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Abstract 

Exposure to high-ability peers entails positive learning externalities, but it also decreases 

students’ academic self-concept because of lower ordinal ability rank. We show that, as a result, 

the linear-in-means parameter identifies a composite (i.e., reduced form) effect. We illustrate 

the empirical relevance of this issue using data from two experiments that randomly assign 

students to groups. We find that the structural effect of mean peer ability estimated by a model 

that includes rank is much larger than the reduced form effect obtained when rank is omitted. 

This finding also holds in non-linear and heterogeneous peer effects models and helps clarify 

the mechanisms behind the effects of ability tracking policies.  

 

Keywords: rank effects; peer effects; omitted variables bias; ability tracking.  

JEL codes: I21; I24; J24. 
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1. Introduction 

Establishing the existence and the magnitude of ability peer effects has been a central concern 

in education. To this aim, most researchers have adopted the linear-in-means model 

popularised by Manski, 1993, which relates individual achievement to the average pre-

determined ability of peers. Its extensive application has led to the conclusion that ability peer 

effects on academic outcomes exist but are small in magnitude.1  

Motivated by the possibility of obtaining gains from re-mixing students, that would not be 

feasible if peer effects were linear-in-means, researchers have investigated whether a non-

linear and heterogeneous structure for peer effects might exist (Hoxby and Weingarth, 2005). 

There is by now a consensus that low- and high-ability peers in a class differentially impact on 

high- and low-ability individuals, and that the dispersion of peer ability also matters for 

achievement (Lyle, 2009, Lavy et al., 2012, Carrell et al., 2013, and Feld and Zoelitz, 2017). 

Even when these more comprehensive structures are adopted, the available empirical evidence 

still points to small effects of peer ability on learning outcomes.  

Could these small effects be the result of omitted variables bias? The omission of a peer effect 

that consistently works in the opposite direction as mean peer ability would result in an 

underestimation of mean peer ability effects, as the linear-in-means parameter would capture a 

reduced-form combination of the two countervailing peer effects. In this paper, we argue that 

ordinal ability rank within groups could be this missing peer effect.  

A growing literature in economics documents that ordinal ability rank has a positive causal 

impact on educational achievement (Elsner and Isphording, 2017; Cicala et al., 2017; Denning 

 
1 The review of the literature carried out by Sacerdote, 2014, suggests that other outcomes, 

such as misbehaviour or career choices, are instead more affected by peers’ behaviour. 
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et al., 2018; Delaney and Devereux, 2021; Murphy and Weinhardt, 2020; Elsner et al., 2021).2 

There are several reasons why rank may matter for achievement. First, the so-called “big-fish-

little-pond” hypothesis (Marsh and Parker, 1984) states that students of the same prior ability 

shall have lower (higher) academic self-concept and motivation when surrounded by 

classmates of high (low) average ability. Moreover, as reviewed by Delaney and Devereux, 

2022, parents and teachers may respond to information about ordinal rank and encourage 

higher-ranked students, thereby also affecting achievement. Finally, variation in rank across 

subjects may alter students’ perceptions about their comparative advantages and affect their 

specialization choices at later educational stages (Goulas et al., 2022).3 

Importantly, for given individual ability, students have lower rank when surrounded by abler 

peers, and vice-versa. Therefore, exposure to high-ability peers implies a trade-off between the 

positive learning externality effect and the negative motivational effect implied by lower 

ordinal rank. Because of this negative correlation, the linear-in-means parameter identifies a 

composite (i.e., reduced form) effect of mean peer ability and rank. 

While the mechanical correlation between rank and mean peer ability has been discussed by 

studies on rank effects as well as by studies using lotteries or GPA cut-offs to uncover the 

effects of getting into a better school (Cullen et al., 2006; Duflo et al., 2011; Pop-Eleches and 

Urquiola, 2013; Abdulkadiroğlu et al., 2014; Ribas et al., 2020), we are the first to unpack the 

reduced form effect into its structural components.  

Importantly, the “reduced form” interpretation of the linear-in-means model holds not only 

when omitting rank, but also when other features of the distribution of peer ability are omitted. 

 
2 Comi et al., 2021, report rank effects on violence at school, Comi et al., 2019, investigate rank 

effects on conscientiousness, and Elsner and Isphording, 2018, estimate rank effects on risky 

behaviors. 
3 Tincani, 2017, discusses models where rank in achievement enters students’ utility function 

(a rank “concern”).  
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However, the mechanical negative correlation between rank and mean peer ability makes rank 

the prime candidate to illustrate how large this misconception can be and provides an intuitive 

reason why the existing literature has failed to empirically detect large effects of mean peer 

ability. 

Our empirical analysis proceeds as follows. We use data from two experiments where students 

were randomly assigned to classes, thereby ruling out concerns related with endogenous 

student sorting. These were carried out in Kenyan primary schools (Duflo et al., 2011, 2015) 

and at the University of Amsterdam (Booij et al., 2017).4 In both setups, we first show that the 

higher is peers’ mean ability, the lower is one’s ordinal rank conditional on own ability. Next, 

we show that ordinal rank has a casual impact on achievement, that is large in magnitude and 

statistically significant. Finally, we compare the linear-in-means parameter when rank is 

excluded and included in the model, and show that, in the former case, this parameter is 

attenuated by the omission of rank. The magnitude of the bias is sizable: once rank is included 

in the linear-in-means specification the effect of mean peer ability moves from 0.345SD 

(p>0.1) to 0.433SD (p<0.05) in the Kenyan setup and from 0.048SD (p>0.1) to 0.148SD 

(p<0.01) in the Dutch one. We assess the significance of the omitted variables bias using the 

generalized Hausman test developed by Pei et al., 2019.  

We also show that this identification problem holds true even when we depart from the linear-

in-means model and: i) allow additional features of the distribution of peer ability – such as the 

share of high- or low-ability peers (Carrell et al., 2013) and the standard deviation of peer 

ability (Lyle, 2009) – to affect outcomes; ii) consider heterogeneous effects of peer 

 
4 Cicala et al., 2017, estimate rank effects in the Kenyan experiment, but do not test for omitted 

variables bias in the linear-in-means peer effects model, the key contribution of our paper. 
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composition by own ability. These extensions underline that our main result does not strictly 

depend on the functional form adopted for the structure of peer effects. 

A crucial point concerns the assumptions needed to identify in a single model the effects of 

rank, own ability, and mean peer ability, as these three effects cannot be jointly and non-

parametrically identified. Following Murphy and Weinhardt, 2020, the identification of the 

rank effect can be achieved by controlling for individual ability directly and by accounting for 

group ability composition with group-fixed-effects. This design exploits between-groups 

variation across pupils with the same distance from average group ability but different distance 

from average group rank.  

However, the impact of mean peer ability cannot be identified with groups fixed effects. 

Consequently, in our specification we control for the distribution of peer ability parametrically. 

Following the literature on non-linear and heterogeneous peer effects, in our preferred model 

we include the mean and standard deviation of peer composition as well as the interactions 

between these moments and own ability. The assumption underlying this specification is that 

higher order moments of the peer ability distribution are either irrelevant for achievement or 

uncorrelated with rank, so that their omission does not bias the effect of rank. We also verify 

the appropriateness of our functional form restriction by testing the equality of the rank effect 

estimated with the parametric controls for peer ability vis-à-vis with group fixed effects, giving 

up on identifying the peer ability parameters. Reassuringly, we fail to reject the null of this 

Hausman test.  

In the final part of the paper, we illustrate how our main result contributes to explain the 

mechanisms behind ability tracking policies. We unpack the overall achievement effect of 

alternative grouping policies into a rank effect and a peer composition effect and show that 

rank and peer effects contribute in opposite directions to generate outcomes for low- and high-

ability students. For instance, as we move from ability mixing to two-way tracking, students at 
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the bottom of the ability distribution lose out in terms of average ability of peers but gain in 

terms of within-group ordinal ability rank. Therefore, if ordinal rank within groups enhances 

student achievement, tracking helps low-ability students, but it may harm the high achievers. 

This finding is relevant for the choice of the assignment policy in programs targeting different 

ability groups.  

2. Experimental setups and data 

2.1. The Kenyan experiment - Duflo et al., 2011  

The Kenyan experiment took place in May 2005 and involved 121 primary schools with one 

first-grade section only. The intervention provided resources to hire one additional teacher and 

create a second section. In 61 randomly selected “tracking schools” students with average 

baseline exam score above the median were grouped in one section, while those below the 

median were assigned to the other section. We focus on the remaining 60 “non-tracking 

schools”, where students were unconditionally randomized into the two sections.5  

Our outcome variables for this experiment are standardized test scores in math and literacy 

administered 18 months after the initial assignment, as well as their sum (total score). The 

observed baseline 𝐺𝑃𝐴𝑖  is obtained from grades assigned by teachers in each school. To 

alleviate comparability issues and control for the stratified assignment of students to classes, 

we standardize this score by school and include school fixed effects in our regressions.  

2.2.  The Dutch Experiment - Booij et al., 2017  

The experiment involved about 2,000 students starting the BA in economics and business at 

the University of Amsterdam in September 2009-11. In this program, roughly 60% of the total 

teaching time takes place into tutorial groups of about 40 students, whose composition is fixed 

 
5 Since assignment to classes within schools strictly depends on individual ability, there is no 

random assignment to classes within tracking schools and we do not use them in our analysis. 
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throughout the first year. The experiment allocated students to groups applying a conditional 

randomization aimed at achieving a wide support of ability composition. To this end, a different 

share of students from three end-of-secondary school GPA categories (GPA<6.5, 6.5≤GPA<7, 

GPA≥7) was assigned to each group.  

In this setup, we measure student performance using three different outcome variables. First, 

our main outcome is the number of credits attained throughout the first year. The maximum 

number of credits attainable is 60 but only close to 20% of students reach this target and the 

average is close to 30, with a standard deviation of 23. Throughout the analysis, we standardize 

credits to have zero mean and unit standard deviation within cohort. Second, we consider 

average grade at the exams completed during the first year, that we also standardize within 

cohort. As on average students complete only 7 out of 13 exams that are scheduled for the first 

year, the validity of this otherwise commonly used performance measure is debatable in this 

context, because of self-selection issues. Finally, our third outcome is a “dropout” dummy, that 

in compliance with the University of Amsterdam’s policies for enrolment in the second year 

of the program is equal to one if a student failed to complete at least 45 out of 60 credits during 

the first year, and zero otherwise. The choice of this variable is policy-motivated, as this is a 

core performance measure adopted by the University of Amsterdam. As in Booij et al., 2017, 

we mimic the conditional randomization embedded in the assignment mechanism by including 

in our regressions a set of randomization controls (a saturated set of own GPA category, 

advanced math, and cohort-dummies, interacted with application order).  

2.3. Defining peer composition and rank  

We describe the ability composition of a student’s peer group with the mean – 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  – and 

the standard deviation – 𝑆𝐷(𝐺𝑃𝐴−𝑖) – of their pre-determined GPA, computed leaving out 

individual 𝑖. We measure students’ rank as their percentile rank in the baseline GPA 
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distribution within groups. Since groups have different size, we follow Murphy and Weinhardt, 

2020, and normalize ordinal rank by group size as follows:  

𝑅𝐴𝑁𝐾𝑖𝑔 =  
𝑛𝑖𝑔 − 1

𝑁𝑔 − 1
 

where 𝑛𝑖𝑔 is the ordinal rank of individual 𝑖 assigned to group 𝑔, and 𝑁𝑔 is group size. In case 

of ties, we assign the lower rank to all students. Still, results are robust when we use the average 

or the highest rank. Descriptive statistics for all variables used in each experiment are in Table 

A1 in Appendix A.  

Figure 1 reports the variation in 𝑅𝐴𝑁𝐾𝑖𝑔 and 𝐺𝑃𝐴𝑖 in the two studies. Panel a reports the raw 

data and panel b reports the distribution of 𝑅𝐴𝑁𝐾𝑖𝑔 by decile of 𝐺𝑃𝐴𝑖. These graphs illustrate 

that the two setups are complement in terms of the variation they generate. On the one hand, 

the unconditional randomization in the Kenyan study provides very local variation in rank for 

given ability: the peer group almost does not change, while students marginally change their 

ordinal rank. On the other hand, the conditional randomization in the Dutch experiment 

generates large variability in 𝑅𝐴𝑁𝐾𝑖𝑔 throughout the distribution of 𝐺𝑃𝐴𝑖.  

A potential limitation about both setups concerns students’ information about their rank. Yu, 

2020, as well as Megalokonomou and Zhangg, 2022, show evidence of a strong and positive 

correlation between objective and self-perceived ability rank in Chinese middle schools. We 

lack the data on self-perceived ability rank needed to show this correlation in our setups. In this 

sense, we view our estimates as the reduced form effects that would be obtained by 

instrumenting perceived with objective rank.  

3. Empirical methodology 

3.1. Identification  
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The “standard” linear-in-means peer effect model estimated in the literature relates academic 

achievement yig of individual i assigned to group g to 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖, 𝐺𝑃𝐴𝑖 and a vector of additional 

covariates  𝑋ig as follows:  

𝑦𝑖𝑔 = 𝛾0
𝑆+𝛾1

𝑆 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 + 𝛾2

𝑆𝐺𝑃𝐴𝑖 + 𝑋′𝑖𝑔γ3
S + 𝑣𝑖𝑔    (1) 

Identification of the effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 is achieved by exploiting the (conditional) random 

assignment of students to groups, that eliminates concerns about endogenous sorting of 

students. This comes with an implicit assumption on the structure of peer effects, i.e., that no 

other feature of the distribution of peers’ baseline score that is excluded from Eq. (1) generates 

omitted variables bias (i.e. it correlates with both yig and 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖). In the framework introduced 

by Manski, 1993, this boils down to assuming the absence of exogenous peer effects.6  

While several other studies (Lyle, 2009, Duflo et al., 2011, Carrell et al., 2013, Feld and Zoelitz, 

2017, Booij et al., 2017) have allowed for non-linear and heterogeneous effects of peers’ ability 

composition by own ability, no previous study has considered ordinal ability rank as a potential 

source of omitted variables bias. The key contribution of this paper is to quantify the 

implications of its omission for the identification of ability peer effects. On top of the 

theoretical reasons why rank should matter for education production, described in the 

introduction, its stark negative correlation with mean peer ability makes it the prime candidate 

to neatly show how the omission of relevant features of the structure of peer effects affects the 

identification of the effects of the included features.  

For ease of exposition, we focus on the linear-in-means model in Eq. (1). However, in Section 

5 we show that similar considerations also hold in models that allow for non-linear and 

 
6 Our model regresses students’ outcomes on the average baseline scores of peers and on 

ordinal rank computed on the basis of the baseline score. Since the baseline score predates 

group assignment, our estimates are immune to the reflection problem discussed by Manski, 

1993, as well as to the exclusion bias presented by Caeyers and Fafchamps, 2016. 
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heterogeneous peer effects. Our “enriched” model, including both 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 and 𝑅𝐴𝑁𝐾𝑖𝑔, is 

specified as follows: 

𝑦𝑖𝑔 = 𝛾0
𝐸 + 𝛾1

𝐸𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 + 𝛽1 𝑅𝐴𝑁𝐾𝑖𝑔 + 𝛾2

𝐸𝐺𝑃𝐴𝑖 + 𝑋′𝑖𝑔γ3
𝐸 + 𝜀𝑖𝑔   (2) 

Hence, the error term in Eq. (1) can be rewritten as 𝑣𝑖𝑔 =  𝛽1 𝑅𝐴𝑁𝐾𝑖𝑔  + 𝜀𝑖𝑔. If we specify the 

linear regression that relates 𝑅𝐴𝑁𝐾𝑖𝑔  to 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 as 

𝑅𝐴𝑁𝐾𝑖𝑔 = 𝛿0 + 𝛿1𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 + 𝛿2𝐺𝑃𝐴𝑖 + 𝑋′𝑖𝑔𝛿3 + 𝜉𝑖𝑔 ,    (3) 

then the bias on 𝛾1
𝑆 in Eq. (1) due to the omission of 𝑅𝐴𝑁𝐾𝑖𝑔 is equal to 𝛽1𝛿1 (see Angrist and 

Pischke, 2009, and Pei et al., 2019). The evidence from both our experiments suggests that 𝛽1 

is positive and 𝛿1 is negative. Therefore, the coefficient 𝛾1
𝑆 estimated in the standard linear-in-

means model for peer effects suffers from attenuation bias. 

This argument rests upon the assumption that we can identify the rank effect. To this aim, we 

propose the following thought experiment. Suppose that two students with the same baseline 

score – Marco and Roberto – are randomly assigned to classes with the same distribution of 

peers’ ability. Then, a random perturbation to the baseline score of Marco’s closest peer in the 

within-class ability distribution – Anna – is applied, small enough to leave the ability 

distribution in the two classes still comparable, but at the same time large enough to make Anna 

and Marco exchange rank. The rank effect is identified by comparing the outcomes of Marco 

and Roberto in the two classes.  

Besides clarifying what is the causal parameter we are after, this highlights that 𝑅𝐴𝑁𝐾𝑖𝑔 is a 

function of individuals’ own ability and of the distribution of ability in their group, raising two 

important considerations about the identification of rank effects. 

First, it is impossible to change the rank of one subject in a group without altering the rank of 

at least another subject in the group. This suggests a violation of the stable unit-treatment value 
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assumption, SUTVA, prescribing that “the observation on one unit [is] unaffected by the 

particular assignment of treatments to the other units” (Cox, 1958).7 We interpret SUTVA as 

requiring that potential achievements of Marco and Roberto depend on their own rank, but are 

independent of the rank of their groupmates. As a result, we can only give a causal 

interpretation to the difference in rank between Marco and Roberto that is obtained by 

randomly perturbing Anna’s ability under the assumption that the resulting change in Anna’s 

rank has no direct impact on Marco’s achievement.8  

Second, there would be no variation left to identify the effect of 𝑅𝐴𝑁𝐾𝑖𝑔 if we controlled for 

all interactions between dummies for the position of student i in the GPA distribution and 

dummies for the share of pupils in student i’s group that belong to each position of the GPA 

distribution. Therefore, disentangling the effect of 𝑅𝐴𝑁𝐾𝑖𝑔, 𝐺𝑃𝐴𝑖, and features of the 

distribution of 𝐺𝑃𝐴−𝑖 requires a model that flexibly controls for (higher-order) distributional 

features, interactions and nonlinearities while leaving enough variation to identify the effect of 

𝑅𝐴𝑁𝐾𝑖𝑔.  

We achieve this by controlling for the mean and standard deviation of group peer ability. The 

validity of our specification rests upon the assumption that the omission of higher-order 

 
7 SUTVA also requires that the treatment, a change in rank from r to r’, is well-defined. 

However, the same rank could be achieved under different underlying distributions of peer 

ability. We abstract from this issue but notice that similar concerns could be raised in other 

common problems in labour economics. For example, the effect of being first vs. second-born 

could depend on family size. 

8 This holds even in studies that estimate the effect of rank within given peer groups on 

outcomes measured after exposure to new peers at later educational stages (Murphy and 

Weinhardt, 2020). Denning et al., 2021, propose an alternative thought experiment and define 

the treatment as the allocation of Marco and Roberto to two classes sampled from the same 

population, so that in expectation they have the same distribution of prior achievement, but 

differ in realization due to sampling variability. The two ideal experiments require comparable 

assumptions in terms of both the information about own and peers’ ability and the exclusion 

restriction on other peers’ rank changes.  
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moments of the ability distribution does not lead to a biased rank effect, as they are either 

irrelevant for achievement or uncorrelated with rank. 

An alternative to this specification would be to use group fixed effects. In Appendix B, where 

we present all our robustness tests, we use a Hausman test to verify that, in both setups, the 

models with and without group fixed effects deliver statistically indistinguishable estimates of 

the rank effect. This strongly corroborates the parametric functional form choices for the peer 

ability distribution adopted in our main specification.  

Irrespective of whether we control for the mean and standard deviation of group peer ability or 

we use groups fixed effects, following Booij et al., 2017, we also include interactions of 

features of the distribution of peer ability and individual ability. Their inclusion allows for 

heterogeneous effects of the ability distribution that could otherwise be captured by the rank 

effects. This approach is also championed by Denning et al., 2021, in their analysis of the long-

run effects of rank using data from Texas. 

How do our assumptions differ with respect to other studies on peer and rank effects? On the 

one hand, the literature seeking to identify potentially non-linear and heterogeneous peer 

effects reaches identification of interactions between own ability and peer ability by omitting 

rank from the structure of peer effects (for instance, this is stated explicitly in Duflo et al., 2011, 

see footnote 19, page 1763). On the other hand, the literature on rank effects includes group 

fixed effects to account for the non-random sorting of students into groups and to eliminate 

confounders that vary at the group level, such as mean peer ability. In addition, given that 

features of the group ability distribution cannot arbitrarily interact with all possible features of 

individuals, both literatures impose different functional form restrictions (see also the 

discussion in Denning et al., 2021, section 3).9  

 
9 An exception in this sense is Hoxby and Weingarth, 2005, who use a very large datasets and adopt an admirably 

flexible specification for non-linear and heterogeneous peer effects. 
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We sit in the middle. First, unlike the literature on peer effects, we allow rank to impact 

achievement. Second, differently from the rank literature, we do not rely on group fixed effects 

to control for sorting because students are randomly assigned to groups. Third, we rely on 

parametric assumptions that have been commonly adopted in both literatures (see e.g. Carrell 

et al., 2013; Booij et al., 2017; Denning et al, 2021) to model the ability composition across 

groups and control for non-linear and heterogeneous peer effects. The robustness of our results 

across specifications lends empirical support to the validity of our approach.  

3.2. Estimation  

We take Eq. (2) to the data by estimating with Ordinary Least Squares (OLS) the following 

education production function: 

𝑦𝑖𝑔 = 𝛼 + 𝛽 𝑅𝐴𝑁𝐾𝑖𝑔 + 𝛾1𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖𝑔 + 𝛾2𝐺𝑃𝐴𝑖 +  𝑋𝑖

′𝜙 + 𝜀𝑖𝑔   (4) 

where 𝑦𝑖𝑔 is the outcome of student i in group g; 𝑅𝐴𝑁𝐾𝑖𝑔 is student i’s percentile rank within 

the assigned group g, 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 measures the mean of peers’ ability (excluding individual i), and 

𝐺𝑃𝐴𝑖 is individual ability. The vector of covariates 𝑋𝑖 includes school fixed effects 

(randomization controls) for the Kenyan (Dutch) experiment and individual background 

controls, while 𝜀𝑖𝑔 is an error term. We cluster standard errors at the school level in the Kenyan 

experiment and at the tutorial group level in the Dutch one, respectively. The empirical 

specifications of Eqs. (1) and (3) are similar, but in Eq. (1) 𝑅𝐴𝑁𝐾𝑖𝑔 is omitted from the model 

and in Eq. (3) it is the dependent variable.  

We test for the significance of the bias in the coefficient of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 due to the omission of 

𝑅𝐴𝑁𝐾𝑖𝑔 using the generalized Hausman test developed by Pei et al., 2019. This amounts to 

jointly estimating the linear-in-means models without and with 𝑅𝐴𝑁𝐾𝑖𝑔 – Eqs. (1) and (2) 

above – using seemingly unrelated estimation and testing the following null hypothesis: 

𝐻0: 𝛾𝑆 − 𝛾𝐸 = 0. 
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In Section 5 we also show the relevance of this omitted variables bias in models that allow for 

more elaborated structures with heterogeneous and non-linear effects of peer composition. 

4. Main results: the linear-in-means model 

We present our main results in Table 1. Columns (1)-(3) are for the total score of the Kenyan 

experiment, while Columns (4)-(6) are for the number credits in the Dutch one. Columns (1) 

and (4) report the estimates of Eq. (3), describing the relationship between ordinal rank and 

peers’ mean ability, conditional on own ability. Columns (2) and (5) report the estimates of the 

standard linear-in-means model described in Eq. (1), while Columns (3) and (6) report the 

estimates of Eq. (2), which include also 𝑅𝐴𝑁𝐾𝑖𝑔.  

First, results in Columns (1) and (4) confirm that, for given individual ability, the higher is 

peers’ mean ability, the lower is ordinal rank. Therefore, parameter 𝛿1 in Eq. (3) is negative. 

We also notice that the R-squared for this model is higher in the Kenyan case than in the Dutch 

one. In the latter setup, the conditional random assignment generates larger variability in rank 

for given individual ability and peers’ mean ability than in the former one. 

Second, results in Columns (3) and (6) show that rank has a positive effect on achievement, 

and hence that parameter  𝛽1 in Eq. (2) is positive. In the Kenyan experiment, moving from the 

bottom to the top of the within-group ability distribution increases the total score by slightly 

more than 40 percent of a standard deviation.10 The rank effect is positive and large (0.3 SD) 

also in the Dutch experiment.  

The comparison of the coefficients of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 in Columns (2) and (3) as well as (5) and (6) 

confirms that the omission of 𝑅𝐴𝑁𝐾𝑖𝑔 generates a severe attenuation of the effect of peer 

 
10 The size of this effect is comparable to the one estimated by Cicala et al., 2017, on the same 

data. It implies that a 1 SD increase in rank – equal to 0.3 – increases the total score by 0.12 

SD. Similarly, for the Dutch experiment, a 1 SD increase in rank increases credits by 0.12 SD.  
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composition. As we proved in Section 3.1, the bias is exactly equal to the product between the 

effect of 𝑅𝐴𝑁𝐾𝑖𝑔 on the outcome – reported in Columns (3) and (6) – and the effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 

on 𝑅𝐴𝑁𝐾𝑖𝑔 – reported in Columns (1) and (4). The p-values of the Hausman test for coefficient 

comparison across Columns (2) and (3) as well as (5) and (6), reported in brackets, confirm the 

statistical relevance of the bias, that is also large in magnitude. For the Kenyan experiment, the 

effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  moves from 0.345SD (p>0.1) to 0.433SD (p<0.05), while in the Dutch setup 

it passes from 0.048SD (p>0.1) to 0.148SD (p<0.01).11 

In Table 2 we replicate Table 1 using the other available outcomes. In the Kenyan experiment, 

we detect no significant rank effect for the literacy score, while rank has a very large impact 

on the math score (0.846SD). Carneiro et al., 2022, find similar asymmetric effects of rank on 

math and literacy using data from Ecuador.12 Consistently, the omission of rank is empirically 

relevant only for the math score: it is this result that is driving the effects on the total score 

reported in Table 1. Therefore, we will hereafter focus only on the math score.  

A few potential mechanisms could explain the absence of rank effects on literacy. First, as 

argued for instance by Fryer, 2017, Charity, 2004, and Rickford, 1999, it may be hard to alter 

literacy scores for pupils who speak at home a different language than the one used in schools. 

As shown by Berthet, 2020, this issue is especially relevant in Kenya, where many households 

do not use Kiswahili and English – the official languages used in schools – at home. The 

Kenyan government recently addressed this matter by promoting the development of mother 

tongue learning materials in schools (Nyariki, 2020). Second, the literature in educational 

 
11 The effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅

−𝑖 in Column (2) is significant at the 5 percent level with an estimated 

standard error of 0.150 if we cluster standard errors by class instead of by school (see Duflo et 

al., 2011). The significance of the Hausman test is unchanged. 

12 Duflo et al., 2015, find that the introduction of extra teachers and of school-based 

management training in Kenya did not significantly improve literacy scores while it affected 

math scores.  
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psychology stresses that academic self-concept may be subject-specific (Marsch et al., 1988) 

and there is some evidence that the correlation between self-concept and academic achievement 

is larger for math than for literacy (Booth and Gerard, 2011; Susperreguy et al., 2018; Álvarez 

and Szücs, 2022). We measure prior achievement with GPA, and in the data the correlation 

between GPA and the math score is larger than the one with GPA and the literacy score (0.5 

vs. 0.4). As a result, ordinal rank based on GPA may be more related to rank in math than rank 

in literacy. Third, it may be that competitive pupils react to rank more than non-competitive 

ones, and prior studies have shown that competitiveness is correlated with achievement in math 

(Buser et al., 2014, Buser et al., 2017; Yagasaki and Nakamuro, 2018). 

For the Dutch experiment, we find that higher rank implies a significantly lower dropout 

probability. The rank effect on average grade is positive, but imprecisely estimated. In both 

cases the attenuation bias in the linear-in-means parameter due to the omission of 𝑅𝐴𝑁𝐾𝑖𝑔 is 

sizeable in magnitude, although only significant for the dropout probability. 

Despite much interest on the topic, the existing literature has failed to empirically detect large 

ability peer effects, especially using linear-in-means models (see Sacerdote, 2014). By 

highlighting this attenuation bias, our results provide one simple explanation behind this 

seemingly puzzling result. Indeed, the peer composition effects that we obtain when rank is 

omitted are wholly comparable to other studies in the literature. For instance, the effect on math 

scores in the Kenyan study in Column (2) is comparable in magnitude to the effect obtained by 

Imberman et al., 2012, on data from primary school students in Louisiana (0.33SD), as well as 

to the one estimated by Hoxby, 2000, on primary school students in Texas (0.3-0.5SD). 

Similarly, the effect on credits in the Dutch study in Column (5) is comparable to the effect 

obtained by Jackson, 2013, on the number of tests passed by high school students in Trinidad 

(0.03-0.09SD). In both our experimental setups, however, the magnitude of the peer 

composition effects increases substantially once rank is accounted for.  
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5. Extensions: non-linear and heterogeneous peer effects models. 

The standard linear-in-means model discussed so far is very simple and intuitive, but also 

restrictive. In this Section we extend our results on the bias in the identification of ability peer 

effects due to the omission of rank in more general models that allow for non-linear and 

heterogeneous peer effects. We follow two complementary modelling approaches that have 

gained popularity in the literature.  

Our first approach follows Booij et al., 2017,’s original analysis of the Dutch experiment. We 

consider models that include 𝑆𝐷(𝐺𝑃𝐴−𝑖), the interaction term 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖), and the 

interaction terms between the peer composition variables and 𝐺𝑃𝐴𝑖. This richer model allows 

the dispersion of peer ability to affect outcomes (see Lyle, 2009), considers the possibility of 

rank concerns in the utility function (Tincani, 2017), and permits that the mean and the SD of 

peer GPA are not perfect substitutes in shaping student performance. It also accommodates the 

evidence that ability peer effects are heterogeneous by individual ability.  

The estimates in Table 3 show that our main result on the attenuation bias of the effect of mean 

peer ability holds across both experiments even when we adopt this richer peer effects structure.  

In addition, we do not find evidence of heterogeneous and non-linear peer effects in the Kenyan 

experiment, confirming that the linear-in-means model approximates well the data generating 

process in this setup. On the contrary, the larger variation in peer composition generated in the 

Dutch experiment makes this richer structure better than the linear-in-means model at 

explaining the data. In this setup, the presence of significant interactions between 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖, 

𝑆𝐷(𝐺𝑃𝐴−𝑖) and 𝐺𝑃𝐴𝑖 makes it such that the coefficient on 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 only identifies the effect for 

subjects with a value of the interacting variables that is equal to zero. Figure A1 in Appendix 

A reports the heterogeneous effects of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 for different levels of 𝑆𝐷(𝐺𝑃𝐴−𝑖) and 𝐺𝑃𝐴𝑖 

when rank is omitted and included. As the Figure shows, the omission of 𝑅𝐴𝑁𝐾𝑖𝑔 changes the 
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effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 only for students in groups at the bottom of the 𝑆𝐷(𝐺𝑃𝐴−𝑖) distribution, that 

is, in homogeneous groups.13  

We also note that in both setups the effect of 𝑅𝐴𝑁𝐾𝑖𝑔 is very stable when additional peer 

composition variables are flexibly included in the model, alleviating the second identification 

concern discussed in Section 3.1. If anything, in the Dutch setup this effect almost doubles in 

magnitude. This happens because the relationship between 𝑆𝐷(𝐺𝑃𝐴−𝑖)  and both 𝑅𝐴𝑁𝐾𝑖𝑔 and 

𝑦𝑖𝑔 is not linear in 𝐺𝑃𝐴𝑖, and failure to account for this heterogeneity results in misspecification 

bias.14 

Our second approach follows Carrell et al., 2013, and models non-linear and heterogeneous 

peer effects in a less parametric fashion by using the shares of low (bottom 25%) and high (top 

25%) ability students in the group, and by interacting these measures by tertiles of individual 

ability. Results in Table 4 show that, especially in the Kenyan setup, students are harmed by 

low (vs. median) achieving peers. Moreover, in both setups the effects of low-achieving peers 

are significantly larger in magnitude when 𝑅𝐴𝑁𝐾𝑖𝑔 is included in the model.  

Overall, the evidence provided in this Section suggests that our results on omitted variable bias 

do not depend on the functional form adopted to model non-linear and heterogeneous peer 

effects. 

 
13 The p-value of the Hausman test reported in Table 3, column 6, for the difference in the 

coefficients on the interaction term 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) when rank is excluded (column 5) 

and included in the model (column 6) is equal to 0.009, confirming the statistical significance 

of this difference. 
14 Consider a normal distribution for 𝐺𝑃𝐴𝑖, and apply a mean-preserving spread to a group’s 

ability. Compared to subjects in another identical group, whose ability was not altered, treated 

subjects with 𝐺𝑃𝐴𝑖 below median would gain ranks, and those above median would lose. While 

the non-linear relationship between 𝑆𝐷(𝐺𝑃𝐴−𝑖) and 𝑅𝐴𝑁𝐾𝑖𝑔 is mechanical, and is present also 

in the Kenyan experiment, its consequences for omitted variable bias are only relevant if the 

effect of 𝑆𝐷(𝐺𝑃𝐴−𝑖) on 𝑦𝑖𝑔 is nonlinear, a finding that holds only in the Dutch experiment.  
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6. Robustness tests  

Our empirical strategy rests on several assumptions, that we test at length in Appendix B. We 

provide evidence on the robustness of our results along the following dimensions: 

i) modelling group ability composition parametrically vs. using group fixed effects; 

ii) assessing the presence of heterogeneous teaching styles by student rank; 

iii) changing the functional form for the relationship between GPAi and the outcomes;  

iv) adopting a non-linear specification for the effect of RANKig (see Gill et al., 2018); 

v) addressing multiplicative measurement error in the baseline score used to compute 

RANKig, as done by Murphy and Weinhardt, 2020; 

vi) adopting alternative definitions of rank and different sample selection criteria.  

7. Implications for Ability Tracking 

The ample support of group ability configurations in the Dutch experiments permits us to assess 

the relative contribution of rank and peer composition effects in explaining the educational 

effects at the student population level of different group assignment policies.15 As pointed out 

by Hoxby and Weingarth, 2005, the linear-in-means model has the property that all allocations 

of peers are equally beneficial in aggregate, as in a zero-sum game. However, there are no 

trivial implications for group assignments when one departs from a linear-in-means peer effects 

model to employ a more flexible specification.  

 
15 This analysis is not feasible in the Kenyan setup, as we can only estimate the peer effects 

model exploiting the local random variation in ability composition generated by the 

unconditional randomization to classes within non-tracking schools. We could carry out 

additional policy simulations (and unpack their effects into a rank and a peer composition 

effect) only if we were willing to extrapolate the structure of peer effects estimated within non-

tracking schools beyond the support of variation in peer ability composition observed in this 

sample. However, this would require an assumption of homogeneity and linearity of peer 

effects that cannot be verified empirically beyond the observed support of ability composition. 
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We analyse the implications of ability tracking for achievement using the non-linear and 

heterogeneous peer effects specification augmented with rank reported in Table 3, Column (6). 

In particular, this specification allows 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 and 𝑆𝐷(𝐺𝑃𝐴−𝑖) to be imperfect substitutes in 

affecting student achievement by including an interaction term between the two. As a result, 

different grouping strategies will reflect different trade-offs between 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 and 𝑆𝐷(𝐺𝑃𝐴−𝑖). 

The interactions of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 and 𝑆𝐷(𝐺𝑃𝐴−𝑖) with 𝐺𝑃𝐴𝑖 generate further trade-offs.  

We will compare ability mixing with five alternative grouping configurations:  

i) Two-way tracking: high-ability (GPA above median) and low-ability (GPA below 

median) students are grouped separately. 

ii) Three-way tracking: top-ability (GPA in top tertile), middle-ability (GPA in middle 

tertile) and bottom-ability (GPA in bottom tertile) students are grouped separately. 

iii) Track low: bottom-ability students are grouped together, while middle- and top-

ability students are mixed.  

iv) Track middle: middle-ability students are grouped together, while bottom- and top-

ability students are mixed.  

v) Track high: top-ability students are grouped together, while bottom- and middle-

ability students are mixed. 

Relative to the original work of Booij et al., 2017, our estimates are obtained from a 

specification that includes also rank among the covariates. This allows us to elaborate on the 

mechanisms behind ability tracking, and to unpack the total tracking effect into a rank effect 

and a peer ability composition effect. Total effects are obtained by changing both peer 

characteristics and rank as we move from ability mixing to tracking. Rank (Peer) effects are 

obtained by holding peer characteristics (rank) fixed and moving rank (peer characteristics) 

when switching from mixing to tracking. We proceed in two steps. First, we compute the mean 

values of both rank and the peer variables in the alternative grouping configurations. Second, 
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we derive the mean predicted performance in our sample using the estimates (and the relative 

standard errors) reported in Table 3, Column (6).16 We do so for the whole population and by 

tertile of 𝐺𝑃𝐴𝑖.  

Table 5 shows the estimated tracking effects on credits. Results in Columns (1)-(3) are for the 

whole population, while results in the following columns split students by tertile of 

𝐺𝑃𝐴𝑖  (above-below median for two-way tracking). Total effects are reported in Columns (1), 

(4), (7), (10), while rank and peer effects are shown in Columns (2), (5), (8), (11) and (3), (6), 

(9), (12), respectively.  

Results in Columns (1), (4), (7), (10) are very similar, though larger in magnitude to those 

reported in Columns (1) to (4) of Table 5 in Booij et al., 2017. This is expected, given the 

omitted variable bias discussed above, and confirms their two main findings:  

i) any grouping policy will enhance average student achievement compare to mixing,  

ii) the gains of switching from mixing to tracking are mostly concentrated at students 

in the lower two-thirds of the ability distribution.  

The replication of this analysis with our rank-augmented production function highlights that 

while all types of tracking benefit students on average, different types of students will be 

differently affected by different types of tracking due to the effect of rank.  

Since an increase in rank for one individual is offset by a decrease in rank for another, it is not 

surprising that the rank effect in the whole population is always close to zero (as it would be 

for 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 in a linear-in-means model). However, the estimates in Columns (2), (5), (8), (11) 

 
16 The (conditional) average treatment effects of tracking are computed as (𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥𝑚𝑖𝑥)𝛽̂ 

while the standard errors as √(𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥𝑚𝑖𝑥)′𝑉(𝛽̂)(𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥𝑚𝑖𝑥) where 𝑥𝑡𝑟𝑎𝑐𝑘 and 𝑥𝑚𝑖𝑥 are 

vectors of sample mean covariates that include the leave-out means of the rank and peer 

variables under alternative grouping strategies, and 𝛽̂ the coefficients from the regression in 

Table 3, column (6). 
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and (3), (6), (9), (12) suggest that rank and peer effects work in opposite directions in the 

production of outcomes by student ability category (Low, Middle, High), and that different 

assignments generate different winners and losers in terms of rank. 

For instance, reading across the estimates in the first row of Table 5, we find that, on average, 

students under two-way tracking experience an increase of 10% of a SD in the number of first-

year credits compared to mixing. This effect is larger (16%) for low-ability students and smaller 

(5%) and insignificant for high-ability ones.  

However, our separate rank and peer effects estimates indicate two new findings:  

i) for low achievers, the total effect is mainly driven by the rank effect. Hence, low-

ability students are not advantaged by a tracked system because of interactions with 

peers of lower quality or higher peer group homogeneity. Instead, our results show 

that low-ability students gain because of the tracking-induced increase in ordinal 

rank within groups;  

ii) for high achievers, rank and peer effects have a similar magnitude but opposite sign, 

hence balancing out the total tracking effect. Therefore, high achievers do benefit 

from interacting with better peers or a higher homogeneity, but at the same time the 

presence of abler peers negatively affects their ordinal rank within groups, thereby 

harming their outcomes.  

Our results also provide new evidence about the “track middle” option that Carrell et al., 2013, 

viewed as optimal on the basis of their estimates on pre-treatment data. As found by both 

Carrell et al., 2013, and Booij et al., 2017, this grouping strategy has an insignificant and close 

to zero overall effect for low-ability students. However, we find that this zero effect is the sum 

of a positive and significant rank effect and a negative and significant peer composition effect 

of a similar magnitude. The former is due to the increase in average rank of low-ability students 
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when switching from mixing to “track middle” grouping, the latter is likely attributable to the 

increase in the heterogeneity of peer composition associated with “track middle” grouping. 

We gain additional insights also when we look at the effect of “track high” grouping on middle- 

and high-ability students. In this case, we see that the positive tracking effect on middle-ability 

students is entirely attributable to a rank effect, while the overall zero effect for high-ability 

students hides a negative rank effect and a positive effect of peer ability composition.  

A potential concern about this exercise is related to the assumptions about the functional form 

for the education production function. This is especially relevant for the estimation of 

counterfactual policy effects by ability. For instance, while all peer composition variables enter 

in the model with a flexible functional form, we assume that rank effects are linear and 

homogenous. In Table A2 and A3 we present heterogeneous effects of rank by own ability and 

features of the group composition such as the level and heterogeneity of its ability composition 

and its size, and by students’ gender. For both experiments we fail to detect significant 

heterogeneous rank effects. The only exception concerns gender heterogeneities in the Dutch 

data, where we find that the rank effect is larger and only significant for males. This finding is 

in line with Murphy and Weinhardt, 2020. 

 

 

 

 

 

8. Conclusions and Discussion 

This paper contributes to the literature on the role of peers in education by showing that 

exposure to high-ability peers implies a trade-off between a positive learning externality effect 

and a negative motivational effect implied by lower ordinal rank. As a result, the linear-in-

means parameter identifies a composite (i.e., reduced form) effect. Although this “reduced 

form” interpretation of the linear-in-means model applies even when other features of the 
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distribution of peer ability are omitted, we specifically focus on rank to show how large this 

misconception can be because of the negative mechanical correlation between rank and mean 

peer ability. 

We use data from two randomized experiments carried out in Kenyan primary schools (Duflo 

et al., 2011) and at the University of Amsterdam (Booij et al., 2017) to assess the extent to 

which omitting rank from the structure of peer effects impacts the estimates of the effect of 

mean peer ability in the standard linear-in-means model. We find that the omission of rank can 

attenuate the estimated effect of mean peer ability by more than 100 percent, and that this bias 

is statistically significant. We also confirm our main result in more general models that allow 

for non-linear and heterogeneous effects of peers’ ability. 

By stressing the importance of ordinal rank, our findings warn that the exclusion restriction 

behind the linear-in-means model can be easily violated and reinforce the consensus on the 

multifaceted nature of the structure of peer effects, thereby remarking that the linear-in-means 

parameter should be viewed as a “reduced-form” measure of the ability peer effect.  

The consistency of our results across two very diverse institutional settings (Kenya and the 

Netherlands) and educational levels (primary and tertiary education), as well as under different 

assumptions on the structure of peer effects, is reassuring in terms of external validity.17  

Furthermore, the joint determination of rank and peer composition at the time of group 

assignment is embedded in the mechanics of all peer effects studies. Therefore, our findings 

have implications beyond the economics of education (see Cornelissen, 2016, for a review of 

the evidence on peer effects in the workplace).  

 
17 The division of a cohort of students in two classes carried out in each school involved in the 

Kenyan experiment implies that classes are small by Kenyan standard – down from 90 pupils 

to around 40 – and at the same time larger than the average class sizes observed in developed 

countries. This can be an issue for the external validity of our findings in this setup. 
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Our results also provide key insights to understand the effectiveness of ability tracking policies. 

We use the large support of ability configurations in the Dutch data and a flexible education 

production function to unpack the overall achievement effect of a battery of grouping scenarios 

into two components: a rank effect and a peer composition effect. Our analysis indicates that 

rank and peer effects affect the outcomes of low- and high-ability students in opposite 

directions.  

Although this analysis is based on some functional form assumptions, the findings have 

relevant implications for student assignment. On the one hand, policy makers interested in 

improving the outcomes of low achievers (such as in the case of remedial programs) should 

favour ability tracking. Under this assignment, low achievers benefit substantially from 

increased rank, while they do not suffer negative peer composition effects. On the other hand, 

the adoption of ability mixing in programs intended to be beneficial for high achievers (i.e. 

excellence programs or elite schools) would minimize the negative rank effect generated by 

tracking for these students. At the limit, this would suggest including low achievers in 

excellence programs with the only aim of improving the rank of high achievers.  

Finally, our results on ability tracking also speak to the literature on school choice. They 

suggest that the big-fish-little-pond effect that could motivate the choice of “low tier” schools 

shall be weighed against the positive externalities that would instead support the choice of “top 

tier” schools. In our view, however, this task requires more information and processing abilities 

than the ones available to the average family, highlighting the importance of providing tailored 

information to guide families in this process. 
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Figures and Tables 

 

Figure 1. Variation in rank by level of GPA 

Kenyan experiment 

a. Raw data         b.   Boxplot by decile of GPA   

 

Dutch experiment 
a. Raw data         b.  Boxplot by decile of GPA  

 

Notes: Upper panels are for the Kenyan experiment while lower panels for the Dutch one. Panel a. reports the joint distribution 

of rank and GPA. The estimated density of GPA is overlaid. Panel b. reports the box-plot of rank by decile of GPA. Number 

of observations: 2,188 in the Kenyan experiment and 1,876 in the Dutch one.  
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Table 1. Rank and peer effects in the linear-in-means models - Kenyan and Dutch experiment 
 (1) (2) (3) (4) (5) (6) 

Experimental setup Kenyan Dutch 

Dependent variable: 𝑅𝐴𝑁𝐾𝑖𝑔 
Total  

score 

Total 

score 
𝑅𝐴𝑁𝐾𝑖𝑔 Credits Credits 

𝑅𝐴𝑁𝐾𝑖𝑔    0.403**   0.351** 

   (0.185)   (0.140) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  -0.219*** 0.345 0.433** -0.287*** 0.048 0.148*** 

 (0.028) (0.211) (0.208) (0.014) (0.041) (0.052) 

   [0.051]   [0.012] 

𝐺𝑃𝐴𝑖  0.291*** 0.507*** 0.390*** 0.352*** 0.314*** 0.191*** 

 (0.002) (0.032) (0.064) (0.026) (0.066) (0.050) 

   [0.027]   [0.015] 

R-squared 0.926 0.357 0.362 0.801 0.266 0.269 

Observations 2,188 2,188 2,188 1,876 1,876 1,876 

Clusters 48 48 48 48 48 48 
Notes: Each column reports the results from a different OLS regression. Dependent variable reported at the top of each column. 

For the Kenyan experiment, school fixed effects and background controls (gender, age, being assigned to the contract teacher) 

are included in all specifications. For the Dutch experiment, randomization and background controls (gender, age categorized 

in tertiles within cohort, previous attendance of a professional college before university enrolment) are included in all 

specifications. Standard errors clustered by school in the Kenyan experiment and by tutorial group in the Dutch experiment 

are reported in parenthesis. Hausman test p-values are reported in square brackets. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2. Rank and peer effects in the linear-in-means models – Kenyan and Dutch experiment – alternative outcomes.  

 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Experimental setup Kenyan Dutch 

Dependent variable: Literacy score Math score Dropout Avg. Grade 

𝑅𝐴𝑁𝐾𝑖𝑔  -0.056  0.846***  -0.267**  0.175 

  (0.192)  (0.216)  (0.102)  (0.158) 

𝐺𝑃𝐴̅̅ ̅̅ ̅−𝑖 0.291 0.279 0.324 0.509** -0.042 -0.142*** 0.124** 0.189*** 

 (0.184) (0.189) (0.226) (0.214) (0.027) (0.047) (0.047) (0.069) 

  [0.766]  [0.001]  [0.008]  [0.261] 

𝐺𝑃𝐴𝑖 0.413*** 0.430*** 0.496*** 0.250*** -0.168*** -0.070* 0.489*** 0.426*** 

 (0.037) (0.072) (0.026) (0.067) (0.018) (0.036) (0.035) (0.068) 

  [0.769]  [<0.001]  [0.007]  [0.264] 

Observations 2,189 2,189 2,188 2,188 1,876 1,876 1,753 1,753 

Clusters 48 48 48 48 48 48 48 48 

Notes: see Table 1. The number of observations changes because of missing values in the math score for one student in the Kenyan setup, and in the average grade for students who did not 

complete at least one first-year exam in the Dutch setup. 
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Table 3. Rank and peer effects in non-linear and heterogeneous models - Kenyan and Dutch experiment 

  (1) (2) (3) (4) (5) (6) 

Experimental setup Kenyan Dutch 

Dependent variable 𝑅𝐴𝑁𝐾𝑖𝑔 
Math 

score 

Math 

score 
𝑅𝐴𝑁𝐾𝑖𝑔 Credits Credits 

𝑅𝐴𝑁𝐾𝑖𝑔    0.921***   0.559*** 
   (0.238)   (0.178) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  -0.239*** 0.431 0.651** -0.376*** 0.148*** 0.358*** 

 (0.032) (0.273) (0.262) (0.013) (0.052) (0.086) 
   [0.001]   [0.002] 

𝑆𝐷(𝐺𝑃𝐴−𝑖) -0.026 -0.241 -0.218 0.027 -0.185** -0.200** 
 (0.031) (0.252) (0.248) (0.022) (0.082) (0.079) 
   [0.397]   [0.235] 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) -2.436* 13.816 16.059* 0.377*** 0.343* 0.132 

 (1.353) (9.504) (9.349) (0.051) (0.190) (0.183) 
   [0.095]   [0.009] 

𝐺𝑃𝐴𝑖  0.292*** 0.493*** 0.223*** 0.365*** 0.350*** 0.145** 
 (0.002) (0.026) (0.072) (0.013) (0.035) (0.065) 
   [<0.001]   [0.002] 

𝐺𝑃𝐴𝑖 × 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  0.044** -0.056 -0.096 0.025** -0.117*** -0.131*** 

 (0.022) (0.171) (0.176) (0.011) (0.042) (0.040) 
   [0.096]   [0.069] 

𝐺𝑃𝐴𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) -0.268*** 0.329 0.575* -0.356*** 0.104 0.303*** 
 (0.038) (0.316) (0.340) (0.027) (0.075) (0.091) 
   [0.001]   [0.003] 

𝐺𝑃𝐴𝑖 × 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖

× 𝑆𝐷(𝐺𝑃𝐴−𝑖) 

0.405 -1.243 -1.616 0.160*** -0.287** -0.376*** 

(0.363) (2.397) (2.234) (0.045) (0.138) (0.135) 
   [0.314]   [0.034] 

R-squared 0.930 0.358 0.364 0.864 0.271 0.274 

Observations 2,188 2,188 2,188 1,876 1,876 1,876 

Clusters 48 48 48 48 48 48 

Notes: see Table 1 for details. 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  and 𝑆𝐷(𝐺𝑃𝐴−𝑖) are re-centred to have zero mean in the estimation sample to ease the 

interpretation of interaction terms.  
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Table 4. Rank and peer effects from alternative heterogeneous-peer-effects models – Kenyan and Dutch 

experiment 

  (1) (2) (3) (4) (5) (6) 

Experimental setup Kenyan Dutch 

Dependent variable 𝑅𝐴𝑁𝐾𝑖𝑔 
Math 

score 
Math score 𝑅𝐴𝑁𝐾𝑖𝑔 Credits Credits 

𝑅𝐴𝑁𝐾𝑖𝑔   0.641**   0.368* 
   (0.286)   (0.191) 

Fraction of Low-GPA peers  

× Low 𝐺𝑃𝐴𝑖 

0.557*** -1.368** -1.725*** 0.583*** -0.074 -0.288 

(0.076) (0.565) (0.559) (0.025) (0.188) (0.218) 
   [0.018]   [0.054] 

Fraction of Low-GPA peers   
× Middle 𝐺𝑃𝐴𝑖 

0.465*** -1.009* -1.308** 0.715*** -0.151 -0.413* 

(0.067) (0.558) (0.573) (0.029) (0.222) (0.235) 
   [0.033]   [0.058] 

Fraction of Low-GPA peers   
× High 𝐺𝑃𝐴𝑖 

-0.057 -0.352 -0.316 -0.088** -0.256 -0.224 

(0.054) (0.712) (0.724) (0.043) (0.281) (0.277) 
   [0.377]   [0.160] 

Fraction of High-GPA peers  

× Low 𝐺𝑃𝐴𝑖  

-0.020 -1.082 -1.070 -0.038 0.122 0.136 

(0.075) (0.777) (0.786) (0.027) (0.251) (0.252) 
   [0.796]   [0.228] 

Fraction of High-GPA peers 

× Middle 𝐺𝑃𝐴𝑖 

-0.456*** -0.243 0.050 -0.450*** 0.054 0.220 

(0.101) (0.850) (0.843) (0.028) (0.264) (0.308) 
   [0.051]   [0.053] 

Fraction of High-GPA peers 

× High 𝐺𝑃𝐴𝑖 

-0.695*** -0.741 -0.295 -0.665*** -0.062 0.182 

(0.057) (0.743) (0.810) (0.037) (0.182) (0.201) 
   [0.025]   [0.056] 

𝐺𝑃𝐴𝑖 0.213*** 0.370*** 0.233*** 0.284*** 0.263*** 0.158*** 

 (0.009) (0.043) (0.075) (0.026) (0.042) (0.052) 

   [0.020]   [0.058] 

Low 𝐺𝑃𝐴𝑖 (1
st Tertile) -0.240*** 0.136 0.289 -0.183*** -0.167 -0.099 

 (0.037) (0.325) (0.311) (0.023) (0.150) (0.166) 

   [0.032]   [0.052] 

High 𝐺𝑃𝐴𝑖 (3
rd Tertile) 0.279*** 0.149 -0.030 0.314*** 0.109 -0.007 

 (0.035) (0.326) (0.353) (0.023) (0.132) (0.139) 

   [0.032]   [0.057] 

       

R-squared 0.947 0.364 0.366 0.869 0.269 0.270 

Observations 2,188 2,188 2,188 1,876 1,876 1,876 

Clusters 48 48 48 48 48 48 

Notes: see Table 1 for details. 
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Table 5. Estimated tracking effects on credits compared to mixing. Total effects and unpacking rank and peer effects - Dutch experiment 

   Student GPA category 

  ATE L(B) M H(A) 

  Total Rank Peer Total Rank Peer Total Rank Peer Total Rank Peer 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Two-way tracking {B},{A} 0.103 

*** 

-0.002 

*** 

0.105 

*** 

0.157 

*** 

0.138 

*** 

0.019 

 

   0.050 

 

-0.141 

*** 

0.191 

*** 

  (0.028) (0.000) (0.028) (0.040) (0.044) (0.048)    (0.040) (0.045) (0.059) 

Three-way tracking {L}, {M}, {H} 0.147 

*** 

-0.003 

*** 

0.150 

*** 

0.267 

*** 

0.183 

*** 

0.084 

 

0.147 

*** 

-0.004 

*** 

0.151 

*** 

0.027 

 

-0.188 

*** 

0.215 

** 

  (0.036) (0.001) (0.037) (0.072) (0.058) (0.077) (0.056) (0.001) (0.056) (0.055) (0.060) (0.084) 

Track low {L}, {M, H} 0.128 

*** 

-0.002 

*** 

0.130 

*** 

0.267 

*** 

0.183 

*** 

0.084 

 

0.090 

** 

-0.141 

*** 

0.231 

*** 

0.027 

 

-0.047 

*** 

0.074 

* 

  (0.031) (0.000) (0.031) (0.072) (0.058) (0.077) (0.037) (0.045) (0.050) (0.032) (0.015) (0.038) 

Track middle {M}, {L, H}  0.042 

*** 

-0.002 

*** 

0.044 

*** 

-0.009 

 

0.046 

*** 

-0.055 

** 

0.147 

*** 

-0.004 

*** 

0.151 

*** 

-0.011 

 

-0.048 

*** 

0.036 

 

  (0.011) (0.000) (0.011) (0.023) (0.015) (0.024) (0.056) (0.001) (0.056) (0.023) (0.015) (0.028) 

Track high {L, M}, {H} 0.064 

*** 

-0.002 

*** 

0.066 

*** 

0.094 

*** 

0.046 

*** 

0.048 

 

0.073 

** 

0.139 

*** 

-0.066 

 

0.027 

 

-0.188 

*** 

0.215 

** 

  (0.024) (0.000) (0.024) (0.028) (0.015) (0.030) (0.035) (0.044) (0.051) (0.055) (0.060) (0.084) 

Notes: The table reports (conditional) average treatment effects of different tracking configurations relative to mixing based on the estimates from Table 3, Column (6). Dependent variable is 

number of credits collected in the first year. Total effects obtained by changing both peer characteristics and rank as we move from ability mixing to tracking. Rank (Peer) effects are obtained by 

holding peer characteristics (rank) fixed and moving rank (peer characteristics) as we move from ability mixing to tracking. Student GPA groups are L(ow), M(iddle), H(igh) in case of three-way 

tracking, and for two-way tracking B(elow) and A(bove). The curly brackets indicate the grouping of GPA groups. Number of observations: 1,876. Standard errors clustered by tutorial group are 

reported in parenthesis. Number of clusters: 48. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix – For Online Publication Only.  

 

A. Additional Figures and Tables  

Figure A1. Average marginal effects of mean peer ability on number of credits 

a. Excluding rank     b. Including rank 

 

Notes: The Figure reports the marginal effects of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 by 𝑆𝐷(𝐺𝑃𝐴−𝑖) and by 𝐺𝑃𝐴𝑖 when including 𝑅𝐴𝑁𝐾𝑖𝑔 in the model, 

respectively. Marginal effects based on the estimates from Table 3, Column (5) and (6), respectively. 
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Table A1. Descriptive statistics 

  (1) (2) 

 Mean Std. Dev. 

Panel A: Kenyan experiment 

Outcomes:   

  Total score (standardized in full sample) 0.014 0.999 

  Math score (standardized in full sample) -0.011 0.988 

  Literacy score (standardized in full sample) 0.032 1.006 

Explanatory variables:   

  𝑅𝐴𝑁𝐾𝑖𝑔 0.500 0.300 

  𝐺𝑃𝐴𝑖 (standardized by school in the full sample) 0.045 0.978 

  𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 -0.001 0.107 

  𝑆𝐷(𝐺𝑃𝐴−𝑖) 0.999 0.082 

  Share of male students 0.477 0.500 

  Age at test 9.188 1.469 

  Share of students assigned to contract teacher 0.517 0.500 

Panel B: Dutch experiment  

Outcomes:   

  Credits collected in the first year (standardized by cohort) 0 1 

  Average grade in the first year (standardized by cohort) 0 1 

  Share of students who dropout at the end of first year 0.487 0.500 

Explanatory variables:   

  𝑅𝐴𝑁𝐾𝑖𝑔 0.486 0.298 

  𝐺𝑃𝐴𝑖 (standardized by cohort) 0 1 

  𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 -0.004 0.580 

  𝑆𝐷(𝐺𝑃𝐴−𝑖) 0.785 0.289 

  Share of male students 0.733 0.443 

  Share of student whose age is in youngest third of the distribution 0.333 0.472 

  Share of student whose age is in oldest third of the distribution 0.329 0.470 

  Share of students with a professional college degree 0.056 0.207 

Notes: The number of observations in the Kenyan experiment is 2,189, except for the total and math score that are only 

available for 2,188 students. The number of observations in the Dutch experiment is 1,876 for all variables except for average 

grade, which is only available for 1,753 students who completed some exams. Dropout is a dummy variable for having 

collected less than 45/60 credits in the first year. Professional college is a dummy for entering university after enrolment in 

professional college. 
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Table A2. Heterogeneous rank effects on math score - Kenyan experiment 

 (1) (2) (3) (4) (5) 

𝑅𝐴𝑁𝐾𝑖𝑔 (𝑎) 0.906*** 0.799*** 0.790*** 0.857*** 0.802*** 

 (0.229) (0.211) (0.218) (0.222) (0.240) 

𝑅𝐴𝑁𝐾𝑖𝑔 ×  𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏) -0.106     

 (0.139)     

𝑅𝐴𝑁𝐾𝑖𝑔 ×  𝑆𝐷(𝐺𝑃𝐴) 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)  0.183    

  (0.136)    

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝐺𝑃𝐴𝑖 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)   0.064   

   (0.200)   

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝐺𝑅𝑂𝑈𝑃 𝑆𝐼𝑍𝐸𝑖  𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)    0.020  

    (0.133)  

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝑀𝐴𝐿𝐸𝑖  (𝑏)     0.084 

     (0.121) 

(𝑎) + (𝑏) 0.801*** 0.982*** 0.855*** 0.877*** 0.886*** 

 (0.223) (0.263) (0.265) (0.221) (0.204) 

Notes: the table reports heterogeneous effects of rank. Each column reports the results from a different OLS regression. Estimates based on the specification used in Table 1, 

Column (3). Dependent variable is math score. Each column reports the linear effect of rank, the interaction term between rank and the dummy variable for the category of 

interest, and the linear combination of the two. The dummy variable for the category of interest is also included among the controls. Number of observations: 2,188. Standard 

errors clustered by school are reported in parenthesis. Number of clusters: 48. *** p<0.01, ** p<0.05, * p<0.1.  
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Table A3. Heterogeneous rank effects on credits - Dutch experiment 

 (1) (2) (3) (4) (5) 

𝑅𝐴𝑁𝐾𝑖𝑔 (𝑎) 0.573*** 0.543*** 0.417** 0.630*** 0.331 

 (0.171) (0.196) (0.205) (0.189) (0.208) 

𝑅𝐴𝑁𝐾𝑖𝑔 ×  𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏) -0.025     

 (0.161)     

𝑅𝐴𝑁𝐾𝑖𝑔 ×  𝑆𝐷(𝐺𝑃𝐴) 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)  0.044    

  (0.184)    

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝐺𝑃𝐴𝑖 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)   0.113   

   (0.182)   

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝐺𝑅𝑂𝑈𝑃 𝑆𝐼𝑍𝐸𝑖  𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏)    -0.214  

    (0.134)  

𝑅𝐴𝑁𝐾𝑖𝑔 × 𝑀𝐴𝐿𝐸𝑖  (𝑏)     0.282** 

     (0.134) 

(𝑎) + (𝑏) 0.548** 0.586*** 0.530** 0.416** 0.613*** 

 (0.228) (0.206) (0.246) (0.189) (0.179) 

Notes: the table reports heterogeneous effects of rank. Each column reports the results from a different OLS regression. Estimates based on the specification used in Table 3, 

Column (6). Dependent variable is number of credits collected in the first year. Each column reports the linear effect of rank, the interaction term between rank and the dummy 

variable for the category of interest, and the linear combination of the two. The dummy variable for the category of interest is also included among the controls. Number of 

observations: 1,876. Standard errors clustered by tutorial group are reported in parenthesis. Number of clusters: 48. *** p<0.01, ** p<0.05, * p<0.1.



42 

 

B. Robustness tests 

This Appendix presents a comprehensive set of robustness test to our main results. Results in 

Section 5 in the main text show that there is evidence of non-linear and heterogeneous peer 

effects only in the Dutch setup, while the linear-in means model is flexible enough to represent 

the Kenyan data. Hence, we present all our robustness tests using the linear-in-means model 

for the Kenyan experiment and the flexible specification of Column (6) in Table 3 for the Dutch 

one. We present each robustness test in a dedicated subsection.  

B1. Group fixed effects.  

Identification of the rank effect in our main specification relies on the assumption that the 

chosen parametric specification of the peer ability distribution is correctly specified. As 

mentioned in Section 3.1, an alternative would be to use group fixed effects, that non-

parametrically control for group-specific characteristics – e.g., size, teacher effects, atmosphere 

– as well as for mean peer ability. The inclusion of group fixed effects also allows to control 

for any rank-preserving class-specific shock (such as teaching style or leniency). Murphy and 

Weinhardt, 2020, highlight that this specification boils down to between-group comparison of 

students with the same GPA relative to group mean, but different rankings due to differences 

in the distribution of GPA across groups. As illustrated by Elsner et al., 2021, in this 

specification rank effects are identified by comparing students with the same GPA across all 

groups after controlling for mean differences across groups. By subtracting the group mean 

from each variable, the within-groups estimator does not change the shape of the ability 

distribution while at the same time eliminating differences in mean ability across groups. As 

remarked in the recent review of the literature on rank effects by Delaney and Devereux, 2022, 

the assumption embedded in the specification with group fixed effects is that differences in the 

error term across combinations of ability and groups can be summarized by an additive group 

effect and an additive ability effect. These effects eliminate potential confounders that vary by 
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group. Following Booij et al., 2017, with respect to the existing literature we enrich the 

specification with group fixed effects for the Dutch setup by including interactions of features 

of the distribution of peer ability and individual ability. This allows for heterogeneous effects 

of the ability distribution that could be captured by the rank effects if omitted.18 

Column (1) in Table B1 shows that, in both experiments, the effect of 𝑅𝐴𝑁𝐾𝑖𝑔 is very stable 

when we include group fixed effects.  

We can verify that the models with and without group fixed effects deliver statistically 

indistinguishable estimates for the rank effect using a Hausman test. We fail to reject the null 

with a p-value of 0.1 for the Dutch experiment (the rank effects are equal to 0.503 vs. 0.559) 

and 0.65 for the Kenyan one (rank effects: 0.817 vs. 0.846). This result strongly corroborates 

the parametric functional form choices we adopted in our main specification.  

B2. Heterogeneous teaching styles by student rank  

A remaining identification concern is that there may be within-class unobservables that 

correlate with rank and impact on achievement. The leading one could be a heterogeneous 

effect of teachers with respect to students’ rank (homogeneous teacher effects would be 

captured by group fixed effects). In such case, the rank effect would be an artifact of 

uncontrolled heterogeneous teaching styles.  

The Dutch experiment provides us with survey data on students’ perceptions on teaching. The 

survey was carried out three months after the beginning of the academic year. The response 

rate was close to 70%, and Booij et al., 2017, show that survey response was unrelated to the 

ability composition of tutorial groups.  

 
18 This approach is also championed by Denning et al., 2021, in their analysis of the long-run 

effects of rank using data from Texas.  
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As done by Booij et al., 2017, we study the mechanisms behind both rank and peer effects on 

six index variables that summarize the content of the 26 survey items, standardized to have 

zero mean and unit standard deviation. The mapping between the indexes and the survey 

questions is as follows:  

1. Too fast: tutorial group teachers are too fast, spend too little time on simple things, or 

give complicated answers; 

2. Too slow: tutorial group teachers are too slow, spend too much time on simple things, 

or focus too much on weak students; 

3. Stimulating: the student learns a lot from tutorial group teachers, group meetings are 

stimulating, or teacher asks questions to test our understanding; 

4. Conducive: there is a good atmosphere in tutorial group, the student learns from 

students in tutorial group, tutorial group influences performance positively; 

5. Interactive: the student studies together with others, helps other students or is helped 

by other students 

6. Involved: the student or others frequently ask questions; the level of other students 

demotivates the student (-), the student dislikes to ask questions (-); unquietness makes 

it difficult to concentrate (-). 

The effects of rank and of the peer variables on these outcomes, estimated using the 

specification in Column (6) of Table 3, are reported in Table B2 below.  

On the one hand, the results confirm the absence of significant rank effects on the teaching 

perceptions of students. On the other hand, given the insignificance of rank effects, the 

coefficients related to the peer variables are in line with the ones estimated by Booij et al., 

2017. The results on peer composition effects suggest that – at least as far as this is revealed 

by student perceptions – teachers are not very responsive to group ability composition, while 
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there is evidence that low-ability students are less likely to feel involved in the class when 

surrounded by peers of higher ability, all the more so the more the group is heterogeneous. This 

evidence is also in line with findings by Feld and Zoelitz, 2017. 

Regarding the Kenyan experiment, Duflo et al., 2011, report evidence of a positive effect of 

mean peer ability at the bottom and the top of the baseline ability distribution. According to 

their theoretical model, this is consistent with the presence of direct effects of peers and indirect 

effects that go through teachers’ effort and ability targeting choices. However, the absence of 

data on students’ perceptions about the targeting of teaching prevents us from providing direct 

evidence on the relevance of heterogeneous teaching styles for the identification of rank effects 

in this setup. To the extent that teacher influence is stronger for younger student than for older 

ones, the different age of the students involved in the Kenyan and the Dutch studies could 

contribute to explain the difference in findings about teacher effects. 

B3. Different functional forms for the relationship between 𝐺𝑃𝐴𝑖 and the outcomes 

Spurious rank effects could also emerge if there are specification errors, for instance in the 

choice of the functional form for the relationship between 𝐺𝑃𝐴𝑖 and the outcomes. In Columns 

(2) to (7) of Table B1 we verify that the linear functional form for 𝐺𝑃𝐴𝑖  is not overly restrictive 

by progressively adding second, third, and fourth order terms in 𝐺𝑃𝐴𝑖. Although the coefficient 

on 𝑅𝐴𝑁𝐾𝑖𝑔 shrinks somewhat, for both experiments it remains positive and large.19 For the 

Dutch experiment, however, it falls below the minimum effect that we can significantly detect 

 
19 This pattern of results is consistent with the ones reported, for instance, by Murphy and 

Weinhardt, 2020, that estimate rank effects in large administrative data using very flexible 

specifications for previous achievement (high-order polynomials, dummies for deciles or 

ventiles, non-parametric controls for each level). As in our case, the rank effects they estimate 

decrease in magnitude when extremely flexible specifications are adopted. Still, given that they 

use much larger datasets than us, their estimated effects remain highly significant. 
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with the sample size we have at hand when we use the fourth order polynomial.20 Eventually, 

the experiment was not designed to estimate rank effects, and we have to make do with limited 

power for this purpose. Similar conclusions also hold when it comes to the attenuation bias in 

the effect of 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 on achievement.  

B4. Non-linear specifications for the effect of 𝑅𝐴𝑁𝐾𝑖𝑔 

The linear specification for the effect of 𝑅𝐴𝑁𝐾𝑖𝑔 could also be restrictive (see Gill et al., 2018). 

In Figure B1 we report estimates from a non-linear specification with distinct effects for each 

ventile of the distribution of 𝑅𝐴𝑁𝐾𝑖𝑔.  In both setups we find limited evidence of non-linear 

effects. Reassuringly, the p-values of the Hausman tests for the attenuation bias in the effect of 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 on achievement are equal to 0.002 in the Kenyan case and to 0.005 in the Dutch 

experiment, corroborating our main result. 

B5. Multiplicative measurement error in the baseline score used to compute 𝑅𝐴𝑁𝐾𝑖𝑔 

Murphy and Weinhardt, 2020, point out that multiplicative measurement error in the baseline 

score used to compute 𝑅𝐴𝑁𝐾𝑖𝑔 could generate a spurious rank effect. To deal with this 

potential issue, we follow their approach and use the percentile (instead of the level) of the 

baseline score both as a control and as the basis to compute 𝑅𝐴𝑁𝐾𝑖𝑔. To ease the comparison 

with Murphy and Weinhardt, 2020, we transform the outcome variables in percentiles as well.  

Results are in Table B1, Columns (8) and (9). We find a rank effect of 14.6 percentiles (0.50SD) 

for the Kenyan experiment (Panel A) and 10.9 percentiles (0.39SD) for the Dutch one (Panel 

B). If we further scale these effects by the standard deviation of 𝑅𝐴𝑁𝐾𝑖𝑔, we obtain an effect 

of 0.15SD or 4.37 percentiles in the Kenyan experiment and 0.12SD or 3.25 percentiles in the 

 
20 We stop at the fourth grade because the point estimates do not shrink further if we include 

higher order terms.  



47 

 

Dutch experiment. For the Dutch experiment the rank effect is significant at the 10 percent 

level, while it is not significant in the Kenyan one, where the correlation between 𝑅𝐴𝑁𝐾𝑖𝑔 and 

the percentiles (instead of the level) of 𝐺𝑃𝐴𝑖 is very high. This generates a problem of 

multicollinearity, as witnessed by the large standard error on 𝐺𝑃𝐴𝑖 in Column (9), that is 5 

times larger than in Column (8). Needless to say, a larger sample would help to enhance 

precision.  

Still, our main result is not undermined by these concerns. In both experiments, the effect of 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 substantially increases as we include 𝑅𝐴𝑁𝐾𝑖𝑔. For the Dutch experiment this difference 

is significant at the 10 percent level, while it is not significant for the Kenyan experiment. We 

see this as a limitation in terms of statistical validity rather than an identification issue. 

B7. Alternative definitions of rank and sample selection 

We present additional robustness tests in Table B3. We replicate the specification of Table 1, 

Columns (2) and (3) in Panel A (Kenyan experiment), and the specification of Table 3, 

Columns (5) and (6) in Panel B (Dutch experiment).  

As explained in Section 2.3, in defining 𝑅𝐴𝑁𝐾𝑖𝑔 we have arbitrarily chosen to break ties by 

assigning the lower rank to all students, as done by Murphy and Weinhardt, 2020. However, 

an equally plausible assumption could have been to assign the average or the higher rank. 

Columns (1) – (4) of Table B3 show that our results are robust even in those cases.  

In addition, Figure B1 highlights that, for the Dutch experiment, the 𝑅𝐴𝑁𝐾𝑖𝑔 effect seems 

larger at the very bottom of the support of its distribution. Speculatively, one reason why the 

effect at the very bottom is most pronounced could capture a stigma effect of being “the worst”. 

In Columns (5) – (8) of Table B3 we show the results that we obtain when we drop students in 

the top and bottom 1 percent of the overall distribution of 𝐺𝑃𝐴𝑖 and 𝑅𝐴𝑁𝐾𝑖𝑔, for whom rank 

could be more salient. Reassuringly, our main result holds in both cases.  
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Figure B1. Non-linear rank effects on math score (Kenyan experiment) and on credits (Dutch experiment), 

controlling for linear 𝑮𝑷𝑨𝒊 

a. Kenyan experiment    b.   Dutch experiment 

 

Notes: Each panel reports the estimated rank effects by ventile (reference: 10th ventile) and their 90% confidence interval. 

Estimates are based on the specification used in Table 1, column (3) for the Kenyan experiment and in Table 3, Column (6) in 

the Dutch experiment, respectively, but using dummies for each ventile of 𝑅𝐴𝑁𝐾𝑖𝑔 and linear trends in 𝐺𝑃𝐴𝑖 . The estimated 

rank effect is also reported with a dashed line. The dependent variable is math score in the Kenyan experiment and credits in 

the Dutch experiment 
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Table B1. Main robustness tests 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
Using 

Group FE 
Quadratic 𝐺𝑃𝐴𝑖 Cubic 𝐺𝑃𝐴𝑖 Quartic 𝐺𝑃𝐴𝑖 

𝑅𝐴𝑁𝐾𝑖𝑔 and 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  based on 

the percentiles of 𝐺𝑃𝐴𝑖 

Panel A. Kenyan experiment     

Dep. Var.  Math score Math score Math score Math score Math score percentile 

𝑅𝐴𝑁𝐾𝑖𝑔  0.817***  0.817***  0.737***  0.696***  14.556 

 (0.225)  (0.225)  (0.258)  (0.258)  (16.831) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖   0.320 0.501** 0.331 0.487** 0.333 0.479** 0.046 0.207 

  (0.225) (0.213) (0.227) (0.212) (0.227) (0.211) (0.204) (0.260) 

   [0.003]  [0.015]  [0.021]  [0.323] 

𝐺𝑃𝐴𝑖  0.249*** 0.502*** 0.261*** 0.556*** 0.300*** 0.579*** 0.326*** 0.514*** 0.352** 

 (0.070) (0.027) (0.071) (0.035) (0.094) (0.042) (0.100) (0.028) (0.168) 

          

Observations 2,188 2,188 2,188 2,188 2,188 2,188 2,188 2,188 2,188 

Clusters 48 48 48 48 48 48 48 48 48 

Panel B. Dutch experiment         

Dep. Var.  Credits Credits Credits Credits Credits percentile by cohort 

𝑅𝐴𝑁𝐾𝑖𝑔  0.503***  0.501**  0.439*  0.328  10.953* 

 (0.175)  (0.227)  (0.222)  (0.226)  (6.404) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖   0.145*** 0.336*** 0.153*** 0.318*** 0.148*** 0.272*** 0.191** 0.314** 

  (0.050) (0.097) (0.050) (0.094) (0.050) (0.094) (0.092) (0.125) 

   [0.025]  [0.047]  [0.140]  [0.072] 

𝐺𝑃𝐴𝑖 0.149** 0.393*** 0.179* 0.451*** 0.253** 0.536*** 0.374*** 0.322*** 0.171* 

 (0.068) (0.043) (0.100) (0.051) (0.103) (0.071) (0.129) (0.039) (0.099) 

   [0.026]  [0.047]  [0.142]  [0.084] 

Observations 1,876 1,876 1,876 1,876 1,876 1,876 1,876 1,876 1,876 

Clusters 48 48 48 48 48 48 48 48 48 

Notes: we adopt the specification of Table 1, Columns (2) and (3) in Panel A, and the specification of Table 3, Columns (5) and (6) in Panel B. In Columns (8) and (9) we use the percentiles of 

𝐺𝑃𝐴𝑖 both as a control and to compute rank and peer composition, while the dependent variable is also percentilized.
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Table B2. Rank and peer effects on survey data on teaching style and learning environment - Dutch 

experiment 
 (1) (2) (3) (4) (5) (6) 

 Too slow Too fast Stimulating Conducive Interactive Involved 

𝑅𝐴𝑁𝐾𝑖𝑔 0.205 -0.269 0.025 -0.291 0.062 0.066 
 (0.260) (0.222) (0.276) (0.228) (0.199) (0.187) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 0.060 -0.131 -0.015 -0.169 0.076 0.091 

 (0.096) (0.119) (0.116) (0.122) (0.109) (0.119) 

𝑆𝐷(𝐺𝑃𝐴−𝑖) 0.023 -0.034 -0.269 0.101 -0.152 -0.230 

 (0.141) (0.125) (0.206) (0.150) (0.143) (0.145) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) -0.142 0.321 -0.370 0.150 0.392 0.299 

 (0.312) (0.333) (0.346) (0.323) (0.270) (0.287) 

𝐺𝑃𝐴𝑖 0.031 -0.024 -0.013 0.126 -0.007 0.053 

 (0.131) (0.082) (0.106) (0.081) (0.082) (0.075) 

𝐺𝑃𝐴𝑖 × 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 0.005 0.023 -0.098 0.030 -0.025 -0.137** 

 (0.081) (0.054) (0.076) (0.057) (0.069) (0.058) 

𝐺𝑃𝐴𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) 0.233 -0.049 0.069 -0.048 0.145 0.075 

 (0.166) (0.158) (0.174) (0.153) (0.120) (0.121) 

𝐺𝑃𝐴𝑖 × 𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖 × 𝑆𝐷(𝐺𝑃𝐴−𝑖) -0.375 0.087 -0.286 0.133 -0.103 -0.472** 

 (0.323) (0.257) (0.355) (0.307) (0.240) (0.192) 

       

Observations 1,342 1,342 1,342 1,342 1,342 1,342 

Clusters 47 47 47 47 47 47 

Notes: Each column reports the results from a different OLS regression. The dependent variables are the indexes constructed 

from the survey data, stated at the top of each column. Standard errors clustered by tutorial group are reported in parenthesis. 

*** p<0.01, ** p<0.05, * p<0.1.
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Table B3. Alternative definitions of rank and sample selection  
 (1) (2) (3) (4) (5) (6) (7) (8) 

 Using alternative definitions of 𝑅𝐴𝑁𝐾𝑖𝑔 to break ties Excluding obs. with 𝐺𝑃𝐴𝑖 in top 

and bottom 1% 

Excluding obs. with 𝑅𝐴𝑁𝐾𝑖𝑔 in top 

and bottom 1%  Mean Rank Mean Rank Max Rank Max Rank 

Panel A. Kenyan experiment 

𝑅𝐴𝑁𝐾  0.785***  0.678***  0.746***  0.601** 

  (0.218)  (0.220)  (0.254)  (0.241) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  0.324 0.493** 0.324 0.468** 0.298 0.457** 0.371 0.505** 

 (0.226) (0.212) (0.226) (0.213) (0.231) (0.218) (0.247) (0.234) 

  [0.003]  [0.009]  [0.013]  [0.026] 

𝐺𝑃𝐴𝑖 0.496*** 0.269*** 0.496*** 0.302*** 0.511*** 0.283*** 0.509*** 0.329*** 

 (0.026) (0.067) (0.026) (0.068) (0.030) (0.085) (0.029) (0.078) 

  [<0.001]  [0.002]  [0.003]  [0.011] 

Observations 2,188 2,188 2,188 2,188 2,144 2,144 2,017 2,017 

Clusters 48 48 48 48 48 48 48 48 

Panel B. Dutch experiment 

𝑅𝐴𝑁𝐾𝑖𝑔   0.494**  0.402**  0.485**  0.418* 

  (0.188)  (0.192)  (0.201)  (0.219) 

𝐺𝑃𝐴̅̅ ̅̅ ̅̅
−𝑖  0.148*** 0.335*** 0.148*** 0.301*** 0.156*** 0.340*** 0.106 0.285** 

 (0.052) (0.090) (0.052) (0.092) (0.053) (0.096) (0.068) (0.123) 

  [0.009]  [0.036]  [0.016]  [0.052] 

𝐺𝑃𝐴𝑖 0.350*** 0.171** 0.350*** 0.206*** 0.388*** 0.193** 0.380*** 0.202** 

 (0.035) (0.068) (0.035) (0.070) (0.040) (0.082) (0.046) (0.100) 

  [0.008]  [0.033]  [0.015]  [0.050] 

Observations 1,876 1,876 1,876 1,876 1,838 1,838 1,772 1,772 

Clusters 48 48 48 48 48 48 48 48 
Notes: we adopt the specification of Table 1, Columns (2) and (3) in Panel A, and the specification of Table 3, Columns (5) and (6) in Panel B. 


