.

8.1.2 Self-consistent formulation with υt,a = 0

This second case implies imposing “no-slip” (Dirichlet) boundary condi-
tions on the flow components tangential to the RW:

υt,a = υa − υr,a r̂ = 0 . (8.10)

The resistive Ohm’s law becomes

Ea + υr,a r̂×Ba = ηaJa .

Taking the vector product with Ba and relying on Eq. 8.2 yields

υr,a
(
Br,aBa − |Ba|2 r̂

)
= −Ea ×Ba + ηaJa ×Ba .

Taking the radial component of the above equality we get

|Bt,a|2υr,a = [(Ea − ηaJa)×Ba] · r̂ .
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To get to an E×B-like velocity, our first implicit assumption must be (as
for the other case):

υr,a =
Ea ×Ba

|Bt,a|2
· r̂ =⇒ Ea ×Ba · r̂≫ ηaJa ×Ba · r̂ . (8.11)

Please note that the two important differences with respect to Eq. 8.5:

� our assumption only concerns the radial direction;

� our purely radial velocity has |Bt,a|2 = B2
1,a at the denominator, instead

of the full |Ba|2.

Substituting this term back into the resistive Ohm’s law, we obtain:

Ea +
Ea ×Ba · r̂
|Bt,a|2

r̂×Ba = ηaJa .

Making use of Eq. 8.3 we get

Ea ·

[
I−

(r̂×Bt,a)(r̂×Bt,a)

|Bt,a|2

]
= ηaJa ,

or, leveraging Eq. 8.1,
Ea ·

[
I− ŝ2ŝ2

]
= ηaJa .

If we project this equation along r̂ and along ŝ1 we get

Er,a = ηaJ1,a, (8.12)

E1,a = ηaJ1,a, (8.13)

whereas projecting along the ŝ2 we get

E2,a[1− 1] = ηaJ2,a =⇒ J2,a = 0 . (8.14)

All along, Eqs. 8.12-8.14 imply

Ja = Jr,a r̂+ J1,a ŝ1 ,

Ea = ηaJa + E2,a ŝ2 .

This time, since no explicit reference is made of Er,a and Jr,a in our model
equations, we do not need to enforce Eq. 8.9, hence Ja ×Ba · r̂ = 0 and we
should expect Eq. 8.11 to hold exactly.
The geometry of this case, along with its assumptions, is reported in Fig. 8.1.(c).
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8.1.3 Remark on the role of the hidden assumptions
in the implementation

In the next section we illustrate the implementation of this new set of
boundary conditions. As we will see, none of the hidden assumptions that
we have highlighted in the previous sections will be explicitly enforced: they
will rather “emerge” from the implementation itself, when, for instance, we
will not consider the contribution of J×B terms in determining the edge
flow.
The reason why it is fundamental to keep track of them, however, is that we
can use them as a metric of the self-consistency of our implementation.
Suppose that we find that a simulation has produced very intense radial
J×B radial forces at plasma edge. With our present implementation, this
is a sign that something is producing an inconsistency, that needs to be
tackled and corrected in the implementation.
Of course there may be some inconsistency in the code which is not probed
by these metrics. Nonetheless, the attentive study of these valid tools is
ultimately one of the main reasons why in the end we are able to present a
fully operative set of BCs.

8.2 Implementation

Let us put all parts together. Figure 8.2 shows the general features of
the implementation of SpeCyl.2. It is manifest that this is a flexible and
comprehensive set of boundary conditions that contains all the previous im-
plementations as limit cases. Their combination in one complete formulation
bring the code to advanced capabilities in modelling the plasma boundary,
also fixing some inconsistencies of the previous version, and it can be consid-
ered a major upgrade for the SpeCyl code.
In SpeCyl.1, the geometry features an ideal wall in direct contact with the
plasma and a purely one-dimensional edge flow. By keeping the same for-
mulation for the flow, while displacing the ideal wall at finite distance and
modelling a thin resistive shell facing the plasma, we get to SpeCyl.2.V00.
We have shown that by setting the resistive wall time to a very large value
it is possible to retrieve SpeCyl.1 as a particular case of SpeCyl.2.V00.
On the other hand, modelling a three-dimensional boundary flow we could
advance SpeCyl.1 into SpeCyl.1.Vmn. Of course, by switching off the non-
axisymmetric modes of the boundary flow, SpeCyl.1 is fully retrieved.
This final step, dubbed SpeCyl.2, is the merging of the more realistic mag-
netic modelling of SpeCyl.2.V00 and of the more complete modelling of
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Figure 8.2: General scheme of the evolution of SpeCyl’s BCs. SpeCyl.2 con-
tains all the other formulations as limit cases: SpeCyl.1.Vmn is re-obtained
for τW ≫ 1; SpeCyl.2.V00 by setting an axisymmetric radial edge flow as in
Eq. 5.8; SpeCyl.1 descends from the simultaneous application of both limits.

boundary flow in SpeCyl.1.Vmn. Indeed, both intermediate versions can
be retrieved by substituting our new and articulate modelling of the edge
flow with Eq. 5.8, and by setting τW ≫ τA, respectively.

In this section, we report the three main parts that constitute the upgrade
from the previous versions:

� the generalisation of SpeCyl.2.V00 magnetic boundary equations to a
three-dimensional flow;

� the implementation of the two alternative formulations for the edge
flow;

� a rearrangement of the structure of SpeCyl’s corrector step, to provide
enhanced self-consistency.
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8.2.1 Generalisation of the thin-shell magnetic bound-
ary to 3D edge flow

The overall structure of SpeCyl.2 is very similar to SpeCyl.2.V00, apart
from the fluid conditions and some details in the implementation. For this
reason, we report here Eqs. 6.18-6.19 that are formally still valid:

(m,n) = (0, 0)←→


E0,0

θ,w = 0

E0,0
z,w = E0

B0,0
r,a = 0

(8.15)

(m,n) ̸= (0, 0)←→


Em,n

θ,w = − a

τW

[
Θm,niB

m,n
r,a − (Bm,n

θ,a )−
]

Em,n
z,w =

a

τW

[
Zm,niB

m,n
r,a − (Bm,n

z,a )−
]

∂Bm,n
r,a

∂t
=

1

τW

[
∆m,nB

m,n
r,a −

∂(rBm,n
r )

∂r

] (8.16)

The tangential components of the magnetic field are still updated by enforc-
ing the continuity of the tangential electric field between the plasma edge
and the resistive wall:

Et,a = EW = E0 ẑ+
a

τW
r̂× [Bt]

+
− , (8.17)

where we have restored our compact array-like notation for SpeCyl’s modes,
already introduced in Chap. 7, and E0 ≡ (Ez,a)

0,0.
For a non-axisymmetric, three dimensional flow and in presence of a thin
resistive shell at plasma edge, Eq. 8.17 reads:

E0 ẑ+
a

τW
r̂× [Bt]

+
− = η∇×

(
Br,a r̂+Bt.a

)
+

(
υ0,0

t,a I+
〈
υt,a

〉)
×Br,a r̂ (8.18)

− υ0,0r,a r̂×Bt,a −
〈
υr,a
〉
r̂×Bold

t,a ,

Note that, unlike the product υr ×Bt in the third line of Eq. 8.18 (already
discussed in Chap. 7), the new term υt × Br in the second line of Eq. 8.18
gives only an explicit contribution. Referring again to Fig. 5.2 for the vi-
sual representation of SpeCyl’s work-flow, Eq. 8.18 is enforced three times
throughout the main loop of the code: at predictor step, corrector interme-
diate step and final corrector step. The first two times, the radial magnetic
field Br,a is not updated by the code (as discussed in Chap. 6) and thus
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Eq. 8.18 uses its prior step evaluation explicitly. For the final corrector step,
Br,a evolves according to

∂Bm,n
r,a

∂t
=

1

τW

[
∆m,nB

m,n
r,a −

∂(rBr
m,n)

∂r

]
, (8.19)

and its updated value is explicitly used in Eq. 8.18.
Equation 8.19 does not depend on the flow velocity, so it is formally un-
changed in the generalised case. Unfortunately, this is not the case for its
implementation, since this equation is used in SpeCyl so as to constrain the
initial value for the inwards integration, from edge to axis, that constitutes
the backwards step of the Thomas algorithm. As anticipated in Chap. 5, the
forward Thomas algorithm produces a set of linear equations like{

Bm,n
r

Bm,n
θ

}
r−∆r

=

{
Er,r Er,θ

Eθ,r Eθ,θ

}
·
{
Bm,n

r

Bm,n
θ

}
r

+

{
Fr

Fθ

}
,

{
Bm,n

z

}
r−∆r

= Ez ·
{
Bm,n

z

}
r
+ Fz ,

such that by assigning the boundary values to all the magnetic field compo-
nents we can start the inwards integration.
Crucially, Eq. 8.19 depends on Bm,n

r (a −∆r), which is still formally an un-
known (we have not started the backwards step yet), through the radial
derivative of rBm,n

r in the plasma region. SpeCyl’s implementation deals
with this issue by leveraging the set of linear equations produced by the
Thomas algorithm, writing

Bm,n
r |a−∆r = Er,rB

m,n
r,a + Er,θB

m,n
θ,a .

Unfortunately, also Bm,n
θ,a is still an unknown. This is finally overcome by

enforcing Eq. 8.18 along with

Bm,n
θ |a−∆r = Eθ,rB

m,n
r,a + Eθ,θB

m,n
θ,a

to obtain a final equation that only depends on the single unknown Bm,n
r,a .

This brings a rather complex manipulation that was initially dealt with by
Daniele Bonfiglio for the implementation of SpeCyl.2.V00, but had to be
generalised to keep track of the new terms in Eq. 8.18. We report below the
snippet corresponding in concrete to what we have been discussing about:
we do not want to explore the meaning of each term, but just to provide the
idea of the involved complexity:
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1 UU(1,LX) =

. ( ( FFJ(1,LX -1,Jmn)

3 . + TAUW/DT*BR(LX ,J)/X(LX -1)/LX

. ) / EEJ(1,2,LX -1,Jmn)

5 . + ( FFJ(2,LX -1,Jmn)

. +( SUM1(LX) - 2.* SUM3(LX) ) /

7 . ( 2.* ETAA(LX)*X2(LX -1)*LX

. + ( VRLX (0) - X(LX)/TAUW ) )

9 . )/( 1./ RRADMN - EEJ(2,2,LX -1,Jmn) )

. ) / ( ( ( X(LX) - (CDRBR(J)-TAUW/DT)/LX )/X(LX -1)

11 . - EEJ(1,1,LX -1,Jmn)

. ) / EEJ(1,2,LX -1,Jmn)

13 . - ( I*2.*X(LX)/LX

. *( ETAA(LX)*M/X(LX) + X(LX)/TAUW*CBT(J) )

15 . /(2.* ETAA(LX)*X2(LX -1)

. +(VRLX (0)-X(LX)/TAUW)*X(LX)/LX )

17 . + EEJ(2,1,LX -1,Jmn)

. ) / ( 1./RRADMN -EEJ(2,2,LX -1,Jmn) )

19 . )

Nonetheless, this manipulation allows a mostly implicit evaluation of the
most important equation of our set of BCs. This is in fact the only con-
straint that determines the time evolution of our magnetic field at boundary
(and flow velocity), whence the crucial need for all the affordable mutual
consistency of all the involved terms.

8.2.2 A fully self-consistent condition for the edge flow

We come now to the implementation of the fluid boundary conditions.
Since we have two alternative formulations, already discussed in Sec. 8.1, we
need to treat the two cases separately.

(I) IThe υ∥,a = 0 constraint

For the case of υ∥,a = 0, we have a three-dimensional edge flow, in the
direction perpendicular to the magnetic field. The implementation makes use
of the deconvolution technique described in Chapter 7 and is a generalisation
of Eq. 7.10, where instead of the axisymmetric loop electric field, we leverage
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the full electric field response of the resistive shell:

υ⊥r,a =
1(
B2

a

)0 [Eθ,a ·Bz,a − Ez,a ·Bθ,a −
〈
B2

a

〉
· υ⊥,old

r,a

]
, (8.20)

υ⊥θ,a =
1(
B2

a

)0 [Ez,a ·Br,a −
〈
B2

a

〉
· υ⊥,old

θ,a

]
, (8.21)

υ⊥z,a =
1(
B2

a

)0 [−Eθ,a ·Br,a −
〈
B2

a

〉
· υ⊥,old

z,a

]
. (8.22)

Recall here our compact matrix-vector notation in the space of SpeCyl’s
modes to signify that the equation is computed sequentially for each simula-
tion mode. Also recall that (see Property 4)

⟨A⟩ ·B =
∑

(µ,ν )̸=(m.n)

Âm−µ, n−ν B̂µ, ν .

The squared Cartesian amplitude of the magnetic field

B2
a = Br,a ·Br,a +Bθ,a ·Bθ,a +Bz,a ·Bz,a,

and the resistive wall response (Eq. 8.17)

EW = E0 ẑ+
a

τW
r̂× [Bt]

+
−

are computed right before Eqs. 8.20-8.22, using the most updated values for
the magnetic field.

Note that both the implicit assumptions, Eqs. 8.5-8.5, are not explicitly
enforced: on the one hand, no term containing ηaJa × Ba is present; on
the other hand, Eqs. 8.21-8.22 do not contain Er,a, since this is null by
assumption.
Also note that in the ideal wall limit the resistive wall response reduces to

Et,a → E0 ẑ ,

while Br,a → 0, and we retrieve the purely radial velocity of Eq. 7.10:

υ⊥r,a =
1(

B2
t,a

)0 [−E0Bθ,a −
〈
B2

t,a

〉
· υ⊥,old

r,a

]
,

υ⊥θ,a = 0 ,

υ⊥z,a = 0 .
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(II) The υt,a = 0 constraint

For the case of υt,a = 0, we have a full-spectrum but solely radial velocity,
as in Eq. 8.11:

υr,a =
1(

B2
t,a

)0 [Eθ,a ·Bz,a − Ez,a ·Bθ,a −
〈
B2

a

〉
· υoldr,a

]
. (8.23)

Also in this case, the squared Cartesian amplitude of Bt,a and the wall re-

sponse are computed immediately before Eq. 8.23, using the most updated
values of the magnetic field.

The same inexplicit enforcement of the implicit assumptions is operated
also here, since no term containing ηaJa × Ba · r̂ appears in Eq. 8.23. As

anticipated, this formulation foresees no terms containing Er,a and thus no

assumption is made on it, in this case.
Finally, also Eq. 8.23, as Eqs. 8.20-8.22, converge to Eq. 7.10 in the ideal wall
limit.

8.2.3 The new arrangement of the corrector step for
the SpeCyl code

The hidden assumptions of our model can be inspected to quantify the
effectiveness of various implementations in terms of overall self-consistency.
A possible source of inconsistency is the unavoidable presence of some “lag”
due to our deconvolution technique, which uses the prior time-step evaluation
of some quantities as an approximate estimator for their actual values.
During the nonlinear verification benchmark against Pixie3D, which will be
the object of the next chapter, this issue was studied in depth. It emerges
that there are in fact two passages whose convolutions accuracy is crucial
for the time evolution in SpeCyl: the one that determines the edge flow
(Eqs. 8.20-8.22 or Eq. 8.23), and - especially - the one that provides the edge
values of the magnetic field to be fed to the inwards integration of Thomas
algorithm.
It is no wonder why these two passages are so delicate, since they produce
the only two sets of edge values - for the flow and for the magnetic field,
respectively - that have a direct impact on the whole bulk of the plasma,
owing to the inwards integrations performed by the two calls of the Thomas
algorithm (see Fig. 8.3). Also, it should not surprise that the single most
important equation in the boundary conditions is the evolutionary rule for
Br,a (Eq. 8.19), as it is the only one that contains a time derivative. As a
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matter of fact, this equation is enforced only once, during the corrector step,
and determining crucially the initial conditions for the inwards integration.
This same equation depends on a large number of υ ×B convolutions, in
that cumbersome way that was already presented in Sec. 8.2.1.

To face this problem, a small but substantial reformulation of the cor-
rector step was performed, whose scope is marked in Fig. 8.3 with a red
rectangle. Aside from this rectangle, Fig. 8.3 is an almost exact replica of
Fig. 5.2, which we duplicate here for reader’s convenience. Note however that
this time, for SpeCyl.2, the velocity boundary computation is not anymore
explicit, but rather semi-implicit, thanks to the deconvolution technique.
The corrector step, along with the final computation of the edge flow are
rearranged as represented in Fig. 8.4. The previous layout of the last two
sections of SpeCyl’s main loop was the following:

1) the forwards step of Thomas algorithm would produce a set of linear
coefficients, such that the whole magnetic field profile could be derived
by assigning the edge values of B;

2) the values of Ba would be computed, according to the most recent

estimate of Bold
a (from the intermediate step of the corrector) and of

the edge flow υold
a (last section of the previous iteration of the main

loop, i.e., evaluated at prior time-step);

3) these edge magnetic values would be fed to the inwards integration of
Thomas algorithm;

4) finally, the new velocity boundary would be obtained, using the correc-
tor magnetic field Ba and the most recent evaluation of υold

a (computed
at the same point, during the prior iteration of SpeCyl’s main loop).

The new rearrangement moves the computation of the velocity boundary
before the inwards integration by the Thomas algorithm for the magnetic
field. By doing so, it gives the option to iterate the enforcement of the
magnetic and fluid boundary conditions, in order to bring them to better
mutual consistency, before feeding Ba to the inwards integration.
The new scheme foresees:

1) the Thomas forwards step;

2) the initial computation of Ba from Bold
a ≡ B∗∗

a , and from υold
a , just as

before;
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Figure 8.3: On the top of the same work-flow already presented in Fig. 5.2,
a red rectangle marks the section of the code whose structure has been rear-
ranged in SpeCyl.2. Note that this time the velocity boundary computation
is semi-implicit, owing to the deconvolution technique.
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Figure 8.4: New formulation of the magnetic field corrector step: the edge
flow is now computed right after the edge values of the magnetic field. It
is now possible to cycle Nυ times per time-step the enforcement of the fluid
BCs, to minimise the lag between the prior evaluation and the current value.
The resulting edge flow can be fed back NB times per time-step to recom-
puteBa in agreement with the most updated velocity boundary. This ensures
better self-consistency at the boundary, in the case of demanding numerical
parameters, before starting the inwards integration. Anyway, for most prac-
tical cases it is sufficient to operate with Nυ = NB = 1.
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3) the computation of the velocity boundary, using the corrector Ba and

the prior time-step evaluation for υold
a ;

3bis) the repetition of bullet [3], using the corrector Ba and the modes of the

edge flow just obtained in [3] as υold
a , for the deconvolution technique

([3bis] is repeated Nυ ≥ 1 times per time-step);

2bis) re-computation of Ba, using the corrector magnetic field obtained in [2]

as Bold
a , the edge flow from [3bis] as υold

a , and B∗∗
a only in the evaluation

of ∂tBr,a = (Bn+1
r,a −B∗∗

r,a)/∆t;

2↔3) this outer loop is repeated NB ≥ 1 times per time-step, yielding en-
hanced self-consistency;

4) final call of the backwards step of the Thomas algorithm and reinitial-
isation of variables for the new iteration of the main loop.

For most practical applications, Nυ = NB = 1 and the loop works as be-
fore (the displacement of the computation of the fluid boundary inside the
magnetic corrector step has no effect if NB = 1). However there are some
cases, typically in extreme numerical conditions (very large radial meshes,
very low viscosity and resistivity, as in Chap. 10), in which this modification
has indeed a quantitative relevance.
From the verification studies, it seems like Nυ has a relatively low impor-
tance and in most cases it can be just set to 1. Nonetheless, it is also true
that SpeCyl.2 has still been tested on a few case studies with a very large
spectrum of MHD modes (having much longer computational times). Since
the error generated by our deconvolution technique scales positively with the
number of modes, there is some chance that this term may result having
some relevance, after all.
Already with fewer modes, the role ofNB > 1 is much more visible in presence
of fast plasma dynamics (or, vice-versa, when relatively large time-steps are
used), when the prior time-step evaluation may not be an accurate estimate
of the present value.

8.3 Conclusive summary

This Chapter has presented our new set of boundary conditions. Dubbed
SpeCyl.2, they accurately model a thin resistive shell facing the plasma,
surrounded by a vacuum region (modelled analytically) and by an outer,
coaxial conductor at finite and tunable distance.
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As already for SpeCyl.2.V00, the shell resistive time-scale τW can be set to
different values, to reproduce various experimental conditions:

� τW ≫ ∆tsim (where ∆tsim is the simulation time length) identifies
the ideal wall limit, where the same assumptions and implications of
SpeCyl.1.Vmn are retrieved;

� τW ≲ τA is the so-called vacuum-wall limit, where the resistive wall
formalism acts as an artefact to model a plasma-vacuum free interface;

� τA ≪ τW ≪ ∆tsim aims at reproducing the case of a finitely-resistive
physical wall at plasma boundary.

A fully self-consistent edge flow has been formulated and implemented: as
for the magnetic part, the implementation has been made flexible to meet
specifically the requirements of the modelling of different experimental con-
ditions:

� a three-dimensional velocity υ⊥,a, perpendicular to the magnetic field
at boundary, is preferentially used to model the vacuum wall limit. This
choice relies on the absence of friction terms with the resistive shell,
so that finite azimuthal and axial velocities can freely set and grow,
and on the explicit assumption that the boundary does not behave as
a sink/source of electric charge;

� a purely radial velocity υr,a is typically used along with higher values
of τW , to reproduce a finitely-resistive physical wall. SpeCyl’s model
equations do not allow the evolution of mass density, so that the physi-
cal interpretation of such a velocity does not involve the penetration of
mass inside the wall, but rather the local velocity field that can guide
impinging particles or suck the wall sputtering inside the plasma. On a
wider note, our simplified MHD model is totally insufficient to describe
the plasma-wall interaction from a microscopic viewpoint, hence even a
slightly controversial assumption on boundary flow can be accepted, if
it consistently closes our set of equations (while providing more freedom
to the MHD modes);

� in the ideal wall case, both formulations of our fluid boundary collapse
in the same purely radial condition, already valid for SpeCyl.1.Vmn.

Not only does SpeCyl.2 generalise all the previous implementations - that
can all be retrieved as limit cases - but it amends several small inconsistencies
of the previous implementations and even provides some metrics to evaluate
the overall grade of consistency throughout each simulation.
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This is only possible by tracking the model implicit assumptions and using
them to provide a quantitative metric, simulation by simulation. These have
been highlighted in Sec. 8.1, along with the reformulation of the fluid bound-
ary.
The implementation is discussed in Sec. 8.2 and involves three important
changes from the previous versions: namely, the generalisation of the mag-
netic boundary conditions to a three-dimensional (unlike ever before) and
full-spectrum edge flow, the implementation of a flexible module to compute
either υr,a or υ⊥,a, upon user’s request, and a rearrangement of the correc-
tor step in the SpeCyl code, leading to enhanced mutual consistency between
the magnetic and the fluid boundary, resulting in augmented self-consistency
of the whole simulations code. The opportunity of this last modification is
motivated by extreme numerical cases, even if it is normally sufficient to rely
on the other modifications to achieve reliable results.

All along, SpeCyl.2 is an articulate reformulation of SpeCyl’s boundary
conditions and can be defined as a major step towards a more realistic de-
scription of the plasma edge in this code.



Part V

New magneto-fluid BCs:
nonlinear verification

189





9
Nonlinear verification benchmark against

Pixie3D

With the increasing relevance of advanced numerical tools in modern
science [Tang02], a crucial role is played by the verification and validation
procedure. The term “verification” refers to the specific effort of ensuring the
mathematical correctness of a numeric tool in solving its model equations,
whereas “validation” signifies the endeavour of assessing to which extent a
numerical model can capture the experimental phenomena [Greenwald10].
Many recent examples of verification studies regarding the external kink and
resistive wall modes can be found in literature, e.g., here: [Ramasamy22,
Artola18].
We present in this Chapter the cross-verification benchmark between SpeCyl
and Pixie3D, both enforcing a thin resistive shell module at their boundary.
This comes as a substantial extension of a previous successful verification
study between the same two codes [Bonfiglio10] and focuses specifically on
the verification of resistive-wall boundary conditions, recently implemented
in both codes.
SpeCyl.2 boundary conditions have already been widely presented in Chap. 8.
As for Pixie3D, Sec. 9.1 gives a synthetic overview of the two alternative im-
plementations: dubbed “Pixie3D-A” and “Pixie3D-B”, respectively.
Section 9.2 illustrates the set-up of this verification, that includes several
case-studies, both in the reversed field pinch and in the tokamak. Conse-
quently, Sec. 9.3 constitutes the attempt of deriving a general method from
the nonlinear verification of these two codes, highlighting the most useful
tests and practices. In Sec. 9.4 we present the diagnostic tools we used to
look into our codes, to compare them with one another and to assess their
mutual- and self-consistency.
After these preliminary Sections, we start to present our numeric results, in
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Secs. 9.5, 9.6, and 9.7. The aim of these three Sections is twofold: on the one
hand, the robust results we present will ensure the mathematical correctness
of both codes, on the other hand, we present some decisive tests that have
motivated some of the choices in the final implementation of SpeCyl.2 (whose
final layout has already been presented in Chap. 8).
We start from Sec. 9.5: here two interesting limit case-studies are used to
test the magnetic boundary specifically (damping the edge flow to negligible
values with high viscosity) and the fluid boundary (in the ideal wall limit,
where the magnetic BCs are greatly simplified). The main focus in this Sec-
tion is on the excellent final agreement on these preliminary tests and on its
implications about the correctness of the implementations of the two codes.
Section 9.6 reports some of the most relevant tests we made in the general
case of both resistive boundary and full plasma response. In particular, this
section motivates the great attention that we dedicated, already in Chap. 8,
to ensuring full self-consistency of our codes, both by tracking the implicit
model assumptions and by rearranging the structure of the corrector step in
SpeCyl. In this case, the emphasis is on the motivations that led us to the
reorganisation of the corrector step in SpeCyl.2, as it has been presented in
Chap. 8.
Sec. 9.7 illustrates our final results on three physically relevant case stud-
ies: a marginally resonant kink mode in the RFP, the effect of the ideal-wall
proximity in stabilising a non-resonant kink mode in the RFP, and an exter-
nal kink mode m = 1 in the tokamak. In this Section, the accent is on the
excellent agreement of the two codes in all the case studies, and on its strong
implications for their correctness and reliability.
Finally, Sec. 9.8 contains the usual conclusive summary.

The work presented in this chapter was produced in collaboration with
Dr. Luis Chacón and part of it was performed during my stay at Los Alamos
National Laboratory, in the USA. Most of the arguments of this chapter
have been gathered in an article, soon to be submitted to Physics of Plas-
mas: along with the numerical verification outcomes, it will also contain an
analytical derivation of our model equations in general curvilinear geometry,
to comply with Pixie3D’s implementation.

9.1 Pixie3D and its boundary conditions

We have already presented the main characteristics of the Pixie3D code
in Sec. 7.2.1, so we will not repeat the full introduction. Anyways, both
SpeCyl and Pixie3D work here with the same simplified set of model equa-
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Table 9.1: Major structural differences between the two codes.

SpeCyl Pixie3D

Single implementation Two alternative implementations:
in variables {v,B} • Pixie3D-A in {v,A}

• Pixie3D-B in {v,B}
Semi-implicit time-stepping Fully implicit time-stepping
Cylindrical geometry Arbitrary curvilinear geometry
Fully spectral Pseudo-spectral resistive-wall BCs

tions already enforced in [Bonfiglio10], to find a common ground of appli-
cability: uniform and constant mass density ρ, uniform plasma viscosity ν,
zero-β regime and no Hall effect in Pixie3D. Moreover, two fluid effects are
switched off in PIXIE3D, as well as the artificial viscosity in SpeCyl’s mo-
mentum equation.
Table 9.1 presents the main differences between SpeCyl and Pixie3D: some
of them were already mentioned in Sec. 7.2.1, some other will be evident
as we keep going. For now, it is enough to remark the two, quite different,
numerical approaches to solve the same model of equations.
This is for instance the case of our deconvolution technique, which has hith-
erto only been verified in the ideal wall limit: this is a complex solution to a
problem that in Pixie, where model equations are set in the physical space,
can be simply dealt with a product or a ratio between real numbers.
On the other hand, the fully spectral implementation of SpeCyl is an advan-
tage with respect to the pseudo-spectral implementation of Pixie3D, since
the FFT algorithm embedded in Pixie3D’s main loop must be tested to be
held reliable.

Among these differences, a very important one is the fact that Pixie3D
comes in two alternative implementations: Pixie3D-A and Pixie3D-B, levera-
gin a vector potential formalism and a magnetic field formalism, respectively.
The rest of this section briefly presents the implementation of Pixie3D’s BCs
in this two formulations.

The content of the rest of this section is reported for completeness of
information and in no way contains my original contribution. I record here
Pixie3D’s formulation with the consent of Dr. Luis Chacón.
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9.1.1 Magnetic boundary in vector potential formal-
ism: Pixie3D-A

As a first thing, the electric field at the resistive shell is computed with
an explicit step, using the values of Bt,a evaluated at prior time-step and
the coefficients Θm,n and Zm,n already defined to treat the vacuum magnetic
field (Eqs. 6.10-6.17). This is done in a pseudo-spectral approach, relying on
an FFT algorithm, and anti-transforming to the physical space the updated
result EW . This is update features an explicit stability time-step limit, which
in cylindrical coordinates takes the form of

∆t ≲ 0.5 τW ∆r . (9.1)

The temporal evolution of the tangential components of A at the resistive
wall can be found from the equation (in the Weyl gauge φ = 0):

∂t(n×Aa) + (n× EW ) = 0, (9.2)

where n is the normal vector to the plasma surface, which is in Pixie3D a
general curvilinear surface. As already discussed in Sec. 7.2.1, Pixie3D works
on a logical mesh ξ, which is transformed to the coordinates system of interest
by a transformation x(ξ), so that n = ∇xξ [Chacón04]. Throughout this
chapter we will always refer to cylindrical geometry, so that n̂ = n/|n| ≡ r̂.
Therefore, Eq. 9.2 gives:

∂t(n×A)a +
1

τW
[n× n×Bt,a]

+
− (9.3)

= ∂t(n×A)a −
|n|
τW

[Bt,a]
+
− = 0,

since (n × δBt,a) × n = |n| [Bt,a]
+
− because n · [Bt,a]

+
− = 0. This equation

provides all required temporal evolution information for the vector potential.
In practice, the tangential components of the vector potential at the wall are
advanced at the beginning of the time-step with an explicit update as:

n×An+1
a = n×An

a −∆t(n× En
a). (9.4)

The normal A-component is determined from the tangential ones using the
solenoidal condition in Weyl gauge.
The evolution eq. 8.19 is particularly cumbersome in Pixie3D, since the nor-
mal B-component descends from the solenoidal property. Instead, an ap-
proach is pursued that leverages the divergence cleaning step already per-
formed. The idea is to use the tangential A-components boundary update
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in Eq. 9.4 and incorporate it in the divergence cleaning step. This is done as
follows. Let us start again from the Pixie3D divergence cleaning procedure:

∇2δAa = ∇× (Bn+1
a −Bn

a). (9.5)

The resulting magnetic field update is

Bn+1
a = Bn

a +∇× δAa.

In the previous implementation [Chacón04, Bonfiglio10], with an ideal wall
facing the plasma, Eq. 9.7 is solved with At,a = 0, and enforcing ∇ ·A = 0
for the normal component. With a resistive wall, the homogeneous Dirichlet
BCs become inhomogeneous, as:

n× δAa = −∆t(n× En
a).

The new vector potential update (which includes the RW update) is found
from eq. 9.7 with these new BCs.

9.1.2 Magnetic boundary in magnetic field formalism:
Pixie3D-B

The implementation of Pixie3D-B has been subject to major modifica-
tions throughout this verification study. We report here its final layout.
The first step is again to compute the resistive wall response from the mag-
netic field components at prior time-step and leveraging the already defined
coefficients Θm,n and Zm,n with a pseudo-spectral approach. This is done in
the same way as for Pixie3D-A, with the same resulting limit on the time-
step width, already expressed in Eq. 9.1.
In line of principle, eq. 8.19 could be used to update the normal component
of the magnetic field, as it is done in most codes [Paccagnella07, Becerra16,
Kruger04, Schnack86], including SpeCyl.2. However, this is infeasible for
Pixie3D’s implementation, since it conflicts with the enforcement of the
solenoidal property. Instead, the pursued approach leverages the already
present divergence-cleaning step of Pixie3D’s main loop. Such a technique is
needed in this code to remove the non-solenoidal pollution introduced by the
pre-conditioner for the Newton-Krylov implicit solver [Chacón04, Chacón06].
The divergence cleaning step aims to find a divergence-clean updated mag-
netic field in the form of

Bk+1 = Bk +∇× δA, (9.6)

where δA is an ad-hoc potential correction. Since we assume that the prior
evaluation of the magnetic field is already solenoidal, adding a correction in



196 Nonlinear verification benchmark against Pixie3D

the form of a curl cannot alter its divergence1.
δA is obtained from

∇2δA = ∇× (Bk+1 −Bk), (9.7)

which is solved with the same boundary conditions as for the analogous
problem in the implementation of Pixie3D-A: δAt,a = 0 and ∇ · δAa = 0 for
the ideal wall case, and

n× δAa = −∆t n× Ek
W ,

for the resistive wall case.
The new vector potential update found from Eq. 9.7 with this boundary
condition includes the RW response, and is then used in Eq. 9.6 to find the
new-time magnetic field, which is automatically solenoidal.

For the tangential field components, Pixie3D-B enforces the force-free
assumption J×B = 0. The resulting constraint reads:

Jt,a = λBt,a, with λ =
Ew ·Bt,a

η|Ba|2
. (9.8)

9.1.3 Velocity boundary conditions

Concerning the velocity boundary conditions, not much should be said,
since they are totally equivalent to their counterpart in SpeCyl.2.
Also for Pixie3D (both implementations) there are two alternative formula-
tions for the velocity boundary:

� A purely perpendicular edge velocity, in the form of:

υ∥,a = 0 ; υa = υ⊥,a =
EW ×Ba

|Ba|2
.

preferentially used for the modelling of a plasma-vacuum free interface.

� A purely normal (radial) edge velocity, in the form of:

υn,a =
(EW ×Ba) · n̂
|Bt,a|2

, υt,a = 0,

typically used for modelling a physical resistive shell.

Unlike the case of SpeCyl.2, it must be remarked that the implementation
in Pixie3D works in the physical space, allowing to treat the products and
(especially) the ratios as common operations between real numbers.

1The divergence of a curl is always null, since it is the product of a symmetric tensor
([∇·]i ≡ δ

j
i ∂j) with an anti-symmetric one ([∇×A]i ≡ ε

ℓ,m
i ∂ℓAm)
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9.2 Numerical set-up

For the present verification study, the usual paramagnetic pinch initial
equilibrium is enforced, as presented in Sec. 5.2.1. The resistivity profile is
rendered in both codes with the usual Eq 5.12:

η(r) = η0
[
1− (ALET− 1) rBEET

]GAET
,

while the viscosity and the mass density have a uniform profile.
In this verification study we both explored case-studies in RFP geometry and
in the tokamak. Table 9.2 reports the most important parameters defining
the RFP and tokamak reference initial equilibria, always valid unless speci-
fied.
The resulting plot of equilibrium quantities is reported in Fig. 9.1.

Table 9.2: General plasma and RW parameters chosen for the RFP (first
line) and tokamak (second line) verification cases.

α(0) R/a η0 ALET BEET GAET ν τw/τA b/a ρ

4 4 3.33 · 10−5 21 10 1 10−2 100 1.5 1

0.5 10 10−5 1.01 2 −1 10−5 10−6 → 1 100 1

On the top of this equilibrium, at the first time-step in both codes, a velocity
perturbation in the form of Eq. 5.6 is excited for the dominant mode (m,n)
of the specific simulation:

δυ =
ε

r
sin (πr)m+2 cos (mθ + nz/R) r̂ ,

with ε = 10−6. Throughout this work, m = 1 and n will be specified case by
case.

All the simulations presented here are in 2D helical geometry: in SpeCyl,
this means taking several harmonics of the same dominant mode (the one
that gets excited initially), plus the axisymmetric equilibrium represented in
Fig. 9.1. For Pixie3D, a change of coordinates from the logical Cartesian-like
ξ is set, such that x(ξ) : {r, u, z} → {r cos ((u− kz)/m), r sin ((u− kz)/m), z},
with u = mθ + kz (where m and k = n/R define the helical pitch).

Finally, Table 9.3 presents all the simulations that compose this verifica-
tion benchmark study in two-dimensional RFP geometry for both codes. For
each, some of the relevant input parameters are reported, such as the time-
step length, the radial mesh refinement, the number of modes (in SpeCyl),
and the refinement of the azimuthal mesh (in Pixie3D).
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Table 9.3: Numeric parameters used in simulations: 2D helical pitch, nor-
malized time-step, number of points in the radial or azimuthal mesh, and
number of modes.

specyl:
Simulation nick-name m/n ∆t/τA Nr Nmodes

∗

| Double vac kn0→ 4∗∗ −1 10−2 128 32

| PP.m1n8.tW1e10 −8 10−3 100 32

| PP.m1n8.tW1e2.Vt −8 10−3 100 32

| PP.m1n8.tW1e2.Vp −8 10−3 100 32

| PP.m1n6.tW1e0.b/a0→ 2 −6 10−3→−5 100 10

| PP.m1n6.tW1e2.b/a0→ 2 −6 10−3→−5 100 10

| TK.m1n1.tW1e-2→-6.S1e4 −1 10−5 256 10

| TK.m1n1.tW1e-2→-6.S1e5 −1 10−5 256 10

| TK.m1n1.tW1e-2→-6.S1e6 −1 10−5 300 10

| TK.m1n1.tW1e-2→-6.S1e7 −1 10−5 1000 10

| TK.m1n1.tW1e-8.S1e7.qa0.4→1 −1 10−5 1000 10

pixie3d: versions A and B
Simulation nick-name m/n ∆t/τA Nr Nθ

| Double vac.pixA.kn0→ 4 −1 10−2 128 32

| Double vac.pixB.kn0→ 4 −1 10−2 128 32

| PP.m1n8.tW1e10.pixB −8 1.0 128 64

| PP.m1n8.tW1e2.pixA.Vt −8 1.0 128 32

| PP.m1n8.tW1e2.pixA.Vp −8 1.0 128 32

| PP.m1n8.tW1e2.pixB.Vt −8 1.0 128 64

| PP.m1n8.tW1e2.pixB.Vp −8 1.0 128 64

| PP.m1n6.pixA.tW1e0.b/a0→ 2 −6 10−2 256 64

| PP.m1n6.pixB.tW1e0.b/a0→ 2 −6 10−2 256 64

| PP.m1n6.pixA.tW1e2.b/a0→ 2 −6 10−2 256 64

| PP.m1n6.pixB.tW1e2.b/a0→ 2 −6 10−2 256 64

| TK.m1n1.tW1e-2→-6.S1e5.pixB −1 10−5 0.5τW/Nr 64

Legend of colours: | Fig. 9.2; | Fig. 9.3-9.5; | Fig. 9.13-9.15;
| Fig. 9.16; | Fig. 9.17; | Fig. 9.18-9.19.

∗ The number of modes only refers to m ≥ 0, since in helical geometry all modes with

the same |m| are complex conjugate of one another. The full spectrum hence counts

2×Nmodes + 1 modes.

∗∗ Here and elsewhere we use an arrow to condense in one line a group of simulations

whose names are diversified only by a numerical value: in this case, this are as follows:

Double vac kn0, Double vac kn0.5, Double vac kn1, Double vac kn2, Double vac kn4.
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Figure 9.1: Initial equilibrium profiles for the verification in RFP configura-
tion (a-e) and in the straight tokamak (g-l). All units are normalised up to
SpeCyl’s convention: υA = a/τA, B0 = |B(0)|t=0, J0 = υAB0, and η = 1/S.

9.3 Definition of the verification procedure

Before illustrating our results, we summarize the employed verification
procedure.
For a better understanding of modes dynamics we performed all tests in
Fourier space. We have used in particular three diagnostic tools to analyse
the simulation results with a high level of detail:

D1. Time plot of normalised Kinetic and Magnetic energies of modes, de-
fined as:

Em,n
kin ≡

∫ a

0

|υm,n|2r dr, Em,n
mag ≡

∫ a

0

|Bm,n|2r dr.

They give a space-averaged overlook on the evolution of the two main
fields.

D2. Radial profiles of υ, B, J, E components at fixed time-snapshots.

D3. Magnetic helical flux projection onto the z = 0 plane, which will be
more properly defined later. The agreement between Pixie3D and
SpeCyl concerning the 2D plots of this quantity at different time-
snapshots produces a very challenging final test for the magnetic field
evolution.
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Along with them, we defined two fundamental and quick-read figures of merit:

F1. Linear growth rate (exponential fit of early growth of the dominant
mode of either Ekin or Emag) is a quantitative and direct estimator of
codes agreement.

F2. ηaJa ×Ba smallness in time with respect to Ea ×Ba: it is a metric of
self-consistency in BCs implementation.

The diagnostics and figures of merit will be defined more in detail in Sec. 9.4.

Before verifying of the full set, the fluid and the magnetic BCs can be
tested separately in suitable limit cases:

L1. Effective vacuum behaviour for the plasma can be obtained by setting
instant resistive and viscous diffusion (S = P = 1, i.e. η = ν = 1).
We can thus produce a double-vacuum case-study, where the RW has
effective vacuum on both sides: the fluid response of such a viscous
plasma shrinks quickly, while the edge magnetic field is slowly damped
on the RW time-scale.

L2. The ideal wall limit for τw ≫ τA reduces the magnetic part of the
BCs to be equivalent to their original formulation, still retaining some
complexity in its fluid counterpart.

Only after that, the final and longest step of the verification can take
place: single blocks of the two codes are isolated and tested against one
another, until full agreement is found. Among the (many) tests we set, we
found some very useful methods:

M1. Check first those parts that produce a simple output, e.g., lists of pa-
rameters, such as Θm,n and Zm,n.

M2. Re-derive the model of both codes using a white board and check for
self- and mutual-consistency. Look for easy metrics, such as F2. As
a matter of fact, the careful re-derivation of the model behind our
boundary conditions, already presented in Chap. 8, originates from
this verification endeavour.

M3. Make single time-step evolution tests to isolate the onset of discrep-
ancies. Combining this method with a sudden change of simulation
parameters (e.g., by changing within the time-step τW by several or-
ders of magnitude) helps identify and correct intrinsic lags of either
code.
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The rest of this chapter will be organised as follows: Sec. 9.4 explores
more in depth the diagnostics (D1-D3) and figures of merit (F1-F2), provid-
ing the specific formulae and implementations used throughout the verifica-
tion; Sec. 9.5 presents the two limit cases (L1-L2) and their final verification
results; Sec. 9.6 reports some of the most interesting tests performed in the
full nonlinear verification (M1-M3), and aims to provide a synthetic overview
of the main steps of the verification; Sec. 9.7 presents the final outcomes of
this work, obtained in RFP geometry; Sec. 9.8 provides the usual conclusive
summary to this Chapter.

9.4 Suitable diagnostics and figures of merit

We define in this section the diagnostic tools D1-D3 and the figures of
merit F1-F2, used throughout the verification procedure. The concepts in-
troduced in this Section are quite standard and are only presented for com-
pleteness, apart from the Ja ×Ba · r̂ diagnostics, presented in Sec. 9.4.3.

The time-snapshots of radial profiles do not need any further introduc-
tion: the raw data at the end of SpeCyl’s simulations are analysed with
post-processing routines that were already available before the beginning of
my PhD and have already been used throughout my Thesis. On the other
hand, corresponding profiles for Pixie3D are obtained via a Fourier transform
of fields in real space.

Concerning the growth rates, to comply with what is done in Pixie3D,
an alternative but equivalent approach is used in this chapter: instead of
fitting the linear growth of the dominant mode of one quantity (typically,
υm,n
r,a (t) or Bm,n

r,a (t)) the fit is performed on the linear growth of the magnetic
or kinetic energy of the dominant mode. This can be done either directly, as
an exponential fit on the time history, or indirectly, by averaging the value
of its time-derivative, which is flat throughout the linear-growth regime.
All the three methods are always used together, to get redundancy of in-
formation: in general they all agree within a few percents. In any case, all
the growth rates reported in this chapter are computed as a numeric fit on
the linear growth of the magnetic energy of the dominant MHD mode of the
simulation.

We define in the next subsections the remaining three diagnostic tools,
that we implemented from scratch, and possibly require some analytical back-
ground.
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9.4.1 Normalised Kinetic and magnetic energies of modes

We define the normalised kinetic and magnetic energies of modes as the
L2 norms of the corresponding velocity and magnetic field, respectively:

Em,n
kin ≡

∫ a

0

|υm,n|2r dr, kinetic energy of mode (m,n), (9.9)

Em,n
mag ≡

∫ a

0

|Bm,n|2r dr, magnetic energy of mode (m,n). (9.10)

These are of course not the Fourier modes of the global kinetic or magnetic
energy of the plasma, but rather the energy contributions provided by each
MHD mode.
In fact, the L2 norm in cylindrical space of, e.g., velocity reads:

||υ||2 ≡
∫ 2π

0

dθ

∫ 2πR

0

dz

∫ a

0

rdr

(∑
m,n

υm,n(r) eimθ+i n
R
z

)(∑
p,q

(υ∗)p,q(r) e−ipθ−i p
R
z

)

= K
∫ a

0

rdr
∑
m,n

|υm,n|2,

where K is a normalisation constant (in dimensional units it would be Kkin =
4π2Rρ/2 for Kinetic energy and Kmag = 4π2R/2µ0 for Magnetic energy).
In the second line, the two integrals on θ and z get simplified, producing
Kroneker’s deltas like δm,p and δn,q, owing to the orthogonal property of the
Fourier base. A formally identical argument holds for the magnetic energy
and the L2 norm of the magnetic field. In Eqs. 9.9 and 9.10 the normalisation
constants are set to K = 1.
In other words, it results that the relation they have to the global plasma
kinetic and magnetic energies are the following:

Etot
kin =

∑
m,n

Em,n
kin , Etot

mag =
∑
m,n

Em,n
mag .

For the implementation of this diagnostic tool, the easiest strategy would
be to sum the energies of SpeCyl’s modes, to compare them with Pixie3D’s to-
tal energies. Nonetheless we pursue the more useful and instructive approach
of Fourier-transforming Pixie3D’s outputs (leveraging the built-in FFT al-
gorithm of the IDL coding language) and plotting the energy of each mode
separately.

9.4.2 Helical flux function

The helical flux function χ is a convenient scalar function that can be used
to study the geometrical properties of a two-dimensional magnetic field, that
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winds into a helix around the z-axis. Its re-derivation has constituted a theo-
retical exercise during my month at Los Alamos National Laboratory, under
the guidance of Dr. Luis Chacón.

With respect to the full 3D cylindrical geometry in which we usually
work, the helix defines a new constraint that lowers the dimensionality of
our problem:

ζ = m∗θ + k∗nz , (9.11)

where m∗ and k∗n = n∗/R define the helical pitch. Lines of constant ζ wind
around the helical axis z, with a given azimuthal periodicity of 2πm∗/k∗n.
We seek to write now the helical flux χ in an explicit way, starting from its
defining property:

B = ∇χ× ẑ+Bz ẑ . (9.12)

Let us move to a helical set of coordinates (r′, ζ, z′): this is defined from the
cylindrical coordinates by leveraging Eq. 9.11:

r′ = r ,

ζ = m∗θ + k∗nz ,

z′ = z .

with


r =

√
x2 + y2 ,

θ = arctan y
x
,

z = z .

It is useful to define immediately the Jacobian of the transformation from
Cartesian coordinates to helical coordinates. The most convenient way to do
this is to pass through the cylindrical coordinates, as the two transformations
become much more immediate. From helical to cylindrical coordinates the
Jacobian determinant is∣∣∣∣∂{r′, ζ, z′}∂{r, θ, z}

∣∣∣∣ =
∣∣∣∣∣∣
1 0 0
0 m∗ k∗n
0 0 1

∣∣∣∣∣∣ = m∗

while from cylindrical to Cartesian, as known, it is 1/r. The Jacobian deter-
minant of the whole transformation thus reads:∣∣∣∣∂{r′, ζ, z′}∂{x, y, z}

∣∣∣∣ = m∗

r
⇐⇒

∣∣∣∣ ∂{x, y, z}∂{r′, ζ, z′}

∣∣∣∣ = r

m∗ (9.13)

Let us now restrict our interest to a plane of constant z: the helical compo-
nents of the magnetic field on it are

Br
′ = B · ∇{x,y,z}r

′ =
r

m∗Br ,
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and
Bζ = B · ∇{x,y,z}ζ =

r

m∗B · ζ̂ ,

where ζ̂ can be readily written in cylindrical coordinates as

ζ̂ =
m∗

r
θ̂ + k∗n ẑ .

We are now ready to deal with the projection of Eq. 9.12 in the transversal
plane to the z-axis. We may write:

r

m∗Br = ∂ζχ , Bζ = Bθ +
k∗nr

m∗ Bz = −∂rχ . (9.14)

These two relations extend the result in [Petrie07] to the case of m∗ ̸= 1.
We can turn Eqs. 9.14 into integral form, finding

χ(r, ζ) =

∫ ζ

0

rBr

m∗ dζ +A(r)

χ(r, ζ) = −
∫ r

0

(
Bθ +

rk∗n
m∗ Bz

)
dr + B(ζ)

where A(r) and B(ζ) are unknown scalar functions. We can constrain them
by looking at two instructive cases:

χ(0, ζ) = A(0) = B(ζ), ∀ ζ ,

χ(r, 0) = −
∫ r

0

(
Bθ +

rk∗n
m∗ Bz

)
ζ=0

dr + B(0) = A(r), ∀ r .

Since χ appears in Eq. 9.12 only through its gradient, it is defined up to an
additive constant: this can be used to set A(0) = 0, and thus also B(ζ) = 0,
∀ ζ, as a consequence of the first constraint.
The second constraint yields the final result we are looking for:

χ(r, ζ) =

∫ ζ

0

rBr

m∗ dζ −
∫ r

0

(
Bθ +

rk∗n
m∗ Bz

)
ζ=0

dr . (9.15)

Finally, we shall make one further step and write Eq. 9.15 also in the
Fourier space, as well as all the other diagnostic tools. For this, it is conve-
nient to settle on the plane z = 0, so that ζ = m∗θ:

χ(r, θ) =
∑
m,n

χm,n(r, θ)

with χm,n(r, θ) = −irBm,n
r (r)

eimθ − 1

m
−
∫ r

0

(
Bm,n

θ (r) +
rk∗n
m∗ B

m,n
z (r)

)
dr .

(9.16)
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As for the magnetic energy, please note that χm,n is not a Fourier mode
of χ. Throughout the verification study, Eq. 9.16 is solved numerically for
the MHD modes of SpeCyl and for the Fourier decomposition of Pixie3D’s
results.

9.4.3 The Ja × Ba · r̂ diagnostics

Finally, the J × Ba · r̂ diagnostics is a metric of self-consistency in the
implementation of the code. Its theoretical background has already been pre-
sented in the detail in Chap. 8: the formulation of both our sets of boundary
conditions implicitly require that

(ηaJa ×Ba · r̂)m,n ≪ (Ea ×Ba · r̂)m,n .

This assumption extends also to the θ̂ and ẑ directions when enforcing
υ∥,a = 0 BCs.
This property is thus a possible quantifier of the implementation self-consistency.
We define a safety parameter

Xr ≡
(
Xr

0,0 . . . X
r
Mmax,Nmax

)T
, with Xr

m,n =
(ηaJa ×Ba · r̂)m,n

(Ea ×Ba · r̂)m,n , (9.17)

to keep track of the implementation self-consistency:

� Xr ≥ 1 defines the “inconsistency domain”, where the model assump-
tion is not fulfilled.

� Xr < 1 defines the “self-consistency domain”, where we should expect
our simulation to stay, throughout its temporal evolution.

Also in this case, as for the energies of modes and for the helical potential of
various modes, Xr

m,n is not the Fourier component of any relevant quantity.
This means that both in SpeCyl and in Pixie3D we will always need to com-
pute the Fourier spectrum of numerator and denominator preliminarily. In
Pixie3D, the products are performed in the physical space and subsequently
transformed with the built in FFT of IDL, while SpeCyl uses either a direct
approach, based on convolutions, or an indirect one, relying on the built-in
FFT method of IDL to perform the products in the physical space. The two
alternative approaches for SpeCyl provide perfectly compatible outcomes.
Since each component of Xr ultimately contains the convolutions of sev-
eral modes of three different plasma quantities, some discrepancy between
SpeCyl’s and Pixie3D’s outcomes is generally tolerated, provided that the
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Table 9.4: Adjustments made on the two codes in order to achieve the good
agreement on the limit cases L1-L2.

SpeCyl Pixie3D

general de-bugging revision of the pre-conditioner for the solver
revision of the divergence-cleaning scheme

general de-bugging

both keep in the self-consistency domain.

As we will motivate in Sec. 9.6, this diagnostic tool had a central role in
the rearrangement of the corrector step in SpeCyl (see Sec. 8.2).

9.5 Limit case studies

The full set of boundary conditions can be preliminarily tested in two
limit cases, where the magnetic part of the BCs or their fluid part have a
dominant role, respectively. These two cases (L1-L2, following Sec. 9.3) are
presented through this section.
Despite we present here just the final results, there is of course a long work
behind them. When we started our verification benchmark, evident qualita-
tive agreement between the two codes was definitely present, however spoiled
by various quantitative discrepancies, both in radial profiles and (especially)
in their time-evolution.
Table 9.4 summarises the main adjustments that the two codes needed to
achieve the results presented through this section.

9.5.1 The double vacuum test

This test was invented and proposed by Dr. Luis Chacón. The idea is
to reproduce effective vacuum behaviour in the plasma domain by setting
extremely high values for the plasma resistivity and viscosity (η = ν = 1,
corresponding in codes’ normalised units to instant visco-resistive diffusion:
τR = τV = τA). We can thus set an effective vacuum in plasma region, similar
to the actual vacuum outside the resistive wall. High plasma viscosity will act
fast damping of any flow, leaving us with almost pure magnetic BCs. This
is much alike to the “current-ring” case study, already presented in Chap. 3
for the verification of the Newcomb’s equation numeric solver.
For a generic kn = n/R ̸= 0 the “vacuum” solution of the Poisson’s problem
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in the plasma region must be (see Eq. 3.29-3.30):

ϕm,n
P = amP Im(|kn|r) + bmPKm(|kn|r) .

By regularity on axis, we find

ϕm,n
P (|kn|r̂) = amP (t)Im(|kn|r),

where we have made apparent that the coefficient will be time dependent
(decaying). Assuming amP (t = 0) = 1, the corresponding initial condition for
the magnetic field in the plasma domain is:

{Bm,n
r }P =

∂ϕm,n
P

∂r
= amP (t)|kn|I ′m(|kn|r),

{Bm,n
θ }P =

1

r

∂ϕm,n
P

∂θ
= amP (t)

im

r
Im(|kn|r),

{Bm,n
z }P =

∂ϕm,n
P

∂z
= 0.

The vacuum solution for the actual vacuum region, beyond the thin shell, is
must comply with Eq. 6.9:

ϕm,n
V = Bm,n

r,a gm,n(r) , gm,n(r) =
1

|kn|

[
I ′m(|kn|b)Km(|kn|r)−K ′

m(|kn|b)Im(|kn|r)
I ′m(|kn|b)K ′

m(|kn|a)−K ′
m(|kn|b)I ′m(|kn|a)

]
,

where Bm,n
r,a = amP (t) |kn|I ′m(|kn|a), by continuity of the normal component of

the magnetic field across the RW (Eq. 6.1). The resulting initial condition
for the magnetic field in the external vacuum region is then

{Bm,n
r }V = amP (t)I

′
m(|kn|a) · g′m,n(r) .

We look now for the an analytical solution for the time evolution of the radial
magnetic field on the RW. This is the same as finding the temporal evolution
of the coefficient aP (t), via Eq. 8.19,

∂ta
m
P

amP
=

1

τW

[
g′′m,n(a)− |kn|

I ′′m(|kn|a)
I ′m(|kn|a)

]
=

1

τW
f(m, |kn|, b), (9.18)

where

g′′m,n(a) = |kn|
I ′m(|kn|b)K ′′

m(|kna|)−K ′
m(|kn|b)I ′′m(|kn|a)

I ′m(|kn|b)K ′
m(|kn|a)−K ′

m(|kn|b)I ′m(|kn|a)
.
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Figure 9.2: Comparison of decay rates for the double-vacuum test (with
m = 1, b/a = 1.5).

The case of kn = 0 (large aspect ratio, or n = 0) can be easily found by
approximating both Bessel’s functions to their first term in their series de-
velopment: Km(x) ≈ x−m and Im(x) ≈ xm. This way, equation 9.18 reduces
to

∂ta
m
P

amP
= − 1

τW

2

a

2(b/a)2m

(b/a)2m − 1
=

1

τW
f(m, 0, b). (9.19)

In both Eq. 9.18 and 9.19 the l.h.s. is negative and does not depend on time,
hence our analysis predicts a linear decay.
Figure 9.2 illustrates the remarkable agreement between the two codes and
with the analytical results. Each symbol corresponds to a simulation (refer-
ring to Tab. 9.3, the nicknames of the represented simulations are associated
to the light-blue colour, both for SpeCyl and for the two implementations of
Pixie3D).For the general set-up, we used the same parameters as in Tab. 9.2.
In each simulation, the decay rate was computed numerically (as a fit) and di-
vided by τW : different values of τW were explored, giving compatible results.

9.5.2 The ideal wall limit

Complementary to the double vacuum test, we present here the ideal
wall limit case, obtained for τw = 1010 τA. The simulations presented here
are the ones referenced in Tab. 9.3 with the nicknames: PP.m1n8.tW1e10 for
SpeCyl and PP.m1n8.tW1e10.pixB for Pixie3D-B (associated to the lighter
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green colour in the Table).
In this limit, in the absence of non-axisymmetric EW shell response at plasma
boundary, there is no relevant difference between the two formulations of our
fluid BCs, nor are there actual reasons to distinguish between Pixie3D-A and
Pixie3D-B. For this reason, we only display here a study between Pixie3D-B
and SpeCyl, with no-slip (υt,a = 0) BCs.
We examine the stability of a marginally resonant kink mode (1,−8) in the
RFP, in presence of a tightly fitting ideal wall at plasma edge. This case was
also analysed in [Bonfiglio10], obtaining a remarkable agreement between the
two codes, still enforcing an ideal-wall module at plasma boundary. In that
case, already briefly discussed in Sec. 7.2, linear growth rate compatibility
within a 0.3% tolerance was obtained, and both codes predicted a very sim-
ilar nonlinear temporal evolution, up to 5000 τA.
As was already anticipated in Sec. 7.2, some small differences were yet
present, all depending on the simplified assumption of a purely axisymmetric
boundary flow in SpeCyl.1. These were corrected in SpeCyl.1.Vmn, thanks
to the implementation of the deconvolution method.
What this test aims to prove is thus ultimately the capability of SpeCyl.2
to fall back to the same predictions of SpeCyl.1.Vmn, in the limit case of an
ideally conducting shell (along with an analogous test for Pixie3D-B).

Figure 9.3 displays the radial, azimuthal and axial components of the first
three Fourier modes of some relevant plasma quantities, at the final, nonlin-
early saturated state produced after 5000 τA from the initial perturbation.
Not only this is very similar to the original verification study presented in
[Bonfiglio10] (see Fig. 10 in the Reference), but the agreement in the edge
radial flow between the two codes presents no visible differences. A separate
comparison with SpeCyl.1.Vmn (not shown here) proves the perfect overlap-
ping of profiles, ensuring once more that the new implementation of SpeCyl’s
boundary can reliably substitute the ideal-wall implementations in the limit
of large τW .
From the second line of plots, we see that even after such a long evolution
time, the magnetic field penetration in the (almost) ideal wall is still neg-
ligible, in accordance with the physical expectations. This can be better
observed in Fig. 9.4, which presents the helical flux projection on a cylindri-
cal cross-section z = 0 for both codes at selected times. As already apparent
in fig. 9.3, there is a remarkable similarity between the outcomes of the two
codes: the progress in the radial drift of the helical axis from the centre to a
saturated m = 1 final configuration is almost identically reproduced.
Figure 9.5 reports the first 500 τA of temporal evolution for the normalised
kinetic and magnetic energies of modes. Also in this case, the agreement
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is excellent, even if slightly better for the magnetic energy modes: this is
probably due for the low-m modes to some difference in the radial profiles
of the components of υm,n away from the boundary, as can be seen in the
first line of plots in Fig. 9.3. Some more visible (in log-scale) discrepancy in
the kinetic energy of high-m modes is not concerning, since it happens on
extremely small scales (Em,n

kin ≲ 10−12).
Fitting the linear growth of the magnetic (or kinetic) energy of mode (1,−8)
we find γ τA = 7.797 · 10−2 for SpeCyl and γ τA = 7.821 · 10−2 for Pixie3D-B,
compatible within 0.3%. Apart from confirming overall excellent match in
this limit-case, this will also set the aim for the comparison with the full BCs
set-up, presented in Sec. 9.7.
The linear growth saturates around ∼ 120 τA, when two kinetic energy modes
have reached comparable magnitude with the axisymmetric mode. From
∼ 400 τA the simulation enters a stationary saturated equilibrium, very sim-
ilarly reproduced by both codes. It is interesting to notice from the fourth
line of plots in Fig. 9.3 that the flat radial profiles of both E0,0

θ and E0,0
z is

physically compatible with a stationary conditions, since it implies that the
axisymmetric mode is not evolving. This follows from the Faraday’s law:

−∂tB0,0
z = ∂rE

0,0
θ = 0 ,

and
∂tB

0,0
θ = ∂rE

0,0
z = 0 .

This seems to suggest preliminarily some good physical consistency in repro-
ducing the plasma dynamics.

9.6 General test-cases with both RW and full

flow response: preliminary numerical checks

This Section preludes to the final results of our verification benchmark,
presented in Sec. 9.7. We present here some of the most interesting tests that
eventually brought us to the excellent final agreement.
This is an important part, since it accounts for a very long endeavour: if it
took us not more than three weeks to get to an agreement on the limit case
studies, we needed more than five months to reach the positive situation that
the next section will present.
Figure 9.6 reports for reference the starting point of this journey: we present
the comparison between SpeCyl and Pixie3D-B, concerning the temporal
evolution of the energies of modes and of the helical flux projection onto
the plane z = 0. The case study constitutes a small variation on the one
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Figure 9.3: Ideal wall limit test case. Radial plot of the main plasma quan-
tities, defining the nonlinearly saturated helical equilibrium after 5000 τA in
the ideal-wall limit (τw = 1010 × τA. Fourier modes m = 0, 1, 2 are repre-
sented for both Pixie3D-B (red) and SpeCyl (black). Units are normalised
according to SpeCyl’s conventions: velocities to υA = a/τA, magnetic fields
to B0 = |B(0)|t=0, currents and electric fields to υAB0 (η = 1/S).
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Figure 9.4: Ideal wall limit test case. Evolution of the helical flux projection
on the cylinder cross-section for Pixie3D-B (lower red half) and SpeCyl
(upper black half). Increasing dominance and saturation of mode m = 1 is
visible. χ = const curves must not penetrate the ideal wall.

Figure 9.5: Ideal wall limit test case. First 500 τA of temporal evolution
for the normalised kinetic and magnetic energies of modes, for the ideal wall
limit case (τW = 1010 τA).
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already discussed: this is a marginally resonant kink (1,−8) for the same
RFP equilibrium, with a resistive shell at plasma boundary (τW = 100 τA)
and a finitely displaced ideal wall (b/a = 1.5).
As we can see, there is some general and qualitative agreement between the
codes, which is however quantitatively unsatisfactory, if compared to the pre-
vious agreement in the ideal wall case.
In particular, in Fig. 9.6.(a) Pixie3D has a visibly slower linear-growth (by
approximately 3%), anticipated by some important noise in the early phases
of the simulation. The agreement is quite poor also concerning the final state,
largely dominated in SpeCyl by an m = 1 component in the velocity spec-
trum, while Pixie3D obtains a much more relevantm = 2 component. Figure
9.6.(b) confirms that also the magnetic field geometry follows a slightly dif-
ferent evolution.
Despite all these discrepancies, there are of course mostly similarities, which
testify that the general agreement between the two codes is not off by far and
that there must be something very subtle in the two implementations that
cumulates an increasing discrepancy, which is small during the linear phase
and gets larger with time.

In the rest of this Section, we organised our work in three phases: a rich
and long study on the velocity boundary conditions is reported in Sec: 9.6.1,
a schematic list of tests of single modules is to be found in Sec. 9.6.2, while
Sec. 9.6.3 presents a decisive final test, concerning the overall structure of
the main loop of both codes, that finally led to remarkable agreement.

9.6.1 Single-timestep check

Starting from a discrepancy as the one displayed in Fig. 9.6, the first part
of our BCs modules to be tested was the one concerning the velocity: in fact,
this is still the least tested part, at least in SpeCyl, where it also involves a
high complexity level. We present in this section a very challenging test we
set for the velocity boundary, which eventually led to a partial reformulation
of its implementation is SpeCyl.

In general, it is a good practice to evolve both codes for a single time-
step, and carefully analysing the outcome to isolate those quantities that are
found to be already different after such a short time.
In our case, it seems like the source of the discrepancy, albeit present already
from the beginning of the simulation, could become more visible in the non-
linearly saturated phase. In other words, for the test to be more instructive,
we should start our one-step simulation from an already nonlinear initial
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(a) Temporal evolution of the energy of modes.

(b) Helical flux projection on the z = 0 cross-section.

Figure 9.6: Full magneto-fluid BCs, marginally resonant kink 1,−8. Starting
point for our verification study with the full set-up for the magneto-fluid
resistive shell module. The case study is a marginally resonant kink mode
(1,−8) in the RFP, with a resistive shell at boundary (τW = 100 τA) and
an ideal wall at finite distance b/a = 1.5. For these plots, υt,a = 0 BCs are
enforced.
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Figure 9.7: Ideal wall limit case. Edge spectrum of plasma quantities,
for SpeCyl (black) and Pixie3D-B (red), at the final time of the ideal-wall
limit case study. Only the first eleven modes are displayed: (0, 0), (1,−8),
(2,−16) . . . (10,−80).

state.
However, neither Pixie3D nor SpeCyl is equipped for this, since they are both
designed to start from the axisymmetric, paramagnetic pinch equilibrium.
The strategy we pursue leverages the excellent agreement already found in
the ideal wall limit case: we start from the nonlinearly saturated final state
presented in Fig. 9.3 and restart the simulation with a much lower resistive
shell time-constant, from τW = 1010 τA to τW = 100 τA.
Figure 9.7 stands to confirm - if still needed - that the nonlinear equilibrium
we start from is indeed almost equivalent, concerning the plasma edge. It
shows the comparison between the boundary values of some plasma quan-
tities, for the first eleven simulation modes of SpeCyl and of the Fourier
decomposition of Pixie3D-B’s results.
The instantaneous change in the geometry of the system, determined by an
abrupt substitution of the ideal wall at plasma boundary with a much more
resistive thin shell, is of course a very unphysical situation and only serves
for the purpose of this test. We expect that the magnetic configuration with
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no radial penetration and very intense discontinuity of Bt,a across the (pre-
viously ideal) wall should quickly relax, giving rise to an intense burst in all
plasma quantities.
As a first thing, as soon as τW shrinks, a very intense electric field should
build up on the shell, since Eq. 8.17 prescribes

EW =
a

τW
[̂r×Bt,a]

+
− ,

and [̂r × Bt,a]
+
− is quite large. This should immediately determine a strong

variation in the edge flow, which is proportional to the electric field response
of the shell. The magnetic field should follow, through the υ ×B products,
and rapidly bring the simulation to a global and probably violent relaxation.
From what we just said, it appears how this study can constitute a very
stringent test for the implementation of the fluid boundary conditions. In
practice, we decided to keep the magnetic evolution from evolving (by man-
ually substituting its boundary conditions with trivial Dirichlet constraints,
to fix them at their prior value) and just focused on the evolution in the
edge electric field and edge flow. Figure 9.8 presents the result of this test.
We immediately see that, according to our predictions, the radial edge flow
(no-slip boundary conditions are enforced throughout this study) and the
electric field components have changed drastically from Fig. 9.7, in both
codes. However, while the electric field is still in perfect agreement between
the two codes (the discrepancy in E0,0

z,a depends only on the fact that Pixie3D
uses a separate variable for the loop-field E0), the radial velocity spectrum
presents indeed some differences.
In Fig. 9.8 we also report the spectra for the edge magnetic field components
that, by direct imposition, do not vary from Fig. 9.7 and are thus still in
perfect agreement.
Since both Ea and Ba are in excellent agreement between the two codes,
there is no apparent justification for the discrepancy in υr,a, unless it is the
deconvolution technique that is not working properly.
Recall from Chap. 7 that our technique solves for υm,n

r,a the equation:∑
µ,ν

(|Bt,a|2)m−µ,n−νυµ,νr,a =
∑
µ,ν

(Em−µ,n−ν
W ×Bµ,ν

a )

by splitting the first member into

(|Bt,a|2)0,0υm,n
r,a +

∑
µ ̸=m,ν ̸=n

(|Bt,a|2)m−µ,n−νυµ,νr,a ,

and evaluating explicitly the second addend at the prior time-step. In our
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convenient matrix formalism (Eq. 8.23):

υr,a =
1(

B2
t,a

)0 [Eθ,a ·Bz,a − Ez,a ·Bθ,a −
〈
B2

a

〉
· υoldr,a

]
,

where 〈
B2

a

〉
· υoldr,a ≡

∑
µ̸=m,ν ̸=n

(|Bt,a|2)m−µ,n−νυµ,νr,a |t−dt

takes care of the “off-diagonal” modes of our system of equations.
It is possible that this retarded evaluation introduces some lag in the equa-
tions, which is particularly evident in this case of extremely violent and fast
relaxation.

This initial suspect is confirmed by some further experiments. The most
decisive is assigning to the “off-diagonal” modes the values of the correspond-
ing modes of the Fourier spectrum of the edge flow obtained by Pixie3D for
the same time-step. This way, not only there is no lag in the deconvolution,
but we must expect to find the same υm,n

r,a as Pixie3D, for all m,n, since all
the second member in Eq. 8.23 is now compatible or identical to Pixie3D.
Since this expectancy is met, then we know there is some weakness in the
prior time-step evaluation, which is at the base of our deconvolution tech-
nique.

Figure 9.9 shows however that it suffices to iterate the enforcement of the
fluid BCs in SpeCyl.2 to recover from the effect of the lag in the deconvolu-
tion. This technique relies on the idea of evaluating a trial υm,n

r,a via Eq. 8.11,
to be subsequently used in place of the prior time-step evaluation in a second
enforcement of the same BCs, and so on. The convergence of this method is
not granted in principle, and relies on a general property of well-posedness
that however seems to hold in all the cases ever explored so far.
As we see from Fig. 9.9.(a), 3 to 5 iterations of this method bring the whole ve-
locity spectrum to convergence to a compatible value with what also Pixie3D-
B finds. Fig. 9.9.(b) confirms that the small residual inconsistencies between
the two codes are now perfectly compatible with the small differences in all
the other quantities.

This important test convinced us in the opportunity of implementing
the iterative method for the fluid BCs permanently in SpeCyl.2, as already
described in Sec. 8.2.
It must be also said that the case study presented in this Section represents an
extreme challenge for the deconvolution method, as normal cases of interest
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Figure 9.8: Full magneto-fluid BCs, marginally resonant kink 1,−8. Edge
spectrum of plasma quantities in the single-timestep test: the final saturated
equilibrium of an ideal wall simulation is evolved for a single time-step af-
ter replacing the ideal wall with a much more resistive one. The magnetic
field components are kept artificially constant. The electric field thin-shell
response reacts the same way in the two codes to the sudden change in the
BCs, while the edge radial flow in SpeCyl (black) is subject to some lag,
owing to the prior-timestep evaluation leveraged in the deconvolution tech-
nique.
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(a) Convergence study. (b) Final outcome.

Figure 9.9: Full magneto-fluid BCs, marginally resonant kink 1,−8. The
iteration of the enforcement of fluid BCs can effectively overcome the lag in-
troduced by the deconvolution technique. (a) Convergence in 3−5 iterations
of SpeCyl’s fluid BCs to a compatible value with respect to Pixie3D-B (red
line). (b) Edge radial velocity spectra in comparison, after iterating SpeCyl’s
fluid BCs 5 times.

can rarely exhibit such a fast variation of the entire spectrum of the edge
flow (in this case 65 modes, symmetric across (0, 0)).

9.6.2 Intermediate tests and codes modifications

After we had already implemented the correction for the lag in the decon-
volution technique, just presented in the previous subsection, some marginal
improvement in the agreement between the codes was achieved, but the over-
all situation was far from being solved.
Furthermore, some explorative tests with a purely axisymmetric edge radial
velocity, kept constant at a pre-assigned value, still retained almost the same
level of discrepancy between SpeCyl and either implementation of Pixie3D,
proving that some other module in either code was faulted, apart from the
fluid BCs.

We performed a long series of tests in collaboration with Dr. Luis Chacón,
leading to the correction of several aspects in both codes. The main ones are
listed here:

� Test of the electric field response produced by the thin shell: we started
by feeding some dummy magnetic field signals to the resistive shell
module and comparing the answers. In the end it was more practical
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to directly compare the list of values of the shell coefficients Θm,n and
Zm,n. This made evident a bug in the embedding of Pixie3D’s logical
mesh into 2D helical coordinates.

� Test of the FFT algorithm in Pixie3D against the independent built-in
FFT of IDL. The conversion of some outputs from single to double
precision achieved a considerable step forward in the matching with
SpeCyl.

� Analytical re-derivation of wide parts of the model for the evolution of
the flow in SpeCyl. Some minor inconsistency was found and corrected,
with no visible effect on simulations outcome.

� General and reiterate debugging.

In the end, almost all modules of each code had been tested and found
in agreement with its counterpart in the other code, and yet the matching
was still unsatisfactory, if compared to the excellent previous agreement,
documented in [Bonfiglio10] and found in the two limit cases.
The last possible place to look into was either a very well hidden mistake in
either implementation, or a general “time-stepping” error in either code, i.e.,
relative to the way that individually working units are put together to form
the whole of a time-step advancement.
As Sec. 9.6.3 will argument, it was both.

9.6.3 The self-consistency test and the rearrangement
of predictor step in SpeCyl

We present here another test, that represented a turning point in our
verification benchmark study. This consisted in the implementation of a
quantifier of algorithm self-consistency as the Ja × Ba · r̂ diagnostics (see
Eq. 9.17):

Xr ≡
(
Xr

0,0 . . . X
r
Mmax,Nmax

)T
, with Xr

m,n =
(ηaJa ×Ba · r̂)m,n

(Ea ×Ba · r̂)m,n .

Figure 9.10 presents the first application of this diagnostic tool on for the
usual case study of a marginally resonant (1,−8) kink mode in the RFP with
a resistive wall at plasma edge (τW = 100 τA, b/a = 1.5), enforcing no-slip
BCs. A simulation of SpeCyl (in black) is compared with one performed
with Pixie3D-A (in blue), for two different time-snapshots, representing the
linear phase (t = 50 τA, see Fig. 9.6) and the beginning of the nonlinear phase
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Figure 9.10: Full magneto-fluid BCs, marginally resonant kink 1,−8. Self-
consistency test on SpeCyl (black) and Pixie3D-A (blue): it must be that
(ηaJa×Ba·r̂)m,n ≪ (Ea×Ba·r̂)m,n for all modes. This is represented as a ratio
between the two quantities and plot for the various modes (0, 0) . . . (32,−256)
at two time snapshots, one linear and one nonlinear. SpeCyl modes stay
dangerously closer to the “inconsistency” domain, for Xr ≥ 1.

(t = 200 τA), respectively. The shaded region in brown represents the condi-
tion Xr ≥ 1, which was previously (in Sec. 9.4.3) dubbed the “inconsistency
domain”. Only the m ≥ 0 modes are represented, since in a 2D simulation
the rest of the spectrum is just their complex conjugate.
Since early linear evolution, it appears that SpeCyl’s modes get dangerously
closer the inconsistency domain, with respect to Pixie3D’s ones. This con-
cern is widely confirmed by the later evolution, where one mode (and its
conjugate) even presents Xr > 10. This initially appeared as a signal that
the individually tested modules of SpeCyl’s implementation were not com-
municating correctly.
This led to the rearrangement of the predictor step in this code, which has
been already described at the end of Chap. 8. The key idea is that the mag-
netic boundary conditions may be affected by some lag, owing both to the
prior-step evaluation in the deconvolutions of the υa × Ba products and to
the fact that υa itself has never been updated since the end of the previous
time-step. The adopted scheme, as already explained (refer to Figs. 8.3-8.4),
features a first tentative evaluation of the magnetic BCs, whose result is then
used to compute a tentative E×B velocity, which is subsequently used for a
second tentative evaluation of the magnetic boundary conditions and so on.
The described loop iterates NB times per time-step. On the top of this, if
the iterative method for the correction of the lag in the fluid BCs (refer to
Sec. 9.6.1) is active, the velocity boundary gets now updated NB ×Nυ times
per time-step.
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Figure 9.11: Full magneto-fluid BCs, marginally resonant kink 1,−8. Self-
consistency test on SpeCyl (black) and Pixie3D-A (blue), enforcing the iter-
ative method in the boundary conditions, NB = 3 times per time-step, each
time iterating also the enforcement of the fluid BCs Nυ = 5 times. This time
SpeCyl self-consistency is comparable to Pixie3D’s, and both codes stay well
within the “self-consistency” domain, for Xr ≪ 1.

Figure 9.11 presents the same analysis as in Fig. 9.10, repeated for an iden-
tical SpeCyl’s simulation that however enforces NB = 3 times per time-step
the magnetic boundary conditions, with a fluid deconvolution lag correction
that iterates Nυ = 5 times per NB (15 times per time-step, complexively).
A much improved self consistency is now achieved by SpeCyl, whose Xr

profile is now very well compatible with Pixie3D (recall that we are not in-
terested in that the two curves overlap, but only that they both stay well
within the consistency domain: Xr

m,n ≪ 1, for all m and n). As a result
of this iterative correction, the linear growth rate is now raised by approxi-
mately 7% and the fluid velocities, including the axisymmetric one, display
a much more reactive dynamics. A full analysis of these results is presented
in Sec. 9.7.
The iterative method has shown great robustness and the ability converge

within a limited number of iterations. Also, the coupling with the J×B · r̂
diagnostics produces a valuable test of the implementation, possibly relevant
also for future usage of SpeCyl.2 for realistic physics applications.
Faster dynamics and more challenging simulation parameters could however
raise the number of needed iterations before getting to a safe value of Xr.

Luckily, we found and corrected a very small but very impactful typo in
the name of a variable, in the implementation of SpeCyl.2. Basically, we were
mixing one component of the axisymmetric magnetic field computed at the
predictor step in a context where all other magnetic field components were
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Figure 9.12: Full magneto-fluid BCs, marginally resonant kink 1,−8. Self-
consistency test on SpeCyl (black) and Pixie3D-A (blue), after the correction
of a mistake in the implementation. The iterative method in the boundary
conditions is now useless for this simple case study (NB = Nυ = 1).

already evaluated at corrector step.
After the correction of such a mistake, the role of the iterative method has
much reduced in SpeCyl.2 simulations: Fig. 9.12 presents the same analysis
as for the two previous figures, after the correction and for the same SpeCyl’s
simulation, with NB = Nυ = 1. The good performance of SpeCyl.2, after
the correction of this mistake, is testified by Fig. 9.12: in fact, SpeCyl.2
exhibits the same performances already achieved before the correction of
such mistake, now without the iterative method, in excellent agreement with
Pixie3D, or actually even better.
We can thus conclude that

1) The J×B · r̂ diagnostics is a valid tool to highlight the presence of
generic inconsistencies in the implementation of SpeCyl.2.

2) The final version of SpeCyl.2 is mostly capable of avoiding to use of the
iterative formulation of its corrector step, involving better scalability
to simulations with larger numbers of modes.

3) The iterative formulation of the corrector step has nonetheless a pos-
itive effect in the direction of enhanced self-consistency. This is still
useful in presence of faster dynamics and in general of of extreme sim-
ulation parameters, as we will motivate in Chap. 10.
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Table 9.5: Linear growth rates for the (1,−8) marginally resonant mode.

BCs⧹code specyl pixie3d-a pixie3d-b

υt,a = 0 8.751 · 10−2 8.777 · 10−2 8.794 · 10−2

υ∥,a = 0 8.750 · 10−2 8.777 · 10−2 8.793 · 10−2

9.7 General test-cases with both RW and full

flow response: final results

In Section 9.6 we have presented several important tests that eventually
led to the final implementation of SpeCyl.2, as it is presented in Chap. 8.
This final version is the one which is used throughout the rest of this Thesis,
from this Section to the whole of the next Chapter.
We consider here three different scenarios for our 2D helical-geometry verifi-
cation study of the thin-shell resistive implementation in SpeCyl and Pixie3D:
a marginally resonant (1,−8) kink mode in the RFP (the same as considered
in [Bonfiglio10] and in the rest of this chapter, up to this point), a non-
resonant (1,−6) mode still in the RFP, and an external kink mode (1,−1)
in tokamak configuration (the fundamental Kruskal-Shafranov limit, already
discussed in Chap. 4).

9.7.1 The marginally resonant kink (1,−8) in the RFP

Simulations considered here are the ones marked with a darker-green
colour in Tab. 9.3: SpeCyl is compared to both versions of Pixie3D, and for
the sake of full numerical verification all sets of fluid boundary conditions
are enforced (despite the finitely conductive wall with τW = 102 τA would
prescribe no-slip BCs).

Figure 9.13 reports the time evolution of the normalised kinetic and mag-
netic energies of the first eleven modes, including the axisymmetric one, under
υ∥,w = 0 BCs. The same plot enforcing no-slip BCs (not shown) yields no
visible change compared to Fig. 9.13 in this specific case. SpeCyl (in black)
and both versions of Pixie3D (blue and red) match quite well for both kinetic
energies and magnetic energies.
Linear growth rates are reported in Table 9.5, and agree with each other
within 0.2%. The nonlinear saturation agrees quite well in all panels. There
is yet some slight difference in the non-axisymmetric part of kinetic energy
plots, which will be further discussed below.

Figure 9.14 reports the radial profiles of plasma quantities after 300 τA
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Figure 9.13: Full magneto-fluid BCs, marginally resonant kink 1,−8, τW =
100 τA. Time evolution of normalised kinetic and magnetic energies of modes,
defined in D1, enforcing υ∥,a = 0 fluid boundary conditions for the nonreso-
nant kink (m = 1, n = −8) case study. SpeCyl (black) and the two imple-
mentations of Pixie3D (blue and red) match well during both linear growth
and nonlinear saturation.
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Figure 9.14: Full magneto-fluid BCs, marginally resonant kink 1,−8, τW =
100 τA. Radial plot of the main plasma quantities, after 300 τA from initial
perturbation (1,−8), with τw/τA = 100 and enforcing v∥,a = 0. Fourier
modes m = 1, 2, 3 are represented for SpeCyl (black), Pixie3D-A (blue),
and Pixie3D-B (red). The usual SpeCyl units are adopted (see Fig. 9.3).



General tests with complete BCs: final results 227

Figure 9.15: Full magneto-fluid BCs, marginally resonant kink 1,−8, τW =
100 τA. Evolution of the helical flux projection on the cylindrical cross section
for Pixie3D-A (blue), Pixie3D-B (red), and SpeCyl (black). Faster growth
and dominance of mode m = 1 with respect to Fig. 9.4 and field penetration
on the RW time-scale are visible.
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of evolution from initial perturbation, for SpeCyl (black), Pixie3D-A (blue)
and Pixie3D-B (red), enforcing v∥,w = 0.
As already visible from Fig. 9.13, this final state has not reach complete
stationarity, yet: as we already noticed for the ideal wall limit case, this
is in agreement with the axisymmetric electric field components E0,0

t radial
profiles, whose radial derivative is non-zero, motivating thus a finite ∂tBt

through Faraday’s law.
Once more, the similarity is remarkable, overall, with minor differences on
axis, or in the plasma core, away from the boundary. This is especially true
for the non-axisymmetric modes of the flow, where a small discrepancy be-
tween the profiles interests however a large portion of the radial domain. As
a matter of fact, this might well be at the origin of the discrepancy in the
kinetic energy of non-axisymmetric modes, as the extensive radial integration
over the velocity profiles could be cumulating an intensively small mismatch.
It must be also said that the same small discrepancy was already present in
[Bonfiglio10].
Finally, Fig. 9.15 compares the evolution of the helical flux from both SpeCyl
and Pixie3D, following the usual colormap convention. Agreement is excel-
lent, with both codes showing the emergence and dominance of mode m = 1.
Magnetic field penetration through the wall is apparent on timescales longer
than the RW time-constant τW = 100 τA (panels in the second and third
column).

9.7.2 The nonresonant kink (1,−6) in the RFP

We consider the non-resonant (1,−6) mode on the same RFP equilibrium
to study its stability with respect to the variation of the ideal wall proximity
to the edge of the plasma.
The simulations involved in this study are the ones associated to the apricot
colour shade in Tab. 9.3 and are performed once more with SpeCyl and both
implementations of Pixie3D.

Two different RW penetration time-scales have been examined: τW =
100 τA (a resistive thin shell with no-slip BCs), and τW = τA (a vacuum-wall
with υ∥,a = 0). Figure 9.16 presents the growth-rate scan on the separation
of the ideal wall from the plasma for both RW configurations. For each sim-
ulation the growth rate is reported. When the ideal wall is attached to the
plasma, the kink mode (1,−6) is linearly stable (γ τA ≈ −5.37 · 10−3). As
the ideal wall separates, the growth rate increases up to a marginal stabil-
ity threshold (b/a)crit that depends on the value of τW . This is highlighted
in the side-panel (Fig. 9.16-bottom), with the detail of stability threshold
crossing. It is apparent that the larger τW , the slower the growth rate in-



General tests with complete BCs: final results 229

Figure 9.16: Full magneto-fluid BCs, non-resonant kink 1,−6, τW = 100 τA.
Linear growth rate of the nonresonant mode (1,−6) in RFP geometry, as a
function of ideal wall proximity, in SpeCyl (black and grey dots) and Pixie3D-
A (blue and cyan diamonds), and for two different values of τW . For the
vacuum-wall limit case (τW = τA), v∥,a = 0 BCs are used. Below, we report
the detail of the bottom-left corner, extended to negative growth rates to
highlight marginal stability threshold. Units are normalised according to
SpeCyl’s conventions: velocities to υA = a/τA, magnetic fields to B0 =
|B(0)|t=0, currents and electric fields to υAB0 (η = 1/S).
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creases. Both codes find (b/a)crit ≈ 1.003 for τW = τA, and (b/a)crit ≈ 1.007
for τW = 100 τA. Overall the comparison shows excellent agreement between
the two codes, particularly away from the stability threshold.

This study takes its inspiration from [Hender89] and from some prelimi-
nary studies performed bt Daniele Bonfiglio with SpeCyl.2.V00 in [Marrelli19,
Bonfiglio19], to anticipate the effect on the energy of modes produced the
displacement of the conductive structures of RFX-mod further from plasma
edge, as foreseen for the design of RFX-mod2. Preliminarily, the instabil-
ity threshold seems to be quite compatible with the initial predictions of
SpeCyl.2.V00, but new simulations are planned to update the numerical pre-
diction, in force of the excellent results of this verification study.

9.7.3 The Kruskal-Shafranov limit in the straight toka-
mak

The last case we consider in this Chapter is the stability of an external
kink mode (1, 1) in the large aspect ratio tokamak (Kruskal-Shafranov limit,
as in Chap. 4). This is a very academic case study, generally far from the
experimental conditions, owing to its high disruptivity. It is however of in-
terest due to its high current, producing more effective Ohmic heating: as we
saw already in Chap. 4, a closely-fitting conductive shell is usually enough
to make this configuration viable also experimentally [Hurst22].
This study is composed by those simulations that are associated with the
lavender-pink colour in Tab. 9.3, performed with SpeCyl and Pixie3D-A only.
The initial equilibrium is the one reported in Fig. 9.1.(f-l), and in the second
line of Tab. 9.2, and is formally similar to the one typically used by Wesson
in his theoretical works (which we introduced in Eq. 4.11).
Since we consider here a free-boundary instability, the vacuum-wall limit is
adopted, with fast resistive-shell penetration time-scale τW ≤ τA and υ∥,a = 0.
Unlike similar studies performed with other codes [Becerra16, Paccagnella07,
Marx17, McAdams14, Strauss04], we keep uniform profiles of mass-density
and viscosity.
Figure 9.17 demonstrates once more the good compatibility between SpeCyl
and Pixie3D-B, also in the large aspect ratio (R/a = 10) tokamak geometry.
We compare the linear growth rates γ found in simulations, for different input
values of τW ≤ τA: a strong inverse dependence between them is evident for
τW > 0.01 τA, followed by asymptotic saturation for faster penetration scales.
A milder direct dependence of γ with the plasma resistivity and viscosity is
also observed.
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The increasing agreement of the two codes is evident as τW approaches τA,
whereas some small discrepancy builds up for faster penetration time-scales.
This is explained in terms of the different implementation of the same mag-
netic BCs in the two codes. In SpeCyl, the complex algebraic manipulation
of Eqs. 8.16 in the corrector step eventually produces relations where τW is
at the numerator. The fully implicit implementation for general (possibly
not orthogonal) curvilinear coordinates in Pixie3D produces relations where
τW is at the denominator.
This is generally not a limiting feature, since Pixie3D is especially designed to
investigate the opposite regime of finite τW , which is more research-relevant
and where the benchmark agreement with SpeCyl is optimal. Even in this
very academic case of the stability of an ideal free-boundary MHD mode,
reasonable agreement with SpeCyl is shown (within 5% for τW = 0.01 τA),
at the price of a much finer time-step.
The spectral formulation in SpeCyl appears to be particularly advantageous
for the specific purpose of linear MHD studies, allowing to compensate for
the numerical cost of more accurate radial meshes and short time-steps with
a reduction in the number of simulation modes.
A dotted-line in Fig. 9.17 marks the analytical expectation γexp for the growth
rate of an external kink mode (1, 1), as computed through the energy prin-
ciple. From our scaling results that this value is reliably approximated for
faster penetration time-scales and lower plasma resistivity.
The increasing faithfulness to the ideal MHD theory for lower resistivity and
viscosity is certainly a good sign, since it indicates that the asymptotic limit
for η, ν → 0 does actually fall in the ideal MHD limit. Recall that this was
not the case in presence of a pseudo-vacuum, in Chaps. 5-6, as well as in the
simulations presented in Appendix B.
For the dependence of γ on τW , we speculate that the saturation is reached
when the resistive penetration through the vacuum-wall is much faster than
the characteristic growth rate of the instability, i.e.,

τW ≪
1

γexp
∼ O(1) .

Similar studies on the dependence of γ on τW had already been performed
with no visible results on past versions of SpeCyl: namely SpeCyl.2.V00 and
the first explorative implementation of SpeCyl.2 (see Appendix B).

Fig. 9.18 presents a first successful nonlinear benchmark study of SpeCyl
against the external kink mode (1, 1), performed with τW = 10−8 τA, S = 107,
and P = 1 (referring to Tab. 9.3, these are the simulations associated with
the colour gray). The theoretical growth rate is finally reproduced with ex-
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Figure 9.17: Full magneto-fluid BCs, external kink 1, 1 in the tokamak.
Growth rate of the external kink (1, 1) in tokamak geometry, as a function
of τW , for qa ≈ 0.78. Pixie3D-A (blue circles) and SpeCyl (black markers)
agree well for the same numerical set-up (S = 105, P = 1). Linear theory
expectation γexp is approached by SpeCyl for small η and ν, and provided
that τW ≪ 1/γexp.
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Figure 9.18: Full magneto-fluid BCs, external kink 1, 1 in the tokamak. Lin-
ear benchmark of SpeCyl’s simulations against the ideal MHD external kink
mode (1, 1). Slight disagreement around q(a) ≈ 1 is due to resistive tear-
ing modes, resonating at plasma edge. For this case: R/a = 20, τW/τA =
10−8, η(0) = ν = 10−7.

cellent agreement by SpeCyl (small discrepancies at qa ≈ 1 are probably due
to resistive modes resonating at plasma edge): this is strongly suggesting
that similar results should be achieved also by Pixie3D, further decreasing
the time-step width and refining the radial (and angular) mesh.

Finally, both in SpeCyl and in Pixie3D the radial profiles of B1,1
r and υ1,1r

are extremely close to the theoretical expectations, as shown in Figure 9.19
for SpeCyl.

9.8 Conclusive summary

The cross-verification benchmark presented in this chapter has repre-
sented a challenging milestone in my PhD and an absolutely mandatory
final step in the implementation of a new set of boundary conditions. We
strongly reckon that a full and quantitative verification benchmark is a vital
step in the development of any numeric tool that aims at making reliable
predictions.
The key to the final success was the enforcement of a quantitative approach,
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Figure 9.19: Full magneto-fluid BCs, external kink 1, 1 in the tokamak.
SpeCyl’s radial velocity and magnetic field for the dominant mode 1, 1 (teal,
solid) against linear theory eigenfunctions (black, dashed), predicted for
the Wesson’s current model. The excellent agreement extends from axis
to plasma boundary.
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fostered by the definition of diagnostic tools formulated in such a way to
highlight differences more than similarities: this is, e.g., the case of the su-
perposition of plots of the same quantity, produced by the two different codes
(radial profiles, energies of modes, or helical flux), or the case of figures of
merit such as the percent discrepancy between the linear growth rates.

We started with an introduction to the implementation of Pixie3D’s two
alternative sets of boundary conditions. This was instrumental to highlight
another important aspect in this verification, which is the very different nu-
merical schemes of the two codes. The most important of these has been for
us the mostly non-spectral implementation in Pixie3D, which forced us to
face several issues resulting from the complexity involved by convolutions.

After defining a common numerical set-up, in Sec. 9.2, we provided a
schematic presentation of a method for the verification. Despite resenting of
the peculiar direction that our specific case took, in Sec. 9.3 we aim at pro-
viding some useful and general tips for analogous works in the future. Among
them, the most important lessons are possibly the aforementioned focus on
quantitative diagnostics, the definition of some quick and quantitative test
to measure the self-consistency in the implementation, and a general flavour
of keeping things as simple as possible.
The diagnostics and figures of merit have been more thoroughly commented
in Sec. 9.4.

Sections 9.5 and 9.6 contain a description by steps of the long verifica-
tion work, starting from convenient limit cases, to districate the magnetic
BCs from the fluid contribution and vice versa, to arrive to a comprehensive
testing campaign of every single module in the two codes. We found partic-
ularly instructive the role that the J×B · r̂ diagnostics played in the final
part of this process: its deployment led to the preliminary implementation of
an iterative method that still retains a useful role in fostering time-stepping
self-consistency, even after the correction of an impactful coding mistake.
Despite we mainly focused on the improvements and modifications required
by SpeCyl, the same amount of work was needed for Pixie3D and performed
by Luis Chacón, whose priceless collaboration has been a vital condition
throughout this whole work.

Finally, Sec. 9.7 presented our final results, for two different case-studies
in RFP geometry and one in the straight tokamak: a marginally resonant
(1,−8) kink, a non-resonant (1,−6) kink, and an external kink mode (1, 1)
(Kruskal-Shafranov limit).
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Concerning the first case, overall excellent agreement is found between SpeCyl
and both formulations of Pixie3D, both enforcing no-slip and υ∥,a = 0 fluid
boundary conditions. In fact, in this particular case, negligible difference is
found between the predictions of the two fluid boundary formulations.
There are still some few discrepancies, mostly displaced towards the axis
of the plasma, however suggesting that the boundary conditions treatment
is finally in optimal agreement. Some tests of the physical predictions of
the employed model have already been discussed and suggest promising self-
consistency and faithfulness to physics. This is true for some properties of
the electric field radial profiles (Fig. 9.14) and for the progressive penetration
of the iso-flux surfaces in the resistive shell (Fig. 9.15).

In the second case, the stability of a nonresonant kink mode (1,−6) has
been investigated for diverse ideal wall proximities and for the two relevant
cases of a resistive shell attached to the plasma and of a free-interface with
vacuum. Also in this case the agreement of SpeCyl and Pixie3D-A is con-
firmed, both concerning the general study on the linear growth rates and
regarding a more specific test on the instability threshold beyond some crit-
ical plasma-wall proximity.
The achieved agreement on this case specifically could be of interest in the
contest of anticipating for RFX-mod2 the impact on MHD modes energies
of a displacement of the conductive metal structures further away from the
plasma [Marrelli19].

The third and last case confirms and extends the already proven agree-
ment to the tokamak geometry, where however the challenging simulations
parameters make the full verification benchmark too expensive for Pixie3D,
whose implementation is more addressed towards the larger values of τW .
Acceptable matching is nonetheless found in the common range of applica-
tion, motivating the the expectation that SpeCyl results can be in line of
principle achieved also by Pixie3D, through very expensive simulations.
The simulations of both codes find a strong dependence of the mode growth
rate on the vacuum-wall penetration time and a milder dependence on the
plasma resistivity and viscosity. In particular, for a penetration time much
shorter than the inverse growth rate of the theoretical instability and for
a very conductive and inviscid plasma, SpeCyl.2 finds excellent agreement
with the analytical theory of ideal MHD instabilities, both concerning the
growth rates and the eigenfunctions profiles. This is totally unprecedented
in SpeCyl and is achieved without enforcing a pseudo-vacuum region at the
plasma boundary.

In force of these final and strong results, we are very confident in assessing
the mathematical correctness of both codes in the implementation of their
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new magneto-fluid set of boundary conditions.





10
Final benchmark against linear theory

At the end of the previous Chapter we have already presented a first and
successful benchmark against the linear theory of MHD instabilities. How-
ever, the external kink mode (1, 1) is still a relatively safer case study, since
nor the growth rates, neither the eigenfunctions are sensitive to the shape of
the equilibrium profiles.
In this Chapter we extend our analysis to the more challenging kink mode
(2, 1), still in the straight tokamak geometry.
Sec. 10.1 presents the numerical set-up for the present study. The two usual
current profiles by Shafranov and Wesson are reproduced, without enforcing
a pseudo-vacuum region at plasma edge. The thin-shell is then meant to be
a free-interface between the plasma and the outer vacuum, setting τW ≪ τA
and enforcing υ∥,a = 0 BCs.
A useful rule of thumb is presented in Sec. 10.1.1, to choose the suitable ra-
dial mesh refinement for given simulation resistivity, viscosity, and the main
characteristic time-scales. This rule is instrumental to understand the main
numerical challenge faced throughout this Chapter, where very expensive ra-
dial meshes are put into use.
Sec. 10.2.1 presents the first numerical results, achieving a textbook agree-
ment with the flat-current Shafranov’s equilibrium, both concerning the
growth rates and the profiles of both the flow and the magnetic field compo-
nents.
Such a success is then extended (Sec. 10.2.2) to a scan in the proximity of
the external ideal wall, finding again full compatibility with the theoretical
expectations.
Sec. 10.2.3 presents a yet incomplete but important benchmark verification
against the same instability for the Wesson’s current model. Despite still
unoptimised, the SpeCyl’s simulations stand in very promising agreement
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Table 10.1: General plasma and RW parameters used throughout the nonlin-
ear benchmark study, unless specified, for the two initial equilibria of Shafra-
nov’s (flat-current) and Wesson’s.

R/a η0 ALET BEET GAET ν τW/τA b/a ρ

Shafranov 20 10−7 1 2 0 10−7 10−8 100 1

Wesson 20 10−8 0.01 2 −1 10−8 10−8 100 1

with the model expectations, both concerning the linear growth rates and
the radial profiles.
Section 10.3 presents the usual conclusive summary for this Chapter.

10.1 Numerical set-up

This nonlinear benchmark study features the usual general set-up of
SpeCyl’s simulations, starting from the pressure-less paramagnetic pinch
equilibrium already described (see Sec. 5.2.1), where the axisymmetric cur-
rent density results from imposing a uniform and axisymmetric electric field
and assigning a resistivity profile in the form of (Eq. 5.12):

η(r) = η0
[
1− (ALET− 1) rBEET

]GAET
.

The viscosity is uniform and in the present study we will always assume that

ν = η0 .

Importantly, we also assume a uniform mass-density, identifying the entire
simulation domain with the plasma region and effectively treating the resis-
tive shell as a free interface with vacuum: τW ≪ τA and υ∥,a = 0.
Table 10.1 reports the main plasma and thin-shell parameters used through-
out, unless otherwise specified, to reproduce the two usual reference equilibria
already presented starting from Chap. 4: the flat-current model by Shafranov
and the shaped current model used by Wesson in his theoretical works.

The Shafranov’s flat-current initial equilibrium is reproduced by setting
a flat resistivity profile over the full radial span of the simulation. The
resulting profiles of axial equilibrium current and safety factor are represented
in Fig. 10.1, along with the uniform mass-density profile. We highlight the
optimal consistency with the analytical profiles, which is far better than the
one obtained with pseudo-vacuum in Chap. 5.
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Figure 10.1: Initial equilibrium for the nonlinear benchmark against Shafra-
nov’s flat-current profile, for the external kink mode (2, 1).

The Wesson’s profiles instead are obtained through a parabolic resistivity
profile, as in the lower half of Fig. 10.2. Recall that the Wesson’s profile
(Eq. 4.11)

JWesson
0,z = j0

[
1−

(r
a

)2]ν′
, ν ′ = 1

is supposed to be null at the plasma edge. This is infeasible in SpeCyl’s
simulations as it would require a singular resistivity (η ∼ 1/J0,z). Hence
we slightly deform the plasma edge, so that it is small but still finite at the
plasma edge. The resistivity-shaping parameters reported in the second line
of Tab. 10.1 roughly correspond to the following current profile

JSpeCyl
0,z = j0

[
1− 0.99

(r
a

)2]
. (10.1)

Despite being almost invisible by the eye, as reported in Figure 10.2, our
profile is then a little flatter (more “radially stretched”) than the Wesson’s
profile, and it presents a tiny pedestal at plasma edge J0,0

z,a ≈ 0.01 j0. This
is also visible in the safety factor profile, whose edge value is generally little
lower than the theoretical prescription.
We can more effectively model the SpeCyl’s current profile by redefining a
in Eq. 10.1, so as to make it formally identical to the general form of the
Wesson’s current Eq. 4.11:

JSpeCyl
0,z = j0

[
1−

(
r

a0

)2
]
, with a0 =

a√
0.99

. (10.2)
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Figure 10.2: Initial equilibrium for the nonlinear benchmark against Wes-
son’s current profile, for the external kink mode (2, 1). Owing to numeric
limitations, the current profile is slightly aberrant with respect to the model:
it is vaguely flatter and presents a tiny edge pedestal, with some detrimental
influence also on q(r). Below: resistivity profile in SpeCyl.



Numerical set-up 243

10.1.1 The rationale for a very refined radial mesh

The simulations presented here are the final result of a parametric opti-
misation. It is usually observed that the choice of the numerical parameters
may influence the physical outcome of a simulation, if, e.g., simulation time-
step ∆t is too long (and becomes comparable with some relevant physical
time-scale), or the radial mesh is too coarse to resolve entirely the phenom-
ena one aims to describe.
Empirically, once the mesh gets refined enough, the numeric simulation per-
formance decouples from that parameter, which is a necessary condition to
achieve physically relevant interpretation of the code’s predictions.
From very instructive discussions with Dr. Luis Chacón we learnt a rule of
thumb to determine in advance what is a good guess for a physically accept-
able mesh refinement, in our verification studies on boundary conditions.
The idea is that we need to let our BCs penetrate inside the plasma on a
time-scale which needs to be faster or at least comparable to the faster char-
acteristic time of the system.
Since the penetration of fluid-magnetic boundary conditions in the plasma
is regulated by visco-resistive processes, the characteristic time of this phe-
nomenon across at least one radial grid point is

τν(∆r) ∼
(∆r)2

ν
, τη(∆r) ∼

(∆r)2

η
.

In the strong formulation the rule of thumb reads:

τν(∆r), τη(∆r) ≤ ∆t =⇒ ∆r ≤ min
[√

ν∆t,
√
η∆t

]
, (10.3)

where ∆t is the simulation time-step. In practice, it is usually enough to
rely on a weaker formulation of the same rule, where the characteristic time
considered is the expected dynamic time of the instability we aim at repro-
ducing in our simulation (which need to be longer that ∆t, to be properly
resolved):

τν(∆r), τη(∆r) ≤
1

γexp
=⇒ ∆r ≤ min

[√
ν

γexp
,

√
η

γexp

]
, (10.4)

where γexp is the expected growth rate of the instability we want to reproduce.

Eq. 10.4 has been successfully applied throughout this Chapter and seems
to hold general validity.
Unfortunately, even the weak formulation of this principle, the ideal plasma
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Table 10.2: Numerical set-up for the simulations presented in this Chapter:
maximum expected growth rate, aspect-ratio, plasma viscosity and resistivity
(P = 1), radial mesh size, time-step, number of modes with m ≥ 0 (not
included the complex conjugates with m < 0), number Nυ of iterations of
the fluid BCs in SpeCyl’s corrector step, and number NB of iterations of the
full magneto-fluid set (see Sec. 8.2.3).

τA γ
max
exp R/a ν = η0 1/∆r ∆t Nmodes Nυ NB

Shafranov 0.47 · a/R 20 10−7 1000 10−5 3 1 50

Wesson 0.15 · a/R 20 10−8 1000 10−5 3 1 1

limit (η ≈ ν ≈ 0) requires extremely refined radial meshes, also considering
that the ideal kink modes tend to grow quite fast. Hence, numerical stability
issues relating to very large radial meshes, pose a limit to the plasma viscosity
and resistivity we are able to resolve reliably for fast-growing modes.
Such a requirement can be partially relaxed by working at large aspect ratio,
since the kink modes dynamics is normalised on the toroidal Alfvén time

τ toroidalA = τA ·
R

a
,

which gets longer for a larger aspect-ratio. This comes however at the price
of much longer simulations, to capture the slower evolution of the mode.

Table 10.2 presents the numerical set-up for the simulations we are going
to discuss. The maximum expected growth rate for a given initial equilib-
rium (and for some particular qa value) is obtained numerically, through our
Euler’s equation solver.
We can see that the radial meshes need to be very well refined, at the expense
of the number of modes (which is not contributing much in the linear regime).
The Shafranov’s flat-current model, whose modes grow exceedingly fast, can-
not be reliably reproduced with any numericaly affordable radial mesh for
ν = η(0) < 10−7, while the slower kink mode in the Wesson’s case can af-
ford ν = η(0) = 10−8. In the last two columns we also report the employed
number of iterations of the fluid and magneto-fluid boundary conditions in
SpeCyl’s corrector step. Also this number comes from a compromise between
better performances and numeric stability. In the case of the Wesson model,
the value of NB is provisional, owing to stringent time constraints for my
Thesis.
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10.2 External kink

We present in this Section the results of the nonlinear benchmark of
SpeCyl.2 against the linear MHD theory of the external kink mode (2, 1) in
the straighy tokamak limit.
Our study articulates on three subSections: in the first one the stability is
investigated for the Shafranov’s equilibrium and in no-wall conditions (b/a≫
1), the second subSection presents a scan on the stabilising effect of increasing
the ideal wall proximity to the plasma edge, and the third subSection is
dedicated to the stability analysis of the Wesson’s current profile in the no-
wall limit.

10.2.1 External kink mode (2, 1) with Shafranov’s equi-
librium

This subSection deals with the stability analysis of the external kink mode
(2, 1) with a flat-current Shafranov’s equilibrium. The simulations presented
here correspond to the first line of Tab. 10.1-10.2 and are thus performed
with a very large radial mesh and aspect ratio.
A preliminary scan was performed to assess the optimal set of parameters for
the simulations, using as a representative case study the equilibrium charac-
terised by qa = 1.5. Apart from the considerations we already reported for
the time-step, and the radial mesh, a very positive effect in the convergence
of the growth rate to the theoretical value is found for the NB SpeCyl pa-
rameter. In fact, Fig. 10.3 reports the relative error between the growth rate
obtained from the simulations and the theoretical expectation:

|∆γ|
⟨γ⟩

=

∣∣γSpeCyl − γexp
∣∣

1
2

(
γSpeCyl + γexp

) .
We can see that a significant improvement in the agreement is already achieved
with a reduced number NB of iterations of the boundary conditions enforce-
ment within the corrector step. In fact, the aleady acceptable agreement
within ∼ 6% obtained with NB can be improved to a compatibility within
a ∼ 1% tolerance, already at NB = 20.
In this case of almost linear dynamics, the lag coming from the convolutions
nonlinearity is widely negligible (in fact, no effect is seen by increasing Nυ).
However, in this case of relatively fast dynamics, the BCs self-consistency
can be undermined by the evaluation of the magnetic field boundary with
a prior-step evaluation of the edge flow: this must be why we observe such
a beneficial effect of NB. The resulting stability analysis, performed with
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Figure 10.3: Impact on the convergence to the expected growth rate of the
iterative method for the BCs in SpeCyl corrector. The discrepancy from
linear theory improves from ∼ 6% at NB = 1 (no iterations) to ∼ 1% when
NB = 20.

NB = 50, is reported in Figure 10.4. The overall agreement is remarkable:
for all the unstable simulations, the linear growth rate maintains close to the
expected growth rate, within a tolerance of ≈ 1%. Furthermore, the stabil-
ity boundaries display excellent agreement with the analytical predictions.
The modes within the stability region exhibit an almost purely oscillatory
behaviour of the magnetic field, while the flow is particularly noisy and hard
to fit. For these modes, any attempt of defining the growth rate in any of
the usual ways (fitting the growth of either a plasma quantity at a given
position or the kinetic or magnetic energy) gives poorly intellegible results,
as it is evident from Fig. 10.5. The small oscillations in the energies of non-
axisymmetric modes are due to some form of noise, but the overall trend is
quite clearly not growing. This is in agreement with the theoretical expec-
tation that predicts that the ideal mode growth rate must be either positive
or null.
Not that in the present simulations we set an initial perturbation such that
the dominant mode has a much larger kinetic energy also compared to the
axisymmetric mode.

As for the unstable modes, Fig. 10.6 reports the radial profiles of the
flow and magnetic field components of the dominant mode (2, 1). The model
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Figure 10.4: Stability analysis for the external kink mode (2, 1) with a
Shafranov’s flat-current initial equilibrium and far-displaced ideal wall. The
normalised growth rates of SpeCyl’s simulation (red crosses) lay on the top
of the theoretical expectations (black curve) within a 1% tolerance.

Figure 10.5: Kinetic and magnetic energy of the stable mode (2, 1) for
qa = 0.9 < 1. Apart from small oscillations due to some form of noise, the
growth rate is compatibly null, in compliance with the ideal MHD theory.
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Figure 10.6: Benchmark of mode (2, 1) radial profiles from SpeCyl (red
solid curves) against the Shafranov’s eigenfunctions (black dashed curves),
for the external kink mode (2, 1).

predictions (ξ2,1 and b2,1 profiles) are reported as a black dashed line and are
numerically computed through from Euler’s and Newcomb’s equation. Their
value is normalised so that ξ2,1r (r0) ≡ υ2,1r (r0) and b2,1r (r0) ≡ B2,1

r (r0), with
r0 = 0.6 · a arbitrarily chosen, while the other components are scaled in such
a way to enforce the incompressibility of the analytical eigenfunction ξ2,1 and
the solenoidal property for b2,1.
Once more, the agreement between SpeCyl.2 vacuum-wall implementation
and the theoretical expectations is almost perfect concerning the radial and
azimuthal eigenfunctions.
The axial eigenfunctions, despite visually different from the model are nonethe-
less totally compatible with it. To understand this, recall that the straight
tokamak limit descend from an asymptotic development of more general
equations (Eq. 3.18 and 3.49), and it is only valid up to order ε = a/R.
In the present case, ε = 0.05, and from the different scales on axes it is
evident that

υz
υr
∼ υz
υθ

≲ O(ε) , bz
br
∼ bz
bθ

≲ O(ε) .
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10.2.2 Scan on ideal wall proximity

In this Section we extend the results of the previous stability analysis with
the Shafranov’s equilibrium to a scan on the ideal wall proximity. In doing
this, we still interpret the thin shell as our plasma-vacuum free-boundary
and by varying the outer ideal wall position (b/a), keeping qa = 1.1.
The results are reported in Fig. 10.7, where each red cross corresponds to a
simulation with q0 ≈ qa ≈ 1.1 and b/a ranging between 1.77 and 7.8. We see
immediately that the remarkable agreement found for the no-wall limit case
in the previous Section is indeed preserved also in presence of a conductive
wall.
When the conductive wall is attached to the plasma edge, the modes are
predicted to be stable. At a critical wall proximity (b/a)crit ≈ 1.77 there
is a stability threshold, beyond which the modes rapidly grow towards the
asymptotic maximum growth rate for the given qa value, which is the one
reproduced in Fig 10.4.
A similar study, with a more rudimental formulation of SpeCyl.2 boundary
conditions is reported in Appendix B, featuring also a qualitative benchmark
against with the JOREK-STARWALL code in Fig. 5.3 of the PhD thesis of
Rachel McAdams [McAdams14]. Both in the past exploratory study with
the incomplete version of SpeCyl.2 and in the nonlinear benchmark study
produced by McAdams a narrow psuedo-vacuum layer was modelled close to
the plasma boundary, roughly occupying the region 0.9 ≤ r/a ≤ 1.
The study performed with the preparatory formulation of SpeCyl.2 and
pseudo-vacuum can be visualised in Fig. B.7. In that case a partially incon-
sistent formulation of the plasma edge flow was enforced (Sec. B.1), along
with the present formulation of the magnetic boundary. The critical prox-
imity could still be well resolved, but the no-wall limit would saturate on
a much lower vale than the one predicted by theory, within a tolerance of
∼ 36%, as opposed to the present agreement within ∼ 1%.
The study performed with JOREK-STARWALL enforces interface boundary
conditions that are thoroughly described in [Merkel15] and whose fluid con-
straints are summarised in Appendix B in Eqs. B.4-B.6. Also in this case,
the interface is positioned inside a narrow pseudo-vacuum region, while the
actual plasma coincides with the step-profile of the mass-density. In the re-
sults presented in Fig. 5.3 of [McAdams14] the critical stability threshold is
very well reproduced, and the agreement with analytical expectation in the
limit of b≪ a is within a tolerance of ∼ 18%.
The fact that we have been able to obtain a much better agreement (to order
1% as mentioned above) testifies the substantial correctness and robustness
of our final implementation for the RW boundary conditions.
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Figure 10.7: Scan of the growth rate variation for a given initial equilibrium
(flat-current, q0 = qa = 1.1), as a function of ideal wall proximity to the
plasma edge. SpeCyl (red crosses) against the theoretical expectations with
the Shafranov’s current model (black line), for the external kink mode (2, 1).

10.2.3 External kink mode (2, 1) with Wesson’s equi-
librium

Finally, this Section presents our results with the Wesson’s equilibrium.
This Section is to be considered as an advanced-preparatory study, and will
be completed in the near future.
The set-up of the simulations we present is summarised at the second lines
of Tabs. 10.1 and 10.2.
Figure 10.8 presents the stability analysis for the ideal kink mode (2, 1) with
a Wesson’s initial equilibrium.
Each teal cross represents a simulation performed with SpeCyl.2, whereas the
theoretical expectation for the Wesson’s current model is reported as a black
line. A second line in magenta reports the theoretically expected growth rate
for the approximated current profile produced by SpeCyl, whose analytical
formula is in Eq. 10.2 and whose plot is reported in black, in Fig. 10.2.
Concerning the Wesson’s current expectation, a reasonable agreement is
found, which is much improved when the actual current distribution ob-
tained by SpeCyl is fed to the LENS code through the approximated formula
in Eq. 10.2 (here represented by the curve in magenta). We see in particular
that the left-hand-side stability boundary is perfectly reproduced.
SpeCyl’s growth rates gradually detach from the model expectation as plasma
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current is increased, yielding greater instability than what the model foresees.
On a bright note, also the right-hand-side stability boundary seems reason-
ably compliant with the predictions of LENS, even if the plasma at qa ≳ 2
is not expected to be totally stable, owing to the tearing mode instability
(in fact, the point in qa ≈ 2.1 is linearly growing with γτA ≈ 7.88 · 10−5).
The activity of resistive modes near the edge of the plasma can in principle
justify some aberration from the ideal MHD instability curve on its right
side, but cannot account for all the discrepancy we see here, also considering
the relatively high conductivity in SpeCyl’s simulations for this case study.

Many could be the causes of this residual discrepancy. By looking at the
Ja × Ba · r̂ diagnostics, it seems that we can rule out a strong influence of
NB on simulations performances: this is also confirmed by some preliminary
empirical studies.
Better responsivity is observed concerning variations of plasma resistivity
and viscosity, suggesting that the plasma ideality is possibly not yet reliably
modelled with S(0) = 108 and P = 1. In fact, despite the large conductivity
on axis, the edge resistivity is always two orders of magnitude larger for the
Wesson’s profile. This comes from the fact that the resistivity in SpeCyl is
inversely proportional to the axi-symmetric equilibrium current. This way,
despite having larger resistivity on axis, the Shafranov’s flat-current model
ends up having one order of magnitude lower resistivity at plasma edge.
Also consider that larger plasma resistivity has already been proven to raise
SpeCyl.2’s growth rate away from the theoretical expectations (see Fig. 9.17,
regarding the external kink mode (1, 1) with this same Wesson’s current pro-
file).
Unfortunately, further pushing on plasma resistivity and viscosity is not
straightforward as it requires even larger radial meshes than the very re-
fined ones already in use (and numerical stability is already a concern). The
strategy we may adopt is to slow down the kink dynamics by taking a much
larger aspect ratio (thus reducing γexp, as it is apparent from the label of the
y-axis of Figure 10.8).

Concerning the analysis of the profiles of the flow (υ2,1) and magnetic
field (B2,1) in SpeCyl’s simulations, Fig. 10.9 presents a qualitative compar-
ison between their space components and the corresponding linear theory
eigenfunctions ξ2,1 and b2,1, for the specific case of q0 = 0.8 (and qa ≈ 1.58).
Once more, the black curves represents the Wesson’s current model, whereas
the magenta profiles are computed feeding LENS with Eq. 10.2.
As already for the Shafranov’s case, the analytical profiles are renormalised
so that ξ2,1r and b2,1r match with the corresponding radial components of
SpeCyl’s counterparts, while ξ1,2t and b2,1

t are normalised in such a way that
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Figure 10.8: Benchmark of mode (2, 1) radial profiles from SpeCyl (teal
crosses) against the theoretical expectations with the Wesson’s model (black
curve) and for the approximated current profile deployed in SpeCyl and de-
scribed in Eq. 10.2 (magenta curve) for the external kink mode (2, 1).

∇ · ξ2,1 = ∇ · b2,1 = 0.
As already observed from the growth rates, the agreement is close but not as
much as in the Shafranov’s case study. The radial velocity boundary seems
now almost capable of reproducing also this shaped and non-trivial veloc-
ity profile.This marks a paramount step forward with respect to the initial
achievements obtained with a resistive shell in SpeCyl.2.V00.
The same considerations hold for the azimuthal velocity, whose bursty profile
is quite faithfully recreated almost up to the edge of the plasma. In the last
few radial positions SpeCyl’s azimuthal velocity drops to meet the boundary
conditions. This is unavoidable and depends on the adopted closure for our
system of equations in the vacuum-wall regime: υ∥,a = 0. In other words,
since the magnetic field is mostly tangential throughout the linear phase (Br

is small with respect to |Bt|), then υ∥,a ≈ υθ,a in the large aspect ratio limit.
This feature was already present in the Shafranov’s case study, even if less
visible (see Fig. 10.6), and thus it is not concerning, considering the excellent
agreement achieved with linear theory in that case.
Concerning the magnetic field, the radial component presents once more the
better (almost perfect) agreement. The azimuthal and axial components are
in optimal agreement with the profiles in magenta, meaning that SpeCyl has
no problem in reproducing the theoretical profiles once the initial equilibrium
is accurately reproduced. There is however a small detachment from either
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Figure 10.9: Benchmark of mode (2, 1) radial profiles from SpeCyl (teal
solid curves) against the Wesson’s eigenfunctions (black dashed curves) and
the eigenfunctions obtained for the approximated current profile obtained by
SpeCyl (magenta dashed), for the external kink mode (2, 1).

model in the outermost section of the radial coordinate, in correspondence
with the higher resistivity and resistivity-gradient.
This could shed some light also on the mismatch in the growth rates at high
current: since the Wesson’s eigenfunction is more localised towards the edge
when the resonance is just outside the plasma, the relatively stronger dis-
sipation at plasma edge could be more detrimental to the performances of
high-current simulations. To this regard, note that such a visible difference is
not observed either for the flat-resistivity Shafranov model or for the radially-
uniform-eigenfunction m = 1 external kink mode (studied at the end of the
last Chapter, enforcing the same Wesson’s model).
Finally the axial components of both fields are once more perfectly compat-
ible with the analytical expectations within ε = a/R = 0.05.

10.3 Conclusive summary

This Chapter marks the successful end of a journey, from the initial at-
tempts presented in Chap. 6 to produce a reliable agreement with the linear
theory of the external kink modes, through the reformulation of the fluid
boundary conditions and the thorough verification of mathematical correct-
ness, with particular concern for self-consistency.
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Already at the end of Chap. 9 a first successful nonlinear benchmark against
the linear analytical theory was reported for the external kink mode (1, 1),
suggesting that it was about time for a final attempt to reproduce the ideal
MHD results.
Indeed, after a detailed presentation of the numerical set-up and the defi-
nition of an useful rule of thumb in Sec. 10.1, Sec. 10.2.1 has presented a
textbook agreement on the external kink mode (2, 1) with a flat equilibrium
current profile. Thanks to the final formulation of SpeCyl.2, owing also to
the newly implemented iterative method in the corrector step, the linear
growth rates of SpeCyl’s simulations have been found in agreement with the
expectations within a 1% tolerance. A specific analysis on stable and un-
stable cases finds for the first ones a compatibly null overall growth rate (in
compliance to the theory), and for the latter an excellent compatibility of
radial profiles, as well.
Sec. 10.2.2 has extended the agreement already discussed in Sec. 10.2.1 to
various ideal wall proximities. The same compatibility (within ∼ 1%) has
been confirmed in all simulations, also reproducing the expected stability
threshold for (b/a)crit = 1.77. A qualitative benchmark has been issued with
analogous results obtained enforcing a thin pseudo-vacuum region at plasma
edge, either with an exploratory initial formulation of SpeCyl.2, or with the
independent 3D nonlinear MHD code JOREK-STARWALL.
In Sec. 10.2.3 we presented a benchmark against the external kink mode
(2, 1), with the Wesson’s current profile. In this, a slightly modified cur-
rent model has been taken into account to meet the numerical limitations of
SpeCyl in reproducing the model equilibrium. Yet, an acceptable agreement
between the theoretical expectations and the - still unoptimised - SpeCyl’s
simulations has been proved. The insufficient ideality of SpeCyl’s plasma is
currently deemed responsible for the residual discrepancy, and a roadmap
has been drawn in order to overcome this issue.
Although still unoptimised, the radial flow profile in SpeCyl’s simulations is
now visibly within reach of reproducing even the bursty radial eigenfunction
of the linear theory for the Wesson’s model. This represents an outstanding
improvement from the initial failure, presented in Chap. 6, and characterised
by the development of a resistive boundary domain at plasma edge.

This Chapter represents the first but successful kernel of a verification
against analytical models of our new magneto-fluid set of boundary condi-
tions. Such results provide solid foundations for an actual validation against
experimental results.
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Final conclusions

The work presented in this Thesis consists in the formulation, implemen-
tation and verification of new and more realistic boundary conditions for the
MHD nonlinear code SpeCyl.
SpeCyl deals, presently, with a visco-resistive approximation of 3D nonlinear
MHD in cylindrical coordinates. This approximation has been proved to be
insightful in dealing with the helical self-organization processes observed in
RFP devices, processes that are encountered in more geneal pinch config-
urations, and is expected to provide an essential tool to study 3D physics
in the device RFX-mod2. RFX-mod2 is being upgraded thanks to PNRR
funding for high priority infrastructures under “NEFERTARI project”, op-
eration is foreseen in 2024. Several 3D physics processes (cyclic magnetic
relaxation, reconnection, internal barrier formation, magnetic chaos healing
effect with structures formation, Alfvèn wave excitation, ...) can be described
to a meaningful level within this modelling, without necessarily requiring the
use of more complex and heavier 3D MHD codes like Pixie3D or JOREK,
also available at RFX group, and that provided important means for com-
parison and benchmarking in several occasions.
The Chapters of this Thesis are articulated in four main parts, after the
I) introduction: II) preliminary analytical and numerical study of the well-
established theory of linear MHD instabilities; III) characterisation of the
already existing preparatory boundary conditions against the linear MHD
instabilities; IV) reformulation and implementation of a final set of bound-
ary conditions; V) nonlinear verification.
At the end of each Chapter a detailed conclusive summary is reported. In
addition, Part II and Part III also present specific conclusions. I present here
only a brief overview of the main results.
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Linear MHD theory studies (Part II) Part II is devoted to an in-
depth review of the well-established linear theory of MHD current-driven
instabilities. The main focus is on two peculiar relaxation phenomena of
magnetically confined pinch devices: namely the external kink mode and the
tearing mode.
Two different approaches of linearisation of the MHD momentum balance
equation are presented and derived almost from first principles: the New-
comb’s equation and the Euler’s equation. Their complementary formula-
tions are explored in the detail, in the context of the Energy Principle, high-
lighting the role of plasma inertia and flow, which will be central in the rest
of my thesis.
I also developed the linear stability LENS code for the study of current-
driven instabilities in cylindrical pinches: a verification study is presented,
leveraging the advanced method of the manufactored solutions, and finding
solid and general convergence. Not only is LENS instrumental to the thor-
ough understanding of the mathematical notions of the linear theory, but
it can be used to produce reliable and quantitative figures of merit for the
benchmark verification of SpeCyl’s boundary conditions.

Characterisation of the existing, preparatory boundary conditions
(BCs) (Part III). I thoroughly studied and reported the status quo in
SpeCyl’s implementation, including the existing BCs modules and the general
work-flow. The one presented in my thesis is the most complete and accessible
updated presentation of the SpeCyl code, and constitutes the initial kernel
for a future comprehensive user guide.
At the beginning of my PhD, a first preparatory formulation of more realistic
boundary conditions in SpeCyl had already been implemented, awaiting to
be verified and completed. This was a general and flexible set-up, featuring a
thin resistive shell in contact with the plasma edge, surrounded by a vacuum
and an outer ideal wall: by tuning the thin shell resistivity, a full spectrum of
experimental conditions could be in principle reproduced, from an ideal wall
in contact with the plasma, to an infinitely resistive “free-interface” between
plasma and vacuum. This first formulation was especially focused on the
modelling of the magnetic boundary across the resistive shell, but was still
assuming null edge radial flow (apart from the axisymmetric pinch velocity).
Thanks to the linear stability code already developed, I issued a challenging
and quantitative verification test against the stability of the external kinks in
tokamak geometry, where the plasma flow plays a key role. This proved the
preparatory formulation of SpeCyl’s BCs to be incomplete and motivated a
substantial reformulation of the fluid boundary conditions.
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Formulation and implementation of new boudary conditions (Part IV).
To extend SpeCyl’s BCs to a 3D velocity formulation, I implemented an orig-
inal deconvolution technique. This is a valid and mandatory device that al-
lows to solve semi-implicitly the model equations in SpeCyl, whose spectral
formulation maps all products into highly nonlinear convolutions of MHD
modes. The deconvolution module has been successfully tested in simplified
conditions, enforcing an ideally conductive wall at the edge of the plasma.
Consequently, I present the new and comprehensive set of magneto-fluid
boundary conditions. This is a very flexible set, which is capable of repro-
ducing all the previous implementations of SpeCyl’s BCs as limit cases and
it combines the resistive-shell formulation for the magnetic boundary to two
alternative formulations for the plasma edge flow, depending on whether the
thin shell is intended as a physical wall or as a free-interface. I present the
analytical re-derivation of the model prescriptions, so as to highlight all the
hidden assumptions made in the derivation.
The latter is a fundamental passage to keep track of the self-consistency in
numerical codes, which is easily undermined by the high complexity and the
need for suitable assumptions to close their system of equations.

Nonlinear verification of our new boundary conditions (Part V). I
conducted a rigorous and challenging nonlinear verification benchmark of our
new boundary conditions against the independent implementation of analo-
gous BCs in the nonlinear MHD code Pixie3D. This happened in collabora-
tion with Dr. Luis Chacón from Los Alamos National Laboratory (USA) and
featured my one-month visit at LANL, also thanks to their generous funding.
The resistive shell modules of both codes were eventually found in optimal
agreement on three different case studies of physical relevance: a marginally
resonant kink mode (1,−8) in the reversed field pinch (RFP), a non-resonant
kink mode (1,−6) still in RFP geometry, and a textbook Kruskal-Shafranov
(1, 1) external kink mode in tokamak geometry. For the second case study, the
stability analysis was performed in dependence of diverse ideal wall proximi-
ties, and may have some preliminary relevance in anticipating the new layout
of the experimental device RFX-mod2 (currently being upgraded). The third
case of an m = 1 external kink mode in the tokamak found excellent agree-
ment of both codes also with the linear MHD theoretical expectations.
In conclusion, I performed a further extended benchmark study against the
external kink modes, highlighting now an almost textbook agreement with
the theoretical expectations. Despite SpeCyl.2 is fully capable of enforcing
various mass-density profiles, this latter verification benchmark was achieved
with a uniform density profile, up to the edge of the plasma, and excellent
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agreement with theory has been demonstrated using two different resistivity
profiles, including uniform resistivity, up to the plasma edge.

Final prospectives

After the excellent agreement obtained in the extremely demanding test
with the ideal kink modes already suggests robust reliability, the verification
benchmark of the new thin-shell magneto-fluid boundary conditions against
the analytical theory is going to be extended to other important current
driven instabilities like, e.g., the linear and the non-linearly saturated tear-
ing modes.
In parallel, we will start to make use of the new set of magneto-fluid BCs for
physics studies. Its natural call will be to explore the impact of a realistic
fluid-magnetic boundary in the modelling of magnetic self-organisation in
magnetically confined plasmas, with special regard to the case of the Quasi-
Single Helical states in the RFP. The restart of the RFX-mod device, ex-
pected for the next year, will be good opportunity to test the predictive
capability of the new code.
A further evolution of the geometry at boundary is also foreseen, featuring
a second resistive shell in the vacuum region. Some preparatory studies on
the magnetic field BCs have already been conducted by Daniele Bonfiglio,
and need only to be matched with the complete fluid-magnetic BCs at the
plasma interface. “SpeCyl.3”, whose representation is reported in Fig. 10.10,
will constitute a further important step towards an increasingly general and
realistic representation of the plasma boundary. In particular, this will make
possible to extend the benchmark and investigations to the resistive wall
modes (RWM) that are stable external kink modes that become slowly un-
stable due to a conducting wall with finite resistivity. The final goal in the
formulation of a realistic boundary conditions for SpeCyl would be the im-
plementation of external coils and of a feedback MHD control system, in the
form of a PID controller. This would allow a complete and self-consistent de-
scription of the plasma-boundary interaction in RFX-mod and RFX-mod2,
performed for the first time with a 3D nonlinear MHD device as the SpeCyl
code.
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Figure 10.10: Foreseen representation for the next generation of SpeCyl’s
boundary conditions: SpeCyl.3 will keep unchanged the edge flow formula-
tion of SpeCyl.2, reformulating the magnetic boundary to account for the
presence of a second thin resistive shell, at tunable distance b in the vacuum
region.





A
Proofs of theorems of linear MHD theory

A.1 Proof for the corollaries of δW ’s self-

adjointness

We report here the two fundamental corollaries of the self-adjointness of
the operator δW , along with their proofs.

Property 1. Discrete modes are a basis
Whenever only a discrete set of (ω, ξ) couples is a solution to the eigenvalue
problem in Eq. 3.38, this is a basis for all possible initial displacements.

Proof. This is the same as asking that the eigenvalue-eigenvector couples are
an orthogonal set. The proof fits in one line, as for any (ω1, ξ1) ̸= (ω2, ξ2)
we have

0 = δW (ξ1, ξ
∗
2)− δW (ξ2, ξ

∗
1) =

(
(ω1)

2 − (ω2)
2
) ∫

V

ρ0
2
ξ1 · ξ2 dτ

whence ⟨ξ1 | ξ2⟩ = 0 with respect to the integral product, since ω1 ̸= ω2 by
hypothesis.

Property 2. Ideal modes either rotate or grow
All discrete eigenvalues ω2 must be real.
This implies that ideal modes can either grow with purely imaginary rate
ω ≡ −iγ or rotate with purely real frequency.

Proof. Also in this case, the proof is very simple, since for any eigenvector ξ
of equation 3.38 must hold that

0 = δW (ξ, ξ∗)− δW (ξ∗, ξ) =
(
ω2 − (ω∗)2

) ∫
V

ρ0
2
|ξ|2 dτ
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whence ω2 = (ω∗)2, the asterisk indicating complex conjugation.

A.2 Proof for the variational form of MHD

equations

In Sec. 3.5.3 we have claimed that we can equivalently re-write the MHD
equations in a variational form, expressed by Eqs. 3.45-3.46, which we report
below for completeness.
The same information contained in the MHD equations can be then expressed
by the requirement that:

ω2(ξ + δξ)− ω2(ξ) = 0 , for an arbitrary δξ → 0 ,

with

ω2(ξ) =
δW (ξ, ξ∗)

K(ξ, ξ∗)
; K(ξ, ξ∗) =

∫
V

ρ0
2
ξ · ξ∗ dτ .

To prove it, we just need to write the functional variation as:

δ[ω2] = ω2(ξ + δξ)− ω2(ξ)

=
δW (ξ + δξ, ξ∗ + δξ∗)

K(ξ + δξ, ξ∗ + δξ∗)
− δW (ξ, ξ∗)

K(ξ, ξ∗)

We consider δξ to be a small perturbation to ξ. What we want to do now
is to derive the explicit form of the variation of the eigenvalue and then we
will set it to zero to enforce functional stationary condition.
It is convenient to look at parts individually. The first one may be much
simplified by using the fact that the potential energy variation is evidently
linear in its second argument

δW (X, Y + Z) = δW (X, Y ) + δW (X,Z)

along with self-adjointness, so that

δW (ξ+ δξ, ξ∗+ δξ∗) = δW (ξ, ξ∗)+ δW (ξ, δξ∗)+ δW (δξ, ξ∗)+ δW (δξ, δξ∗) .

An analogous decomposition holds for K, so, if we drop second order terms
in δξ/ξ, we may write

δ[ω2] =
δW (ξ, ξ∗) + δW (δξ, ξ∗) + δW (ξ, δξ∗) + δW (δξ, δξ∗)

K(ξ, ξ∗) +K(δξ, ξ∗) +K(ξ, δξ∗) +K(δξ, δξ∗)
− δW (ξ, ξ∗)

K(ξ, ξ∗)

≈ δW (ξ, ξ∗) + δW (ξ, δξ∗) + δW (δξ, ξ∗)

K(ξ, ξ∗)

(
1− K(δξ, ξ∗)

K(ξ, ξ∗)
− K(ξ, δξ∗)

K(ξ, ξ∗)

)
− δW (ξ, ξ∗)

K(ξ, ξ∗)

≈ 1

K(ξ, ξ∗)

[
δW (ξ, δξ∗)− ω2K(ξ, δξ∗) + δW (δξ, ξ∗)− ω2K(δξ, ξ∗)

]
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Finally, enforcing the δω2 = 0 condition and recovering the explicit form for
kinetic and potential operators, we get∫

V

(
F(ξ) + ω2ρ0ξ

)
· δξ∗ dτ +

∫
V

(
F(ξ∗) + ω2ρ0ξ

∗) · δξ dτ = 0

and since δξ is an arbitrary perturbation, this proves how our variational
principle coincides with requiring

F(ξ) = −ω2ρ0ξ .

A.3 Vacuum contribution to δW

We have seen in Sec. 3.5.4 that the minimisation of δW required by the
energy principle can be split in the individual minimisation of three separate
contributions, coming from the plasma, from the vacuum region outside it,
and from the pressure balance on the plasma-surface:

δW = δWp + δWv + δWs

We deal here with the minimisation of the vacuum term, which is illustrated
in Sec. 3.5.2 and is just the integral of the perturbed magnetic pressure. It
is no surprise that we find back the same result already discussed as the
vacuum limit of Newcomb’s equations.
If we combine ∇·b = 0 and ∇×b = 0 and use the flux definition ψ = −irbr,
we find that

δWv =
4π2R

2µ0

∫ b

a

[
r

H

(
dψ

dr

)2

+
ψ2

r

]
dr (A.1)

≡
∫ b

a

L(ψ, ψ′; r) dr ,

whose minimisation yields the vacuum limit of Newcomb’s equation, since

∂L
∂ψ
− d

dr

∂L
∂ψ′ =

d

dr

(
r

H

dψ

dr

)
− ψ

r
= 0 . (A.2)

Substituting Eq. A.2 into Eq. A.1, the vacuum contribution reduces to

δWmin
v =

2π2R

µ0

∫ b

a

d

dr

(
r

H
· dψ
dr
· ψ
)

dr

=
2π2R

µ0

[
r

H
· dψ
dr
· ψ
]r=b

r=a

,
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which can be easily specialised to the required boundary conditions for the
magnetic field in r = b. If the wall is assumed to be perfectly conduc-
tive (ψ(b) = 0), enforcing the matching condition at plasma edge1 ψ(a) =
nεaB0,z(1/qa − n/m)ξa (subscript “a” indicating evaluation at radius r = a
and ξa ≡ ξr(a)), we can obtain our vacuum solution as

ψ(r) = B0,zξa

(
1

qa
− n

m

)
K ′

m(nεb)I
′
m(nε)− I ′m(nεb)K ′

m(nε)

K ′
m(nεb)I

′
m(nεa)− I ′m(nεb)K ′

m(nεa)
nε .

Thus, relying on Bessel’s functions differential properties:

dψ

dr
= B0,zξa

(
1

qa
− n

m

)
K ′

m(nεb)Im(nε)− I ′m(nεb)Km(nε)

K ′
m(nεb)I

′
m(nεa)− I ′m(nεb)K ′

m(nεa)

H

r

so that

δWmin
v =

2π2R

µ0

m2B2
0,zξ

2
anεaλ

λ = −K
′
m(nεb)Im(nεa)− I ′m(nεb)Km(nεa)

K ′
m(nεb)I

′
m(nεa)− I ′m(nεb)K ′

m(nεa)
,

which is our final result (Eqs. 3.51-3.52).

A.4 Derivation of the dispersion relation for

the resistive tearing mode

In the resistive domain enclosing the resonance, plasma dynamics is de-
scribed by the resistive Ohm’s law. By enforcing Faraday’s and Ampère’s
laws this reads

−∂B
∂t

+∇× (υ ×B) =
η

µ0

∇×∇×B

Making use of ∇ ·B = 0, its radial projection, to linear order in the pertur-
bation reads:

−∂br
∂t

+B0 · ∇υr = −
η

µ0

∇2br

and, via Eq. 3.11-3.13,

γψ −B0,θ (m− nq) υr =
η

µ0

∇2ψ . (A.3)

1This is the case when no surface currents are present or they just live on a thin layer:
see pp. 356-358 of [Freidberg14]
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In the thin layer, ∇2 ≈ 1
r
∂rr∂r ≈ ∂2r and we can approximate

q(r − rs) =
m

n
+ q′s · (r − rs) + . . . → m− nq = −mq′s

qs
· (r − rs)

since qs = m/n by definition. Hence

1

ψs

d2ψ

dr2
=
µ0γ

η

(
1 +

B0,θ

γ
m
q′s
qs
· (r − rs)

υr
ψs

)
(A.4)

Finally

∆′
in =

1

ψs

∫ λ/2

−λ/2

d2ψ

ds2
ds =

µ0γ

η

∫ λ/2

−λ/2

(
1 +

B0,θ

γ
m
q′s
qs

υr
ψs

s

)
ds

We need now to discuss υr/ψs within the layer and to do this we will need
once more the curl of momentum balance equation. However this time we
need to include the inertial term containing velocity, under the simplifying
assumption of incompressible flow inside the layer. In fact, along with the
straight tokamak assumption, it implies ordering separation in

0 = r∇ · υ =
d

dr
(rυr) + imυθ − iευz

such that

υθ =
i

m

d

dr
(rυr) , υz = 0 .

As before, we may assume that the thin layer geometry brings an ordering

also in derivaties:
d

dr
≫ d

dθ
,
d

dz
. Thus, assuming also uniform mass density,

∇×
(
ρs
∂υ

∂t

)
≈
(
ρs∇×

∂υ

∂t

)
θ

≈ γρs
m
irs

d2υr

dr2

Equating this term with the large aspect ratio limit of the torque (Eq. 3.33)
and enforcing our usual thin layer ordering of derivatives we get to

iγρs
m

rs
d2υr

dr2
= −

B0,θ(m− nq)
rs

d2ψ

dr2
+m

dJ0,z
dr

ψs (A.5)

Eliminating d2ψ/dr2 with Eq. A.4 we get to a inhomogeneous differential
equation for υr/ψs. Renormalizing all terms, this can be written as:

d2y

dx2
= −x (1− xy)



268 Proofs of theorems of linear MHD theory

being

h =

( ρηγr2q2

B0,θm
2q′2

)1/4


r=rs

≪ λ (A.6)

the typical space-variation scale inside the layer, x = s/h and

y =
ρsγr

2
sqs

mB0,θ(rs)q
′
sh

3

υr
ψs

In these units, we can finally compute the integral of Eq. A.4.

∆′
in =

µ0γh

ηs

∫ λ/2h→∞

−λ/2h→−∞
(1− xy) dx

This is done numerically, giving

∆′
in = 2.12

µ0γ h

ηs
(A.7)

which is the same as Eq. 4.16.

A.5 Elements for the derivation of Bondeson-

Sobel’s dispersion relation

In this Appendix we extend the derivation performed in Appendix A.4 to
include viscous effects in the resonant layer and ultimately derive an alterna-
tive dispersion relation corresponding to the case when the dynamics in the
layer is dominated by viscosity rather than resistivity.
Let us consider again the momentum balance equation in a generic visco-
resistive plasma

ρ
Dυ

Dt
= J×B−∇p+∇ · (ν∇υ) .

Nonetheless, in our derivation of ∆′
in inside the resistive layer we only con-

sidered the first addend at first member. This produced a vorticity balance
equation (curl of momentum balance equation) in the shape of Eq. A.5. How-
ever, a more general (linear) form for such an equation is:

iρs
m
rs

(
γ
d2

dr2
+ ν

d4

dr4

)
υr = −

B0,θ(m− nq)
rs

d2ψ

dr2
+m

dJ0,z
dr

ψs , (A.8)
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having treated

∇× [ρs∇ · (ν∇υ)] ≈ ρsν∇2 (∇× υ)θ ≈
ρsν

m
irs

d4υr

dr4

in the usual thin-layer assumptions.
In Sec. 4.2.1 we solved Eq. A.8 for the case in which the inertial term propor-
tional to γ is dominant, yielding the dispersion relation in Eq. 4.17. There is
yet another analytical solution for the case of dominant viscosity: if we keep
only the term proportional to ν at the first member of eq. A.8 and couple it
with Farady-Ohm’s law Eq. A.3 we finally get to

γ = 0.4754

[(
η

µ0

)5/6

ν−1/6

(
mB0,θ q

′

√
µ0ρ rq

)1/3
]
rs

∆′ , (A.9)

which is the same as Eq. 4.22.





B
Exploratory simulations with 3D edge flow and

resistive thin shell, enforcing a narrow
pseudo-vacuum region

In this appendix we present an exploratory nonlinear benchmark study
against the ideal external kink, performed with a provisional set of bound-
ary conditions, midway between SpeCyl.2.Vr00 and SpeCyl.2: the magnetic
boundary is already well shaped, as in SpeCyl.2, but the fluid boundary, al-
beit already including non-axisymmetric modes, still lacks of self-consistency.
A physically informed radial υr,a, already in the form of Eq. 8.23, is coupled
with mathematically fixed tangential components υt,a, either with a Dirich-
let condition or with a von Neumann condition. This is briefly described in
Sec. B.1.
The first tentative studies with this configuration in the vacuum-wall limit
resulted in the same delusive achievements, already presented in Chap. 6 for
SpeCyl.2.V00: the formation of a “resistive transition layer” at boundary, in
which the plasma flow radial profiles significantly depart from the analytical
predictions of models, with its regrettable implications on the modes stabil-
ity analysis.
We report here a rich nonlinear benchmark study performed against the ideal
external kink modes m = 1 and m = 2, enforcing a pseudo-vacuum region
at plasma edge, much alike what we did in Chap. 5 with SpeCyl.1. The
difference is however that we can now afford a much thinner pseudo-vacuum
region. In fact, setting the resistive shell time constant to a low value and
displacing the ideal wall at a large radius, the magnetic field effectively sees
a no-wall case. Concerning the flow, instead, a narrow pseudo-vacuum re-
gion is sufficient to damp the velocity boundary enough for it to become less
relevant.
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The results of this study are published on [Spinicci22], and feature - among
the rest - a qualitative benchmark study against some results previously ob-
tained with the JOREK-STARWALL code [McAdams14].

B.1 The provisional set of BCs, used for this

study

As we anticipated, the magnetic formulation used for this benchmark
study is the same as for SpeCyl.2, and was thus already described in Chap. 8.

Concerning the radial flow velocity, we almost retain unchanged Eq. 8.23:

υr,a =
1(
B2
)0 [EW,θ ·Bz − EW,z ·Bθ −

〈
B2
〉
· υoldr,a

]
, (B.1)

with
B2 = Br ·Br +Bθ ·Bθ +Bz ·Bz .

The only difference from Eq. 8.23 is that here the whole B2 is used, rather
than just B2

t = B2−B2
r . This difference implies a small physical inconsistency

in the model used here, which we eventually found and corrected, owing to
the intricate analytical re-derivation of our model equations, as presented in
Chap. 8.
The architecture of the main loop is left unchanged from the other versions
of SpeCyl’s boundary conditions. After the corrector step has completed
(including the backwards step of the Thomas algorithm), the final value of the
magnetic field components is used to updateB2, and both components ofEW ,
to compute υr,a. This value is then assigned as the initial condition for the

inwards integration of Thomas algorithm for the velocity at the subsequent
time-step.
For the tangential components of the flow velocity, we adopt here either
no-slip (Dirichlet) boundary conditions:

υt,a = 0 , (B.2)

or no-stress (von Neumann) boundary conditions:

dυt,a

dr
= 0 . (B.3)

Also in this case, these physically unrelated constrains were eventually over-
come in SpeCyl.2, owing to the analytical re-derivation of the model equa-
tions.
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B.2 Linear benchmark against the external

kink

This section presents the results of a nonlinear benchmark against the
ideal MHD external kink of the new set of BCs, SpeCyl.2.
Despite the initial intent of modelling a self-consistent plasma-vacuum in-
terface, the first explorative studies in this direction still found very similar
outcomes to those described in Chap. 6: a resistive boundary region would
form in the proximity of the plasma edge, where the velocity profile would
depart significantly from the model predictions, also defying the “frozen-in
law” of the magnetic flux.
Hence, in this intermediate study we enforce a pseudo-vacuum region, much
alike what we did in Chap. 5, setting a step-like profile for the plasma density
and shaping the resistivity profile in such a way that it is constant and rela-
tively very high near plasma edge. In doing so, we assume that our plasma
edge is not anymore the thin resistive shell, but rather the radial position of
the step in mass-density profile.
The main difference from what was done previously is that we can now set
the resistive wall time to a very small value (τW ≲ τA) so that it becomes
effectively transparent to the magnetic fields. This allows to take a thinner
pseudo-vacuum region (just enough to exclude the resistive boundary region
from the plasma domain). The vacuum region outside our plasma is then
represented by the pseudo-vacuum from the plasma radius (r = a) to the
thin shell (r = rwall), and by the actual vacuum, treated analytically, up to
the position of the outer ideal wall (in r = b).
This approach based on a pseud-vacuum region is inspired by what is done
in most nonlinear MHD codes, such as DEBS [Paccagnella07], NIMROD
[Becerra16], XTOR-2F [Marx17], and M3D [Strauss04]. In particular, the
chance of modelling the plasma-vacuum free interface with an instantly-
penetrated mathematical surface, inside a narrow pseudo-vacuum region, is
present in several works done with the JOREK code, coupled to the STAR-
WALL module [McAdams14, Merkel15, Artola18].

B.2.1 Numerical set-up

The geometry of the system is represented in Fig. B.1: we have a plasma
of almost uniform density from the axis to r = a, where the mass density
should ideally exhibit a sharp step. From the plasma edge to the resistive
wall, in r = rwall, we have a pseudo-vacuum region, and then an actual
vacuum up until the ideal wall radius, r = b. The mass density profile is
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Figure B.1: Geometry of the system.

rendered in the same way already seen in Chap. 5 (Eq. 5.11):

ρ(r) =
[
1− αρ

]
·
{
1

2
− 1

π
arctan

[
βρ · (r − a)

]}
+ αρ ,

with ρ(0) = 1, αρ = 0.1 and βρ = 100.
For the rest, the aspect ratio is R/a = 20, compatible with the straight toka-
mak limit, and the resistive time of the wall is τW = τA (we also tried smaller
values, down to τW/τA = 10−3, finding irrelevant changes). Unless otherwise
specified, the ideal wall is far-displaced, in b = 10.
Concerning the tangential velocity, both no-stress and no-slip BCs were at-
tempted with similar results. In the following, since we assume our resistive
wall to behave as a free interface, the less binding von Neumann BCs are
enforced.

We focused on two initial equilibria that aim at the Shafranov’s flat-
current model and the Wesson’s model. The Shafranov current distribution
is achieved in the same way already discussed in Chap. 5, through Eq. 5.12:

η(r) = ETA0 ·
[
1 + (ALET− 1) rBEET

]GAET
.

with ALET = a−80 + 1, BEET = 80, and GAET = 1.025, corresponding to a
sharpness parameter λ = 40, as in Chap. 5. The plasma radius for this case
study is fixed in a = 0.9 × rwall. Figure B.2 represents the corresponding
initial equilibrium, for the case of q(0) = 1.2.

For the Wesson’s profile, the choice of plasma radius must be a bit more
careful, since in SpeCyl we shape the equilibrium current density as a result
of an input resistivity profile. This means that the outermost portion of



Linear benchmark against the external kink 275

Figure B.2: Initial equilibrium for the nonlinear benchmark against the ideal
external kink (2, 1) with a flat current distribution.

the Wesson’s current profile already needs a relatively high resistivity (∼
10× η(0)). We aim at a current profile in the form of

J0,z(r) = j0

[
1−

(
r

0.9 rwall

)2
]
.

The corresponding resistivity profile, still enforcing Eq. 5.12, has ALET =
−0.234568, BEET = 2, and GAET = −1. In practice, to avoid having a singu-
lar resistivity in 0.9× rwall, we impose that as soon as η(r) = 100× η(0), its
profile must stick to this value.
To cut out the higher resistivity region, an analogous mass-density profile
is chosen with respect to the flat-current case, but with a = 0.8 × rwall.
Figure B.3 presents the resulting initial equilibrium for this case-study. In-
deed, to avoid complications related to this challenging reconstruction of the
Wesson’s initial equilibrium, we tested it only against the current shape in-
sensitive external kink m = 1.

For both current profiles, a scan on both resistivity and viscosity was
performed, to determine the optimal value for the benchmark. Since we
aim at the ideal MHD theoretical predictions, one could expect that a very
conductive and inviscid simulation plasma should fulfil the task. This is
indeed the case for viscosity: in the simulations presented hereafter, we set
Re = 1010. Concerning resistivity, however, we observe a negative trend, as
in Fig. B.4. This is in general agreement with Figure 6.9 in [McAdams14]
and we hypothesise is related to the presence of the pseudo-vacuum region:
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Figure B.3: Initial equilibrium for the nonlinear benchmark against the ideal
external kink (1, 1) with a Wesson’s current distribution.

following analogous considerations to what already observed for Fig. 5.7, we
suspect that the pseudo-vacuum region becoming too conductive, in presence
of small but finite mass-density, may spoil the beneficial effects of a higher
conductivity in the plasma region.
Hence, in the the following analysis we will set η(0) = 10−5, corresponding
to S = 105 and P = 105.

B.2.2 Results for the external kink m = 1

For the current-profile insensitive case of the external kink 1, 1 (see Chap. 4),
both current profiles were tested.
Figure B.5 reports the outcomes of the nonlinear benchmark against the
Shafranov’s profile. From panel (a) we can see that the stability boundary
is very well reproduced by SpeCyl.1. The growth rates appear to be very
accurate on the right-hand side of the unstable domain (when the resonance
is very close to the edge of the plasma): this matching becomes a little less
evident as we move the resonance away from the plasma surface. This can
be probably explained by recalling from Fig. 4.3.(a) that this case study has
diverging growth rate for qa ≈ 0: this fights with the limitations of our nu-
meric approach, since we would need an increasingly refined radial mesh and
a vanishingly small time-step to resolve the extremely fast growth of these
modes.
Panel B.5.(b) presents the profiles of the velocity and magnetic field radial
eigenfunctions, whose agreement whit the theoretical expectations is excel-
lent, within the plasma region and (only B1,−1

r ) also in the pseudo-vacuum
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Figure B.4: Scan on the Lundquist number on axis (S0) for an external
kink 1, 1 with Wesson’s profile. Higher plasma resistivity produces growth
rates more faithful to the linear theory, as in [McAdams14]. This is probably
related to the presence of a pseudo-vacuum region with finite ρ.

region (shaded in the plot).

Similar considerations apply to Fig. B.6, where we illustrate the nonlin-
ear benchmark against the external kink 1, 1, but using a Wesson’s current
profile. Also this time, the growth rates are quite more accurate on the right-
hand side of the unstable domain, despite being overall a bit less agreeing
with the theoretical expectations with respect to the Shafranov’s case. This
can be however be easily explained by means of the much more problematic
modelling of the initial equilibrium, yielding a higher conductivity in the vac-
uum region (recall from Fig. B.3 that a small tail of the current density flows
inside the “cold plasma halo” constituting our pseudo-vacuum region). The
apparent large discrepancy in the growth rate beyond qa = 1 is motivated
by the excitation of some internal mode (possibly a tearing or a resistive
kink), allowed by the finite shear of Wesson’s model: as a matter of fact, the
shear-less flat-current model represented in Fig. B.5.(a) cannot intercept any
internal resonance and thus presents no internal modes.
Panel B.6.(b) shows again excellent agreement between the theoretical eigen-
functions and the radial profiles of velocity and magnetic field fluctuations.
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(a) Growth rates. (b) Radial profiles of υ1,−1
r and B1,−1

r .

Figure B.5: Nonlinear benchmark of SpeCyl.2 against the external kink 1, 1
for the Shafranov’s flat-current model.

(a) Growth rates. (b) Radial profiles of υ1,−1
r and B1,−1

r .

Figure B.6: Nonlinear benchmark of SpeCyl.2 against the external kink 1, 1
for the Wesson’s model (ν = 1).
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B.2.3 Results for the external kink m = 2 (and quali-
tative comparison with JOREK results)

The external kink mode 2, 1 was only studied with a flat-current profile, as
reported in Fig. B.7. The stability analysis in the first panel is very accurate
concerning the stability boundaries. Unlike what was observed in Chap. 5
and in Fig. B.5, this time the stable modes are not simply oscillating with
averagely null growth rate, but rather present a negative “damping” rate,
which is not predicted by the ideal MHD theory1. The origin of this effect,
which is more manifest in the right-side stable region, is not understood.
Panel B.7.(b) shows once more a remarkable agreement in the magnetic and
velocity eigenfunctions within the plasma region. The magnetic field in the
vacuum region (shaded) is still quite close to the theoretical trend and only
resents of the smoothness of the step in the resistivity profile, causing the
derivative-change across the interface to blur over a wider region than a sin-
gle radial pixel.
Finally, panel B.7.(c) shows the outcome of a study on the outer ideal wall
proximity (defined as b/a) for a fixed initial equilibrium (q0 ≈ qa = 1.1). In
this figure, the plasma radius is normalised to 1, so that the resistive shell
is in the position rwall/a = 1.1. SpeCyl’s simulations are all obtained by
enforcing τW = τA and by varying the ideal wall position from b/a = 1.2 to
b/a = 7.8
On the bright side, the instability threshold (b/a)crit ≈ 1.77 (here obtained
numerically, through the solver for the Euler’s equation) is faithfully repro-
duced by SpeCyl.2. Also, the general trend in the unstable domain is very
similar between the theory and our simulations, up to a variable scaling fac-
tor (asymptotically: γtheory ≈ 1.44× γSpeCyl for b≫ a).

The analogous of Fig. B.7.(c) is Figure 5.3 of the PhD thesis of Rachel
McAdams [McAdams14], obtained for an equivalent set-up with the JOREK-
STARWALL code, enforcing a pseudo-vacuum region in 0.9 < r < 1, for
the same flat-current profile and for qa = 1.1. The boundary conditions at
interface (r = 1, within the pseudo-vacuum region) are thoroughly discussed
on [Merkel15]:

B · n̂ = B0 · ∇ (ξ · n̂) linearised frozen-in law, (B.4)

n̂ · ∇ξ = 0 von Neumann in the normal direction, (B.5)

ξ × n̂ = 0 Dirichlet in the tangent direction. (B.6)

Outside the interface, the STARWALL code computes the vacuum response,

1Recall that ideal modes can either have positive growth rates or null.
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featuring a multiply-connected thin resistive shell (of very high resistivity, in
the present case study) and an outer ideal wall.
Albeit a precise quantitative benchmark is precluded by the lack of some
information (such as the detailed profiles of the initial equilibrium quanti-
ties), our results are qualitatively similar to the ones found by McAdams.
In particular, also on [McAdams14] the simulation growth rates underesti-
mate the theoretical one by a variable and similar factor (asymptotically:
γtheory ≈ 1.2 × γMcAdams for b ≫ a), which is reasonably compatible with

SpeCyl’s achievement, and the critical proximity (b/a)crit is very well repro-
duced. The main differences are that the growth rate is actually null in the
stability region and that, even if reasonably compatible with SpeCyl, the
agreement of JOREK results with the model predictions is slightly better.
The better agreement found by JOREK can be possibly explained in terms of
the different choice in the boundary conditions: the fluid part (Eqs. B.5-B.6)
should have a minor role since the flow velocity is already quite damped at
the interface radius (see Fig. B.7.(b) for SpeCyl), whereas the condition on
the normal magnetic field (n̂ = r̂ in SpeCyl) could indeed make some dif-
ference. In fact, while SpeCyl has a general thin-shell condition, JOREK
enforces a linearised ideal MHD relation, that is possibly more adequate to
reproduce an ideal kink in the straight tokamak.

B.3 Final summary

This Appendix has presented our first structured formulation of a full-
spectrum magneto-fluid set of boundary conditions: SpeCyl.2. It combines
the thin-shell modelling for the magnetic boundary described in Chap. 6 and
the full-spectrum edge velocity generalisation presented in Chap. 7, with the
further addition of possibly finite full-spectrum tangential velocity compo-
nents. We have presented an overview of this explorative set in Sec. B.1:
despite some important aspects of the fluid part of our boundary will need
being substantially reformulated (see Chap. 8), the magnetic part and the
overall structure are already in their final version.
Section B.2 presented a rich nonlinear benchmark against the ideal exter-
nal kink modes (1, 1) and (2, 1). As already for the previous formulations
of SpeCyl (SpeCyl.1 and SpeCyl.2.V00), the instability of modes cannot be
achieved without enforcing a pseudo-vacuum region. However, when com-
pared to SpeCyl.1, for the same ideal wall proximity, the width of the pseudo-
vacuum region is now much reduced, with a consequent significant reduction
of computational time. As a matter of fact, for an ideal wall displacement
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(a) Growth rates.
(b) Radial profiles of υ1,−1

r and B1,−1
r .

(c) Scan on ideal wall displacement, for fixed q(a) = 1.1.

Figure B.7: Nonlinear benchmark of SpeCyl.2 against the external kink 2, 1
for the Shafranov’s flat-current model.
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b/a = 3 (no-wall limit) and with the general set-up for the nonlinear bench-
mark against kink modes 2, 1 with R/a = 20, the computational time has
been reduced from around 1.5 days to approximately 3 hours.
The results presented in Sec. B.2 show very promising achievements for the
mode (1, 1), especially for the flat-current model, both concerning profiles and
growth rates. A relatively good agreement is also obtained for modes (2, 1),
in fair agreement with some works performed with JOREK-STARWALL in a
similar set-up. In particular, the surprising negative trend in the benchmark
agreement rate with varying Lundquist number is observed in both codes and
we think it can be possibly related to the presence of a pseudo-vacuum region
that need to keep as resistive as possible. Also, a study of the stabilising ef-
fect of the outer ideal wall has found interesting similarities between the two
codes, albeit not perfectly compatible initial set-ups and the enforcement of
two different sets of boundary conditions.

Albeit qualitatively good, the presented numerical results remain unsatis-
factory for more than one aspect. First of all, the need for a pseudo vacuum
region seems to reduce the relevance of the complex reformulation of our
fluid boundary conditions. It can be objected that the real physical case of
an experiment does never present a sharp density edge and that a cold and
resistive plasma halo is always present around the hot core: SpeCyl.2 could
capture more effectively the dynamics of this halo, its impinging on wall with
finite velocity or extracting particles inflows. The question remains whether
this contribution is such to motivate the great deal of work spent on it.
Also, even by enforcing the pseudo-vacuum regime at plasma boundary, the
numerical benchmark results are not completely satisfying and would need
further optimisation. There are indeed examples in literature of a better non-
linear benchmark agreement than the one presented here [Becerra16, Marx17,
Merkel15].
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