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1 Introduction

The first gravitational wave (GW), emerging from the collision of two black holes, which
shook the optical systems of the GW observatories [1] can be considered the trigger of
a new era in precision astronomy and cosmology. Since then the LIGO-Virgo-KAGRA
collaboration detected already 90 GW events [2] and the worldwide network of ground-
based [3-8] as well as space based GW detectors [9] continues to grow, granting access to
an ever broader frequency band and higher sensitivity.



The experimental advances have been boosting the theoretical investigation, by push-
ing the application of canonical methods as well as the development of novel techniques
aiming at providing the most accurate description of the dynamics of coalescing binary sys-
tems. Earlier developments dedicated to the post-Newtonian (PN) [10-25], and the post-
Minkowskian (PM) approximation [26-35], the gravitational self-force formalism [36, 37],
the effective-one-body formalism [38, 39], as well as the effective field theory (EFT) ap-
proach for the PN formulation of general relativity [40-42], have been flanked by modern
Feynman diagrams- [43-53], and Scattering Amplitudes-based approaches [54-72], which
turned out to be particularly powerful for the determination of the perturbative corrections
to the classical potential within the EFT approach.

Several studies were also performed to include the spinning motion of the compact ob-
jects in the analysis. Initial studies extending the classical techniques were done in [73, 74],
which was later extended by [75-87]. The spin effects were then also included in the PN
formalism of GR in [88-103]. More recently, quantum scattering amplitudes involving mas-
sive particles of arbitrary spin were used to obtain classical spin corrections to the two-body
effective potential [104-112]. See [113-115] for recent reviews and a more comprehensive
reference to literature.

In particular, the PN analysis follows the system during the so-called inspiral phase,
where the components of the binary move at non-relativistic velocities and their orbital
separation is slowly decaying. At this stage, the non-relativistic regime of the motion allows
for a perturbative treatment of the problem, that can be studied by a series expansion in
powers of v/c, where v is the orbital velocity of the compact binary and c¢ is the speed
of light. For bound state systems like binaries of compact objects, in this phase, the
kinetic and potential energy must share the same order of magnitude according to the
virial theorem, namely v = Gy M /r, where Gy is the Newton’s constant, M is the typical
mass of the system and r is the separation between the two bodies. From this perspective,
the PN approach is an expansion in two parameters v and Gy, whose n‘"* order is referred
to as nPN (or usually referred to as N"LO), has contributions from terms proportional to
GIN(UQ)”“*Z where [ = 1,2,...,n + 1. The analysis then is separated in two sectors, the
conservative sector, where the outgoing radiation is ignored and orbits don’t decay, and
the radiation sector, where the emitted radiation is analysed. In the radiative sector, the
emitted radiation carries energy and angular momentum to infinity. The radiations could
also scatter off the background curvature to interact with the orbital dynamics giving rise
to the so-called tail effects, which contributes to both the conservative and the radiative
sector. See [113-115] for reviews.

The EFT approach is very well suited for this problem because it can be well separated
into three different length scales, namely, the length scale associated with the compact ob-
ject Rg (Schwarzschild radius), the radius of the orbit r, and the wavelength of the emitted
gravitational wave A. Then an EFT at each scale exactly does the job of determining the
essential degrees of freedom. In this method, the determination of any observable quantity
at a given PN is equivalent to the computation of corresponding scattering amplitudes,
which can be systematically computed through the evaluation of corresponding Feynman
diagrams. The leading contribution to scattering amplitudes is given by tree diagrams,



whereas higher order corrections are determined by diagrams with multiple loops. Tree
diagrams represent rational functions of the kinematic variables (energy, momenta, and
masses of the particles), therefore they are easy to compute. Loop diagrams, instead, rep-
resent very challenging integrals. This means that computing a scattering amplitude for
each new level of precision requires drawing exponentially more Feynman diagrams and
solving a vastly more complicated mathematical formula.

In this article we focus on the EFT techniques developed in [40, 88] to carry the
post-Newtonian analysis in the conservative sector of the two body problem.

The analysis of compact objects without spin up to the 1PN correction in the con-
servative orbital dynamics was reported in [40] for the first time using EFT techniques.
Following this, the 2PN was computed in [41, 42], the 3PN was computed in [43] and the
4PN was computed in [44-48]. The current state of the art for the post-Newtonian calcu-
lation for the conservative potential is the 5PN correction computed in [50, 51]. Several
partial results of 6PN [52, 53] have been recently added to the catalogue.

Compact objects are expected to be rotating rapidly and hence the analysis of the spin
becomes important for systems with such objects. The analysis of spin in the formalism of
EFTs was initiated in [88]. For systems with spinning compact objects, the post-Newtonian
analysis is usually separated into different sectors with different powers of the spin variable
appearing in the effective Lagrangian. The spin-orbit sector is analogous to the fine struc-
ture correction obtained to the hydrogen atom, which describe the interaction between the
orbital angular momentum of the binary and the spin of one of its constituents. Whereas,
the quadratic in spin are analogous to the hyperfine structure corrections to the hydro-
gen atom and describe the interaction between each other/self of the spins of the binary
constituents.

For the spin-orbit sector, the leading order (LO) effective potential was first computed
in [88]. The next-to-leading order (NLO) potential in [89, 90], and N2LO in [116]. Partial
results for the N3LO correction were recently presented in [91]. Similarly, for the quadratic
in spin sector, the LO effective potential was also computed in [88]. The NLO in [92-95],
N2LO in [96-98] and N3LO was computed in [99, 100]. The computation for cubic and
higher orders in the spin variables can be found in [101-103], whereas the finite size effects
are described in detail in [95, 102, 103]. The spin-orbit N3LO was then completed in [117]
using the techniques of first-order self-force. Here, for maximally rotating compact objects,
the N"LO spin-orbit sector contributes at (3/24n)PN order and N"LO spin-squared sector
contributes at (2 + n)PN order.

In this article, we present the complete conservative N3LO spin-orbit interaction, using
the framework of EFT [40, 88] and an extension of the diagrammatic approach presented
in [46]. In particular, we begin with deriving the required Feynman rules and then the
Feynman diagrams: 1 (0PN)+4 (1PN)+21 (2PN)+ 130 (3PN) = 156, for the non-spinning
sector; 2 (LO) + 13 (NLO) + 100 (N2LO) + 894 (N3LO) = 1009, for the spinning sector,
The corresponding tensor integrals are decomposed in terms of scalar loop integrals, up
to three loops, which are decomposed in terms of a minimal basis of master integrals
(MIs), by means of integration-by-parts (IBP) identities [118, 119]. The contribution of
each diagram to the scattering amplitude is then obtained after substituting the analytic



expression of the MIs. Finally, the Fourier transform of the amplitude generates the the
effective Lagrangian, later converted into a Hamiltonian which is the main result of this
article. The computational setup has been fully automated within an in-house Mathematica
routine interfaced to QGRAF [120], used for the diagram generation, xTensor [121], for tensor
algebra manipulation, LiteRed [122], for the IBP decomposition, elaborating on some of
the ideas implemented in EFTofPNG [123].

The effective Lagrangian obtained in this way contain higher order derivatives of the
position and the spin, which are eliminated by employing suitable coordinate transforma-
tions. The EFT Hamiltonian is then obtained by applying the Legendre transform, and
it is found to contains poles in € = d — 3 (d being the number of the continuous space
dimensions), and logarithmic terms depending on the size of the binary system, which are
eliminated by suitable canonical transformations.

Our novel result for the spin-orbit interaction Hamiltonian are used to derive the
binding energy for circular orbits and the scattering angle, and we are glad to report that
both expressions agree with the results given in [117].

The paper is organised as follows. In section 2, we review the description of the
spinning binaries within the EFT formalism. In section 3, we present the computation for
the N3LO spin-orbit potential employing the Feynman diagrammatic approach within the
EFT framework. Then, in section 4, we describe the procedure of removing the residual
divergences and logarithms to derive the EFT Hamiltonian. We provide our main result
of the spin-orbit Hamiltonian up to N3®LO in section 5. In section 6, we compute two
observable from the EFT Hamiltonian, namely, the binding energy of the binary system
in circular orbits with aligned spin configuration and scattering angle for two spinning
compact objects with aligned spins. We summarize our main results in section 7. The
article contain three appendices: in appendix A, we describe the notations used in this
article; in appendix B, we provide the required master integrals and their expression; in
appendix C, we provide the Hamiltonians till 3PN in the non-spinning sector and till NNLO
in the spin-orbit sector.

In the supplementary material we provide the required EFT Feynman rules in the
file Feynman_Rules.m and the analytic results of the Hamiltonian till N3LO in the file
Hamiltonian.m.

2 EFT of spinning objects

In this section, we describe the action for the degrees of freedom of the gravitational field
and the degrees of freedom of the compact objects, namely their center of mass and their
spin. Then we describe the techniques of the Post-Newtonian formulation of GR in detail
and briefly outline the procedure to compute the effective action.

2.1 Action
The dynamics of the gravitational field (g, ) is given by the Einstein-Hilbert action along
with a gauge fixing term,

C4 C4
Sgn = — d* Rlgw] + ——— / d* JTHTY 2.1




where I'* = T'Y_g? (in the harmonic gauge I'* = 0), '}, is the Christoffel symbol, G is
the Newton’s constant, R is the Ricci scalar, and g is the determinant of the g, .

To model the dynamics of the compact object, we utilize worldlines x’(‘a) (1) parametrized
by an affine parameter 7 and define tetrads A’(‘a) 4(7) along the worldlines which connects
the body-fixed frame (denoted by upper case Latin indices) of the a'® compact object and
the general coordinate frame (denoted by Greek indices). Then the angular velocity tensor
of the spinning object can be defined as

A I dA?’S
Q( )= A( A g (2.2)
and the corresponding conjugate momenta to the A’(La) 4 is given by
oL
Stayw = —28955 ) (2.3)

(a)
Then by demanding the reparameterization invariance of the point particle action, the

dynamics for the compact objects is governed by the worldline point particle action given
by [102],

v Slayw iy W)
/dT( ( )y~ S(G)WJQ?) u?) ir +E(Q)SI , (2.4)
a=1,2 a

which, corresponds to Pryce Newton, and Wigner gauge for spin supplementarity condition
(SSC) given by (g )+ \/75 ~ 0. In the above action, the center of mass of
the compact obJect is modeled by the position of the point particle aj?a) and the spin of
the compact object is modeled by S(4),,,- The L,gr is given by equation (4.16) of [102]
which corresponds to the spin-induced non minimal couplings that does not contribute up
to the N3LO spin-obit sector at 4.5PN. Here u( )= dx?a) /dr is the four-velocity and u%a) =
gu,,u(a) (a), whereas the proper time 7 is related to the coordinate time ¢ by dr = ¢ dt.
As we will be performing the computation using the techniques of multi-loop Feynman
diagrams, it is necessary to write the gravitational coupling constant in d dimensions as

d-3
Gg=Gn (\/ 47T€7ER0) , (2.5)
where, Ry is an arbitrary length scale.

2.2 Post-Newtonian formulation of general relativity

In the bound state of two compact objects, we have three length scales, namely the length
scale associated with the compact object Ry (Schwarzschild radius), the radius of the orbit
r, and the wavelength of the emitted gravitational wave A\. We assume the velocities of the
particles to be small as compared to the velocity of light and the particles are far from each
other, hence propagate on a flat background (g, = Mu + hu), where the gravitational
interaction between the two particles is governed by the gravitons h,,. Then we have a
hierarchy of length scales

A>r>R,. (2.6)



As we are only interested in the long-distance physics at the scales of A, we first de-
compose the graviton fields in short distance modes - potential gravitons H,, with scal-
ing (ko,k) ~ (v/r,1/r) and long-distance modes - radiation gravitons h,, with scaling
(ko, k) ~ (v/r,v/r) [40].

Noting that v? ~ 1/r for bound orbits due to the virial theorem (or the third Kepler
law), the dimensionless expansion parameter can be taken as v2/c> ~ GyM/rc?, which
formally scales as 1/c2. Hence, following the majority of the PN literature, we equivalently
adopt a formal expansion in 1/c with one PN order corresponding to 1/c?. For the spin
variables, it holds S(4) = Gm%a) X(a)/c Where the dimensionless spins X, are at most O(1)
for black holes and (realistic) neutron stars, so that S,y ~ 1/c. Henceforth we rescale the
spins as S(q) — S(q)/c in order to make the PN counting in 1/c manifest.

Now to compute the conservative binding potential of the two-body system, we ig-
nore the radiation modes and decompose the potential modes in the Kaluza-Klein (KK)
parameterization [124, 125]. In this, the different components of metric g, (= M + Hyw)
are encoded in three fields, a scalar ¢, a 3-dimensional vector A; and a 3-dimensional
symmetric rank two tensor o;;. The decomposition is given by,

B €2¢/62 _62¢>/02 % o7
G = <_62¢/c2g 2/ (d=2)?) +e2¢/c2212~32j> ’ (2.7)
where, Yij = 5@- + O'Z‘j/c2.
The 2-body effective action is then given by integrating out the gravitational degrees
of freedom from the above derived actions as

expli / dt Log| = / D¢DA;Do;; ¢i(SeutSem) (2.8)
where, Lqg is the effective Lagrangian further decomposed as
Legg = Keft — Vet (2'9)

where, Kog is the kinetic term and Veg is the effective contribution due to gravitational
interactions between the two objects.

The effective potential can be represented in the form of connected, classical, 1 particle
irreducible (1PI) scattering amplitudes as

_
Ver = i lim / P (X)) =) : (2.10)
—9Jp E——C

where p is the momentum transfer between the two particles and the box diagram in the
above equation refers to all possible Feynman diagrams with gravitons (¢, A;, and o;;)
mediating the gravitational interaction between the two point particle represented by the
two solid black lines.

Our aim in this article is to compute the spin-orbit effective potential up to N3LO.
For this, we further decompose the kinetic and potential terms as Keg = Kpp + Kepin and
Vet = Vpp + Vspin Where Ky, and V,,, represent the kinetic and potential terms for center



of mass degrees of freedom for the point particle and Kgpin and Vepin represent the kinetic
and potential terms for the spin degrees of freedom. The expression for the kinetic terms
are given by

B 1, 1., (1Y 1 4 (1 5 ¢ (1 1
/Cpp = Z m(a) |:2Va+ 8V( ) <C2> + EV(G) (C4> + @V(a) 676 +O 078 5 (211)

a=1,2
1 3, (1 5 4 (1
2 gVw\@) TV \a

1 1
o T 1% 1% i _
Kspln - Z { 2S(a)ﬂ(a) ( > + S( )V(a)a( ) < 3)
1
vo(4) 1 (2.12)

a=1,2
+ 5 (3)
128 (@ \ (6
and the decomposition of the potential terms is defined as follows
1 1 1
VP—VN+( )V1PN+< >V2PN+( )V3PN+(9< ), (2.13)

1 1
Vspinz(cg> v§8+( )vLO+< )VQLO+< )ngLo +0(CH), (2.14)

where, Vy stands for the Newtonian potential and V; with j = {1PN, 2PN, 3PN} refers
to the corresponding PN correction for the non-spinning part of the potential. The VJSO
with j = {LO, NLO, N?LO, N3LO} refers to the corresponding correction to the spin-orbit
coupling of the binary system. Then our aim in this article would be to compute the V;

and VjSO using the techniques of multi-loop scattering amplitude, as further described in
the next sections.

3 Computational algorithm

To obtain the effective potential from the diagrammatic approach as shown in equa-
tion (2.10), we begin by generating all the relevant generic topologies contributing at
different orders of Gu. It could be easily seen from the virial theorem that N"LO has
contributions from terms proportional to GZN where [ = 1,2,...,n + 1, and we consider all
the topologies at [ — 1 loops contributing to the specific order [. So, for the computation
of the N3LO spin-orbit potential, we generate all the topologies till the order G (3-loop)
using QGRAF [120]. There is 1 topology at order Gy (tree-level), 2 topologies at order G3;
(one-loop), 9 topologies at G3; (two-loop), and 32 topologies at order G4 (three-loop).
Then we dress these topologies with the KK field and Feynman rules derived from the ac-
tion of PN! expansion of GR given in (2.1) and (2.4), to obtain all the Feynman diagrams
that contribute to the given order of Gy and v depending on the specific perturbation
order. The number of diagrams that contribute at particular order in 1/¢ and of particular
loop topology are given in table la and 1b.2

!The Feynman rules obtained from the actions in equation (2.1) and (2.4) after the KK parameterization
are provided in the file Feynman_Rules.m in the supplementary material of this article.

2While considering the spin effects, we count only the representative Feynman diagrams, where the spin
can contribute from any of the world-line graviton interaction vertex present in the diagram. Additionally,
the diagrams, which can be obtained from the change in the label 1 <+ 2, are not counted as separate
diagrams.



Order | Diagrams | Loops | Diagrams Order | Diagrams | Loops | Diagrams
0PN 1 0 1 LO 2 0 2
1 1 1 8
1PN 4 NLO 13
0 3 0 )
2 5 2 56
2PN 21 1 10 N2LO 100 1 36
0 6 0 8
3 8 3 288
2 75 2 495
3PN 130 N3LO 894
1 38 1 100
0 9 0 11
(a) Non-spinning sector (b) Spin-orbit sector

Table 1. Number of Feynman diagrams contributing different sectors.

Gravity Multi-loop
Diagrams Diagrams

Figure 1. Diagrammatic correspondence between the 4-point EFT-Gravity graphs and the 2-point
QFT graphs.

Within the EFT framework, the sources remain static and as a result the generated
Feynman diagrams are mapped to two-point multi-loop Feynman diagrams with mass-less
internal lines and an external momentum (the momentum transferred between two sources)
as shown in figure 1. We translate these Feynman diagrams to their corresponding Feynman
amplitudes after performing the tensor algebra using xTensor [121]. The generic form of
the effective potential corresponding to any [-loop Feynman graph G can be expressed as

o _ l’lJ/Q, (k’)
HATQ1,02, Q1,a2, -\

V N#1,#27 (:E( N ) / ipu(z1)—2(2)) N ,Q2,

v1,v, a)’ » 2 (a)s 2, y

1,02, » 1,02, HO‘EG D p7 )
Coefficient that depends Fourier integral Multi-loop integral
on orbital variables
(3.1)

where,

(i) N¢ is a tensor polynomial depending on the world-line coordinates (:c‘(‘a)), the spin
tensor (S(4)u ), and their higher-order time derivatives,

(ii) p is the momentum transfer between the sources (Fourier momentum),

(iii) Np is the tensor polynomial built out of momenta p,



(iv) k; are the loop momentums,
(v) D, denotes the set of denominators corresponding to the internal lines of G,

(vi) Njs stands for a tensor polynomial built out of external momenta p and loop mo-
menta k;.

We perform the reduction of the multi-loop tensor integrals to scalar integrals by
applying a set of projectors exploiting the Lorentz invariance. We build the projectors de-
pending on the Lorentz invariant external momentum(p) and the background metric. After
applying the projector the numerator (Ny) of the multi-loop integral is transformed as

Nyprer o (pki) — Ny(p ki) NP2 () (3.2)
where, Ny is a polynomial depending on the scalar products between the external momen-
tum (p) and the loop momentums (k;). We use projectors up to rank 6 for the complete
evaluation of the N3LO Spin-Orbit effective potential. The generated scalar integrals are
not all independent and there exist linear relations between these integrals, which are en-
visaged via the Integration-By-Parts (IBP) relations. We employ LiteRED [122] to generate
these IBP relations to obtain a smaller set of independent scalar integrals, known as Mas-
ter integrals (MlIs). For the specific computation of N3LO Spin-Orbit effective potential,
we obtain 1 MI at one-loop, 2 Mls at two-loop, and 3 MIs at three-loop. These MIs are
well known and admit closed analytic expressions in d dimension. We provide the explicit
expressions in B.1 for convenience.

After the evaluation of the multi-loop integral, we perform the Fourier transform of
the tensor polynomials, which have the form

[ N N ) F), 3
p

where, Ny and Np are the tensor polynomial built out of Fourier momenta p and f (p)
is a function of the external momentum arising from the multi-loop integral. The Fourier
integrals up to rank 8 are required, which are obtained by iterative differentiation of the
expression given in section B.2. Then, we obtain the effective potential that only depends
on the orbital variables x4, S(4), and their higher-order time derivatives by expanding the
complete scattering amplitude as Laurent series in € around d = 3.

The computation of the effective potential starting from the generation of the re-
quired Feynman diagrams, expressing them in multi-loop integrands, performing IBP re-
duction, and then applying the Fourier transformations have been automated through
an in-house code, elaborating on some of the ideas implemented in EFTofPNG [123], and
using xTensor [121] for tensor algebra manipulations as well as successful interface to
LiteRed [122], Reduze [126], KIRA [127] for the IBP reduction. A flow chart for the com-
plete computational algorithm for the effective potential as implemented in our in-house
code is shown in figure 2.
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Figure 2. Flowchart of the computational algorithm.

4 Processing the effective Lagrangian

The effective potential obtained in this way usually contains higher-order time derivatives
of the position (a(q), a(q), (), ) and the spin (S(a), S(a),- -+). In our computation of
the N3LO spin-orbit potential, we have 6th order time derivative of position and 3rd order
of time derivative in spin. We need to eliminate these higher-order time derivatives from
the potential to facilitate the computation of the Hamiltonian, to obtain gauge-invariant
quantities as well as to pave the way for the implementation within the effective one-
body formalism. Additionally, the potential in the non-spinning sector at 3PN and the
N3LO spin-orbit potential contains poles in the dimensional regularization parameter e
and logarithmic terms of the form log(RLO). These terms may originate either from the
choice of coordinates or because of tail effects, and they can be removed, after combining
the potential and the tail contribution to conservative effect, by a suitable coordinate
transformation [47]. However, the tail effects do not arise either upto 3PN order in the
non-spinning case, or up to N3LO, alias 4.5PN, in spin-orbit sector [128], therefore all
the divergent terms and logarithms in our computation are removed by finding a proper
coordinate transformation. First, we discuss the procedure to eliminate the higher-order
time derivatives and then we show how we remove the divergent pieces and the logarithmic
terms to obtain the EFT Hamiltonian free of any divergences and logarithmic terms.

~10 -



4.1 Elimination of higher-order time derivatives

We briefly describe the procedure to remove all the higher-order time derivatives, using co-
ordinate transformations [97, 129-132]. The Lagrangian under a coordinate transformation
X(a) = X(a) T 5X(a) changes by

5L = ( 5;4)) oy + O (0%, (4.1)
a

So, when the equation of motion (EOM) is linear in a(,) at LO, we can construct a per-
turbatively small 0x(,) such that terms depending on a(,) drop out in £+ dL. Similarly,
for terms involving higher-order time derivatives of a(,), one can take dx(, to be a total
time derivative such that the higher-order time derivatives in £ + £ cancel upon partial
integration. In general, the O ((5X%a)) contributions have to be kept, but will turn out to
be negligible for the explicit steps outlined below, making the procedure equivalent to in-
sertion of EOM [130]. Following the same approach, when we apply a small transformation
simultaneously to the rotation matrix Al(fl )y~ Aa ) +6Al(i ) and the spin SZi )~ Szi ) +4S Efl )
The variation of the rotation matrix, including quadratic terms in w,), reads as,

ij ik ik lj 3
5A( ) = A( )w( )+ A( )w( ) (a) +O (CU(G)) y (42)

where the w( ) is the antisymmetric generator of the rotation matrix,? and similarly the
spin transforms as

ki J]k k[i 4]
5502y = 25wl + Sthwlewiay + Sywimeln + O (wh) - (4.3)

Due to such transformation, the Lagrangian changes by*

5= (i) S8 - (1) S oyl (5:])) 650 +0 (why),68%,))  (4.4)
So, when the above equation is linear in S(a) at LO, we can construct the wzil ) such
that all the terms depending on S(,) and higher-order derivatives drops out in £ + L.
Here, it is important to keep terms quadratic in w(q), as first pointed out in [133], merely
inserting EOM would be missing these contributions. We apply this procedure iteratively to
eliminate the higher-order time derivatives from the N3LO spin-orbit potential. Specifically,
we perform 4 iterations, where

1. we remove the terms with a(,) and its higher-order time derivatives from the LO and
NLO spin-orbit potentials,

2. we remove S(a) and its higher-order time derivatives from the NLO spin-orbit poten-
tial,

3A generic rotation can be written as a matrix exponential e(a) such that Aoy = A@e”® and
S(a) — e %) S(a)e“’(a),

Here V = — (c - ( éSZi>ﬂZi>))

- 11 -



3. we remove the a(,) and its higher-order time derivatives from non-spinning 2PN and
3PN potentials,

4. we remove the a(,), S(a) and their higher-order time derivatives from the N2LO and
N3LO spin-orbit potentials.

After each iteration, we obtain a new Lagrangian (with new EOM) to be used in the next
iteration. One can check that at each step contributions quadratic in dx(4) and cubic in
w(q) are negligible (higher order in spin or the PN approximation). Following these steps,
we obtain the effective Lagrangian, which depends on the position, velocity, and spin only.

4.2 Computation of the EFT Hamiltonians

We apply the Legendre transformation on the effective Lagrangian obtained in the previous
step to derive the EFT Hamiltonian

H(x,p,S)= ) péa)Xéa) - L(x,%,8), (4.5)
a=1,2

where the canonical momenta p* is defined as

i a‘c(kav S)

P(a) oxT (4.6)

We invert this relation (order by order in 1/¢) to express xz o) in terms of pé o)~ We use this
relation between x’( a) and p’t o) 0 the equation (4.5) to obtain the required Hamiltonian
H(x,p,S).

4.3 Removal of the poles and logarithms

The Hamiltonian derived in the previous step, and the Lagrangian both contain diver-
gent pieces and logarithmic terms, which can be removed by finding suitable coordinate
transformations. While using the Lagrangian description, we can add total time derivative
terms with arbitrary coefficients, and fix these coefficients to a set of values such that the
divergent piece drops out while removing the higher-order time derivatives as described in
section 4.1.

On the other hand, in the Hamiltonian description, we can define a canonical trans-
formation given by®

H =H+{H,G}, (4.8)

where G is the infinitesimal generator of the canonical transformation. Usually, the ansatz
for the terms in the generic total time derivative to be added to the Lagrangian contains
a large number of terms.

5The Poisson bracket is defined as

N N
0A OB 0A OB 0A OB
A,B = — + Sz X . s 4.7
14, B} Z <97”<z'> e Opw 87'(1-)) 2( W8 asm) 7

i=1

where the last term is ignored in the context of the current analysis since it contributes to higher PN orders.
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Here, we remove the poles and the logarithms in the Hamiltonian description by defin-
ing a suitable canonical transformation. We put up an ansatz for the infinitesimal generator
G with arbitrary coefficients and build a system of linear equations in these coefficients by
demanding the cancellation of the divergent pieces in H’. We use the solution to fix the
arbitrary coefficients to a set of values, thereby obtaining the final Hamiltonian #H' free
of poles and logarithms. In the following sections, we describe the procedures for the re-
moval of the poles and logarithms from the 3PN non-spinning sector and the Spin-orbit
N3LO sector.

4.3.1 3PN non-spinning sector

The 3PN non-spinning Lagrangian has been studied extensively [43] and we follow the
steps suggested to remove the divergent pieces. Specifically, following [43] we add a total
derivative term with the complete 3PN Lagrangian

1\1d |G¥
ew= () ca [T(Cl (vi ) + ez (vie) ) )] , (19)
where,
1 3 3 1 3 3
Cc1 = g (4771(1)771(2) - m(1)m(2)) ) Co = § (m(l)m@) — 4m(1)m(2)> , (4,10)

and n = r/r is the separation unit vector for the binary. We follow the usual procedure
of removing a’ and S” and their higher-order time derivatives as described in section 4.1
including the total derivative term with the 3PN Lagrangian. It turns out that the di-
vergent pieces drop out and we obtain a finite Lagrangian till 3PN. Then we remove the
terms involving logarithms by finding a canonical transformation to the Hamiltonian ob-
tained from the above Lagrangian. For this purpose, we use the following ansatz for the
infinitesimal generator,

1\ G% 1 1
gspN = (06> 2 ('glm(l) <p(1) -n) + 92% (p(z) n)) ) (4.11)
where,
r
In = grn log <) , form=1,2. (4.12)
Ry

We use this generator to build a canonical transformation following eq. (4.8). By requiring
the removal of the logarithm terms in the new Hamiltonian, we build a system of equations

and solving them we obtain
gLy = meymiy) — 4miym) gr2 = dmqymiy — miym) (4.13)

4.3.2 Spin-orbit NNNLO sector

For the Spin-orbit Hamiltonian at N®LO, we remove both the divergent terms as well as
terms involving logarithms by finding a suitable canonical transformation. Inspired by [97],

~13 -



we build the following ansatz for the infinitesimal generator

1\ [G3 1 1
Gao_ :<> =N — (S (P XP 4+ gp—
SO—-N3LO e {rg 93m(1)m(2)( (1) ( (1) (2))) 94m(1)m(2)

(S(z) (P XP(2) ))

3
+ % [mil) (S(l) . (p(l) X n)) <g5ml(1) (p(l) . Il) + g6m1(2) (p(2) . n))

+ ml@)(s(l) (P x n)) <g7m1(1) (p(l) n) +981(2) (p(z) n)> (4.14)

+ml(1)(3(2) (1) x m)) (9 ml() (Pay ) +9101() (Pe- )>

+ 7711(2)(5(2) (P(2) % )) (91 ml(l (p(1) 'n) + 912i (P(g) n)) 1 } ;

)

where the arbitrary coefficients g,, are defined as

1
gn—gen +gLn10g (]; ) ) forn:3747"'12‘ (415)
0

Following eq. (4.8), we define a canonical transformation using the above ansatz for the
infinitesimal generator and build a system of linear equations by requiring the removal of

the divergent as well as the logarithmic terms. We solve these set of equations and find
the arbitrary coefficients as

) 7 (51m ) — 25mi) ) , 7(25m¥,) — 51mym))
€3 = y . ’
30 30
_ 63m{ymey) o 20miy — 4TmEymy)
ge5 = _T ’ Je6 = — 9 ’
o 122m7)ymz) — Tomy, o 10m7)ymz) — TTmy,
ger 10 ) Jes 10 )
o _10m(1)m%2) — 77mf1) oty — 122m(1)m%2) — 75mf1)
¢ 10 ’ ‘ 10 ’
o 20miyy — ATmaymiy, _ 63maymp,
Jell = — Gel2 = ————~
2 ’ 10 ’
1 3
913 = 35 (525m(2) - 1126m( )m(2)> , L4 =35 (1126m(1)m( 2) — 525m(1)> ;
122
grs = ?m%l)m(g) s gre = —2 (38 %Dm(g) - 15m?2)) y
3 2 3 3 2 3
agLT = E (122m(l)m(2) — 75m(2)) s grs = E (IOm(l)m(g) — 77m(2)) y
1 1
gro = E(—S) (77771?1) — 10m(1)m(22)) ) grLio = 10( 3) (75m:(31) - 122m(1)m(22)> ?
122
gri1 =2 (1577’1:(31) — 38m(1)m%2)) ) griz2 = ?m(l)mé) : (416)

Following these steps, we ultimately obtain the full effective Hamiltonian free of divergences
and logarithms for the non-spinning sector till 3PN and for the spin-orbit sector till N3LO.
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5 Results

To begin, we first define a set of dimensionless variables to express the Hamiltonian in a
compact form. We introduce the total mass M = m(;) + m(y), the reduced mass of the
two body system u = m(l)m(z)/M, the mass ratio ¢ = m(l)/m@), and the symmetric mass
ratio v = /M. These are related as follows

7
M M At (5:1)

Additionally, we express the results in the center of mass (COM) frame of reference and
define the momentum in COM frame as p = P(1) = —P(2)- In the COM, the orbital angular
momentum is defined as L = (r x p). So, we can write p> = p? + L?/r?, where p, = p - n,
p = |p| and L = |L|. All the variables are rescaled to write the expressions in the form of

dimensionless parameters

~_ P . rc -~ Lec¢ s S -~ H
p_uc’ r—iGNM, L_GNM,LL’ S = , H= . (5.2

The total EFT Hamiltonian can be written as
,HN = ﬁpp + ﬁSO ) (5'3)

where,

7'7p—HOPN-i-<1>H1PN+<1>H2PN+<1>'H3PN+O<1> (5.4)
7'~lso=<1>7'lLo+(1)HNL0+(1>HN2L0+(1)HN3L0+O< . ) (5.5)

In the non-spinning part, the Hamiltonian till 3PN is known in the literature [43] and in
the spinning sector the Hamiltonian is known till NNLO [116]. The novel result of the
7—~lN3LO in the EFT approach in the COM frame is presented here

T (S<1) L) (10864 + 202572) 13 N (17702 + 28957°%) v* 181w
NSLO ==, 80076 9607 876

40075 4807° =

< (53153 + 405072) 1® (60989 + 22572) 12 10u>
2631/ 2013 74112 13v 42504 T450° 22312 45v
+ pT pr

307 A 3 4 327 648 | 64i® | 1289
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N 152( 3(—412 + 67572) 13 N (59116 — 2257%) v 85v
80077 192077 877
o 1wt 4253 225317 13v
TP\~ %% T i T 309 9%
4r 64r 32r 2r
N 3390 147903 N 59702 135v
P\ g ~ eam T odd 1280
L7 2904 78913 N 163v2  13v  ,(153v* 105303 N 52502 135v
32/ 6478 1678 478 3277 6477 6477 12877

~ (200 24903 15102 45p
+ L - + -
6479 6479 12879

<~ =\ [ (10864 +202572) 3 (—85957 + 84007?) v?  34v
+(80)-2){! I 4 L ) _ 3
8007 36007 7
L2 (8 (1451 +1007*) v* (52076 4 51757°) v* 37w
" 8007 12007 7

3271 1671 | 3271

[ 263 5990° 5612 3v\ 4 (20250% 325y3+153u2
12873 32/ 12873

)

~ (5461 — 20257%) v (490976 + 51757%) 2 1lv
L*| + —
80077 480077 77
e vt 2677 211502 2w\, (1671wt 4713 N 37502
Pr\ ™4 3270 3276 76 12875 3275 1287

3278 16/ 3278 12877 3277 12877

%
1514 1013 109V
12879 3279 1287'

in the supplementary material of this article.

6 Computation of observables with spin

~16 —

~,( 29* 321 71 Tt 387TY3 ATIW?
+L* | - — + = +D; - +

)

(5.6)

Here, (1 <+ 2) implies changing the label 1 and 2 on the spin variables along with ¢ <+ 1/q.

The computation of the previously known Hamiltonians, together with the novel com-
putation of the 7:[N3L07 allows us to obtain the complete expression for the spin-orbit
N3LO Hamiltonian within the EFT framework. We provide the known Hamiltonians in ap-
pendix C. The Hamiltonian in the generic frame is also provided in the file Hamiltonian.m

The obtained Hamiltonian is still gauge dependent as it depends on the radial coordinate,
we compute gauge invariant observable to compare with the literature [117]. In this section,
we describe the procedure for the computation of two gauge invariant observable: the



binding energy for circular orbit with aligned spin configuration and the scattering angle
with aligned spin configuration.

For this, we work in the COM defined by p(;) + p(2) = 0 as given in section 5. With
this, we assume that the spins are aligned to the direction of the orbital angular momentum
of the binary system. Such aligned spin configuration is given by

S(a) = S(a) p=0 = S(a) : (I’ X p) = S(a)L, (61)
Where, L= |L| and S(a) = |S(a)|

6.1 Binding energy for circular orbits with aligned spins

We compute the gauge invariant relation between the binding energy and the orbital fre-
quency for circular orbits by removing the dependence on the radial coordinate. For circular

orbits, we know

dpr
r = =V, 2
pr =10 and o 0 (6.2)
which implies
OH(F, L, S,
N, L, S) _ 0. (6.3)

or

We invert the above relation to express 7 as a function of L and we define the orbital
frequency as

OH(L, S(a))

7 (6.4)

w =

We invert the above relation again to express L as a function of &. Additionally, we define

2/3

a gauge invariant PN parameter z = w*/® . Using the above two equations, we express L

as a function of z, and substituting this in the Hamiltonian, we obtain the gauge invariant
binding energy of the circular orbits in the aligned spin configuration F (z, S (a)). Following
the above procedure with the Hamiltonian given in section 5 we obtain

E(x, S(a)) = Epp(@) + Eso(, S(a)) (6.5)
where,
1 3 27 19 1
Epp(x) = —z3 + 2 {8 + ;4} + {16 — 1—6u+ 48V2}

g @+ _34445+2057r2 185 0 35 4 (6.6)
128 1152 192 192 10368~ [’ '
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and

Fso(x, §) = x5/2{s* (=) + S (-é%) }
7/2{5* (—21/4— gy2> +S< v + %y ) }

27 39 5 27 211 7
29/2) g% 99 9 9O 3 4l 2l 9 1 3
{S( 8u+21/ 81/)—1—5( 21/+81/ 121/)}

N xu/z{s* ( 185 565 , 1109 5 2%4)

16778 24 324

19679 2972 1979 265
S| —45 kg 2 V3 4 6.7
+ ( ”+<144+24>” 36 © 3888 ) [’ (6.7)

S = §( n+ §( 2), and S* S y/a + S yq- Our result given in equation (6.7) agrees with
the result given in equation ( 0) of [1 17].
6.2 Scattering angle with aligned spins

In this section, we study the scattering angle considering an aligned spin binary system
following [105]. First, we re-scale the spin variables as a(q) = S(4)/m(q). In the COM, the
Hamiltonian # is expressed as a function of p,, L, r, and S(a) and inverting that we obtain

pr=pr(H, L,7,8)) - (6.8)

Then the scattering angle x is given by

Opr(H,L,r,5))
X(H, L, S(0)) = /dr nE LD (6.9)
Now, the total center of mass energy (E) and the total energy per total rest mass (') is
given by
H=F=Mc*/1+2v(y—1), (6.10)
H
= a2 14+ 2u(y—1), (6.11)

where « is the Lorentz factor. We invert the above relation to express the Lorentz factor

~ in terms of I', and we obtain

1 -1
1+ , (6.12)

T \/1—’02/62: 2v

where, v = |r| is the relative velocity of the compact objects. Moreover, the total angular

momentum L can be expressed in terms of the impact parameter b and the aligned spin
configurations a(;) and a(_y as

vb -1 )
L= “’; + Me () (a+ - Fa_) , (6.13)

2

~ 18 —



where, 0 = (m()—m2))/M, acyy = a@)+ae) and a_y = ay—ag). We use equation (6.10)
and (6.12) to trade H for v and using equation (6.13) we trade L for b. This allows us to
express the scattering angle as

5y Opr(v,b,7,5(a))

X(v,b,8@)) = i dr 50 — 7. (6.14)

Now, applying the above procedure with the Hamiltonian given in section 5, we obtain the
scattering angle computed in the COM for aligned spins, which can be expressed as

X(’U,b, S(a)) = pr(’l),b) +XSO(v7b7 S(a)) ; (615)

2)fo(2) )

YR ()
(G {4; () () () o)
(G a7 (”;‘)+<32“if i) (i) o (3]

where,

‘ <
%

‘ <
..J;

and

oo ol () {[1] o(3))
~EEIRIEE)
+< ;b ) {_2 m 0 l5 —11//2] (;) 10 l5—717u/20] (;)

v*\ 11365 —777v| [v*
—214v c? 8| 315 —45v ct

1365 — (23707 _ 7332 6 8
315 — (( 3+2§1 2)) ]<1C)6>+O<ZS> }>

+ O(G?V) . (6.17)

Our result given in equation (6.17) agrees with the result given in equation (7) of [117].
We note that the N3LO spin-orbit scattering angle contains all gauge-invariant information
of the corresponding Lagrangian or Hamiltonian [128], albeit restricted to the center-of-
mass frame.
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7 Conclusion

In this work, we presented the complete evaluation of N3LO Post-Newtonian (PN) cor-
rection to the the spin-orbit Hamiltonian for rapidly rotating compact objects, within the
effective field theory diagrammatic approach of General Relativity.

The required Feynman diagrams in momentum space were automatically generated
using EFT Feynman rules for the interaction of spinning compact objects. They were
algebraically decomposed in terms of master integrals, by means of integration by parts
identities for dimensionally regulated integrals, whose expressions were available in the
literature. The contribution of each diagram to the Lagrangian, namely to the effective
potential, was found after taking the Fourier transform to position space, and series ex-
panding around d = 3 + € space dimension. The Hamiltonian is finally found by means of
Legendre transform, followed by suitable canonical transformations, required for eliminat-
ing residual non-physical divergences and spurious logarithmic behaviours.

We computed the gauge invariant relation between binding energy and the orbital
frequency in the circular orbit with aligned spins as well as the the scattering angle with
aligned spins and they were found in agreement with the results available in the literature,
previously obtained using the self-force formalism.

Our results complete the description of coalescing rapidly rotating binary systems up
to 4.5 PN order within the spin-orbit sector.

The techniques and the in-house code developed for the current project are very flexible,
and can be applied to other interesting problems, at higher order in the PN expansion, for
both non-spinning and spinning compact objects.

Note added. During the completion of this work, a similar study has appeared in [133].
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A Notation and convention

Spacetime metric N = (1,-1,-1,-1) (A.1a)
4 dimensional indices Wy v (A.1b)
3 dimensional indices i,7 (A.1lc)
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Compact object label (@) Where a = {1,2} (A.1d)
Time derivative ' (A.le)
Position of a' object X(q) (A.1f)
Velocity of a™ object Via) = X(q) (A.lg)
Acceleration of a'"" object a(y) = X(q) (A.1h)
Separation vector for binary r = X(q) — X(q) (A.1i)
Separation distance for binary r=|r| (A.1j)
Separation unit vector for binary n= ; (A.1k)
Angular momentum of the binary L=(rxp) (A.1])
Spin vector of a™ object 2 o) = e* S{f) (A.1m)
[/ A (A.1n)

p (2m)d

3

/p /(;lﬂp;g (A.lo)
Center of mass coordinates Py + P =0 (A.1p)
Circular orbits pr=p-n=0 and pr=0 (A.lq)
Aligned spins S@ rT=Su p=0 (A.1r)

B Relevant integrals

In this appendix, we present all the integrals used in the computation of results given in
section 5. We first give the master integrals at different loops that are used in the multi-
loop methods. Then we give the Fourier integral used to obtain the effective potential as
described computational algorithm described in figure 2.

B.1 DMaster integrals

1 1

e (B.1)
= (47r)—%pd—4F (2 —Fézzlli(f) - 1)2 .
My = /kl,krz /‘le(k‘l 1p)2 (ky ik2)2 o+ ;2 2 )
S 4)21(d - 3)? & _rg(ZzQ_F 3()§ - (B.4)
My = /kl,kg kl%kl%(lﬁ—kklz—w -
e ; ro-ar(g-y)

(A= 4(d-3)(3d-10)3d—8) T (& _5)
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O

(a) Mia

Figure 3. One loop master integrals.

-CO-

(a) M2, (b) Mas

Figure 4. Two loop master integrals.

& o

b) M:
(a) Mdl ( ) a2 (C) M33
Figure 5. Three loop master integrals.
111 1
M :/ —-——5—5 B.7
U s koks K2 K2 K2 (Kt + kg + ks — p)? (B.7)
4
d d
— (47‘_)—%]93(1—81—‘ (4 B 37) I (5 B ) (B 8)
I'(2d —4) '
11 1 1 1
M. :/ — B.9
%2 = s 2K (bt — k)2 (it + s — )2 (s — s — )2 (B9)
5
r3-dr(2-4)r(¢-1
_ (47T)7%p3d 10 ( 2) (2 ) (BlO)
r(d—2)r (% -3)
111 1 1
M. :/ — = B.11
35 s ks k? k3 k3 (k1 + ko + k3)? (k1 + ks — p)? ( )
2 5
:(47T)_%p3d 10P( 2)]:‘(2_7) F(g_1> F(%l_é‘:) (B 12)
T(4— d)I(d — 2)20(2d — 5) '

B.2 Fourier integrals

The expression for the scalar Fourier integral is given by
d
. _ 9-207=5] (d - oz) (xix;)" 2
ik'x; ) @ 2 t
i (K'k; = . B.13
Jpex () e (B13

which is for generic dimensions but only in Euclidean signature. The required tensor

Fourier integrals are then obtained by taking derivatives on both sides with respect to z'.
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C Lower-order Hamiltonians

In this appendix we give the results for all the Hamiltonians given in eq. (5.4) and eq. (5.5).

C.1 Non-spinning sector up to 3PN

- 4= L2 — 1
HopN ~ + 5P + (2?Z> (C.1)
~ 1 o v 3 o (3v 1
~ v 3 3v 1 ~ 3v 1
) A A _>) it <_) .2
+ < 973 g 7)) T g (C.2)

472
~ v 1 o (v 9 4 v* 5v 5 s[5 v 1
Hoen="m ~om TP (2?«*2+4F2>+p7“< F o sr) P\ 16 16 16
_|_E2 3l+£+~2 _ﬁ_gl_i_i _|_~4 15V2_15V+ 3
Mg TP T T T ) T\ 16 T 162 T 162

~.( 3% 2 5 1502 15 3 ~ [ 512 5 1
+L4<—V—V++ﬁ3< vV >)+L6<V V+1 )

8Fo o 8P 1674 167* 1674 16/ 1670 ' 1670
(C.3)
~  (269-T27%) v 11
Hapn = g
L2 50° (6368 +2077%) v 3\ |, (475?383 25
o2 28873 47 "\ 4872 4872 1672
Y G U U S WA VAN VU
PrAi™% 7% T 1er) TP\ 128 T 64 128 128
—f B*  (2077? —112)v 21, (9Tv? 119v 27
+ L - = = - 7= T Pr — t— — ==
475 57670 475 8rd 8rt 8t
4 3 &2 5w 21 (353 3502 35v 5
ol =t — = | + D - + -
278 73 8 1673 3272 1672 3272 3272
~ 6502 121y 29 [ 9 11502 55v 21
+ L + — PPlom et o —
1676 1670 16/ T\ & 16/ &P 1670
L 1050% 1050 L 1050 15
Pri’6ait ~ 32 T 64t 64
. s 3w 1w T, (350 357 L35
1677 167 | 87 1677 ' m\ 3276 1676 | 3270 3270
o [ 3503 3502  35v 5
L® — - C.4
" (1287““8 617 12878 1287%) (4
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C.2 Spin-orbit sector up to N?LO

7‘~lLO:(g(lé'i){gy}—i-(g(l)-i){?g}—l-(lﬁm (C.5)

g5 2w TP\ T T 16 st
L 13103 7y2+ Tv L2 7313 11”2+ Tv

Priiems — 28 T 167 Prliem ~ 2% g

173 1332 27y (1T 2 Ty

167 167 87 167 r 167

< =\ [2502 13w, 633 1232 3v\ (1003 171
+(S<1>'L){4;5+;s+pr<ww+f4 Th\TE T

L2 (2 2305 192\ 1A 197 v 7 12 1902
P\~ 8% | T 168 1670 79 87 1617

+(1+2) (C.7)

+
~ _(§<1>'i){41u2 21y ~2< 633 39912 27u>
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